Skip to yearly menu bar Skip to main content


Timezone: Europe/Vienna

Poster Session 29 Thu 16 Jul 12:00 a.m.  

Yuguang Wang · Ming Li · Zheng Ma · Guido Montufar · Xiaosheng Zhuang · Yanan Fan

[ Virtual ]

Deep Graph Neural Networks (GNNs) are useful models for graph classification and graph-based regression tasks. In these tasks, graph pooling is a critical ingredient by which GNNs adapt to input graphs of varying size and structure. We propose a new graph pooling operation based on compressive Haar transforms --- \emph{HaarPooling}. HaarPooling implements a cascade of pooling operations; it is computed by following a sequence of clusterings of the input graph. A HaarPooling layer transforms a given input graph to an output graph with a smaller node number and the same feature dimension; the compressive Haar transform filters out fine detail information in the Haar wavelet domain. In this way, all the HaarPooling layers together synthesize the features of any given input graph into a feature vector of uniform size. Such transforms provide a sparse characterization of the data and preserve the structure information of the input graph. GNNs implemented with standard graph convolution layers and HaarPooling layers achieve state of the art performance on diverse graph classification and regression problems.

Jin Xu · Jean-Francois Ton · Hyunjik Kim · Adam Kosiorek · Yee-Whye Teh

[ Virtual ]

We develop a functional encoder-decoder approach to supervised meta-learning, where labeled data is encoded into an infinite-dimensional functional representation rather than a finite-dimensional one. Furthermore, rather than directly producing the representation, we learn a neural update rule resembling functional gradient descent which iteratively improves the representation. The final representation is used to condition the decoder to make predictions on unlabeled data. Our approach is the first to demonstrates the success of encoder-decoder style meta-learning methods like conditional neural processes on large-scale few-shot classification benchmarks such as miniImageNet and tieredImageNet, where it achieves state-of-the-art performance.

Ioana Bica · Ahmed Alaa · Mihaela van der Schaar

[ Virtual ]

The estimation of treatment effects is a pervasive problem in medicine. Existing methods for estimating treatment effects from longitudinal observational data assume that there are no hidden confounders, an assumption that is not testable in practice and, if it does not hold, leads to biased estimates. In this paper, we develop the Time Series Deconfounder, a method that leverages the assignment of multiple treatments over time to enable the estimation of treatment effects in the presence of multi-cause hidden confounders. The Time Series Deconfounder uses a novel recurrent neural network architecture with multitask output to build a factor model over time and infer latent variables that render the assigned treatments conditionally independent; then, it performs causal inference using these latent variables that act as substitutes for the multi-cause unobserved confounders. We provide a theoretical analysis for obtaining unbiased causal effects of time-varying exposures using the Time Series Deconfounder. Using both simulated and real data we show the effectiveness of our method in deconfounding the estimation of treatment responses over time.

Adrià Puigdomenech Badia · Bilal Piot · Steven Kapturowski · Pablo Sprechmann · Oleksandr Vitvitskyi · Zhaohan Guo · Charles Blundell

Atari games have been a long-standing benchmark in the reinforcement learning (RL) community for the past decade. This benchmark was proposed to test general competency of RL algorithms. Previous work has achieved good average performance by doing outstandingly well on many games of the set, but very poorly in several of the most challenging games. We propose Agent57, the first deep RL agent that outperforms the standard human benchmark on all 57 Atari games. To achieve this result, we train a neural network which parameterizes a family of policies ranging from very exploratory to purely exploitative. We propose an adaptive mechanism to choose which policy to prioritize throughout the training process. Additionally, we utilize a novel parameterization of the architecture that allows for more consistent and stable learning.

Rixon Crane · Fred Roosta

We present a novel communication-efficient Newton-type algorithm for finite-sum optimization over a distributed computing environment. Our method, named DINO, overcomes both theoretical and practical shortcomings of similar existing methods. Under minimal assumptions, we guarantee global sub-linear convergence of DINO to a first-order stationary point for general non-convex functions and arbitrary data distribution over the network. Furthermore, for functions satisfying Polyak-Lojasiewicz (PL) inequality, we show that DINO enjoys a linear convergence rate. Our proposed algorithm is practically parameter free, in that it will converge regardless of the selected hyper-parameters, which are easy to tune. Additionally, its sub-problems are simple linear least-squares, for which efficient solvers exist, and numerical simulations demonstrate the efficiency of DINO as compared with similar alternatives.

Vlad Niculae · Andre Filipe Torres Martins

Structured predictors require solving a combinatorial optimization problem over a large number of structures, such as dependency trees or alignments. When embedded as structured hidden layers in a neural net, argmin differentiation and efficient gradient computation are further required. Recently, SparseMAP has been proposed as a differentiable, sparse alternative to maximum a posteriori (MAP) and marginal inference. SparseMAP returns an interpretable combination of a small number of structures; its sparsity being the key to efficient optimization. However, SparseMAP requires access to an exact MAP oracle in the structured model, excluding, e.g., loopy graphical models or logic constraints, which generally require approximate inference. In this paper, we introduce LP-SparseMAP, an extension of SparseMAP addressing this limitation via a local polytope relaxation. LP-SparseMAP uses the flexible and powerful language of factor graphs to define expressive hidden structures, supporting coarse decompositions, hard logic constraints, and higher-order correlations. We derive the forward and backward algorithms needed for using LP-SparseMAP as a structured hidden or output layer. Experiments in three structured tasks show benefits versus SparseMAP and Structured SVM.

Chengcheng Wan · Henry (Hank) Hoffmann · Shan Lu · Michael Maire

We propose a novel variant of SGD customized for training network architectures that support anytime behavior: such networks produce a series of increasingly accurate outputs over time. Efficient architectural designs for these networks focus on re-using internal state; subnetworks must produce representations relevant for both imme- diate prediction as well as refinement by subse- quent network stages. We consider traditional branched networks as well as a new class of re- cursively nested networks. Our new optimizer, Orthogonalized SGD, dynamically re-balances task-specific gradients when training a multitask network. In the context of anytime architectures, this optimizer projects gradients from later out- puts onto a parameter subspace that does not in- terfere with those from earlier outputs. Experi- ments demonstrate that training with Orthogonal- ized SGD significantly improves generalization accuracy of anytime networks.

Nathan Kallus · Masatoshi Uehara

Policy gradient methods in reinforcement learning update policy parameters by taking steps in the direction of an estimated gradient of policy value. In this paper, we consider the efficient estimation of policy gradients from off-policy data, where the estimation is particularly non-trivial. We derive the asymptotic lower bound on the feasible mean-squared error in both Markov and non-Markov decision processes and show that existing estimators fail to achieve it in general settings. We propose a meta-algorithm that achieves the lower bound without any parametric assumptions and exhibits a unique 4-way double robustness property. We discuss how to estimate nuisances that the algorithm relies on. Finally, we establish guarantees at the rate at which we approach a stationary point when we take steps in the direction of our new estimated policy gradient.

Sung Whan Yoon · Do-Yeon Kim · Jun Seo · Jaekyun Moon

Learning novel concepts while preserving prior knowledge is a long-standing challenge in machine learning. The challenge gets greater when a novel task is given with only a few labeled examples, a problem known as incremental few-shot learning. We propose XtarNet, which learns to extract task-adaptive representation (TAR) for facilitating incremental few-shot learning. The method utilizes a backbone network pretrained on a set of base categories while also employing additional modules that are meta-trained across episodes. Given a new task, the novel feature extracted from the meta-trained modules is mixed with the base feature obtained from the pretrained model. The process of combining two different features provides TAR and is also controlled by meta-trained modules. The TAR contains effective information for classifying both novel and base categories. The base and novel classifiers quickly adapt to a given task by utilizing the TAR. Experiments on standard image datasets indicate that XtarNet achieves state-of-the-art incremental few-shot learning performance. The concept of TAR can also be used in conjunction with existing incremental few-shot learning methods; extensive simulation results in fact show that applying TAR enhances the known methods significantly.


Poster Session 30 Thu 16 Jul 01:00 a.m.  

Alex Gain · Hava Siegelmann

[ Virtual ]

A longstanding problem for Deep Neural Networks (DNNs) is understanding their puzzling ability to generalize well. We approach this problem through the unconventional angle of \textit{cognitive abstraction mechanisms}, drawing inspiration from recent neuroscience work, allowing us to define the Cognitive Neural Activation metric (CNA) for DNNs, which is the correlation between information complexity (entropy) of given input and the concentration of higher activation values in deeper layers of the network. The CNA is highly predictive of generalization ability, outperforming norm-and-sharpness-based generalization metrics on an extensive evaluation of close to 200 network instances comprising a breadth of dataset-architecture combinations, especially in cases where additive noise is present and/or training labels are corrupted. These strong empirical results show the usefulness of the CNA as a generalization metric and encourage further research on the connection between information complexity and representations in the deeper layers of networks in order to better understand the generalization capabilities of DNNs.

Ruiqi Guo · Philip Sun · Erik Lindgren · Quan Geng · David Simcha · Felix Chern · Sanjiv Kumar

[ Virtual ]

Quantization based techniques are the current state-of-the-art for scaling maximum inner product search to massive databases. Traditional approaches to quantization aim to minimize the reconstruction error of the database points. Based on the observation that for a given query, the database points that have the largest inner products are more relevant, we develop a family of anisotropic quantization loss functions. Under natural statistical assumptions, we show that quantization with these loss functions leads to a new variant of vector quantization that more greatly penalizes the parallel component of a datapoint's residual relative to its orthogonal component. The proposed approach, whose implementation is open-source, achieves state-of-the-art results on the public benchmarks available at ann-benchmarks.com.

Rishabh Agarwal · Dale Schuurmans · Mohammad Norouzi

[ Virtual ]

Off-policy reinforcement learning (RL) using a fixed offline dataset of logged interactions is an important consideration in real world applications. This paper studies offline RL using the DQN replay dataset comprising the entire replay experience of a DQN agent on 60 Atari 2600 games. We demonstrate that recent off-policy deep RL algorithms, even when trained solely on this fixed dataset, outperform the fully trained DQN agent. To enhance generalization in the offline setting, we present Random Ensemble Mixture (REM), a robust Q-learning algorithm that enforces optimal Bellman consistency on random convex combinations of multiple Q-value estimates. Offline REM trained on the DQN replay dataset surpasses strong RL baselines. Ablation studies highlight the role of offline dataset size and diversity as well as the algorithm choice in our positive results. Overall, the results here present an optimistic view that robust RL algorithms trained on sufficiently large and diverse offline datasets can lead to high quality policies. The DQN replay dataset can serve as an offline RL benchmark and is open-sourced.

Hussein Mozannar · David Sontag

[ Virtual ]

Learning algorithms are often used in conjunction with expert decision makers in practical scenarios, however this fact is largely ignored when designing these algorithms. In this paper we explore how to learn predictors that can either predict or choose to defer the decision to a downstream expert. Given only samples of the expert's decisions, we give a procedure based on learning a classifier and a rejector and analyze it theoretically. Our approach is based on a novel reduction to cost sensitive learning where we give a consistent surrogate loss for cost sensitive learning that generalizes the cross entropy loss. We show the effectiveness of our approach on a variety of experimental tasks.

Bahareh Tolooshams · Andrew Song · Simona Temereanca · Demba Ba

[ Virtual ]

We introduce a class of auto-encoder neural networks tailored to data from the natural exponential family (e.g., count data). The architectures are inspired by the problem of learning the filters in a convolutional generative model with sparsity constraints, often referred to as convolutional dictionary learning (CDL). Our work is the first to combine ideas from convolutional generative models and deep learning for data that are naturally modeled with a non-Gaussian distribution (e.g., binomial and Poisson). This perspective provides us with a scalable and flexible framework that can be re-purposed for a wide range of tasks and assumptions on the generative model. Specifically, the iterative optimization procedure for solving CDL, an unsupervised task, is mapped to an unfolded and constrained neural network, with iterative adjustments to the inputs to account for the generative distribution. We also show that the framework can easily be extended for discriminative training, appropriate for a supervised task. We demonstrate 1) that fitting the generative model to learn, in an unsupervised fashion, the latent stimulus that underlies neural spiking data leads to better goodness-of-fit compared to other baselines, 2) competitive performance compared to state-of-the-art algorithms for supervised Poisson image denoising, with significantly fewer parameters, and 3) gradient …

Reza Oftadeh · Jiayi Shen · Zhangyang “Atlas” Wang · Dylan Shell

[ Virtual ]

This paper proposes a new loss function for linear autoencoders (LAEs) and analytically identifies the structure of the associated loss surface. Optimizing the conventional Mean Square Error (MSE) loss results in a decoder matrix that spans the principal subspace of the sample covariance of the data, but, owing to an invariance that cancels out in the global map, it will fail to identify the exact eigenvectors. We show here that our proposed loss function eliminates this issue, so the decoder converges to the exact ordered unnormalized eigenvectors of the sample covariance matrix. We characterize the full structure of the new loss landscape by establishing an analytical expression for the set of all critical points, showing that it is a subset of critical points of MSE, and that all local minima are still global. Specifically, the invariant global minima under MSE are shown to become saddle points under the new loss. Additionally, the computational complexity of the loss and its gradients are the same as MSE and, thus, the new loss is not only of theoretical importance but is of practical value, e.g., for low-rank approximation.

Matthew Jones · Huy Nguyen · Thy Nguyen

[ Virtual ]

The field of algorithms has seen a push for fairness, or the removal of inherent bias, in recent history. In data summarization, where a much smaller subset of a data set is chosen to represent the whole of the data, fairness can be introduced by guaranteeing each "demographic group" a specific portion of the representative subset. Specifically, this paper examines this fair variant of the k-centers problem, where a subset of the data with cardinality k is chosen to minimize distance to the rest of the data. Previous papers working on this problem presented both a 3-approximation algorithm with a super-linear runtime and a linear-time algorithm whose approximation factor is exponential in the number of demographic groups. This paper combines the best of each algorithm by presenting a linear-time algorithm with a guaranteed 3-approximation factor and provides empirical evidence of both the algorithm's runtime and effectiveness.

Daniel Y Fu · Mayee Chen · Frederic Sala · Sarah Hooper · Kayvon Fatahalian · Christopher Re

[ Virtual ]

Weak supervision is a popular method for building machine learning models without relying on ground truth annotations. Instead, it generates probabilistic training labels by estimating the accuracies of multiple noisy labeling sources (e.g., heuristics, crowd workers). Existing approaches use latent variable estimation to model the noisy sources, but these methods can be computationally expensive, scaling superlinearly in the data. In this work, we show that, for a class of latent variable models highly applicable to weak supervision, we can find a closed-form solution to model parameters, obviating the need for iterative solutions like stochastic gradient descent (SGD). We use this insight to build FlyingSquid, a weak supervision framework that runs orders of magnitude faster than previous weak supervision approaches and requires fewer assumptions. In particular, we prove bounds on generalization error without assuming that the latent variable model can exactly parameterize the underlying data distribution. Empirically, we validate FlyingSquid on benchmark weak supervision datasets and find that it achieves the same or higher quality compared to previous approaches without the need to tune an SGD procedure, recovers model parameters 170 times faster on average, and enables new video analysis and online learning applications.

Wengong Jin · Regina Barzilay · Tommi Jaakkola

[ Virtual ]

Graph generation techniques are increasingly being adopted for drug discovery. Previous graph generation approaches have utilized relatively small molecular building blocks such as atoms or simple cycles, limiting their effectiveness to smaller molecules. Indeed, as we demonstrate, their performance degrades significantly for larger molecules. In this paper, we propose a new hierarchical graph encoder-decoder that employs significantly larger and more flexible graph motifs as basic building blocks. Our encoder produces a multi-resolution representation for each molecule in a fine-to-coarse fashion, from atoms to connected motifs. Each level integrates the encoding of constituents below with the graph at that level. Our autoregressive coarse-to-fine decoder adds one motif at a time, interleaving the decision of selecting a new motif with the process of resolving its attachments to the emerging molecule. We evaluate our model on multiple molecule generation tasks, including polymers, and show that our model significantly outperforms previous state-of-the-art baselines.

Romain Cosentino · Behnaam Aazhang

[ Virtual ]

We propose a novel approach to filter bank learning for time-series by considering spectral decompositions of signals defined as a Group Transform. This framework allows us to generalize classical time-frequency transformations such as the Wavelet Transform, and to efficiently learn the representation of signals. While the creation of the wavelet transform filter-bank relies on affine transformations of a mother filter, our approach allows for non-linear transformations. The transformations induced by such maps enable us to span a larger class of signal representations, from wavelet to chirplet-like filters. We propose a parameterization of such a non-linear map such that its sampling can be optimized for a specific task and signal. The Learnable Group Transform can be cast into a Deep Neural Network. The experiments on diverse time-series datasets demonstrate the expressivity of this framework, which competes with state-of-the-art performances.

Vincent Conitzer · Debmalya Panigrahi · Hanrui Zhang

[ Virtual ]

We study the problem of learning opinions in social networks. The learner observes the states of some sample nodes from a social network, and tries to infer the states of other nodes, based on the structure of the network. We show that sample-efficient learning is impossible when the network exhibits strong noise, and give a polynomial-time algorithm for the problem with nearly optimal sample complexity when the network is sufficiently stable.

Debjani Saha · Candice Schumann · Duncan McElfresh · John P Dickerson · Michelle Mazurek · Michael Tschantz

[ Virtual ]

Bias in machine learning has manifested injustice in several areas, such as medicine, hiring, and criminal justice. In response, computer scientists have developed myriad definitions of fairness to correct this bias in fielded algorithms. While some definitions are based on established legal and ethical norms, others are largely mathematical. It is unclear whether the general public agrees with these fairness definitions, and perhaps more importantly, whether they understand these definitions. We take initial steps toward bridging this gap between ML researchers and the public, by addressing the question: does a lay audience understand a basic definition of ML fairness? We develop a metric to measure comprehension of three such definitions--demographic parity, equal opportunity, and equalized odds. We evaluate this metric using an online survey, and investigate the relationship between comprehension and sentiment, demographics, and the definition itself.

Yunpeng Shi · Gilad Lerman

[ Virtual ]

We propose an efficient algorithm for solving group synchronization under high levels of corruption and noise, while we focus on rotation synchronization. We first describe our recent theoretically guaranteed message passing algorithm that estimates the corruption levels of the measured group ratios. We then propose a novel reweighted least squares method to estimate the group elements, where the weights are initialized and iteratively updated using the estimated corruption levels. We demonstrate the superior performance of our algorithm over state-of-the-art methods for rotation synchronization using both synthetic and real data.

Rohit Agrawal · Thibaut Horel

[ Virtual ]

The families of f-divergences (e.g. the Kullback-Leibler divergence) and Integral Probability Metrics (e.g. total variation distance or maximum mean discrepancies) are commonly used in optimization and estimation. In this work, we systematically study the relationship between these two families from the perspective of convex duality. Starting from a tight variational representation of the f-divergence, we derive a generalization of the moment generating function, which we show exactly characterizes the best lower bound of the f-divergence as a function of a given IPM. Using this characterization, we obtain new bounds on IPMs defined by classes of unbounded functions, while also recovering in a unified manner well-known results for bounded and subgaussian functions (e.g. Pinsker's inequality and Hoeffding's lemma).

Amanda Bower · Laura Balzano

[ Virtual ]

We consider the problem of estimating a ranking on a set of items from noisy pairwise comparisons given item features. We address the fact that pairwise comparison data often reflects irrational choice, e.g. intransitivity. Our key observation is that two items compared in isolation from other items may be compared based on only a salient subset of features. Formalizing this framework, we propose the salient feature preference model and prove a finite sample complexity result for learning the parameters of our model and the underlying ranking with maximum likelihood estimation. We also provide empirical results that support our theoretical bounds and illustrate how our model explains systematic intransitivity. Finally we demonstrate strong performance of maximum likelihood estimation of our model on both synthetic data and two real data sets: the UT Zappos50K data set and comparison data about the compactness of legislative districts in the US.

Huanyu Zhang · Gautam Kamath · Janardhan Kulkarni · Steven Wu

[ Virtual ]

We consider the problem of learning Markov Random Fields (including the prototypical example, the Ising model) under the constraint of differential privacy. Our learning goals include both \emph{structure learning}, where we try to estimate the underlying graph structure of the model, as well as the harder goal of \emph{parameter learning}, in which we additionally estimate the parameter on each edge. We provide algorithms and lower bounds for both problems under a variety of privacy constraints -- namely pure, concentrated, and approximate differential privacy. While non-privately, both learning goals enjoy roughly the same complexity, we show that this is not the case under differential privacy. In particular, only structure learning under approximate differential privacy maintains the non-private logarithmic dependence on the dimensionality of the data, while a change in either the learning goal or the privacy notion would necessitate a polynomial dependence. As a result, we show that the privacy constraint imposes a strong separation between these two learning problems in the high-dimensional data regime.

Hima Lakkaraju · Nino Arsov · Osbert Bastani

[ Virtual ]

As machine learning black boxes are increasingly being deployed in real-world applications, there has been a growing interest in developing post hoc explanations that summarize the behaviors of these black boxes. However, existing algorithms for generating such explanations have been shown to lack stability and robustness to distribution shifts. We propose a novel framework for generating robust and stable explanations of black box models based on adversarial training. Our framework optimizes a minimax objective that aims to construct the highest fidelity explanation with respect to the worst-case over a set of adversarial perturbations. We instantiate this algorithm for explanations in the form of linear models and decision sets by devising the required optimization procedures. To the best of our knowledge, this work makes the first attempt at generating post hoc explanations that are robust to a general class of adversarial perturbations that are of practical interest. Experimental evaluation with real-world and synthetic datasets demonstrates that our approach substantially improves robustness of explanations without sacrificing their fidelity on the original data distribution.

Sahil Singla · Soheil Feizi

[ Virtual ]

A robustness certificate against adversarial examples is the minimum distance of a given input to the decision boundary of the classifier (or its lower bound). For {\it any} perturbation of the input with a magnitude smaller than the certificate value, the classification output will provably remain unchanged. Computing exact robustness certificates for neural networks is difficult in general since it requires solving a non-convex optimization. In this paper, we provide computationally-efficient robustness certificates for neural networks with differentiable activation functions in two steps. First, we show that if the eigenvalues of the Hessian of the network (curvatures of the network) are bounded (globally or locally), we can compute a robustness certificate in the $l_2$ norm efficiently using convex optimization. Second, we derive a computationally-efficient differentiable upper bound on the curvature of a deep network. We also use the curvature bound as a regularization term during the training of the network to boost its certified robustness. Putting these results together leads to our proposed {\bf C}urvature-based {\bf R}obustness {\bf C}ertificate (CRC) and {\bf C}urvature-based {\bf R}obust {\bf T}raining (CRT). Our numerical results show that CRT leads to significantly higher certified robust accuracy compared to interval-bound propagation based training.
Brandon Amos · Denis Yarats

[ Virtual ]

We study the Cross-Entropy Method (CEM) for the non-convex optimization of a continuous and parameterized objective function and introduce a differentiable variant that enables us to differentiate the output of CEM with respect to the objective function's parameters. In the machine learning setting this brings CEM inside of the end-to-end learning pipeline where this has otherwise been impossible. We show applications in a synthetic energy-based structured prediction task and in non-convex continuous control. In the control setting we show how to embed optimal action sequences into a lower-dimensional space. This enables us to use policy optimization to fine-tune modeling components by differentiating through the CEM-based controller.

Alexander Tong · Jessie Huang · Guy Wolf · David van Dijk · Smita Krishnaswamy

[ Virtual ]

It is increasingly common to encounter data in the form of cross-sectional population measurements over time, particularly in biomedical settings. Recent attempts to model individual trajectories from this data use optimal transport to create pairwise matchings between time points. However, these methods cannot model non-linear paths common in many underlying dynamic systems. We establish a link between continuous normalizing flows and dynamic optimal transport to model the expected paths of points over time. Continuous normalizing flows are generally under constrained, as they are allowed to take an arbitrary path from the source to the target distribution. We present {\em TrajectoryNet}, which controls the continuous paths taken between distributions. We show how this is particularly applicable for studying cellular dynamics in data from single-cell RNA sequencing (scRNA-seq) technologies, and that TrajectoryNet improves upon recently proposed static optimal transport-based models that can be used for interpolating cellular distributions.

Tung-Che Liang · Zhanwei Zhong · Yaas Bigdeli · Tsung-Yi Ho · Krishnendu Chakrabarty · Richard Fair

We present and investigate a novel application domain for deep reinforcement learning (RL): droplet routing on digital microfluidic biochips (DMFBs). A DMFB, composed of a two-dimensional electrode array, manipulates discrete fluid droplets to automatically execute biochemical protocols such as high-throughput DNA sequencing and point-of-care clinical diagnosis. However, a major concern associated with the use of DMFBs is that electrodes in a biochip can degrade over time. Droplet-transportation operations associated with the degraded electrodes can fail, thereby compromising the integrity of the bioassay outcome. While it is not feasible to detect the degradation of an electrode by simply examining its appearance, we show that casting droplet transportation as an RL problem enables the training of deep network policies to capture the underlying health conditions of electrodes and to provide reliable fluidic operations. We propose a new RL-based droplet-routing flow that can be used for various sizes of DMFBs, and demonstrate reliable execution of an epigenetic bioassay with the RL droplet router on a fabricated DMFB. To facilitate further research, we also present a simulation environment based on the OpenAI Gym Interface for RL-guided droplet-routing problems on DMFBs.

Yi Su · Pavithra Srinath · Akshay Krishnamurthy

We develop a generic data-driven method for estimator selection in off-policy policy evaluation settings. We establish a strong performance guarantee for the method, showing that it is competitive with the oracle estimator, up to a constant factor. Via in-depth case studies in contextual bandits and reinforcement learning, we demonstrate the generality and applicability of the method. We also perform comprehensive experiments, demonstrating the empirical efficacy of our approach and comparing with related approaches. In both case studies, our method compares favorably with existing methods.

Muni Sreenivas Pydi · Varun Jog

The accuracy of modern machine learning algorithms deteriorates severely on adversarially manipulated test data. Optimal adversarial risk quantifies the best error rate of any classifier in the presence of adversaries, and optimal adversarial classifiers are sought that minimize adversarial risk. In this paper, we investigate the optimal adversarial risk and optimal adversarial classifiers from an optimal transport perspective. We present a new and simple approach to show that the optimal adversarial risk for binary classification with 0 − 1 loss function is completely characterized by an optimal transport cost between the probability distributions of the two classes, for a suitably defined cost function. We propose a novel coupling strategy that achieves the optimal transport cost for several univariate distributions like Gaussian, uniform and triangular. Using the optimal couplings, we obtain the optimal adversarial classifiers in these settings and show how they differ from optimal classifiers in the absence of adversaries. Based on our analysis, we evaluate algorithm-independent fundamental limits on adversarial risk for CIFAR-10, MNIST, Fashion-MNIST and SVHN datasets, and Gaussian mixtures based on them.

Sanghack Lee · Elias Bareinboim

Causal effect identifiability is concerned with establishing the effect of intervening on a set of variables on another set of variables from observational or interventional distributions under causal assumptions that are usually encoded in the form of a causal graph. Most of the results of this literature implicitly assume that every variable modeled in the graph is measured in the available distributions. In practice, however, the data collections of the different studies considered do not measure the same variables, consistently. In this paper, we study the causal effect identifiability problem when the available distributions encompass different sets of variables, which we refer to as identification under partial-observability. We study a number of properties of the factors that comprise a causal effect under various levels of abstraction, and then characterize the relationship between them with respect to their status relative to the identification of a targeted intervention. We establish a sufficient graphical criterion for determining whether the effects are identifiable from partially-observed distributions. Finally, building on these graphical properties, we develop an algorithm that returns a formula for a causal effect in terms of the available distributions.

Elliot Creager · David Madras · Toniann Pitassi · Richard Zemel

In many applications areas---lending, education, and online recommenders, for example---fairness and equity concerns emerge when a machine learning system interacts with a dynamically changing environment to produce both immediate and long-term effects for individuals and demographic groups. We discuss causal directed acyclic graphs (DAGs) as a unifying framework for the recent literature on fairness in such dynamical systems. We show that this formulation affords several new directions of inquiry to the modeler, where sound causal assumptions can be expressed and manipulated. We emphasize the importance of computing interventional quantities in the dynamical fairness setting, and show how causal assumptions enable simulation (when environment dynamics are known) and estimation by adjustment (when dynamics are unknown) of intervention on short- and long-term outcomes, at both the group and individual levels.

Filipe de Avila Belbute-Peres · Thomas Economon · Zico Kolter

Solving large complex partial differential equations (PDEs), such as those that arise in computational fluid dynamics (CFD), is a computationally expensive process. This has motivated the use of deep learning approaches to approximate the PDE solutions, yet the simulation results predicted from these approaches typically do not generalize well to truly novel scenarios. In this work, we develop a hybrid (graph) neural network that combines a traditional graph convolutional network with an embedded differentiable fluid dynamics simulator inside the network itself. By combining an actual CFD simulator (run on a much coarser resolution representation of the problem) with the graph network, we show that we can both generalize well to new situations and benefit from the substantial speedup of neural network CFD predictions, while also substantially outperforming the coarse CFD simulation alone.

L. Elisa Celis · Vijay Keswani · Nisheeth K. Vishnoi

Data containing human or social attributes may over- or under-represent groups with respect to salient social attributes such as gender or race, which can lead to biases in downstream applications. This paper presents an algorithmic framework that can be used as a data preprocessing method towards mitigating such bias. Unlike prior work, it can efficiently learn distributions over large domains, controllably adjust the representation rates of protected groups and achieve target fairness metrics such as statistical parity, yet remains close to the empirical distribution induced by the given dataset. Our approach leverages the principle of maximum entropy – amongst all distributions satisfying a given set of constraints, we should choose the one closest in KL-divergence to a given prior. While maximum entropy distributions can succinctly encode distributions over large domains, they can be difficult to compute. Our main contribution is an instantiation of this framework for our set of constraints and priors, which encode our bias mitigation goals, and that runs in time polynomial in the dimension of the data. Empirically, we observe that samples from the learned distribution have desired representation rates and statistical rates, and when used for training a classifier incurs only a slight loss in accuracy …

Fangcheng Fu · Yuzheng Hu · Yihan He · Jiawei Jiang · Yingxia Shao · Ce Zhang · Bin Cui

Recent years have witnessed intensive research interests on training deep neural networks (DNNs) more efficiently by quantization-based compression methods, which facilitate DNNs training in two ways: (1) activations are quantized to shrink the memory consumption, and (2) gradients are quantized to decrease the communication cost. However, existing methods mostly use a uniform mechanism that quantizes the values evenly. Such a scheme may cause a large quantization variance and slow down the convergence in practice.

In this work, we introduce TinyScript, which applies a non-uniform quantization algorithm to both activations and gradients. TinyScript models the original values by a family of Weibull distributions and searches for ''quantization knobs'' that minimize quantization variance. We also discuss the convergence of the non-uniform quantization algorithm on DNNs with varying depths, shedding light on the number of bits required for convergence. Experiments show that TinyScript always obtains lower quantization variance, and achieves comparable model qualities against full precision training using 1-2 bits less than the uniform-based counterpart.

Jiaoyang Huang · Horng-Tzer Yau
The evolution of a deep neural network trained by the gradient descent in the overparametrization regime can be described by its neural tangent kernel (NTK) \cite{jacot2018neural, du2018gradient1,du2018gradient2,arora2019fine}. It was observed \cite{arora2019exact} that there is a performance gap between the kernel regression using the limiting NTK and the deep neural networks. We study the dynamic of neural networks of finite width and derive an infinite hierarchy of differential equations, the neural tangent hierarchy (NTH). We prove that the NTH hierarchy truncated at the level $p\geq 2$ approximates the dynamic of the NTK up to arbitrary precision under certain conditions on the neural network width and the data set dimension. The assumptions needed for these approximations become weaker as $p$ increases. Finally, NTH can be viewed as higher order extensions of NTK. In particular, the NTH truncated at $p=2$ recovers the NTK dynamics.
Raghavendra Addanki · Shiva Kasiviswanathan · Andrew McGregor · Cameron Musco
We consider recovering a causal graph in presence of latent variables, where we seek to minimize the cost of interventions used in the recovery process. We consider two intervention cost models: (1) a linear cost model where the cost of an intervention on a subset of variables has a linear form, and (2) an identity cost model where the cost of an intervention is the same, regardless of what variables it is on, i.e., the goal is just to minimize the number of interventions. Under the linear cost model, we give an algorithm to identify the ancestral relations of the underlying causal graph, achieving within a $2$-factor of the optimal intervention cost. This approximation factor can be improved to $1+\eps$ for any $\eps > 0$ under some mild restrictions. Under the identity cost model, we bound the number of interventions needed to recover the entire causal graph, including the latent variables, using a parameterization of the causal graph through a special type of colliders. In particular, we introduce the notion of $p$-colliders, that are colliders between pair of nodes arising from a specific type of conditioning in the causal graph, and provide an upper bound on the number of interventions as …
Stephen Keeley · David Zoltowski · Yiyi Yu · Spencer Smith · Jonathan Pillow

Gaussian Process Factor Analysis (GPFA) has been broadly applied to the problem of identifying smooth, low-dimensional temporal structure underlying large-scale neural recordings. However, spike trains are non-Gaussian, which motivates combining GPFA with discrete observation models for binned spike count data. The drawback to this approach is that GPFA priors are not conjugate to count model likelihoods, which makes inference challenging. Here we address this obstacle by introducing a fast, approximate inference method for non-conjugate GPFA models. Our approach uses orthogonal second-order polynomials to approximate the nonlinear terms in the non-conjugate log-likelihood, resulting in a method we refer to as polynomial approximate log-likelihood (PAL) estimators. This approximation allows for accurate closed-form evaluation of marginal likelihoods and fast numerical optimization for parameters and hyperparameters. We derive PAL estimators for GPFA models with binomial, Poisson, and negative binomial observations and find the PAL estimation is highly accurate, and achieves faster convergence times compared to existing state-of-the-art inference methods. We also find that PAL hyperparameters can provide sensible initialization for black box variational inference (BBVI), which improves BBVI accuracy. We demonstrate that PAL estimators achieve fast and accurate extraction of latent structure from multi-neuron spike train data.

Tianyi Lin · Zhengyuan Zhou · Panayotis Mertikopoulos · Michael Jordan
In this paper, we consider multi-agent learning via online gradient descent in a class of games called $\lambda$-cocoercive games, a fairly broad class of games that admits many Nash equilibria and that properly includes unconstrained strongly monotone games. We characterize the finite-time last-iterate convergence rate for joint OGD learning on $\lambda$-cocoercive games; further, building on this result, we develop a fully adaptive OGD learning algorithm that does not require any knowledge of problem parameter (e.g. cocoercive constant $\lambda$) and show, via a novel double-stopping time technique, that this adaptive algorithm achieves same finite-time last-iterate convergence rate as non-adaptive counterpart. Subsequently, we extend OGD learning to the noisy gradient feedback case and establish last-iterate convergence results--first qualitative almost sure convergence, then quantitative finite-time convergence rates-- all under non-decreasing step-sizes. To our knowledge, we provide the first set of results that fill in several gaps of the existing multi-agent online learning literature, where three aspects--finite-time convergence rates, non-decreasing step-sizes, and fully adaptive algorithms have been unexplored before.
Logan Engstrom · Andrew Ilyas · Shibani Santurkar · Dimitris Tsipras · Jacob Steinhardt · Aleksander Madry

Dataset replication is a useful tool for assessing whether improvements in test accuracy on a specific benchmark correspond to improvements in models' ability to generalize reliably. In this work, we present unintuitive yet significant ways in which standard approaches to dataset replication introduce statistical bias, skewing the resulting observations. We study ImageNet-v2, a replication of the ImageNet dataset on which models exhibit a significant (11-14%) drop in accuracy, even after controlling for selection frequency, a human-in-the-loop measure of data quality. We show that after remeasuring selection frequencies and correcting for statistical bias, only an estimated 3.6% of the original 11.7% accuracy drop remains unaccounted for. We conclude with concrete recommendations for recognizing and avoiding bias in dataset replication. Code for our study is publicly available: https://git.io/data-rep-analysis.

Neale Ratzlaff · Qinxun Bai · Fuxin Li · Wei Xu

Efficient exploration remains a challenging problem in reinforcement learning, especially for those tasks where rewards from environments are sparse. In this work, we introduce an exploration approach based on a novel implicit generative modeling algorithm to estimate a Bayesian uncertainty of the agent's belief of the environment dynamics. Each random draw from our generative model is a neural network that instantiates the dynamic function, hence multiple draws would approximate the posterior, and the variance in the predictions based on this posterior is used as an intrinsic reward for exploration. We design a training algorithm for our generative model based on the amortized Stein Variational Gradient Descent. In experiments, we demonstrate the effectiveness of this exploration algorithm in both pure exploration tasks and a downstream task, comparing with state-of-the-art intrinsic reward-based exploration approaches, including two recent approaches based on an ensemble of dynamic models. In challenging exploration tasks, our implicit generative model consistently outperforms competing approaches regarding data efficiency in exploration.

Siqiang Luo
PageRank is a widely used approach for measuring the importance of a node in a graph. Due to the rapid growth of the graph size in the real world, the importance of computing PageRanks in a distributed environment has been increasingly recognized. However, only a few previous works can provide a provable complexity and accuracy for distributed PageRank computation. Given a constant $d\ge 1$ and a graph of $n$ nodes, the state-of-the-art approach, Radar-Push, uses $O(\log\log{n}+\log{d})$ communication rounds to approximate the PageRanks within a relative error $O(\frac{1}{\log^d{n}})$ under a generalized congested clique distributed model. However, Radar-Push entails as large as $O(\log^{2d+3}{n})$ bits of bandwidth (e.g., the communication cost between a pair of nodes per round) in the worst case. In this paper, we provide a new algorithm that uses asymptotically the same communication round complexity while using only $O(d\log^3{n})$ bits of bandwidth.
Yangsibo Huang · Zhao Song · Kai Li · Sanjeev Arora

How can multiple distributed entities train a shared deep net on their private data while protecting data privacy? This paper introduces InstaHide, a simple encryption of training images. Encrypted images can be used in standard deep learning pipelines (PyTorch, Federated Learning etc.) with no additional setup or infrastructure. The encryption has a minor effect on test accuracy (unlike differential privacy).

Encryption consists of mixing the image with a set of other images (in the sense of Mixup data augmentation technique (Zhang et al., 2018)) followed by applying a random pixel-wise mask on the mixed image. Other contributions of this paper are: (a) Use of large public dataset of images (e.g. ImageNet) for mixing during encryption; this improves security. (b) Experiments demonstrating effectiveness in protecting privacy against known attacks while preserving model accuracy. (c) Theoretical analysis showing that successfully attacking privacy requires attackers to solve a difficult computational problem. (d) Demonstration that Mixup alone is insecure as (contrary to recent proposals), by showing some efficient attacks. (e) Release of a challenge dataset to allow design of new attacks.

Yan Leng · Xiaowen Dong · Junfeng Wu · Alex `Sandy' Pentland

Individuals, or organizations, cooperate with or compete against one another in a wide range of practical situations. Such strategic interactions are often modeled as games played on networks, where an individual's payoff depends not only on her action but also on that of her neighbors. The current literature has largely focused on analyzing the characteristics of network games in the scenario where the structure of the network, which is represented by a graph, is known beforehand. It is often the case, however, that the actions of the players are readily observable while the underlying interaction network remains hidden. In this paper, we propose two novel frameworks for learning, from the observations on individual actions, network games with linear-quadratic payoffs, and in particular, the structure of the interaction network. Our frameworks are based on the Nash equilibrium of such games and involve solving a joint optimization problem for the graph structure and the individual marginal benefits. Both synthetic and real-world experiments demonstrate the effectiveness of the proposed frameworks, which have theoretical as well as practical implications for understanding strategic interactions in a network environment.

Ruixiang ZHANG · Masanori Koyama · Katsuhiko Ishiguro

Learning controllable and generalizable representation of multivariate data with desired structural properties remains a fundamental problem in machine learning. In this paper, we present a novel framework for learning generative models with various underlying structures in the latent space. We represent the inductive bias in the form of mask variables to model the dependency structure in the graphical model and extend the theory of multivariate information bottleneck~\cite{mib} to enforce it. Our model provides a principled approach to learn a set of semantically meaningful latent factors that reflect various types of desired structures like capturing correlation or encoding invariance, while also offering the flexibility to automatically estimate the dependency structure from data. We show that our framework unifies many existing generative models and can be applied to a variety of tasks, including multi-modal data modeling, algorithmic fairness, and out-of-distribution generalization.

Yucheng Lu · Christopher De Sa
Running Stochastic Gradient Descent (SGD) in a decentralized fashion has shown promising results. In this paper we propose Moniqua, a technique that allows decentralized SGD to use quantized communication. We prove in theory that Moniqua communicates a provably bounded number of bits per iteration, while converging at the same asymptotic rate as the original algorithm does with full-precision communication. Moniqua improves upon prior works in that it (1) requires zero additional memory, (2) works with 1-bit quantization, and (3) is applicable to a variety of decentralized algorithms. We demonstrate empirically that Moniqua converges faster with respect to wall clock time than other quantized decentralized algorithms. We also show that Moniqua is robust to very low bit-budgets, allowing $1$-bit-per-parameter communication without compromising validation accuracy when training ResNet20 and ResNet110 on CIFAR10.
Abhiram Gnanasambandam · Stanley Chan

When training an estimator such as a neural network for tasks like image denoising, it is often preferred to train one estimator and apply it to all noise levels. The de facto training protocol to achieve this goal is to train the estimator with noisy samples whose noise levels are uniformly distributed across the range of interest. However, why should we allocate the samples uniformly? Can we have more training samples that are less noisy, and fewer samples that are more noisy? What is the optimal distribution? How do we obtain such a distribution? The goal of this paper is to address this training sample distribution problem from a minimax risk optimization perspective. We derive a dual ascent algorithm to determine the optimal sampling distribution of which the convergence is guaranteed as long as the set of admissible estimators is closed and convex. For estimators with non-convex admissible sets such as deep neural networks, our dual formulation converges to a solution of the convex relaxation. We discuss how the algorithm can be implemented in practice. We evaluate the algorithm on linear estimators and deep networks.

Han Zhao · Junjie Hu · Andrej Risteski

The goal of universal machine translation is to learn to translate between any pair of languages, given pairs of translated documents for \emph{some} of these languages. Despite impressive empirical results and an increasing interest in massively multilingual models, theoretical analysis on translation errors made by such universal machine translation models is only nascent. In this paper, we take one step towards better understanding of universal machine translation by first proving an impossibility theorem in the general case. In particular, we derive a lower bound on the translation error in the many-to-one translation setting, which shows that any algorithm aiming to learn shared sentence representations among multiple language pairs has to make a large translation error on at least one of the translation tasks, if no assumption on the structure of the languages is made. On the positive side, we show that if the documents follow a natural encoder-decoder generative process, then we can expect a natural notion of ``generalization'': a linear number of pairs, rather than quadratic, suffices. Our theory also explains what kinds of connection graphs between pairs of languages are better suited: ones with longer paths result in worse sample complexity in terms of the total number of …

Haonan Duan · Saeed Nejati · George Trimponias · Pascal Poupart · Vijay Ganesh
In this paper, we present a Bayesian Moment Matching (BMM) based method aimed at solving the initialization problem in Boolean SAT solvers. The initialization problem can be stated as follows: given a SAT formula $\phi$, compute an initial order over the variables of $\phi$ and values/polarity for these variables such that the runtime of SAT solvers on input $\phi$ is minimized. At the start of a solver run, our BMM-based methods compute a posterior probability distribution for an assignment to the variables of the input formula after analyzing its clauses, which will then be used by the solver to initialize its search. We perform extensive experiments to evaluate the efficacy of our BMM-based heuristic against 4 other initialization methods (random, survey propagation, Jeroslow-Wang, and default) in state-of-the-art solvers, MapleCOMSPS and MapleLCMDistChronotBT over the SAT competition 2018 application benchmark, as well as the best-known solvers in the cryptographic category, namely, CryptoMiniSAT, Glucose, and MapleSAT. On the cryptographic benchmark, BMM-based solvers out-perform all other initialization methods. Further, the BMM-based MapleCOMSPS significantly out-perform the same solver using all other initialization methods by 12 additional instances solved and better average runtime, over the SAT 2018 competition benchmark.
Mahmoud Assran · Michael Rabbat

We study Nesterov's accelerated gradient method with constant step-size and momentum parameters in the stochastic approximation setting (unbiased gradients with bounded variance) and the finite-sum setting (where randomness is due to sampling mini-batches). To build better insight into the behavior of Nesterov's method in stochastic settings, we focus throughout on objectives that are smooth, strongly-convex, and twice continuously differentiable. In the stochastic approximation setting, Nesterov's method converges to a neighborhood of the optimal point at the same accelerated rate as in the deterministic setting. Perhaps surprisingly, in the finite-sum setting, we prove that Nesterov's method may diverge with the usual choice of step-size and momentum, unless additional conditions on the problem related to conditioning and data coherence are satisfied. Our results shed light as to why Nesterov's method may fail to converge or achieve acceleration in the finite-sum setting.

Hengrui Cai · Wenbin Lu · Rui Song

In the current era of personalized recommendation, one major interest is to develop an optimal individualized decision rule that assigns individuals with the best treatment option according to their covariates. Estimation of optimal decision rules (ODR) has been extensively investigated recently, however, at present, no testing procedure is proposed to verify whether these ODRs are significantly better than the naive decision rule that always assigning individuals to a fixed treatment option. In this paper, we propose a testing procedure for detecting the existence of an ODR that is better than the naive decision rule under the randomized trials. We construct the proposed test based on the difference of estimated value functions using the augmented inverse probability weighted method. The asymptotic distributions of the proposed test statistic under the null and local alternative hypotheses are established. Based on the established asymptotic distributions, we further develop a sample size calculation formula for testing the existence of an ODR in designing A/B tests. Extensive simulations and a real data application to a schizophrenia clinical trial data are conducted to demonstrate the empirical validity of the proposed methods.

Christof Angermueller · David Belanger · Andreea Gane · Zelda Mariet · David Dohan · Kevin Murphy · Lucy Colwell · D. Sculley

The use of black-box optimization for the design of new biological sequences is an emerging research area with potentially revolutionary impact. The cost and latency of wet-lab experiments requires methods that find good sequences in few experimental rounds of large batches of sequences --- a setting that off-the-shelf black-box optimization methods are ill-equipped to handle. We find that the performance of existing methods varies drastically across optimization tasks, posing a significant obstacle to real-world applications. To improve robustness, we propose Population-Based Black-Box Optimization (P3BO), which generates batches of sequences by sampling from an ensemble of methods. The number of sequences sampled from any method is proportional to the quality of sequences it previously proposed, allowing P3BO to combine the strengths of individual methods while hedging against their innate brittleness. Adapting the hyper-parameters of each of the methods online using evolutionary optimization further improves performance. Through extensive experiments on in-silico optimization tasks, we show that P3BO outperforms any single method in its population, proposing higher quality sequences as well as more diverse batches. As such, P3BO and Adaptive-P3BO are a crucial step towards deploying ML to real-world sequence design.

Jie Xu · Yunsheng Tian · Pingchuan Ma · Daniela Rus · Shinjiro Sueda · Wojciech Matusik

Many real-world control problems involve conflicting objectives where we desire a dense and high-quality set of control policies that are optimal for different objective preferences (called Pareto-optimal). While extensive research in multi-objective reinforcement learning (MORL) has been conducted to tackle such problems, multi-objective optimization for complex continuous robot control is still under-explored. In this work, we propose an efficient evolutionary learning algorithm to find the Pareto set approximation for continuous robot control problems, by extending a state-of-the-art RL algorithm and presenting a novel prediction model to guide the learning process. In addition to efficiently discovering the individual policies on the Pareto front, we construct a continuous set of Pareto-optimal solutions by Pareto analysis and interpolation. Furthermore, we design seven multi-objective RL environments with continuous action space, which is the first benchmark platform to evaluate MORL algorithms on various robot control problems. We test the previous methods on the proposed benchmark problems, and the experiments show that our approach is able to find a much denser and higher-quality set of Pareto policies than the existing algorithms.

Raef Bassily · Albert Cheu · Shay Moran · Aleksandar Nikolov · Jonathan Ullman · Steven Wu
We study the problem of differentially private query release assisted by access to public data. In this problem, the goal is to answer a large class $\mathcal{H}$ of statistical queries with error no more than $\alpha$ using a combination of public and private samples. The algorithm is required to satisfy differential privacy only with respect to the private samples. We study the limits of this task in terms of the private and public sample complexities. Our upper and lower bounds on the private sample complexity have matching dependence on the dual VC-dimension of $\mathcal{H}$. For a large category of query classes, our bounds on the public sample complexity have matching dependence on $\alpha$.
Yunhao Tang · Shipra Agrawal · Yuri Faenza

Integer programming is a general optimization framework with a wide variety of applications, e.g., in scheduling, production planning, and graph optimization. As Integer Programs (IPs) model many provably hard to solve problems, modern IP solvers rely on heuristics. These heuristics are often human-designed, and tuned over time using experience and data. The goal of this work is to show that the performance of those solvers can be greatly enhanced using reinforcement learning (RL). In particular, we investigate a specific methodology for solving IPs, known as the Cutting Plane Method. This method is employed as a subroutine by all modern IP solvers. We present a deep RL formulation, network architecture, and algorithms for intelligent adaptive selection of cutting planes (aka cuts). Across a wide range of IP tasks, we show that our trained RL agent significantly outperforms human-designed heuristics, and effectively generalizes to larger instances and across IP problem classes. The trained agent is also demonstrated to benefit the popular downstream application of cutting plane methods in Branch-and-Cut algorithm, which is the backbone of state-of-the-art commercial IP solvers.

Viet Anh Nguyen · Nian Si · Jose Blanchet

We build a Bayesian contextual classification model using an optimistic score ratio for robust binary classification when there is limited information on the class-conditional, or contextual, distribution. The optimistic score searches for the distribution that is most plausible to explain the observed outcomes in the testing sample among all distributions belonging to the contextual ambiguity set which is prescribed using a limited structural constraint on the mean vector and the covariance matrix of the underlying contextual distribution. We show that the Bayesian classifier using the optimistic score ratio is conceptually attractive, delivers solid statistical guarantees and is computationally tractable. We showcase the power of the proposed optimistic score ratio classifier on both synthetic and empirical data.

Vladimir Braverman · Robert Krauthgamer · Aditya Krishnan · Roi Sinoff

Spectral functions of large matrices contains important structural information about the underlying data, and is thus becoming increasingly important. Many times, large matrices representing real-world data are sparse or doubly sparse (i.e., sparse in both rows and columns), and are accessed as a stream of updates, typically organized in row-order. In this setting, where space (memory) is the limiting resource, all known algorithms require space that is polynomial in the dimension of the matrix, even for sparse matrices. We address this challenge by providing the first algorithms whose space requirement is independent of the matrix dimension, assuming the matrix is doubly-sparse and presented in row-order. Our algorithms approximate the Schatten p-norms, which we use in turn to approximate other spectral functions, such as logarithm of the determinant, trace of matrix inverse, and Estrada index. We validate these theoretical performance bounds by numerical experiments on real-world matrices representing social networks. We further prove that multiple passes are unavoidable in this setting, and show extensions of our primary technique, including a trade-off between space requirements and number of passes.

Junqi Wang · Pei Wang · Patrick Shafto

Cooperation is often implicitly assumed when learning from other agents. Cooperation implies that the agent selecting the data, and the agent learning from the data, have the same goal, that the learner infer the intended hypothesis. Recent models in human and machine learning have demonstrated the possibility of cooperation. We seek foundational theoretical results for cooperative inference by Bayesian agents through sequential data. We develop novel approaches analyzing consistency, rate of convergence and stability of Sequential Cooperative Bayesian Inference (SCBI). Our analysis of the effectiveness, sample efficiency and robustness show that cooperation is not only possible but theoretically well-founded. We discuss implications for human-human and human-machine cooperation.

Emilio Parisotto · Francis Song · Jack Rae · Razvan Pascanu · Caglar Gulcehre · Siddhant Jayakumar · Max Jaderberg · Raphael Lopez Kaufman · Aidan Clark · Seb Noury · Matthew Botvinick · Nicolas Heess · Raia Hadsell

Owing to their ability to both effectively integrate information over long time horizons and scale to massive amounts of data, self-attention architectures have recently shown breakthrough success in natural language processing (NLP). Harnessing the transformer’s ability to process long time horizons of information could provide a similar performance boost in partially observable reinforcement learning (RL) domains, but the large-scale transformers used in NLP have yet to be successfully applied to the RL setting. In this work we demonstrate that the standard transformer architecture is difficult to optimize, which was previously observed in the supervised learning setting but becomes especially pronounced with RL objectives. We propose architectural modifications that substantially improve the stability and learning speed of the original Transformer and XL variant. The proposed architecture, the Gated Transformer-XL (GTrXL), surpasses LSTMs on challenging memory environments and achieves state-of-the-art results on the multi-task DMLab-30 benchmark suite, exceeding the performance of an external memory architecture. We show that the GTrXL has stability and performance that consistently matches or exceeds a competitive LSTM baseline, including on more reactive tasks where memory is less critical.

Benjamin Coleman · Richard Baraniuk · Anshumali Shrivastava
We present the first sublinear memory sketch that can be queried to find the nearest neighbors in a dataset. Our online sketching algorithm compresses an N element dataset to a sketch of size $O(N^b \log^3 N)$ in $O(N^{(b+1)} \log^3 N)$ time, where $b < 1$. This sketch can correctly report the nearest neighbors of any query that satisfies a stability condition parameterized by $b$. We achieve sublinear memory performance on stable queries by combining recent advances in locality sensitive hash (LSH)-based estimators, online kernel density estimation, and compressed sensing. Our theoretical results shed new light on the memory-accuracy tradeoff for nearest neighbor search, and our sketch, which consists entirely of short integer arrays, has a variety of attractive features in practice. We evaluate the memory-recall tradeoff of our method on a friend recommendation task in the Google plus social media network. We obtain orders of magnitude better compression than the random projection based alternative while retaining the ability to report the nearest neighbors of practical queries.
Pierre C Bellec · Dana Yang
We consider the problem of selecting the best estimator among a family of Tikhonov regularized estimators, or, alternatively, to select a linear combination of these regularizers that is as good as the best regularizer in the family. Our theory reveals that if the Tikhonov regularizers share the same penalty matrix with different tuning parameters, a convex procedure based on $Q$-aggregation achieves the mean square error of the best estimator, up to a small error term no larger than $C\sigma^2$, where $\sigma^2$ is the noise level and $C>0$ is an absolute constant. Remarkably, the error term does not depend on the penalty matrix or the number of estimators as long as they share the same penalty matrix, i.e., it applies to any grid of tuning parameters, no matter how large the cardinality of the grid is. This reveals the surprising "cost-free" nature of optimally tuning Tikhonov regularizers, in striking contrast with the existing literature on aggregation of estimators where one typically has to pay a cost of $\sigma^2\log(M)$ where $M$ is the number of estimators in the family. The result holds, more generally, for any family of ordered linear smoothers; this encompasses Ridge regression as well as Principal Component Regression. …
Ben Adlam · Jeffrey Pennington

Modern deep learning models employ considerably more parameters than required to fit the training data. Whereas conventional statistical wisdom suggests such models should drastically overfit, in practice these models generalize remarkably well. An emerging paradigm for describing this unexpected behavior is in terms of a \emph{double descent} curve, in which increasing a model's capacity causes its test error to first decrease, then increase to a maximum near the interpolation threshold, and then decrease again in the overparameterized regime. Recent efforts to explain this phenomenon theoretically have focused on simple settings, such as linear regression or kernel regression with unstructured random features, which we argue are too coarse to reveal important nuances of actual neural networks. We provide a precise high-dimensional asymptotic analysis of generalization under kernel regression with the Neural Tangent Kernel, which characterizes the behavior of wide neural networks optimized with gradient descent. Our results reveal that the test error has nonmonotonic behavior deep in the overparameterized regime and can even exhibit additional peaks and descents when the number of parameters scales quadratically with the dataset size.

Khimya Khetarpal · Zafarali Ahmed · Gheorghe Comanici · David Abel · Doina Precup

Reinforcement learning algorithms usually assume that all actions are always available to an agent. However, both people and animals understand the general link between the features of their environment and the actions that are feasible. Gibson (1977) coined the term "affordances" to describe the fact that certain states enable an agent to do certain actions, in the context of embodied agents. In this paper, we develop a theory of affordances for agents who learn and plan in Markov Decision Processes. Affordances play a dual role in this case. On one hand, they allow faster planning, by reducing the number of actions available in any given situation. On the other hand, they facilitate more efficient and precise learning of transition models from data, especially when such models require function approximation. We establish these properties through theoretical results as well as illustrative examples. We also propose an approach to learn affordances and use it to estimate transition models that are simpler and generalize better.

Yi-Hsuan Wu · Chia-Hung Yuan · Shan-Hung (Brandon) Wu

[ Virtual ]

Deep neural networks are shown to be vulnerable to adversarial attacks. This motivates robust learning techniques, such as the adversarial training, whose goal is to learn a network that is robust against adversarial attacks. However, the sample complexity of robust learning can be significantly larger than that of “standard” learning. In this paper, we propose improving the adversarial robustness of a network by leveraging the potentially large test data seen at runtime. We devise a new defense method, called runtime masking and cleansing (RMC), that adapts the network at runtime before making a prediction to dynamically mask network gradients and cleanse the model of the non-robust features inevitably learned during the training process due to the size limit of the training set. We conduct experiments on real-world datasets and the results demonstrate the effectiveness of RMC empirically.

Hang Lai · Jian Shen · Weinan Zhang · Yong Yu

[ Virtual ]

Model-based reinforcement learning approaches leverage a forward dynamics model to support planning and decision making, which, however, may fail catastrophically if the model is inaccurate. Although there are several existing methods dedicated to combating the model error, the potential of the single forward model is still limited. In this paper, we propose to additionally construct a backward dynamics model to reduce the reliance on accuracy in forward model predictions. We develop a novel method, called Bidirectional Model-based Policy Optimization (BMPO) to utilize both the forward model and backward model to generate short branched rollouts for policy optimization. Furthermore, we theoretically derive a tighter bound of return discrepancy, which shows the superiority of BMPO against the one using merely the forward model. Extensive experiments demonstrate that BMPO outperforms state-of-the-art model-based methods in terms of sample efficiency and asymptotic performance.

Sai Ganesh Nagarajan · David Balduzzi · Georgios Piliouras

[ Virtual ]

Games are an increasingly useful tool for training and testing learning algorithms. Recent examples include GANs, AlphaZero and the AlphaStar league. However, multi-agent learning can be extremely difficult to predict and control. Learning dynamics even in simple games can yield chaotic behavior. In this paper, we present basic \emph{mechanism design} tools for constructing games with predictable and controllable dynamics. We show that arbitrarily large and complex network games, encoding both cooperation (team play) and competition (zero-sum interaction), exhibit conservation laws when agents use the standard regret-minimizing dynamics known as Follow-the-Regularized-Leader. These laws persist when different agents use different dynamics and encode long-range correlations between agents' behavior, even though the agents may not interact directly. Moreover, we provide sufficient conditions under which the dynamics have multiple, linearly independent, conservation laws. Increasing the number of conservation laws results in more predictable dynamics, eventually making chaotic behavior formally impossible in some cases.

Michihiro Yasunaga · Percy Liang

[ Virtual ]

We consider the problem of learning to repair programs from diagnostic feedback (e.g., compiler error messages). Program repair is challenging for two reasons: First, it requires reasoning and tracking symbols across source code and diagnostic feedback. Second, labeled datasets available for program repair are relatively small. In this work, we propose novel solutions to these two challenges. First, we introduce a program-feedback graph, which connects symbols relevant to program repair in source code and diagnostic feedback, and then apply a graph neural network on top to model the reasoning process. Second, we present a self-supervised learning paradigm for program repair that leverages unlabeled programs available online to create a large amount of extra program repair examples, which we use to pre-train our models. We evaluate our proposed approach on two applications: correcting introductory programming assignments (DeepFix dataset) and correcting the outputs of program synthesis (SPoC dataset). Our final system, DrRepair, significantly outperforms prior work, achieving 68.2\% full repair rate on DeepFix (+22.9\% over the prior best), and 48.4\% synthesis success rate on SPoC (+3.7\% over the prior best).

Akifumi Wachi · Yanan Sui

[ Virtual ]

Safe reinforcement learning has been a promising approach for optimizing the policy of an agent that operates in safety-critical applications. In this paper, we propose an algorithm, SNO-MDP, that explores and optimizes Markov decision processes under unknown safety constraints. Specifically, we take a step-wise approach for optimizing safety and cumulative reward. In our method, the agent first learns safety constraints by expanding the safe region, and then optimizes the cumulative reward in the certified safe region. We provide theoretical guarantees on both the satisfaction of the safety constraint and the near-optimality of the cumulative reward under proper regularity assumptions. In our experiments, we demonstrate the effectiveness of SNO-MDP through two experiments: one uses a synthetic data in a new, openly-available environment named GP-Safety-Gym, and the other simulates Mars surface exploration by using real observation data.

Wuyang Chen · Zhiding Yu · Zhangyang “Atlas” Wang · Anima Anandkumar

Models trained on synthetic images often face degraded generalization to real data. As a convention, these models are often initialized with ImageNet pretrained representation. Yet the role of ImageNet knowledge is seldom discussed despite common practices that leverage this knowledge to maintain the generalization ability. An example is the careful hand-tuning of early stopping and layer-wise learning rates, which is shown to improve synthetic-to-real generalization but is also laborious and heuristic. In this work, we explicitly encourage the synthetically trained model to maintain similar representations with the ImageNet pretrained model, and propose a \textit{learning-to-optimize (L2O)} strategy to automate the selection of layer-wise learning rates. We demonstrate that the proposed framework can significantly improve the synthetic-to-real generalization performance without seeing and training on real data, while also benefiting downstream tasks such as domain adaptation. Code is available at: https://github.com/NVlabs/ASG.

Yuchao Cai · Hanyuan Hang · Hanfang Yang · Zhouchen Lin
In this paper, we propose a boosting algorithm for regression problems called \textit{boosted histogram transform for regression} (BHTR) based on histogram transforms composed of random rotations, stretchings, and translations. From the theoretical perspective, we first prove fast convergence rates for BHTR under the assumption that the target function lies in the spaces $C^{0,\alpha}$. Moreover, if the target function resides in the subspace $C^{1,\alpha}$, by establishing the upper bound of the convergence rate for the boosted regressor, i.e. BHTR, and the lower bound for base regressors, i.e. histogram transform regressors (HTR), we manage to explain the benefits of the boosting procedure. In the experiments, compared with other state-of-the-art algorithms such as gradient boosted regression tree (GBRT), Breiman's forest, and kernel-based methods, our BHTR algorithm shows promising performance on both synthetic and real datasets.
Inseop Chung · SeongUk Park · Jangho Kim · NOJUN KWAK

Feature maps contain rich information about image intensity and spatial correlation. However, previous online knowledge distillation methods only utilize the class probabilities. Thus in this paper, we propose an online knowledge distillation method that transfers not only the knowledge of the class probabilities but also that of the feature map using the adversarial training framework. We train multiple networks simultaneously by employing discriminators to distinguish the feature map distributions of different networks. Each network has its corresponding discriminator which discriminates the feature map from its own as fake while classifying that of the other network as real. By training a network to fool the corresponding discriminator, it can learn the other network's feature map distribution. We show that our method performs better than the conventional direct alignment method such as L1 and is more suitable for online distillation. Also, we propose a novel cyclic learning scheme for training more than two networks together. We have applied our method to various network architectures on the classification task and discovered a significant improvement of performance especially in the case of training a pair of a small network and a large one.

Kangrui Wang · Oliver Hamelijnck · Theodoros Damoulas · Mark Steel

We describe a framework for constructing nonstationary nonseparable random fields based on an infinite mixture of convolved stochastic processes. When the mixing process is stationary but the convolution function is nonstationary we arrive at nonseparable kernels with constant non-separability that are available in closed form. When the mixing is nonstationary and the convolution function is stationary we arrive at nonseparable random fields that have varying nonseparability and better preserve local structure. These fields have natural interpretations through the spectral representation of stochastic differential equations (SDEs) and are demonstrated on a range of synthetic benchmarks and spatio-temporal applications in geostatistics and machine learning. We show how a single Gaussian process (GP) with these random fields can computationally and statistically outperform both separable and existing nonstationary nonseparable approaches such as treed GPs and deep GP constructions.

Yuko Kuroki · Atsushi Miyauchi · Junya Honda · Masashi Sugiyama

\emph{Dense subgraph discovery} aims to find a dense component in edge-weighted graphs. This is a fundamental graph-mining task with a variety of applications and thus has received much attention recently. Although most existing methods assume that each individual edge weight is easily obtained, such an assumption is not necessarily valid in practice. In this paper, we introduce a novel learning problem for dense subgraph discovery in which a learner queries edge subsets rather than only single edges and observes a noisy sum of edge weights in a queried subset. For this problem, we first propose a polynomial-time algorithm that obtains a nearly-optimal solution with high probability. Moreover, to deal with large-sized graphs, we design a more scalable algorithm with a theoretical guarantee. Computational experiments using real-world graphs demonstrate the effectiveness of our algorithms.

Yihan Wang · Huan Zhang · Hongge Chen · Duane Boning · Cho-Jui Hsieh
Recent papers have demonstrated that ensemble stumps and trees could be vulnerable to small input perturbations, so robustness verification and defense for those models have become an important research problem. However, due to the structure of decision trees, where each node makes decision purely based on one feature value, all the previous works only consider the $\ell_\infty$ norm perturbation. To study robustness with respect to a general $\ell_p$ norm perturbation, one has to consider the correlation between perturbations on different features, which has not been handled by previous algorithms. In this paper, we study the problem of robustness verification and certified defense with respect to general $\ell_p$ norm perturbations for ensemble decision stumps and trees. For robustness verification of ensemble stumps, we prove that complete verification is NP-complete for $p\in(0, \infty)$ while polynomial time algorithms exist for $p=0$ or $\infty$. For $p\in(0, \infty)$ we develop an efficient dynamic programming based algorithm for sound verification of ensemble stumps. For ensemble trees, we generalize the previous multi-level robustness verification algorithm to $\ell_p$ norm. We demonstrate the first certified defense method for training ensemble stumps and trees with respect to $\ell_p$ norm perturbations, and verify its effectiveness empirically on real datasets.
Alexia Jolicoeur-Martineau
We take a more rigorous look at Relativistic Generative Adversarial Networks (RGANs) and prove that the objective function of the discriminator is a statistical divergence for any concave function $f$ with minimal properties ($f(0)=0$, $f'(0) \neq 0$, $\sup_x f(x)>0$). We devise additional variants of relativistic $f$-divergences. We show that the Wasserstein distance is weaker than $f$-divergences which are weaker than relativistic $f$-divergences. Given the good performance of RGANs, this suggests that Wasserstein GAN does not performs well primarily because of the weak metric, but rather because of regularization and the use of a relativistic discriminator. We introduce the minimum-variance unbiased estimator (MVUE) for Relativistic paired GANs (RpGANs; originally called RGANs which could bring confusion) and show that it does not perform better. We show that the estimator of Relativistic average GANs (RaGANs) is asymptotically unbiased and that the finite-sample bias is small; removing this bias does not improve performance.
Wei Chen · Xiaoming Sun · Jialin Zhang · Zhijie Zhang
We revisit the optimization from samples (OPS) model, which studies the problem of optimizing objective functions directly from the sample data. Previous results showed that we cannot obtain a constant approximation ratio for the maximum coverage problem using polynomially many independent samples of the form $\{S_i, f(S_i)\}_{i=1}^t$ (Balkanski et al., 2017), even if coverage functions are $(1 - \epsilon)$-PMAC learnable using these samples (Badanidiyuru et al., 2012), which means most of the function values can be approximately learned very well with high probability. In this work, to circumvent the impossibility result of OPS, we propose a stronger model called optimization from structured samples (OPSS) for coverage functions, where the data samples encode the structural information of the functions. We show that under three general assumptions on the sample distributions, we can design efficient OPSS algorithms that achieve a constant approximation for the maximum coverage problem. We further prove a constant lower bound under these assumptions, which is tight when not considering computational efficiency. Moreover, we also show that if we remove any one of the three assumptions, OPSS for the maximum coverage problem has no constant approximation.
Mingtian Zhang · Peter Hayes · Thomas Bird · Raza Habib · David Barber
For distributions $\mathbb{P}$ and $\mathbb{Q}$ with different supports or undefined densities, the divergence $\textrm{D}(\mathbb{P}||\mathbb{Q})$ may not exist. We define a Spread Divergence $\tilde{\textrm{D}}(\mathbb{P}||\mathbb{Q})$ on modified $\mathbb{P}$ and $\mathbb{Q}$ and describe sufficient conditions for the existence of such a divergence. We demonstrate how to maximize the discriminatory power of a given divergence by parameterizing and learning the spread. We also give examples of using a Spread Divergence to train implicit generative models, including linear models (Independent Components Analysis) and non-linear models (Deep Generative Networks).
Zhiyu Yao · Yunbo Wang · Mingsheng Long · Jianmin Wang

This paper explores a new research problem of unsupervised transfer learning across multiple spatiotemporal prediction tasks. Unlike most existing transfer learning methods that focus on fixing the discrepancy between supervised tasks, we study how to transfer knowledge from a zoo of unsupervisedly learned models towards another predictive network. Our motivation is that models from different sources are expected to understand the complex spatiotemporal dynamics from different perspectives, thereby effectively supplementing the new task, even if the task has sufficient training samples. Technically, we propose a differentiable framework named transferable memory. It adaptively distills knowledge from a bank of memory states of multiple pretrained RNNs, and applies it to the target network via a novel recurrent structure called the Transferable Memory Unit (TMU). Compared with finetuning, our approach yields significant improvements on three benchmarks for spatiotemporal prediction, and benefits the target task even from less relevant pretext ones.


Poster Session 31 Thu 16 Jul 04:00 a.m.  

Weidong Liu · Xiaojun Mao · Ka Wai Wong

[ Virtual ]

In this paper, we consider matrix completion with absolute deviation loss and obtain an estimator of the median matrix. Despite several appealing properties of median, the non-smooth absolute deviation loss leads to computational challenge for large-scale data sets which are increasingly common among matrix completion problems. A simple solution to large-scale problems is parallel computing. However, embarrassingly parallel fashion often leads to inefficient estimators. Based on the idea of pseudo data, we propose a novel refinement step, which turns such inefficient estimators into a rate (near-)optimal matrix completion procedure. The refined estimator is an approximation of a regularized least median estimator, and therefore not an ordinary regularized empirical risk estimator. This leads to a non-standard analysis of asymptotic behaviors. Empirical results are also provided to confirm the effectiveness of the proposed method.

Marwa El Halabi · Stefanie Jegelka

[ Virtual ]

Submodular function minimization is well studied, and existing algorithms solve it exactly or up to arbitrary accuracy. However, in many applications, such as structured sparse learning or batch Bayesian optimization, the objective function is not exactly submodular, but close. In this case, no theoretical guarantees exist. Indeed, submodular minimization algorithms rely on intricate connections between submodularity and convexity. We show how these relations can be extended to obtain approximation guarantees for minimizing non-submodular functions, characterized by how close the function is to submodular. We also extend this result to noisy function evaluations. Our approximation results are the first for minimizing non-submodular functions, and are optimal, as established by our matching lower bound.

Jianfei Chen · Cheng Lu · Biqi Chenli · Jun Zhu · Tian Tian

[ Virtual ]

Generative flows are promising tractable models for density modeling that define probabilistic distributions with invertible transformations. However, tractability imposes architectural constraints on generative flows. In this work, we study a previously overlooked constraint that all the intermediate representations must have the same dimensionality with the data due to invertibility, limiting the width of the network. We propose VFlow to tackle this constraint on dimensionality. VFlow augments the data with extra dimensions and defines a maximum evidence lower bound (ELBO) objective for estimating the distribution of augmented data jointly with the variational data augmentation distribution. Under mild assumptions, we show that the maximum ELBO solution of VFlow is always better than the original maximum likelihood solution. For image density modeling on the CIFAR-10 dataset, VFlow achieves a new state-of-the-art 2.98 bits per dimension.

Zixin Zhong · Wang Chi Cheung · Vincent Tan

We design and analyze CascadeBAI, an algorithm for finding the best set of K items, also called an arm, within the framework of cascading bandits. An upper bound on the time complexity of CascadeBAI is derived by overcoming a crucial analytical challenge, namely, that of probabilistically estimating the amount of available feedback at each step. To do so, we define a new class of random variables (r.v.'s) which we term as left-sided sub-Gaussian r.v.'s; these are r.v.'s whose cumulant generating functions (CGFs) can be bounded by a quadratic only for non-positive arguments of the CGFs. This enables the application of a sufficiently tight Bernstein-type concentration inequality. We show, through the derivation of a lower bound on the time complexity, that the performance of CascadeBAI is optimal in some practical regimes. Finally, extensive numerical simulations corroborate the efficacy of CascadeBAI as well as the tightness of our upper bound on its time complexity.

Hongchang Gao · Heng Huang
Frank-Wolfe algorithm is an efficient method for optimizing non-convex constrained problems. However, most of existing methods focus on the first-order case. In real-world applications, the gradient is not always available. To address the problem of lacking gradient in many applications, we propose two new stochastic zeroth-order Frank-Wolfe algorithms and theoretically proved that they have a faster convergence rate than existing methods for non-convex problems. Specifically, the function queries oracle of the proposed faster zeroth-order Frank-Wolfe (FZFW) method is $O(\frac{n^{1/2}d}{\epsilon^2})$ which can match the iteration complexity of the first-order counterpart approximately. As for the proposed faster zeroth-order conditional gradient sliding (FZCGS) method, its function queries oracle is improved to $O(\frac{n^{1/2}d}{\epsilon})$, indicating that its iteration complexity is even better than that of its first-order counterpart NCGS-VR. In other words, the iteration complelxity of the accelerated first-order Frank-Wolfe method NCGS-VR is suboptimal. Then, we proposed a new algorithm to improve its IFO (incremental first-order oracle) to $O(\frac{n^{1/2}}{\epsilon})$. At last, the empirical studies on benchmark datasets validate our theoretical results.
Wenqi Shao · Shitao Tang · Xingang Pan · Ping Tan · Xiaogang Wang · Ping Luo

Convolutional Neural Networks (CNNs) are typically constructed by stacking multiple building blocks, each of which contains a normalization layer such as batch normalization (BN) and a rectified linear function such as ReLU. However, this work shows that the combination of normalization and rectified linear function leads to inhibited channels, which have small magnitude and contribute little to the learned feature representation, impeding the generalization ability of CNNs. Unlike prior arts that simply removed the inhibited channels, we propose to ``wake them up'' during training by designing a novel neural building block, termed Channel Equilibrium (CE) block, which enables channels at the same layer to contribute equally to the learned representation. We show that CE is able to prevent inhibited channels both empirically and theoretically. CE has several appealing benefits. (1) It can be integrated into many advanced CNN architectures such as ResNet and MobileNet, outperforming their original networks. (2) CE has an interesting connection with the Nash Equilibrium, a well-known solution of a non-cooperative game. (3) Extensive experiments show that CE achieves state-of-the-art performance on various challenging benchmarks such as ImageNet and COCO.

Jingzhao Zhang · Hongzhou Lin · Stefanie Jegelka · Suvrit Sra · Ali Jadbabaie

We provide the first non-asymptotic analysis for finding stationary points of nonsmooth, nonconvex functions. In particular, we study the class of Hadamard semi-differentiable functions, perhaps the largest class of nonsmooth functions for which the chain rule of calculus holds. This class contains important examples such as ReLU neural networks and others with non-differentiable activation functions. First, we show that finding an epsilon-stationary point with first-order methods is impossible in finite time. Therefore, we introduce the notion of (delta, epsilon)-stationarity, a generalization that allows for a point to be within distance delta of an epsilon-stationary point and reduces to epsilon-stationarity for smooth functions. We propose a series of randomized first-order methods and analyze their complexity of finding a (delta, epsilon)-stationary point. Furthermore, we provide a lower bound and show that our stochastic algorithm has min-max optimal dependence on delta. Empirically, our methods perform well for training ReLU neural networks.

Xiyu Yu · Tongliang Liu · Mingming Gong · Kun Zhang · Kayhan Batmanghelich · Dacheng Tao
Domain adaptation aims to correct the classifiers when faced with distribution shift between source (training) and target (test) domains. State-of-the-art domain adaptation methods make use of deep networks to extract domain-invariant representations. However, existing methods assume that all the instances in the source domain are correctly labeled; while in reality, it is unsurprising that we may obtain a source domain with noisy labels. In this paper, we are the first to comprehensively investigate how label noise could adversely affect existing domain adaptation methods in various scenarios. Further, we theoretically prove that there exists a method that can essentially reduce the side-effect of noisy source labels in domain adaptation. Specifically, focusing on the generalized target shift scenario, where both label distribution $P_Y$ and the class-conditional distribution $P_{X|Y}$ can change, we discover that the denoising Conditional Invariant Component (DCIC) framework can provably ensures (1) extracting invariant representations given examples with noisy labels in the source domain and unlabeled examples in the target domain and (2) estimating the label distribution in the target domain with no bias. Experimental results on both synthetic and real-world data verify the effectiveness of the proposed method.
Sungsoo Ahn · Younggyo Seo · Jinwoo Shin

Designing efficient algorithms for combinatorial optimization appears ubiquitously in various scientific fields. Recently, deep reinforcement learning (DRL) frameworks have gained considerable attention as a new approach: they can automate the design of a solver while relying less on sophisticated domain knowledge of the target problem. However, the existing DRL solvers determine the solution using a number of stages proportional to the number of elements in the solution, which severely limits their applicability to large-scale graphs. In this paper, we seek to resolve this issue by proposing a novel DRL scheme, coined learning what to defer (LwD), where the agent adaptively shrinks or stretch the number of stages by learning to distribute the element-wise decisions of the solution at each stage. We apply the proposed framework to the maximum independent set (MIS) problem, and demonstrate its significant improvement over the current state-of-the-art DRL scheme. We also show that LwD can outperform the conventional MIS solvers on large-scale graphs having millions of vertices, under a limited time budget.

Yanxi Li · Minjing Dong · Yunhe Wang · Chang Xu

This paper searches for the optimal neural architecture by minimizing a proxy of validation loss. Existing neural architecture search (NAS) methods used to discover the optimal neural architecture that best fits the validation examples given the up-to-date network weights. However, back propagation with a number of validation examples could be time consuming, especially when it needs to be repeated many times in NAS. Though these intermediate validation results are invaluable, they would be wasted if we cannot use them to predict the future from the past. In this paper, we propose to approximate the validation loss landscape by learning a mapping from neural architectures to their corresponding validate losses. The optimal neural architecture thus can be easily identified as the minimum of this proxy validation loss landscape. A novel sampling strategy is further developed for an efficient approximation of the loss landscape. Theoretical analysis indicates that our sampling strategy can reach a lower error rate and a lower label complexity compared with a uniform sampling. Experimental results on benchmarks demonstrate that the architecture searched by the proposed algorithm can achieve a satisfactory accuracy with less time cost.

Khiem Pham · Khang Le · Nhat Ho · Tung Pham · Hung Bui
We provide a computational complexity analysis for the Sinkhorn algorithm that solves the entropic regularized Unbalanced Optimal Transport (UOT) problem between two measures of possibly different masses with at most $n$ components. We show that the complexity of the Sinkhorn algorithm for finding an $\varepsilon$-approximate solution to the UOT problem is of order $\widetilde{\mathcal{O}}(n^2/ \varepsilon)$. To the best of our knowledge, this complexity is better than the best known complexity upper bound of the Sinkhorn algorithm for solving the Optimal Transport (OT) problem, which is of order $\widetilde{\mathcal{O}}(n^2/\varepsilon^2)$. Our proof technique is based on the geometric convergence rate of the Sinkhorn updates to the optimal dual solution of the entropic regularized UOT problem and scaling properties of the primal solution. It is also different from the proof technique used to establish the complexity of the Sinkhorn algorithm for approximating the OT problem since the UOT solution does not need to meet the marginal constraints of the measures.
Minsoo Kang · Bohyung Han

We propose a simple but effective data-driven channel pruning algorithm, which compresses deep neural networks in a differentiable way by exploiting the characteristics of operations. The proposed approach makes a joint consideration of batch normalization (BN) and rectified linear unit (ReLU) for channel pruning; it estimates how likely the two successive operations deactivate each feature map and prunes the channels with high probabilities. To this end, we learn differentiable masks for individual channels and make soft decisions throughout the optimization procedure, which facilitates to explore larger search space and train more stable networks. The proposed framework enables us to identify compressed models via a joint learning of model parameters and channel pruning without an extra procedure of fine-tuning. We perform extensive experiments and achieve outstanding performance in terms of the accuracy of output networks given the same amount of resources when compared with the state-of-the-art methods.

Bo Han · Gang Niu · Xingrui Yu · QUANMING YAO · Miao Xu · Ivor Tsang · Masashi Sugiyama

Given data with noisy labels, over-parameterized deep networks can gradually memorize the data, and fit everything in the end. Although equipped with corrections for noisy labels, many learning methods in this area still suffer overfitting due to undesired memorization. In this paper, to relieve this issue, we propose stochastic integrated gradient underweighted ascent (SIGUA): in a mini-batch, we adopt gradient descent on good data as usual, and learning-rate-reduced gradient ascent} on bad data; the proposal is a versatile approach where data goodness or badness is w.r.t. desired or undesired memorization given a base learning method. Technically, SIGUA pulls optimization back for generalization when their goals conflict with each other; philosophically, SIGUA shows forgetting undesired memorization can reinforce desired memorization. Experiments demonstrate that SIGUA successfully robustifies two typical base learning methods, so that their performance is often significantly improved.

Andrew Bennett · Nathan Kallus

[ Virtual ]

Recent work on policy learning from observational data has highlighted the importance of efficient policy evaluation and has proposed reductions to weighted (cost-sensitive) classification. But, efficient policy evaluation need not yield efficient estimation of policy parameters. We consider the estimation problem given by a weighted surrogate-loss classification with any score function, either direct, inverse-propensity-weighted, or doubly robust. We show that, under a correct specification assumption, the weighted classification formulation need not be efficient for policy parameters. We draw a contrast to actual (possibly weighted) binary classification, where correct specification implies a parametric model, while for policy learning it only implies a semi-parametric model. In light of this, we instead propose an estimation approach based on generalized method of moments, which is efficient for the policy parameters. We propose a particular method based on recent developments on solving moment problems using neural networks and demonstrate the efficiency and regret benefits of this method empirically.

Yunwen Lei · Yiming Ying

[ Virtual ]

Recently there are a considerable amount of work devoted to the study of the algorithmic stability and generalization for stochastic gradient descent (SGD). However, the existing stability analysis requires to impose restrictive assumptions on the boundedness of gradients, smoothness and convexity of loss functions. In this paper, we provide a fine-grained analysis of stability and generalization for SGD by substantially relaxing these assumptions. Firstly, we establish stability and generalization for SGD by removing the existing bounded gradient assumptions. The key idea is the introduction of a new stability measure called on-average model stability, for which we develop novel bounds controlled by the risks of SGD iterates. This yields generalization bounds depending on the behavior of the best model, and leads to the first-ever-known fast bounds in the low-noise setting using stability approach. Secondly, the smoothness assumption is relaxed by considering loss functions with Holder continuous (sub)gradients for which we show that optimal bounds are still achieved by balancing computation and stability. To our best knowledge, this gives the first-ever-known stability and generalization bounds for SGD with non-smooth loss functions (e.g., hinge loss). Finally, we study learning problems with (strongly) convex objectives but non-convex loss functions.

Xin Wang · Thomas Huang · Joseph E Gonzalez · Trevor Darrell · Fisher Yu

[ Virtual ]

Detecting rare objects from a few examples is an emerging problem. Prior works show meta-learning is a promising approach. But, fine-tuning techniques have drawn scant attention. We find that fine-tuning only the last layer of existing detectors on rare classes is crucial to the few-shot object detection task. Such a simple approach outperforms the meta-learning methods by roughly 2~20 points on current benchmarks and sometimes even doubles the accuracy of the prior methods. However, the high variance in the few samples often leads to the unreliability of existing benchmarks. We revise the evaluation protocols by sampling multiple groups of training examples to obtain stable comparisons and build new benchmarks based on three datasets: PASCAL VOC, COCO and LVIS. Again, our fine-tuning approach establishes a new state of the art on the revised benchmarks. The code as well as the pretrained models are available at https://github.com/ucbdrive/few-shot-object-detection.

Komal Teru · Etienne Denis · Will Hamilton

[ Virtual ]

The dominant paradigm for relation prediction in knowledge graphs involves learning and operating on latent representations (i.e., embeddings) of entities and relations. However, these embedding-based methods do not explicitly capture the compositional logical rules underlying the knowledge graph, and they are limited to the transductive setting, where the full set of entities must be known during training. Here, we propose a graph neural network based relation prediction framework, GraIL, that reasons over local subgraph structures and has a strong inductive bias to learn entity-independent relational semantics. Unlike embedding-based models, GraIL is naturally inductive and can generalize to unseen entities and graphs after training. We provide theoretical proof and strong empirical evidence that GraIL can rep-resent a useful subset of first-order logic and show that GraIL outperforms existing rule-induction baselines in the inductive setting. We also demonstrate significant gains obtained by ensembling GraIL with various knowledge graph embedding methods in the transductive setting, highlighting the complementary inductive bias of our method.

Aditya Kanade · Petros Maniatis · Gogul Balakrishnan · Kensen Shi

[ Virtual ]

Recent research has achieved impressive results on understanding and improving source code by building up on machine-learning techniques developed for natural languages. A significant advancement in natural-language understanding has come with the development of pre-trained contextual embeddings, such as BERT, which can be fine-tuned for downstream tasks with less labeled data and training budget, while achieving better accuracies. However, there is no attempt yet to obtain a high-quality contextual embedding of source code, and to evaluate it on multiple program-understanding tasks simultaneously; that is the gap that this paper aims to mitigate. Specifically, first, we curate a massive, deduplicated corpus of 6M Python files from GitHub, which we use to pre-train CuBERT, an open-sourced code-understanding BERT model; and, second, we create an open-sourced benchmark that comprises five classification tasks and one program-repair task, akin to code-understanding tasks proposed in the literature before. We fine-tune CuBERT on our benchmark tasks, and compare the resulting models to different variants of Word2Vec token embeddings, BiLSTM and Transformer models, as well as published state-of-the-art models, showing that CuBERT outperforms them all, even with shorter training, and with fewer labeled examples. Future work on source-code embedding can benefit from reusing our benchmark, and comparing against …

Jaehyeok Shin · Aaditya Ramdas · Alessandro Rinaldo

[ Virtual ]

The bias of the sample means of the arms in multi-armed bandits is an important issue in adaptive data analysis that has recently received considerable attention in the literature. Existing results relate in precise ways the sign and magnitude of the bias to various sources of data adaptivity, but do not apply to the conditional inference setting in which the sample means are computed only if some specific conditions are satisfied. In this paper, we characterize the sign of the conditional bias of monotone functions of the rewards, including the sample mean. Our results hold for arbitrary conditioning events and leverage natural monotonicity properties of the data collection policy. We further demonstrate, through several examples from sequential testing and best arm identification, that the sign of the conditional and marginal bias of the sample mean of an arm can be different, depending on the conditioning event. Our analysis offers new and interesting perspectives on the subtleties of assessing the bias in data adaptive settings.

Ramanan Sekar · Oleh Rybkin · Kostas Daniilidis · Pieter Abbeel · Danijar Hafner · Deepak Pathak

[ Virtual ]

Reinforcement learning allows solving complex tasks, however, the learning tends to be task-specific and the sample efficiency remains a challenge. We present Plan2Explore, a self-supervised reinforcement learning agent that tackles both these challenges through a new approach to self-supervised exploration and fast adaptation to new tasks, which need not be known during exploration. During exploration, unlike prior methods which retrospectively compute the novelty of observations after the agent has already reached them, our agent acts efficiently by leveraging planning to seek out expected future novelty. After exploration, the agent quickly adapts to multiple downstream tasks in a zero or a few-shot manner. We evaluate on challenging control tasks from high-dimensional image inputs. Without any training supervision or task-specific interaction, Plan2Explore outperforms prior self-supervised exploration methods, and in fact, almost matches the performances oracle which has access to rewards. Videos and code: https://ramanans1.github.io/plan2explore/

Hui Ye · Zhiyu Chen · Da-Han Wang · Brian D Davison

[ Virtual ]

Extreme multi-label text classification (XMTC) is a task for tagging a given text with the most relevant labels from an extremely large label set. We propose a novel deep learning method called APLC-XLNet. Our approach fine-tunes the recently released generalized autoregressive pretrained model (XLNet) to learn a dense representation for the input text. We propose Adaptive Probabilistic Label Clusters (APLC) to approximate the cross entropy loss by exploiting the unbalanced label distribution to form clusters that explicitly reduce the computational time. Our experiments, carried out on five benchmark datasets, show that our approach significantly outperforms existing state-of-the-art methods. Our source code is available publicly at https://github.com/huiyegit/APLC_XLNet.

Wang Chi Cheung · David Simchi-Levi · Ruihao Zhu

[ Virtual ]

We consider un-discounted reinforcement learning (RL) in Markov decision processes (MDPs) under drifting non-stationarity, \ie, both the reward and state transition distributions are allowed to evolve over time, as long as their respective total variations, quantified by suitable metrics, do not exceed certain \emph{variation budgets}. We first develop the Sliding Window Upper-Confidence bound for Reinforcement Learning with Confidence Widening (\texttt{SWUCRL2-CW}) algorithm, and establish its dynamic regret bound when the variation budgets are known. In addition, we propose the Bandit-over-Reinforcement Learning (\texttt{BORL}) algorithm to adaptively tune the \sw~to achieve the same dynamic regret bound, but in a \emph{parameter-free} manner, \ie, without knowing the variation budgets. Notably, learning drifting MDPs via conventional optimistic exploration presents a unique challenge absent in existing (non-stationary) bandit learning settings. We overcome the challenge by a novel confidence widening technique that incorporates additional optimism.

Brian Axelrod · Shivam Garg · Vatsal Sharan · Gregory Valiant

[ Virtual ]

Given data drawn from an unknown distribution, D, to what extent is it possible to amplify'' this dataset and faithfully output an even larger set of samples that appear to have been drawn from D? We formalize this question as follows: an (n,m) amplification procedure takes as input n independent draws from an unknown distribution D, and outputs a set of m > nsamples'' which must be indistinguishable from m samples drawn iid from D. We consider this sample amplification problem in two fundamental settings: the case where D is an arbitrary discrete distribution supported on k elements, and the case where D is a d-dimensional Gaussian with unknown mean, and fixed covariance matrix. Perhaps surprisingly, we show a valid amplification procedure exists for both of these settings, even in the regime where the size of the input dataset, n, is significantly less than what would be necessary to learn distribution D to non-trivial accuracy. We also show that our procedures are optimal up to constant factors. Beyond these results, we describe potential applications of such data amplification, and formalize a number of curious directions for future research along this vein.

guodong liu · Hong Chen · Heng Huang

[ Virtual ]

Most existing feature selection methods in literature are linear models, so that the nonlinear relations between features and response variables are not considered. Meanwhile, in these feature selection models, the interactions between features are often ignored or just discussed under prior structure information. To address these challenging issues, we consider the problem of sparse additive models for high-dimensional nonparametric regression with the allowance of the flexible interactions between features. A new method, called as sparse shrunk additive models (SSAM), is proposed to explore the structure information among features. This method bridges sparse kernel regression and sparse feature selection. Theoretical results on the convergence rate and sparsity characteristics of SSAM are established by the novel analysis techniques with integral operator and concentration estimate. In particular, our algorithm and theoretical analysis only require the component functions to be continuous and bounded, which are not necessary to be in reproducing kernel Hilbert spaces. Experiments on both synthetic and real-world data demonstrate the effectiveness of the proposed approach.

Surbhi Goel · Aravind Gollakota · Zhihan Jin · Sushrut Karmalkar · Adam Klivans

[ Virtual ]

We give the first superpolynomial lower bounds for learning one-layer neural networks with respect to the Gaussian distribution for a broad class of algorithms. In the regression setting, we prove that gradient descent run on any classifier with respect to square loss will fail to achieve small test error in polynomial time. Prior work held only for gradient descent run with small batch sizes and sufficiently smooth classifiers. For classification, we give a stronger result, namely that any statistical query (SQ) algorithm will fail to achieve small test error in polynomial time. Our lower bounds hold for commonly used activations such as ReLU and sigmoid. The core of our result relies on a novel construction of a simple family of neural networks that are exactly orthogonal with respect to all spherically symmetric distributions.

Boyuan Pan · Yazheng Yang · Kaizhao Liang · Bhavya Kailkhura · Zhongming Jin · Xian-Sheng Hua · Deng Cai · Bo Li

Recent advances in maximizing mutual information (MI) between the source and target have demonstrated its effectiveness in text generation. However, previous works paid little attention to modeling the backward network of MI (i.e., dependency from the target to the source), which is crucial to the tightness of the variational information maximization lower bound. In this paper, we propose Adversarial Mutual Information (AMI): a text generation framework which is formed as a novel saddle point (min-max) optimization aiming to identify joint interactions between the source and target. Within this framework, the forward and backward networks are able to iteratively promote or demote each other's generated instances by comparing the real and synthetic data distributions. We also develop a latent noise sampling strategy that leverages random variations at the high-level semantic space to enhance the long term dependency in the generation process. Extensive experiments based on different text generation tasks demonstrate that the proposed AMI framework can significantly outperform several strong baselines, and we also show that AMI has potential to lead to a tighter lower bound of maximum mutual information for the variational information maximization problem.

David Zoltowski · Jonathan Pillow · Scott Linderman

An open question in systems and computational neuroscience is how neural circuits accumulate evidence towards a decision. Fitting models of decision-making theory to neural activity helps answer this question, but current approaches limit the number of these models that we can fit to neural data. Here we propose a general framework for modeling neural activity during decision-making. The framework includes the canonical drift-diffusion model and enables extensions such as multi-dimensional accumulators, variable and collapsing boundaries, and discrete jumps. Our framework is based on constraining the parameters of recurrent state space models, for which we introduce a scalable variational Laplace EM inference algorithm. We applied the modeling approach to spiking responses recorded from monkey parietal cortex during two decision-making tasks. We found that a two-dimensional accumulator better captured the responses of a set of parietal neurons than a single accumulator model, and we identified a variable lower boundary in the responses of a parietal neuron during a random dot motion task. We expect this framework will be useful for modeling neural dynamics in a variety of decision-making settings.

Han Zhang · Xi Gao · Jacob Unterman · Tomasz Arodz
Recent interest in invertible models and normalizing flows has resulted in new architectures that ensure invertibility of the network model. Neural ODEs and i-ResNets are two recent techniques for constructing models that are invertible, but it is unclear if they can be used to approximate any continuous invertible mapping. Here, we show that out of the box, both of these architectures are limited in their approximation capabilities. We then show how to overcome this limitation: we prove that any homeomorphism on a $p$-dimensional Euclidean space can be approximated by a Neural ODE or an i-ResNet operating on a $2p$-dimensional Euclidean space. We conclude by showing that capping a Neural ODE or an i-ResNet with a single linear layer is sufficient to turn the model into a universal approximator for non-invertible continuous functions.
Anurag Kumar · Vamsi Krishna Ithapu

An important problem in machine auditory perception is to recognize and detect sound events. In this paper, we propose a sequential self-teaching approach to learn sounds. Our main proposition is that it is harder to learn sounds in adverse situations such as from weakly labeled and/or noisy labeled data, and in these situations a single stage of learning is not sufficient. Our proposal is a sequential stage-wise learning process that improves generalization capabilities of a given modeling system. We justify this method via technical results and on Audioset, the largest sound events dataset, our sequential learning approach can lead to up to 9% improvement in performance. A comprehensive evaluation also shows that the method leads to improved transferability of knowledge from previously trained models, thereby leading to improved generalization capabilities on transfer learning tasks.

Hassan Ashtiani · Vinayak Pathak · Ruth Urner

We formally study the problem of classification under adversarial perturbations, both from the learner's perspective, and from the viewpoint of a third-party who aims at certifying the robustness of a given black-box classifier. We analyze a PAC-type framework of semi-supervised learning and identify possibility and impossibility results for proper learning of VC-classes in this setting. We further introduce and study a new setting of black-box certification under limited query budget. We analyze this for various classes of predictors and types of perturbation. We also consider the viewpoint of a black-box adversary that aims at finding adversarial examples, showing that the existence of an adversary with polynomial query complexity implies the existence of a robust learner with small sample complexity.

Liu Liu · Lei Deng · Zhaodong Chen · yuke wang · Shuangchen Li · Jingwei Zhang · Yihua Yang · Zhenyu Gu · Yufei Ding · Yuan Xie

Using Deep Neural Networks (DNNs) in machine learning tasks is promising in delivering high-quality results but challenging to meet stringent latency requirements and energy constraints because of the memory-bound and the compute-bound execution pattern of DNNs. We propose a big-little dual-module inference to dynamically skip unnecessary memory access and computation to speedup DNN inference. Leveraging the error-resilient feature of nonlinear activation functions used in DNNs, we propose to use a lightweight little module that approximates the original DNN layer, which is referred to as the big module, to compute activations of the insensitive region that are more error-resilient. The expensive memory access and computation of the big module can be reduced as the results are only used in the sensitive region. For memory-bound models, our method can reduce the overall memory access by 40% on average and achieve 1.54x to 1.75x speedup on a commodity CPU-based server platform with a negligible impact on model quality. In addition, our method can reduce the operations of the compute-bound ResNet model by 3.02x, with only a 0.5% accuracy drop.

Pierre Perrault · Jennifer Healey · Zheng Wen · Michal Valko

We introduce a new budgeted framework for online influence maximization, considering the total cost of an advertising campaign instead of the common cardinality constraint on a chosen influencer set. Our approach models better the real-world setting where the cost of influencers varies and advertizers want to find the best value for their overall social advertising budget. We propose an algorithm assuming an independent cascade diffusion model and edge-level semi-bandit feedback, and provide both theoretical and experimental results. Our analysis is also valid for the cardinality-constraint setting and improves the state of the art regret bound in this case.

Kimin Lee · Younggyo Seo · Seunghyun Lee · Honglak Lee · Jinwoo Shin

Model-based reinforcement learning (RL) enjoys several benefits, such as data-efficiency and planning, by learning a model of the environment's dynamics. However, learning a global model that can generalize across different dynamics remains a challenge. To tackle this problem, we decompose the task of learning a global dynamics model into two stages: (a) learning a context latent vector that captures the local dynamics, then (b) predicting the next state conditioned on it. In order to encode dynamics-specific information into the context latent vector, we introduce a novel loss function that encourages the context latent vector to be useful for predicting both forward and backward dynamics. The proposed method achieves superior generalization ability across various simulated robotics and control tasks, compared to existing RL schemes.

Eugene Belilovsky · Michael Eickenberg · Edouard Oyallon

A commonly cited inefficiency of neural network training by back-propagation is the update locking problem: each layer must wait for the signal to propagate through the network before updating. In recent years multiple authors have considered alternatives that can alleviate this issue. In this context, we consider a simpler, but more effective, substitute that uses minimal feedback, which we call Decoupled Greedy Learning (DGL). It is based on a greedy relaxation of the joint training objective, recently shown to be effective in the context of Convolutional Neural Networks (CNNs) on large-scale image classification. We consider an optimization of this objective that permits us to decouple the layer training, allowing for layers or modules in networks to be trained with a potentially linear parallelization in layers. We show theoretically and empirically that this approach converges. Then, we empirically find that it can lead to better generalization than sequential greedy optimization and sometimes end-to-end back-propagation. We show an extension of this approach to asynchronous settings, where modules can operate with large communication delays, is possible with the use of a replay buffer. We demonstrate the effectiveness of DGL on the CIFAR-10 dataset against alternatives and on the large-scale ImageNet dataset.

Ahmed T. Elthakeb · Prannoy Pilligundla · FatemehSadat Mireshghallah · Alexander Cloninger · Hadi Esmaeilzadeh

The deep layers of modern neural networks extract a rather rich set of features as an input propagates through the network, this paper sets out to harvest these rich intermediate representations for quantization with minimal accuracy loss while significantly reducing the memory footprint and compute intensity of the DNN. This paper utilizes knowledge distillation through teacher-student paradigm (Hinton et al., 2015) in a novel setting that exploits the feature extraction capability of DNNs for higher accuracy quantization. As such, our algorithm logically divides a pretrained full-precision DNN to multiple sections, each of which exposes intermediate features to train a team of students independently in the quantized domain and simply stitching them afterwards. This divide and conquer strategy, makes the training of each student section possible in isolation, speeding up training by enabling parallelization. Experiments on various DNNs (AlexNet, LeNet, MobileNet, ResNet-18, ResNet-20, SVHN and VGG-11) show that, this approach—called DCQ (Divide and Conquer Quantization)—on average, improves the performance of a state-of-the-art quantized training technique, DoReFa-Net (Zhou et al., 2016) by 21.6% and 9.3% for binary and ternary quantization, respectively. Additionally, we show that incorporating DCQ to existing quantized training methods leads to improved accuracies as compared to previously reported by …

Sinong Geng · Houssam Nassif · Charlie Manzanares · Max Reppen · Ronnie Sircar
We propose a reward function estimation framework for inverse reinforcement learning with deep energy-based policies. We name our method PQR, as it sequentially estimates the Policy, the $Q$-function, and the Reward function. PQR does not assume that the reward solely depends on the state, instead it allows for a dependency on the choice of action. Moreover, PQR allows for stochastic state transitions. To accomplish this, we assume the existence of one anchor action whose reward is known, typically the action of doing nothing, yielding no reward. We present both estimators and algorithms for the PQR method. When the environment transition is known, we prove that the PQR reward estimator uniquely recovers the true reward. With unknown transitions, we bound the estimation error of PQR. Finally, the performance of PQR is demonstrated by synthetic and real-world datasets.
William Chan · Chitwan Saharia · Geoffrey Hinton · Mohammad Norouzi · Navdeep Jaitly

This paper presents the Imputer, a neural sequence model that generates output sequences iteratively via imputations. The Imputer is an iterative generation model, requiring only a constant number of generation steps independent of the number of input or output tokens. The Imputer can be trained to approximately marginalize over all possible alignments between the input and output sequences, and all possible generation orders. We present a tractable dynamic programming training algorithm, which yields a lower bound on the log marginal likelihood. When applied to end-to-end speech recognition, the Imputer outperforms prior non-autoregressive models and achieves competitive results to autoregressive models. On LibriSpeech test-other, the Imputer achieves 11.1 WER, outperforming CTC at 13.0 WER and seq2seq at 12.5 WER.

Shengjia Zhao · Tengyu Ma · Stefano Ermon

Machine learning applications often require calibrated predictions, e.g. a 90\% credible interval should contain the true outcome 90\% of the times. However, typical definitions of calibration only require this to hold on average, and offer no guarantees on predictions made on individual samples. Thus, predictions can be systematically over or under confident on certain subgroups, leading to issues of fairness and potential vulnerabilities. We show that calibration for individual samples is possible in the regression setup if and only if the predictions are randomized, i.e. outputting randomized credible intervals. Randomization removes systematic bias by trading off bias with variance. We design a training objective to enforce individual calibration and use it to train randomized regression functions. The resulting models are more calibrated for arbitrarily chosen subgroups of the data, and can achieve higher utility in decision making against adversaries that exploit miscalibrated predictions.

Aldo Pacchiano · Jack Parker-Holder · Yunhao Tang · Krzysztof Choromanski · Anna Choromanska · Michael Jordan

We introduce a new approach for comparing reinforcement learning policies, using Wasserstein distances (WDs) in a newly defined latent behavioral space. We show that by utilizing the dual formulation of the WD, we can learn score functions over policy behaviors that can in turn be used to lead policy optimization towards (or away from) (un)desired behaviors. Combined with smoothed WDs, the dual formulation allows us to devise efficient algorithms that take stochastic gradient descent steps through WD regularizers. We incorporate these regularizers into two novel on-policy algorithms, Behavior-Guided Policy Gradient and Behavior-Guided Evolution Strategies, which we demonstrate can outperform existing methods in a variety of challenging environments. We also provide an open source demo.

John Chen · Vatsal Shah · Anastasios Kyrillidis

We introduce Negative Sampling in Semi-Supervised Learning (NS^3L), a simple, fast, easy to tune algorithm for semi-supervised learning (SSL). NS^3L is motivated by the success of negative sampling/contrastive estimation. We demonstrate that adding the NS^3L loss to state-of-the-art SSL algorithms, such as the Virtual Adversarial Training (VAT), significantly improves upon vanilla VAT and its variant, VAT with Entropy Minimization. By adding the NS^3L loss to MixMatch, the current state-of-the-art approach on semi-supervised tasks, we observe significant improvements over vanilla MixMatch. We conduct extensive experiments on the CIFAR10, CIFAR100, SVHN and STL10 benchmark datasets. Finally, we perform an ablation study for NS3L regarding its hyperparameter tuning.

Huang Fang · Nick Harvey · Victor Sanches Portella · Michael Friedlander

Online mirror descent (OMD) and dual averaging (DA)---two fundamental algorithms for online convex optimization---are known to have very similar (and sometimes identical) performance guarantees when used with a \emph{fixed} learning rate. Under \emph{dynamic} learning rates, however, OMD is provably inferior to DA and suffers a linear regret, even in common settings such as prediction with expert advice. We modify the OMD algorithm through a simple technique that we call \emph{stabilization}. We give essentially the same abstract regret bound for OMD with stabilization and for DA by modifying the classical OMD convergence analysis in a careful and modular way that allows for straightforward and flexible proofs. Simple corollaries of these bounds show that OMD with stabilization and DA enjoy the same performance guarantees in many applications---even under dynamic learning rates. We also shed light on the similarities between OMD and DA and show simple conditions under which stabilized-OMD and DA generate the same iterates.

Insu Han · Haim Avron · Jinwoo Shin

This paper studies how to sketch element-wise functions of low-rank matrices. Formally, given low-rank matrix A = [Aij] and scalar non-linear function f, we aim for finding an approximated low-rank representation of the (possibly high-rank) matrix [f(Aij)]. To this end, we propose an efficient sketching-based algorithm whose complexity is significantly lower than the number of entries of A, i.e., it runs without accessing all entries of [f(Aij)] explicitly. The main idea underlying our method is to combine a polynomial approximation of f with the existing tensor sketch scheme for approximating monomials of entries of A. To balance the errors of the two approximation components in an optimal manner, we propose a novel regression formula to find polynomial coefficients given A and f. In particular, we utilize a coreset-based regression with a rigorous approximation guarantee. Finally, we demonstrate the applicability and superiority of the proposed scheme under various machine learning tasks.

Vikas K Garg · Tommi Jaakkola

We extend structured prediction to deliberative outcomes. Specifically, we learn parameterized games that can map any inputs to equilibria as the outcomes. Standard structured prediction models rely heavily on global scoring functions and are therefore unable to model individual player preferences or how they respond to others asymmetrically. Our games take as input, e.g., UN resolution to be voted on, and map such contexts to initial strategies, player utilities, and interactions. Players are then thought to repeatedly update their strategies in response to weighted aggregates of other players' choices towards maximizing their individual utilities. The output from the game is a sample from the resulting (near) equilibrium mixed strategy profile. We characterize conditions under which players' strategies converge to an equilibrium in such games and when the game parameters can be provably recovered from observations. Empirically, we demonstrate on two real voting datasets that our games can recover interpretable strategic interactions, and predict strategies for players in new settings.

Charles Marx · Flavio Calmon · Berk Ustun

Prediction problems often admit competing models that perform almost equally well. This effect challenges key assumptions in machine learning when competing models assign conflicting predictions. In this paper, we define predictive multiplicity as the ability of a prediction problem to admit competing models with conflicting predictions. We introduce measures to evaluate the severity of predictive multiplicity, and develop integer programming tools to compute these measures exactly for linear classification problems. We apply our tools to measure predictive multiplicity in recidivism prediction problems. Our results show that real-world datasets may admit competing models that assign wildly conflicting predictions, and motivate the need to report predictive multiplicity in model development.

Dmitrii Kharkovskii · Zhongxiang Dai · Bryan Kian Hsiang Low

This paper presents the private-outsourced-Gaussian process-upper confidence bound (PO-GP-UCB) algorithm, which is the first algorithm for privacy-preserving Bayesian optimization (BO) in the outsourced setting with a provable performance guarantee. We consider the outsourced setting where the entity holding the dataset and the entity performing BO are represented by different parties, and the dataset cannot be released non-privately. For example, a hospital holds a dataset of sensitive medical records and outsources the BO task on this dataset to an industrial AI company. The key idea of our approach is to make the BO performance of our algorithm similar to that of non-private GP-UCB run using the original dataset, which is achieved by using a random projection-based transformation that preserves both privacy and the pairwise distances between inputs. Our main theoretical contribution is to show that a regret bound similar to that of the standard GP-UCB algorithm can be established for our PO-GP-UCB algorithm. We empirically evaluate the performance of our PO-GP-UCB algorithm with synthetic and real-world datasets.

Justin DeBenedetto · David Chiang

Unordered, variable-sized inputs arise in many settings across multiple fields. The ability for set- and multiset-oriented neural networks to handle this type of input has been the focus of much work in recent years. We propose to represent multisets using complex-weighted \emph{multiset automata} and show how the multiset representations of certain existing neural architectures can be viewed as special cases of ours. Namely, (1) we provide a new theoretical and intuitive justification for the Transformer model's representation of positions using sinusoidal functions, and (2) we extend the DeepSets model to use complex numbers, enabling it to outperform the existing model on an extension of one of their tasks.

Yinglun Zhu · Sumeet Katariya · Robert Nowak
We study the problem of Robust Outlier Arm Identification (ROAI), where the goal is to identify arms whose expected rewards deviate substantially from the majority, by adaptively sampling from their reward distributions. We compute the outlier threshold using the median and median absolute deviation of the expected rewards. This is a robust choice for the threshold compared to using the mean and standard deviation, since it can correctly identify outlier arms even in the presence of extreme outlier values. Our setting is different from existing pure exploration problems where the threshold is pre-specified as a given value or rank. This is useful in applications where the goal is to identify the set of promising items but the cardinality of this set is unknown, such as finding promising drugs for a new disease or identifying items favored by a population. We propose two computationally efficient $\delta$-PAC algorithms for ROAI, which includes the first UCB-style algorithm for outlier detection, and derive upper bounds on their sample complexity. We also prove a matching, up to logarithmic factors, worst case lower bound for the problem, indicating that our upper bounds are generally unimprovable. Experimental results show that our algorithms are both robust and at …
Alper Atamturk · Andres Gomez
We give safe screening rules to eliminate variables from regression with $\ell_0$ regularization or cardinality constraint. These rules are based on guarantees that a feature may or may not be selected in an optimal solution. The screening rules can be computed from a convex relaxation solution in linear time, without solving the L0-optimization problem. Thus, they can be used in a preprocessing step to safely remove variables from consideration apriori. Numerical experiments on real and synthetic data indicate that a significant number of the variables can be removed quickly, hence reducing the computational burden for optimization substantially. Therefore, the proposed fast and effective screening rules extend the scope of algorithms for L0-regression to larger data sets.
Zhe Zeng · Paolo Morettin · Fanqi Yan · Antonio Vergari · Guy Van den Broeck

Weighted model integration (WMI) is an appealing framework for probabilistic inference: it allows for expressing the complex dependencies in real-world problems, where variables are both continuous and discrete, via the language of Satisfiability Modulo Theories (SMT), as well as to compute probabilistic queries with complex logical and arithmetic constraints. Yet, existing WMI solvers are not ready to scale to these problems. They either ignore the intrinsic dependency structure of the problem entirely, or they are limited to overly restrictive structures. To narrow this gap, we derive a factorized WMI computation enabling us to devise a scalable WMI solver based on message passing, called MP-WMI. Namely, MP-WMI is the first WMI solver that can (i) perform exact inference on the full class of tree-structured WMI problems, and (ii) perform inter-query amortization, e.g., to compute all marginal densities simultaneously. Experimental results show that our solver dramatically outperforms the existingWMI solvers on a large set of benchmarks.


Poster Session 32 Thu 16 Jul 05:00 a.m.  

Salman Sadiq Shuvo · Yasin Yilmaz · Alan Bush · Mark Hafen

[ Virtual ]

Coastal communities are at high risk of natural hazards due to unremitting global warming and sea level rise. Both the catastrophic impacts, e.g., tidal flooding and storm surges, and the long-term impacts, e.g., beach erosion, inundation of low lying areas, and saltwater intrusion into aquifers, cause economic, social, and ecological losses. Creating policies through appropriate modeling of the responses of stakeholders€™, such as government, businesses, and residents, to climate change and sea level rise scenarios can help to reduce these losses. In this work, we propose a Markov decision process (MDP) formulation for an agent (government) which interacts with the environment (nature and residents) to deal with the impacts of climate change, in particular sea level rise. Through theoretical analysis we show that a reasonable government's policy on infrastructure development ought to be proactive and based on detected sea levels in order to minimize the expected total cost, as opposed to a straightforward government that reacts to observed costs from nature. We also provide a deep reinforcement learning-based scenario planning tool considering different government and resident types in terms of cooperation, and different sea level rise projections by the National Oceanic and Atmospheric Administration (NOAA).

Jayadev Acharya · Kallista Bonawitz · Peter Kairouz · Daniel Ramage · Ziteng Sun

Local differential privacy (LDP) is a strong notion of privacy that often leads to a significant drop in utility. The original definition of LDP assumes that all the elements in the data domain are equally sensitive. However, in many real-life applications, some elements are more sensitive than others. We propose a context-aware framework for LDP that allows the privacy level to vary across the data domain, enabling system designers to place privacy constraints where they matter without paying the cost where they do not. For binary data domains, we provide a universally optimal privatization scheme and highlight its connections to Warner’s randomized response and Mangat’s improved response. Motivated by geo-location and web search applications, for k-ary data domains, we consider two special cases of context-aware LDP: block-structured LDP and high-low LDP. We study minimax discrete distribution estimation under both cases and provide communication-efficient, sample-optimal schemes, and information-theoretic lower bounds. We show, using worst-case analyses and experiments on Gowalla’s 3.6 million check-ins to 43,750 locations, that context-aware LDP achieves a far better accuracy under the same number of samples.

Dara Bahri · Heinrich Jiang · Maya Gupta
Modern machine learning models are often trained on examples with noisy labels that hurt performance and are hard to identify. In this paper, we provide an empirical study showing that a simple $k$-nearest neighbor-based filtering approach on the logit layer of a preliminary model can remove mislabeled training data and produce more accurate models than many recently proposed methods. We also provide new statistical guarantees into its efficacy.
Duo Chai · Wei Wu · Qinghong Han · Fei Wu · Jiwei Li

The task of text classification is usually divided into two stages: text feature extraction and classification. In this standard formalization, categories are merely represented as indexes in the label vocabulary, and the model lacks for explicit instructions on what to classify. Inspired by the current trend of formalizing NLP problems as question answering tasks, we propose a new framework for text classification, in which each category label is associated with a category description. Descriptions are generated by hand-crafted templates or using abstractive/extractive models from reinforcement learning. The concatenation of the description and the text is fed to the classifier to decide whether or not the current label should be assigned to the text. The proposed strategy forces the model to attend to the most salient texts with respect to the label, which can be regarded as a hard version of attention, leading to better performances. We observe significant performance boosts over strong baselines on a wide range of text classification tasks including single-label classification, multi-label classification and multi-aspect sentiment analysis.

Daniel Jarrett · Mihaela van der Schaar

Evidence-based decision-making entails collecting (costly) observations about an underlying phenomenon of interest, and subsequently committing to an (informed) decision on the basis of accumulated evidence. In this setting, active sensing is the goal-oriented problem of efficiently selecting which acquisitions to make, and when and what decision to settle on. As its complement, inverse active sensing seeks to uncover an agent's preferences and strategy given their observable decision-making behavior. In this paper, we develop an expressive, unified framework for the general setting of evidence-based decision-making under endogenous, context-dependent time pressure---which requires negotiating (subjective) tradeoffs between accuracy, speediness, and cost of information. Using this language, we demonstrate how it enables modeling intuitive notions of surprise, suspense, and optimality in decision strategies (the forward problem). Finally, we illustrate how this formulation enables understanding decision-making behavior by quantifying preferences implicit in observed decision strategies (the inverse problem).

Veronika Rockova

There has been a growing realization of the potential of Bayesian machine learning as a platform that can provide both flexible modeling, accurate predictions as well as coherent uncertainty statements. In particular, Bayesian Additive Regression Trees (BART) have emerged as one of today’s most effective general approaches to predictive modeling under minimal assumptions. Statistical theoretical developments for machine learning have been mostly concerned with approximability or rates of estimation when recovering infinite dimensional objects (curves or densities). Despite the impressive array of available theoretical results, the literature has been largely silent about uncertainty quantification. In this work, we continue the theoretical investigation of BART initiated recently by Rockova and van der Pas (2017). We focus on statistical inference questions. In particular, we study the Bernstein-von Mises (BvM) phenomenon (i.e. asymptotic normality) for smooth linear functionals of the regression surface within the framework of non-parametric regression with fixed covariates. Our semi-parametric BvM results show that, beyond rate-optimal estimation, BART can be also used for valid statistical inference.

Jianyi Zhang · Yang Zhao · Changyou Chen
Stochastic particle-optimization sampling (SPOS) is a recently-developed scalable Bayesian sampling framework unifying stochastic gradient MCMC (SG-MCMC) and Stein variational gradient descent (SVGD) algorithms based on Wasserstein gradient flows. With a rigorous non-asymptotic convergence theory developed, SPOS can avoid the particle-collapsing pitfall of SVGD. However, the variance-reduction effect in SPOS has not been clear. In this paper, we address this gap by presenting several variance-reduction techniques for SPOS. Specifically, we propose three variants of variance-reduced SPOS, called SAGA particle-optimization sampling (SAGA-POS), SVRG particle-optimization sampling (SVRG-POS) and a variant of SVRG-POS which avoids full gradient computations, denoted as SVRG-POS$^+$. Importantly, we provide non-asymptotic convergence guarantees for these algorithms in terms of the 2-Wasserstein metric and analyze their complexities. The results show our algorithms yield better convergence rates than existing variance-reduced variants of stochastic Langevin dynamics, though more space is required to store the particles in training. Our theory aligns well with experimental results on both synthetic and real datasets.
Yuwen Chen · Antonio Orvieto · Aurelien Lucchi

Derivative-free optimization (DFO) has recently gained a lot of momentum in machine learning, spawning interest in the community to design faster methods for problems where gradients are not accessible. While some attention has been given to the concept of acceleration in the DFO literature, existing stochastic algorithms for objective functions with a finite-sum structure have not been shown theoretically to achieve an accelerated rate of convergence. Algorithms that use acceleration in such a setting are prone to instabilities, making it difficult to reach convergence. In this work, we exploit the finite-sum structure of the objective in order to design a variance-reduced DFO algorithm that provably yields acceleration. We prove rates of convergence for both smooth convex and strongly-convex finite-sum objective functions. Finally, we validate our theoretical results empirically on several tasks and datasets.

Yadan Luo · Zijian Wang · Zi Huang · Mahsa Baktashmotlagh

Domain shift is a fundamental problem in visual recognition which typically arises when the source and target data follow different distributions. The existing domain adaptation approaches which tackle this problem work in the "closed-set" setting with the assumption that the source and the target data share exactly the same classes of objects. In this paper, we tackle a more realistic problem of the "open-set" domain shift where the target data contains additional classes that were not present in the source data. More specifically, we introduce an end-to-end Progressive Graph Learning (PGL) framework where a graph neural network with episodic training is integrated to suppress underlying conditional shift and adversarial learning is adopted to close the gap between the source and target distributions. Compared to the existing open-set adaptation approaches, our approach guarantees to achieve a tighter upper bound of the target error. Extensive experiments on three standard open-set benchmarks evidence that our approach significantly outperforms the state-of-the-arts in open-set domain adaptation.

Ning Xu · Jun Shu · Yun-Peng Liu · Xin Geng

Label distribution covers a certain number of labels, representing the degree to which each label describes the instance. The learning process on the instances labeled by label distributions is called label distribution learning (LDL). Unfortunately, many training sets only contain simple logical labels rather than label distributions due to the difficulty of obtaining the label distributions directly. To solve this problem, we consider the label distributions as the latent vectors and infer the label distributions from the logical labels in the training datasets by using variational inference. After that, we induce a predictive model to train the label distribution data by employing the multi-output regression technique. The recovery experiment on thirteen real-world LDL datasets and the predictive experiment on ten multi-label learning datasets validate the advantage of our approach over the state-of-the-art approaches.

Kiran Tomlinson · Austin Benson

[ Virtual ]

The way that people make choices or exhibit preferences can be strongly affected by the set of available alternatives, often called the choice set. Furthermore, there are usually heterogeneous preferences, either at an individual level within small groups or within sub-populations of large groups. Given the availability of choice data, there are now many models that capture this behavior in order to make effective predictions---however, there is little work in understanding how directly changing the choice set can be used to influence the preferences of a collection of decision-makers. Here, we use discrete choice modeling to develop an optimization framework of such interventions for several problems of group influence, namely maximizing agreement or disagreement and promoting a particular choice. We show that these problems are NP-hard in general, but imposing restrictions reveals a fundamental boundary: promoting a choice can be easier than encouraging consensus or sowing discord. We design approximation algorithms for the hard problems and show that they work well on real-world choice data.

Zinan Lin · Kiran Thekumparampil · Giulia Fanti · Sewoong Oh

[ Virtual ]

Disentangled generative models map a latent code vector to a target space, while enforcing that a subset of the learned latent codes are interpretable and associated with distinct properties of the target distribution. Recent advances have been dominated by Variational AutoEncoder (VAE)-based methods, while training disentangled generative adversarial networks (GANs) remains challenging. In this work, we show that the dominant challenges facing disentangled GANs can be mitigated through the use of self-supervision. We make two main contributions: first, we design a novel approach for training disentangled GANs with self-supervision. We propose contrastive regularizer, which is inspired by a natural notion of disentanglement: latent traversal. This achieves higher disentanglement scores than state-of-the-art VAE- and GAN-based approaches. Second, we propose an unsupervised model selection scheme called ModelCentrality, which uses generated synthetic samples to compute the medoid (multi-dimensional generalization of median) of a collection of models. Perhaps surprisingly, this unsupervised ModelCentrality is able to select a model that outperforms those trained with existing supervised hyper-parameter selection techniques. Combining contrastive regularization with ModelCentrality, we obtain state-of-the-art disentanglement scores by a substantial margin, without requiring supervised hyper-parameter selection.

Rachit Chhaya · Supratim Shit · Anirban Dasgupta

[ Virtual ]

We study the effect of norm based regularization on the size of coresets for regression problems. Specifically, given a matrix $ \mathbf{A} \in {\mathbb{R}}^{n \times d}$ with $n\gg d$ and a vector $\mathbf{b} \in \mathbb{R} ^ n $ and $\lambda > 0$, we analyze the size of coresets for regularized versions of regression of the form $\|\mathbf{Ax}-\mathbf{b}\|_p^r + \lambda\|{\mathbf{x}}\|_q^s$. Prior work has shown that for ridge regression (where $p,q,r,s=2$) we can obtain a coreset that is smaller than the coreset for the unregularized counterpart i.e. least squares regression~\cite{avron2017sharper}. We show that when $r \neq s$, no coreset for regularized regression can have size smaller than the optimal coreset of the unregularized version. The well known lasso problem falls under this category and hence does not allow a coreset smaller than the one for least squares regression. We propose a modified version of the lasso problem and obtain for it a coreset of size smaller than the least square regression. We empirically show that the modified version of lasso also induces sparsity in solution, similar to the original lasso. We also obtain smaller coresets for $\ell_p$ regression with $\ell_p$ regularization. We extend our methods to multi response regularized regression. Finally, we empirically …
Ronan Le Bras · Swabha Swayamdipta · Chandra Bhagavatula · Rowan Zellers · Matthew Peters · Ashish Sabharwal · Yejin Choi

Large neural models have demonstrated human-level performance on language and vision benchmarks, while their performance degrades considerably on adversarial or out-of-distribution samples. This raises the question of whether these models have learned to solve a dataset rather than the underlying task by overfitting to spurious dataset biases. We investigate one recently proposed approach, AFLITE, which adversarially filters such dataset biases, as a means to mitigate the prevalent overestimation of machine performance. We provide a theoretical understanding for AFLITE, by situating it in the generalized framework for optimum bias reduction. We present extensive supporting evidence that AFLITE is broadly applicable for reduction of measurable dataset biases, and that models trained on the filtered datasets yield better generalization to out-of-distribution tasks. Finally, filtering results in a large drop in model performance (e.g., from 92% to 62% for SNLI), while human performance still remains high. Our work thus shows that such filtered datasets can pose new research challenges for robust generalization by serving as upgraded benchmarks.

Javier Turek · Shailee Jain · Vy Vo · Mihai Capotă · Alexander Huth · Theodore Willke

Recent work has shown that topological enhancements to recurrent neural networks (RNNs) can increase their expressiveness and representational capacity. Two popular enhancements are stacked RNNs, which increases the capacity for learning non-linear functions, and bidirectional processing, which exploits acausal information in a sequence. In this work, we explore the delayed-RNN, which is a single-layer RNN that has a delay between the input and output. We prove that a weight-constrained version of the delayed-RNN is equivalent to a stacked-RNN. We also show that the delay gives rise to partial acausality, much like bidirectional networks. Synthetic experiments confirm that the delayed-RNN can mimic bidirectional networks, solving some acausal tasks similarly, and outperforming them in others. Moreover, we show similar performance to bidirectional networks in a real-world natural language processing task. These results suggest that delayed-RNNs can approximate topologies including stacked RNNs, bidirectional RNNs, and stacked bidirectional RNNs -- but with equivalent or faster runtimes for the delayed-RNNs.

Long-Kai Huang · Jialin Pan

In this paper, we study the leading eigenvector problem in a statistically distributed setting and propose a communication-efficient algorithm based on Riemannian optimization, which trades local computation for global communication. Theoretical analysis shows that the proposed algorithm linearly converges to the centralized empirical risk minimization solution regarding the number of communication rounds. When the number of data points in local machines is sufficiently large, the proposed algorithm achieves a significant reduction of communication cost over existing distributed PCA algorithms. Superior performance in terms of communication cost of the proposed algorithm is verified on real-world and synthetic datasets.

Daniel Baker · Vladimir Braverman · Lingxiao Huang · Shaofeng H.-C. Jiang · Robert Krauthgamer · Xuan Wu
We initiate the study of coresets for clustering in graph metrics, i.e., the shortest-path metric of edge-weighted graphs. Such clustering problems are essential to data analysis and used for example in road networks and data visualization. A coreset is a compact summary of the data that approximately preserves the clustering objective for every possible center set, and it offers significant efficiency improvements in terms of running time, storage, and communication, including in streaming and distributed settings. Our main result is a near-linear time construction of a coreset for k-Median in a general graph $G$, with size $O_{\epsilon, k}(\mathrm{tw}(G))$ where $\mathrm{tw}(G)$ is the treewidth of $G$, and we complement the construction with a nearly-tight size lower bound. The construction is based on the framework of Feldman and Langberg [STOC 2011], and our main technical contribution, as required by this framework, is a uniform bound of $O(\mathrm{tw}(G))$ on the shattering dimension under any point weights. We validate our coreset on real-world road networks, and our scalable algorithm constructs tiny coresets with high accuracy, which translates to a massive speedup of existing approximation algorithms such as local search for graph k-Median.
Florian Tramer · Jens Behrmann · Nicholas Carlini · Nicolas Papernot · Joern-Henrik Jacobsen

Adversarial examples are malicious inputs crafted to induce misclassification. Commonly studied \emph{sensitivity-based} adversarial examples introduce semantically-small changes to an input that result in a different model prediction. This paper studies a complementary failure mode, \emph{invariance-based} adversarial examples, that introduce minimal semantic changes that modify an input's true label yet preserve the model's prediction. We demonstrate fundamental tradeoffs between these two types of adversarial examples. We show that defenses against sensitivity-based attacks actively harm a model's accuracy on invariance-based attacks, and that new approaches are needed to resist both attack types. In particular, we break state-of-the-art adversarially-trained and \emph{certifiably-robust} models by generating small perturbations that the models are (provably) robust to, yet that change an input's class according to human labelers. Finally, we formally show that the existence of excessively invariant classifiers arises from the presence of \emph{overly-robust} predictive features in standard datasets.

Ashok Vardhan Makkuva · Amirhossein Taghvaei · Sewoong Oh · Jason Lee

In this paper, we present a novel and principled approach to learn the optimal transport between two distributions, from samples. Guided by the optimal transport theory, we learn the optimal Kantorovich potential which induces the optimal transport map. This involves learning two convex functions, by solving a novel minimax optimization. Building upon recent advances in the field of input convex neural networks, we propose a new framework to estimate the optimal transport mapping as the gradient of a convex function that is trained via minimax optimization. Numerical experiments confirm the accuracy of the learned transport map. Our approach can be readily used to train a deep generative model. When trained between a simple distribution in the latent space and a target distribution, the learned optimal transport map acts as a deep generative model. Although scaling this to a large dataset is challenging, we demonstrate two important strengths over standard adversarial training: robustness and discontinuity. As we seek the optimal transport, the learned generative model provides the same mapping regardless of how we initialize the neural networks. Further, a gradient of a neural network can easily represent discontinuous mappings, unlike standard neural networks that are constrained to be continuous. This allows …

Akhilan Boopathy · Sijia Liu · Gaoyuan Zhang · Cynthia Liu · Pin-Yu Chen · Shiyu Chang · Luca Daniel

Recent works have empirically shown that there exist adversarial examples that can be hidden from neural network interpretability (namely, making network interpretation maps visually similar), or interpretability is itself susceptible to adversarial attacks. In this paper, we theoretically show that with a proper measurement of interpretation, it is actually difficult to prevent prediction-evasion adversarial attacks from causing interpretation discrepancy, as confirmed by experiments on MNIST, CIFAR-10 and Restricted ImageNet. Spurred by that, we develop an interpretability-aware defensive scheme built only on promoting robust interpretation (without the need for resorting to adversarial loss minimization). We show that our defense achieves both robust classification and robust interpretation, outperforming state-of-the-art adversarial training methods against attacks of large perturbation in particular.

Zheng Wang · Xinqi Chu · Shandian Zhe

Tensor factorization is a fundamental framework to analyze high-order interactions in data. Despite the success of the existing methods, the valuable temporal information are severely underused. The timestamps of the interactions are either ignored or discretized into crude steps. The recent work although formulates event-tensors to keep the timestamps in factorization and can capture mutual excitation effects among the interaction events, it overlooks another important type of temporal influence, inhibition. In addition, it uses a local window to exclude all the long-term dependencies. To overcome these limitations, we propose a self-modulating nonparametric Bayesian factorization model. We use the latent factors to construct mutually governed, general random point processes, which can capture various short-term/long-term, excitation/inhibition effects, so as to encode the complex temporal dependencies into factor representations. In addition, our model couples with a latent Gaussian process to estimate and fuse nonlinear yet static relationships between the entities. For efficient inference, we derive a fully decomposed model evidence lower bound to dispense with the huge kernel matrix and costly summations inside the rate and log rate functions. We then develop an efficient stochastic optimization algorithm. We show the advantage of our method in four real-world applications.

Ibrahim Jubran · Murad Tukan · Alaa Maalouf · Dan Feldman
The input to the \emph{sets-$k$-means} problem is an integer $k\geq 1$ and a set $\mathcal{P}=\{P_1,\cdots,P_n\}$ of fixed sized sets in $\mathbb{R}^d$. The goal is to compute a set $C$ of $k$ centers (points) in $\mathbb{R}^d$ that minimizes the sum $\sum_{P\in \mathcal{P}} \min_{p\in P, c\in C}\left\| p-c \right\|^2$ of squared distances to these sets. An \emph{$\varepsilon$-core-set} for this problem is a weighted subset of $\mathcal{P}$ that approximates this sum up to $1\pm\varepsilon$ factor, for \emph{every} set $C$ of $k$ centers in $\mathbb{R}^d$. We prove that such a core-set of $O(\log^2{n})$ sets always exists, and can be computed in $O(n\log{n})$ time, for every input $\mathcal{P}$ and every fixed $d,k\geq 1$ and $\varepsilon \in (0,1)$. The result easily generalized for any metric space, distances to the power of $z>0$, and M-estimators that handle outliers. Applying an inefficient but optimal algorithm on this coreset allows us to obtain the first PTAS ($1+\varepsilon$ approximation) for the sets-$k$-means problem that takes time near linear in $n$. This is the first result even for sets-mean on the plane ($k=1$, $d=2$). Open source code and experimental results for document classification and facility locations are also provided.
Zhou Fan · Cheng Mao · Yihong Wu · Jiaming Xu
Graph matching, also known as network alignment, aims at recovering the latent vertex correspondence between two unlabeled, edge-correlated weighted graphs. To tackle this task, we propose a spectral method, GRAph Matching by Pairwise eigen-Alignments (GRAMPA), which first constructs a similarity matrix as a weighted sum of outer products between all pairs of eigenvectors of the two graphs, and then outputs a matching by a simple rounding procedure. For a universality class of correlated Wigner models, GRAMPA achieves exact recovery of the latent matching between two graphs with edge correlation $1 - 1/\mathrm{polylog}(n)$ and average degree at least $\mathrm{polylog}(n)$. This matches the state-of-the-art guarantees for polynomial-time algorithms established for correlated Erd\H{o}s-R\'{e}nyi graphs, and significantly improves over existing spectral methods. The superiority of GRAMPA is also demonstrated on a variety of synthetic and real datasets, in terms of both statistical accuracy and computational efficiency.
Bin Dai · Ziyu Wang · David Wipf

In narrow asymptotic settings Gaussian VAE models of continuous data have been shown to possess global optima aligned with ground-truth distributions. Even so, it is well known that poor solutions whereby the latent posterior collapses to an uninformative prior are sometimes obtained in practice. However, contrary to conventional wisdom that largely assigns blame for this phenomena on the undue influence of KL-divergence regularization, we will argue that posterior collapse is, at least in part, a direct consequence of bad local minima inherent to the loss surface of deep autoencoder networks. In particular, we prove that even small nonlinear perturbations of affine VAE decoder models can produce such minima, and in deeper models, analogous minima can force the VAE to behave like an aggressive truncation operator, provably discarding information along all latent dimensions in certain circumstances. Regardless, the underlying message here is not meant to undercut valuable existing explanations of posterior collapse, but rather, to refine the discussion and elucidate alternative risk factors that may have been previously underappreciated.

Ananya Kumar · Tengyu Ma · Percy Liang

Machine learning systems must adapt to data distributions that evolve over time, in applications ranging from sensor networks and self-driving car perception modules to brain-machine interfaces. Traditional domain adaptation is only guaranteed to work when the distribution shift is small; empirical methods combine several heuristics for larger shifts but can be dataset specific. To adapt to larger shifts we consider gradual domain adaptation, where the goal is to adapt an initial classifier trained on a source domain given only unlabeled data that shifts gradually in distribution towards a target domain. We prove the first non-vacuous upper bound on the error of self-training with gradual shifts, under settings where directly adapting to the target domain can result in unbounded error. The theoretical analysis leads to algorithmic insights, highlighting that regularization and label sharpening are essential even when we have infinite data. Leveraging the gradual shift structure leads to higher accuracies on a rotating MNIST dataset, a forest Cover Type dataset, and a realistic Portraits dataset.

Yihao Feng · Tongzheng Ren · Ziyang Tang · Qiang Liu

Off-policy evaluation plays an important role in modern reinforcement learning. However, most existing off-policy evaluation algorithms focus on point estimation, without providing an account- able confidence interval, that can reflect the uncertainty caused by limited observed data and algorithmic errors. In this work, we propose a new optimization-based framework, which can find a feasible set that contains the true value function with high probability, by leveraging the statistical properties of the recent proposed kernel Bellman loss (Feng et al., 2019). We further utilize the feasible set to construct accountable confidence intervals for off-policy evaluations, and propose a post-hoc diagnosis for existing estimators. Empirical results show that our methods yield tight yet accountable confidence intervals in different settings, which demonstrate the effectiveness of our method.

Abhimanyu Dubey · Alex `Sandy' Pentland

We study the heavy-tailed stochastic bandit problem in the cooperative multi-agent setting, where a group of agents interact with a common bandit problem, while communicating on a network with delays. Existing algorithms for the stochastic bandit in this setting utilize confidence intervals arising from an averaging-based communication protocol known as running consensus, that does not lend itself to robust estimation for heavy-tailed settings. We propose MP-UCB, a decentralized multi-agent algorithm for the cooperative stochastic bandit that incorporates robust estimation with a message-passing protocol. We prove optimal regret bounds for MP-UCB for several problem settings, and also demonstrate its superiority to existing methods. Furthermore, we establish the first lower bounds for the cooperative bandit problem, in addition to providing efficient algorithms for robust bandit estimation of location.

Santiago Balseiro · Haihao Lu · Vahab Mirrokni

We consider online allocation problems with concave revenue functions and resource constraints, which are central problems in revenue management and online advertising. In these settings, requests arrive sequentially during a finite horizon and, for each request, a decision maker needs to choose an action that consumes a certain amount of resources and generates revenue. The revenue function and resource consumption of each request are drawn independently and at random from a probability distribution that is unknown to the decision maker. The objective is to maximize cumulative revenues subject to a constraint on the total consumption of resources.

We design a general class of algorithms that achieve sub-linear expected regret compared to the hindsight optimal allocation. Our algorithms operate in the Lagrangian dual space: they maintain a dual multiplier for each resource that is updated using online mirror descent. By choosing the reference function accordingly, we recover dual sub-gradient descent and dual exponential weights algorithm. The resulting algorithms are simple, efficient, and shown to attain the optimal order of regret when the length of the horizon and the initial number of resources are scaled proportionally. We discuss applications to online bidding in repeated auctions with budget constraints and online proportional matching …

Mingjie Li · Lingshen He · Zhouchen Lin

Deep neural networks have achieved great success in various areas, but recent works have found that neural networks are vulnerable to adversarial attacks, which leads to a hot topic nowadays. Although many approaches have been proposed to enhance the robustness of neural networks, few of them explored robust architectures for neural networks. On this account, we try to address such an issue from the perspective of dynamic system in this work. By viewing ResNet as an explicit Euler discretization of an ordinary differential equation~(ODE), for the first time, we find that the adversarial robustness of ResNet is connected to the numerical stability of the corresponding dynamic system, i.e., more stable numerical schemes may correspond to more robust deep networks. Furthermore, inspired by the implicit Euler method for solving numerical ODE problems, we propose Implicit Euler skip connections~(IE-Skips) by modifying the original skip connection in ResNet or its variants. Then we theoretically prove its advantages under the adversarial attack and the experimental results show that our ResNet with IE-Skips can largely improve the robustness and the generalization ability under adversarial attacks when compared with the vanilla ResNet of the same parameter size.

Cong Shen · Zhiyang Wang · Sofia Villar · Mihaela van der Schaar

Phase I dose-finding trials are increasingly challenging as the relationship between efficacy and toxicity of new compounds (or combination of them) becomes more complex. Despite this, most commonly used methods in practice focus on identifying a Maximum Tolerated Dose (MTD) by learning only from toxicity events. We present a novel adaptive clinical trial methodology, called Safe Efficacy Exploration Dose Allocation (SEEDA), that aims at maximizing the cumulative efficacies while satisfying the toxicity safety constraint with high probability. We evaluate performance objectives that have operational meanings in practical clinical trials, including cumulative efficacy, recommendation/allocation success probabilities, toxicity violation probability, and sample efficiency. An extended SEEDA-Plateau algorithm that is tailored for the increase-then-plateau efficacy behavior of molecularly targeted agents (MTA) is also presented. Through numerical experiments using both synthetic and real-world datasets, we show that SEEDA outperforms state-of-the-art clinical trial designs by finding the optimal dose with higher success rate and fewer patients.

Karl Cobbe · Chris Hesse · Jacob Hilton · John Schulman

We introduce Procgen Benchmark, a suite of 16 procedurally generated game-like environments designed to benchmark both sample efficiency and generalization in reinforcement learning. We believe that the community will benefit from increased access to high quality training environments, and we provide detailed experimental protocols for using this benchmark. We empirically demonstrate that diverse environment distributions are essential to adequately train and evaluate RL agents, thereby motivating the extensive use of procedural content generation. We then use this benchmark to investigate the effects of scaling model size, finding that larger models significantly improve both sample efficiency and generalization.

Forest Yang · Sanmi Koyejo
The top-$k$ error is often employed to evaluate performance for challenging classification tasks in computer vision as it is designed to compensate for ambiguity in ground truth labels. This practical success motivates our theoretical analysis of consistent top-$k$ classification. To this end, we provide a characterization of Bayes optimality by defining a top-$k$ preserving property, which is new and fixes a non-uniqueness gap in prior work. Then, we define top-$k$ calibration and show it is necessary and sufficient for consistency. Based on the top-$k$ calibration analysis, we propose a rich class of top-$k$ calibrated Bregman divergence surrogates. Our analysis continues by showing previously proposed hinge-like top-$k$ surrogate losses are not top-$k$ calibrated and thus inconsistent. On the other hand, we propose two new hinge-like losses, one which is similarly inconsistent, and one which is consistent. Our empirical results highlight theoretical claims, confirming our analysis of the consistency of these losses.
Moein Falahatgar · Alon Orlitsky · Venkatadheeraj Pichapati

Maximum selection under probabilistic queries \emph{(probabilistic maximization)} is a fundamental algorithmic problem arising in numerous theoretical and practical contexts. We derive the first query-optimal sequential algorithm for probabilistic-maximization. Departing from previous assumptions, the algorithm and performance guarantees apply even for infinitely many items, hence in particular do not require a-priori knowledge of the number of items. The algorithm has linear query complexity, and is optimal also in the streaming setting.

To derive these results we consider a probabilistic setting where several candidates for a position are asked multiple questions with the goal of finding who has the highest probability of answering interview questions correctly. Previous work minimized the total number of questions asked by alternating back and forth between the best performing candidates, in a sense, inviting them to multiple interviews. We show that the same order-wise selection accuracy can be achieved by querying the candidates sequentially, never returning to a previously queried candidate. Hence one interview is enough!

Yonatan Dukler · Quanquan Gu · Guido Montufar

The current paradigm of deep neural networks has been successful in part due to the use of normalization layers. Normalization layers like Batch Normalization, Layer Normalization and Weight Normalization are ubiquitous in practice as they improve the generalization performance and training speed of neural networks significantly. Nonetheless, the vast majority of current deep learning theory and non-convex optimization literature focuses on the un-normalized setting. We bridge this gap by providing the first global convergence result for 2 layer non-linear neural networks with ReLU activations trained with a normalization layer, namely Weight Normalization. The analysis shows how the introduction of normalization layers changes the optimization landscape and in some settings enables faster convergence as compared with un-normalized neural networks.

Lingkai Kong · Jimeng Sun · Chao Zhang

Uncertainty quantification is a fundamental yet unsolved problem for deep learning. The Bayesian framework provides a principled way of uncertainty estimation but is often not scalable to modern deep neural nets (DNNs) that have a large number of parameters. Non-Bayesian methods are simple to implement but often conflate different sources of uncertainties and require huge computing resources. We propose a new method for quantifying uncertainties of DNNs from a dynamical system perspective. The core of our method is to view DNN transformations as state evolution of a stochastic dynamical system and introduce a Brownian motion term for capturing epistemic uncertainty. Based on this perspective, we propose a neural stochastic differential equation model (SDE-Net) which consists of (1) a drift net that controls the system to fit the predictive function; and (2) a diffusion net that captures epistemic uncertainty. We theoretically analyze the existence and uniqueness of the solution to SDE-Net. Our experiments demonstrate that the SDE-Net model can outperform existing uncertainty estimation methods across a series of tasks where uncertainty plays a fundamental role.


Poster Session 33 Thu 16 Jul 06:00 a.m.  

Jesse Zhang · Brian Cheung · Chelsea Finn · Sergey Levine · Dinesh Jayaraman

[ Virtual ]

Reinforcement learning (RL) in real-world safety-critical target settings like urban driving is hazardous, imperiling the RL agent, other agents, and the environment. To overcome this difficulty, we propose a "safety-critical adaptation" task setting: an agent first trains in non-safety-critical "source" environments such as in a simulator, before it adapts to the target environment where failures carry heavy costs. We propose a solution approach, CARL, that builds on the intuition that prior experience in diverse environments equips an agent to estimate risk, which in turn enables relative safety through risk-averse, cautious adaptation. CARL first employs model-based RL to train a probabilistic model to capture uncertainty about transition dynamics and catastrophic states across varied source environments. Then, when exploring a new safety-critical environment with unknown dynamics, the CARL agent plans to avoid actions that could lead to catastrophic states. In experiments on car driving, cartpole balancing, and half-cheetah locomotion, CARL successfully acquires cautious exploration behaviors, yielding higher rewards with fewer failures than strong RL adaptation baselines.

Ziyu Xu · Chen Dan · Justin Khim · Pradeep Ravikumar

[ Virtual ]

We consider imbalanced classification, the problem in which a label may have low marginal probability relative to other labels, by weighting losses according to the correct class. First, we examine the convergence rates of the expected excess weighted risk of plug-in classifiers where the weighting for the plug-in classifier and the risk may be different. This leads to irreducible errors that do not converge to the weighted Bayes risk, which motivates our consideration of robust risks. We define a robust risk that minimizes risk over a set of weightings, show excess risk bounds for this problem, and demonstrate that particular choices of the weighting set leads to a special instance of conditional value at risk (CVaR) from stochastic programming, which we call label conditional value at risk (LCVaR). Additionally, we generalize this weighting to derive a new robust risk problem that we call label heterogeneous conditional value at risk (LHCVaR). Finally, we empirically demonstrate the efficacy of LCVaR and LHCVaR on improving class conditional risks.

Qijia Jiang · Olaoluwa Adigun · Harikrishna Narasimhan · Mahdi Milani Fard · Maya Gupta

[ Virtual ]

We address the problem of training models with black-box and hard-to-optimize metrics by expressing the metric as a monotonic function of a small number of easy-to-optimize surrogates. We pose the training problem as an optimization over a relaxed surrogate space, which we solve by estimating local gradients for the metric and performing inexact convex projections. We analyze gradient estimates based on finite differences and local linear interpolations, and show convergence of our approach under smoothness assumptions with respect to the surrogates. Experimental results on classification and ranking problems verify the proposal performs on par with methods that know the mathematical formulation, and adds notable value when the form of the metric is unknown.

Kevin Hsieh · Amar Phanishayee · Onur Mutlu · Phillip Gibbons

[ Virtual ]

Many large-scale machine learning (ML) applications need to perform decentralized learning over datasets generated at different devices and locations. Such datasets pose a significant challenge to decentralized learning because their different contexts result in significant data distribution skew across devices/locations. In this paper, we take a step toward better understanding this challenge by presenting a detailed experimental study of decentralized DNN training on a common type of data skew: skewed distribution of data labels across locations/devices. Our study shows that: (i) skewed data labels are a fundamental and pervasive problem for decentralized learning, causing significant accuracy loss across many ML applications, DNN models, training datasets, and decentralized learning algorithms; (ii) the problem is particularly challenging for DNN models with batch normalization layers; and (iii) the degree of skewness is a key determinant of the difficulty of the problem. Based on these findings, we present SkewScout, a system-level approach that adapts the communication frequency of decentralized learning algorithms to the (skew-induced) accuracy loss between data partitions. We also show that group normalization can recover much of the skew-induced accuracy loss of batch normalization.

Shruti Tople · Amit Sharma · Aditya Nori

Machine learning models, especially deep neural networks have been shown to be susceptible to privacy attacks such as membership inference where an adversary can detect whether a data point was used for training a black-box model. Such privacy risks are exacerbated when a model's predictions are used on an unseen data distribution. To alleviate privacy attacks, we demonstrate the benefit of predictive models that are based on the causal relationship between input features and the outcome. We first show that models learnt using causal structure generalize better to unseen data, especially on data from different distributions than the train distribution. Based on this generalization property, we establish a theoretical link between causality and privacy: compared to associational models, causal models provide stronger differential privacy guarantees and are more robust to membership inference attacks. Experiments on simulated Bayesian networks and the colored-MNIST dataset show that associational models exhibit up to 80% attack accuracy under different test distributions and sample sizes whereas causal models exhibit attack accuracy close to a random guess.

Yong Guo · Yaofo Chen · Yin Zheng · Peilin Zhao · Jian Chen · Junzhou Huang · Mingkui Tan

Neural architecture search (NAS) has become an important approach to automatically find effective architectures. To cover all possible good architectures, we need to search in an extremely large search space with billions of candidate architectures. More critically, given a large search space, we may face a very challenging issue of space explosion. However, due to the limitation of computational resources, we can only sample a very small proportion of the architectures, which provides insufficient information for the training. As a result, existing methods may often produce suboptimal architectures. To alleviate this issue, we propose a curriculum search method that starts from a small search space and gradually incorporates the learned knowledge to guide the search in a large space. With the proposed search strategy, our Curriculum Neural Architecture Search (CNAS) method significantly improves the search efficiency and finds better architectures than existing NAS methods. Extensive experiments on CIFAR-10 and ImageNet demonstrate the effectiveness of the proposed method.

Satrajit Chatterjee · Alan Mishchenko

The focus of this paper is on intrinsic methods to detect overfitting. By intrinsic methods, we mean methods that rely only on the model and the training data, as opposed to traditional methods (we call them extrinsic methods) that rely on performance on a test set or on bounds from model complexity. We propose a family of intrinsic methods called Counterfactual Simulation (CFS) which analyze the flow of training examples through the model by identifying and perturbing rare patterns. By applying CFS to logic circuits we get a method that has no hyper-parameters and works uniformly across different types of models such as neural networks, random forests and lookup tables. Experimentally, CFS can separate models with different levels of overfit using only their logic circuit representations without any access to the high level structure. By comparing lookup tables, neural networks, and random forests using CFS, we get insight into why neural networks generalize. In particular, we find that stochastic gradient descent in neural nets does not lead to "brute force" memorization, but finds common patterns (whether we train with actual or randomized labels), and neural networks are not unlike forests in this regard. Finally, we identify a limitation with our …

Xi Liu · Ping-Chun Hsieh · Yu-Heng Hung · Anirban Bhattacharya · P. R. Kumar
Inspired by the Reward-Biased Maximum Likelihood Estimate method of adaptive control, we propose RBMLE -- a novel family of learning algorithms for stochastic multi-armed bandits (SMABs). For a broad range of SMABs including both the parametric Exponential Family as well as the non-parametric sub-Gaussian/Exponential family, we show that RBMLE yields an index policy. To choose the bias-growth rate $\alpha(t)$ in RBMLE, we reveal the nontrivial interplay between $\alpha(t)$ and the regret bound that generally applies in both the Exponential Family as well as the sub-Gaussian/Exponential family bandits. To quantify the finite-time performance, we prove that RBMLE attains order-optimality by adaptively estimating the unknown constants in the expression of $\alpha(t)$ for Gaussian and sub-Gaussian bandits. Extensive experiments demonstrate that the proposed RBMLE achieves empirical regret performance competitive with the state-of-the-art methods, while being more computationally efficient and scalable in comparison to the best-performing ones among them.
Xiaoyu Chen · Kai Zheng · Zixin Zhou · Yunchang Yang · Wei Chen · Liwei Wang
In this paper, we study Combinatorial Semi-Bandits (CSB) that is an extension of classic Multi-Armed Bandits (MAB) under Differential Privacy (DP) and stronger Local Differential Privacy (LDP) setting. Since the server receives more information from users in CSB, it usually causes additional dependence on the dimension of data, which is a notorious side-effect for privacy preserving learning. However for CSB under two common smoothness assumptions, we show it is possible to remove this side-effect. In detail, for $B_{\infty}$-bounded smooth CSB under either $\varepsilon$-LDP or $\varepsilon$-DP, we prove the optimal regret bound is $\Theta(\frac{mB^2_{\infty}\ln T } {\Delta\varepsilon^2})$ or $\tilde{\Theta}(\frac{mB^2_{\infty}\ln T} { \Delta\varepsilon})$ respectively, where $T$ is time period, $\Delta$ is the gap of rewards and $m$ is the number of base arms, by proposing novel algorithms and matching lower bounds. For $B_1$-bounded smooth CSB under $\varepsilon$-DP, we also prove the optimal regret bound is $\tilde{\Theta}(\frac{mKB^2_1\ln T} {\Delta\varepsilon})$ with both upper bound and lower bound, where $K$ is the maximum number of feedback in each round. All above results nearly match corresponding non-private optimal rates, which imply there is no additional price for (locally) differentially private CSB in above common settings.
Ian Delbridge · David S Bindel · Andrew Wilson

Gaussian processes (GPs) provide flexible distributions over functions, with inductive biases controlled by a kernel. However, in many applications Gaussian processes can struggle with even moderate input dimensionality. Learning a low dimensional projection can help alleviate this curse of dimensionality, but introduces many trainable hyperparameters, which can be cumbersome, especially in the small data regime. We use additive sums of kernels for GP regression, where each kernel operates on a different random projection of its inputs. Surprisingly, we find that as the number of random projections increases, the predictive performance of this approach quickly converges to the performance of a kernel operating on the original full dimensional inputs, over a wide range of data sets, even if we are projecting into a single dimension. As a consequence, many problems can remarkably be reduced to one dimensional input spaces, without learning a transformation. We prove this convergence and its rate, and additionally propose a deterministic approach that converges more quickly than purely random projections. Moreover, we demonstrate our approach can achieve faster inference and improved predictive accuracy for high-dimensional inputs compared to kernels in the original input space.

Xiang Cheng · Dong Yin · Peter Bartlett · Michael Jordan

We prove quantitative convergence rates at which discrete Langevin-like processes converge to the invariant distribution of a related stochastic differential equation. We study the setup where the additive noise can be non-Gaussian and state-dependent and the potential function can be non-convex. We show that the key properties of these processes depend on the potential function and the second moment of the additive noise. We apply our theoretical findings to studying the convergence of Stochastic Gradient Descent (SGD) for non-convex problems and corroborate them with experiments using SGD to train deep neural networks on the CIFAR-10 dataset.

Joshua Robinson · Stefanie Jegelka · Suvrit Sra

We study generalization properties of weakly supervised learning, that is, learning where only a few "strong" labels (the actual target for prediction) are present but many more "weak" labels are available. In particular, we show that pretraining using weak labels and finetuning using strong can accelerate the learning rate for the strong task to the fast rate of O(1/n), where n is the number of strongly labeled data points. This acceleration can happen even if, by itself, the strongly labeled data admits only the slower O(1/\sqrt{n}) rate. The acceleration depends continuously on the number of weak labels available, and on the relation between the two tasks. Our theoretical results are reflected empirically across a range of tasks and illustrate how weak labels speed up learning on the strong task.

Rémy Degenne · Han Shao · Wouter Koolen

We study reward maximisation in a wide class of structured stochastic multi-armed bandit problems, where the mean rewards of arms satisfy some given structural constraints, e.g. linear, unimodal, sparse, etc. Our aim is to develop methods that are \emph{flexible} (in that they easily adapt to different structures), \emph{powerful} (in that they perform well empirically and/or provably match instance-dependent lower bounds) and \emph{efficient} in that the per-round computational burden is small. We develop asymptotically optimal algorithms from instance-dependent lower-bounds using iterative saddle-point solvers. Our approach generalises recent iterative methods for pure exploration to reward maximisation, where a major challenge arises from the estimation of the sub-optimality gaps and their reciprocals. Still we manage to achieve all the above desiderata. Notably, our technique avoids the computational cost of the full-blown saddle point oracle employed by previous work, while at the same time enabling finite-time regret bounds. Our experiments reveal that our method successfully leverages the structural assumptions, while its regret is at worst comparable to that of vanilla UCB.

Vidyashankar Sivakumar · Steven Wu · Arindam Banerjee
Bandit learning algorithms typically involve the balance of exploration and exploitation. However, in many practical applications, worst-case scenarios needing systematic exploration are seldom encountered. In this work, we consider a smoothed setting for structured linear contextual bandits where the adversarial contexts are perturbed by Gaussian noise and the unknown parameter $\theta^*$ has structure, e.g., sparsity, group sparsity, low rank, etc. We propose simple greedy algorithms for both the single- and multi-parameter (i.e., different parameter for each context) settings and provide a unified regret analysis for $\theta^*$ with any assumed structure. The regret bounds are expressed in terms of geometric quantities such as Gaussian widths associated with the structure of $\theta^*$. We also obtain sharper regret bounds compared to earlier work for the unstructured $\theta^*$ setting as a consequence of our improved analysis. We show there is implicit exploration in the smoothed setting where a simple greedy algorithm works.
Arash Vahdat · Evgeny Andriyash · William Macready

The representation of the approximate posterior is a critical aspect of effective variational autoencoders (VAEs). Poor choices for the approximate posterior have a detrimental impact on the generative performance of VAEs due to the mismatch with the true posterior. We extend the class of posterior models that may be learned by using undirected graphical models. We develop an efficient method to train undirected approximate posteriors by showing that the gradient of the training objective with respect to the parameters of the undirected posterior can be computed by backpropagation through Markov chain Monte Carlo updates. We apply these gradient estimators for training discrete VAEs with Boltzmann machines as approximate posteriors and demonstrate that undirected models outperform previous results obtained using directed graphical models. Our implementation is publicly available.

Trevor Davis · Martin Schmid · Michael Bowling

[ Virtual ]

Extensive-form games (EFGs) are a common model of multi-agent interactions with imperfect information. State-of-the-art algorithms for solving these games typically perform full walks of the game tree that can prove prohibitively slow in large games. Alternatively, sampling-based methods such as Monte Carlo Counterfactual Regret Minimization walk one or more trajectories through the tree, touching only a fraction of the nodes on each iteration, at the expense of requiring more iterations to converge due to the variance of sampled values. In this paper, we extend recent work that uses baseline estimates to reduce this variance. We introduce a framework of baseline-corrected values in EFGs that generalizes the previous work. Within our framework, we propose new baseline functions that result in significantly reduced variance compared to existing techniques. We show that one particular choice of such a function --- predictive baseline --- is provably optimal under certain sampling schemes. This allows for efficient computation of zero-variance value estimates even along sampled trajectories.

Binghong Chen · Chengtao Li · Hanjun Dai · Le Song

[ Virtual ]

Retrosynthetic planning is a critical task in organic chemistry which identifies a series of reactions that can lead to the synthesis of a target product. The vast number of possible chemical transformations makes the size of the search space very big, and retrosynthetic planning is challenging even for experienced chemists. However, existing methods either require expensive return estimation by rollout with high variance, or optimize for search speed rather than the quality. In this paper, we propose Retro, a neural-based A-like algorithm that finds high-quality synthetic routes efficiently. It maintains the search as an AND-OR tree, and learns a neural search bias with off-policy data. Then guided by this neural network, it performs best-first search efficiently during new planning episodes. Experiments on benchmark USPTO datasets show that, our proposed method outperforms existing state-of-the-art with respect to both the success rate and solution quality, while being more efficient at the same time.

Pratyush Maini · Eric Wong · Zico Kolter
Owing to the susceptibility of deep learning systems to adversarial attacks, there has been a great deal of work in developing (both empirically and certifiably) robust classifiers. While most work has defended against a single type of attack, recent work has looked at defending against multiple perturbation models using simple aggregations of multiple attacks. However, these methods can be difficult to tune, and can easily result in imbalanced degrees of robustness to individual perturbation models, resulting in a sub-optimal worst-case loss over the union. In this work, we develop a natural generalization of the standard PGD-based procedure to incorporate multiple perturbation models into a single attack, by taking the worst-case over all steepest descent directions. This approach has the advantage of directly converging upon a trade-off between different perturbation models which minimizes the worst-case performance over the union. With this approach, we are able to train standard architectures which are simultaneously robust against $\ell_\infty$, $\ell_2$, and $\ell_1$ attacks, outperforming past approaches on the MNIST and CIFAR10 datasets and achieving adversarial accuracy of 46.1% against the union of ($\ell_\infty$, $\ell_2$, $\ell_1$) perturbations with radius = (0.03, 0.5, 12) on the latter, improving upon previous approaches which achieve 40.6% accuracy.
Kara Liu · Thanard Kurutach · Christine Tung · Pieter Abbeel · Aviv Tamar

In visual planning (VP), an agent learns to plan goal-directed behavior from observations of a dynamical system obtained offline, e.g., images obtained from self-supervised robot interaction. Most previous works on VP approached the problem by planning in a learned latent space, resulting in low-quality visual plans, and difficult training algorithms. Here, instead, we propose a simple VP method that plans directly in image space and displays competitive performance. We build on the semi-parametric topological memory (SPTM) method: image samples are treated as nodes in a graph, the graph connectivity is learned from image sequence data, and planning can be performed using conventional graph search methods. We propose two modifications on SPTM. First, we train an energy-based graph connectivity function using contrastive predictive coding that admits stable training. Second, to allow zero-shot planning in new domains, we learn a conditional VAE model that generates images given a context describing the domain, and use these hallucinated samples for building the connectivity graph and planning. We show that this simple approach significantly outperform the SOTA VP methods, in terms of both plan interpretability and success rate when using the plan to guide a trajectory-following controller. Interestingly, our method can pick up non-trivial visual …

Jinsung Yoon · Sercan Arik · Tomas Pfister

[ Virtual ]

Quantifying the value of data is a fundamental problem in machine learning and has multiple important use cases: (1) building insights about the dataset and task, (2) domain adaptation, (3) corrupted sample discovery, and (4) robust learning. We propose Data Valuation using Reinforcement Learning (DVRL), to adaptively learn data values jointly with the predictor model. DVRL uses a data value estimator (DVE) to learn how likely each datum is used in training of the predictor model. DVE is trained using a reinforcement signal that reflects performance on the target task. We demonstrate that DVRL yields superior data value estimates compared to alternative methods across numerous datasets and application scenarios. The corrupted sample discovery performance of DVRL is close to optimal in many regimes (i.e. as if the noisy samples were known apriori), and for domain adaptation and robust learning DVRL significantly outperforms state-of-the-art by 14.6% and 10.8%, respectively.

Hossein Taheri · Aryan Mokhtari · Hamed Hassani · Ramtin Pedarsani

[ Virtual ]

We consider a decentralized stochastic learning problem where data points are distributed among computing nodes communicating over a directed graph. As the model size gets large, decentralized learning faces a major bottleneck that is the heavy communication load due to each node transmitting large messages (model updates) to its neighbors. To tackle this bottleneck, we propose the quantized decentralized stochastic learning algorithm over directed graphs that is based on the push-sum algorithm in decentralized consensus optimization. More importantly, we prove that our algorithm achieves the same convergence rates of the decentralized stochastic learning algorithm with exact-communication for both convex and non-convex losses. Furthermore, our numerical results illustrate significant speed-up compared to the exact-communication methods.

Aravind Rajeswaran · Igor Mordatch · Vikash Kumar

Designing stable and efficient algorithms for model-based reinforcement learning (MBRL) with function approximation has remained challenging despite growing interest in the field. To help expose the practical challenges in MBRL and simplify algorithm design from the lens of abstraction, we develop a new framework that casts MBRL as a game between: (1)~a policy player, which attempts to maximize rewards under the learned model; (2)~a model player, which attempts to fit the real-world data collected by the policy player. We show that a near-optimal policy for the environment can be obtained by finding an approximate equilibrium for aforementioned game, and we develop two families of algorithms to find the game equilibrium by drawing upon ideas from Stackelberg games. Experimental studies suggest that the proposed algorithms achieve state of the art sample efficiency, match the asymptotic performance of model-free policy gradient, and scale gracefully to high-dimensional tasks like dexterous hand manipulation.

Junfeng Wen · Bo Dai · Lihong Li · Dale Schuurmans

We consider the problem of approximating the stationary distribution of an ergodic Markov chain given a set of sampled transitions. Classical simulation-based approaches assume access to the underlying process so that trajectories of sufficient length can be gathered to approximate stationary sampling. Instead, we consider an alternative setting where a \emph{fixed} set of transitions has been collected beforehand, by a separate, possibly unknown procedure. The goal is still to estimate properties of the stationary distribution, but without additional access to the underlying system. We propose a consistent estimator that is based on recovering a correction ratio function over the given data. In particular, we develop a variational power method (VPM) that provides provably consistent estimates under general conditions. In addition to unifying a number of existing approaches from different subfields, we also find that VPM yields significantly better estimates across a range of problems, including queueing, stochastic differential equations, post-processing MCMC, and off-policy evaluation.

Agustinus Kristiadi · Matthias Hein · Philipp Hennig

The point estimates of ReLU classification networks---arguably the most widely used neural network architecture---have been shown to yield arbitrarily high confidence far away from the training data. This architecture, in conjunction with a maximum a posteriori estimation scheme, is thus not calibrated nor robust. Approximate Bayesian inference has been empirically demonstrated to improve predictive uncertainty in neural networks, although the theoretical analysis of such Bayesian approximations is limited. We theoretically analyze approximate Gaussian distributions on the weights of ReLU networks and show that they fix the overconfidence problem. Furthermore, we show that even a simplistic, thus cheap, Bayesian approximation, also fixes these issues. This indicates that a sufficient condition for a calibrated uncertainty on a ReLU network is ``to be a bit Bayesian''. These theoretical results validate the usage of last-layer Bayesian approximation and motivate a range of a fidelity-cost trade-off. We further validate these findings empirically via various standard experiments using common deep ReLU networks and Laplace approximations.

Liangyu Zhu · Wenbin Lu · Rui Song

In this article, we propose novel structural nested models to estimate causal effects of continuous treatments based on mobile health data. To find the treatment regime which optimizes the short-term outcomes for the patients, we define the weighted lag K advantage. The optimal treatment regime is then defined to be the one which maximizes this advantage. This method imposes minimal assumptions on the data generating process. Statistical inference can also be provided for the estimated parameters. Simulation studies and an application to the Ohio type 1 diabetes dataset show that our method could provide meaningful insights for dose suggestions with mobile health data.

Jafar Jafarov · Sanchit Kalhan · Konstantin Makarychev · Yury Makarychev
In the Correlation Clustering problem, we are given a weighted graph $G$ with its edges labelled as "similar" or "dissimilar" by a binary classifier. The goal is to produce a clustering that minimizes the weight of "disagreements": the sum of the weights of "similar" edges across clusters and "dissimilar" edges within clusters. We study the correlation clustering problem under the following assumption: Every "similar" edge $e$ has weight $w_e \in [ \alpha w, w ]$ and every "dissimilar" edge $e$ has weight $w_e \geq \alpha w$ (where $\alpha \leq 1$ and $w > 0$ is a scaling parameter). We give a $(3 + 2 \log_e (1/\alpha))$ approximation algorithm for this problem. This assumption captures well the scenario when classification errors are asymmetric. Additionally, we show an asymptotically matching Linear Programming integrality gap of $\Omega(\log 1/\alpha)$.
Mike Dusenberry · Ghassen Jerfel · Yeming Wen · Yian Ma · Jasper Snoek · Katherine Heller · Balaji Lakshminarayanan · Dustin Tran

Bayesian neural networks (BNNs) demonstrate promising success in improving the robustness and uncertainty quantification of modern deep learning. However, they generally struggle with underfitting at scale and parameter efficiency. On the other hand, deep ensembles have emerged as alternatives for uncertainty quantification that, while outperforming BNNs on certain problems, also suffer from efficiency issues. It remains unclear how to combine the strengths of these two approaches and remediate their common issues. To tackle this challenge, we propose a rank-1 parameterization of BNNs, where each weight matrix involves only a distribution on a rank-1 subspace. We also revisit the use of mixture approximate posteriors to capture multiple modes, where unlike typical mixtures, this approach admits a significantly smaller memory increase (e.g., only a 0.4% increase for a ResNet-50 mixture of size 10). We perform a systematic empirical study on the choices of prior, variational posterior, and methods to improve training. For ResNet-50 on ImageNet, Wide ResNet 28-10 on CIFAR-10/100, and an RNN on MIMIC-III, rank-1 BNNs achieve state-of-the-art performance across log-likelihood, accuracy, and calibration on the test sets and out-of-distribution variants.

Yujia Jin · Aaron Sidford
In this paper we present a unified framework based on primal-dual stochastic mirror descent for approximately solving infinite-horizon Markov decision processes (MDPs) given a generative model. When applied to an average-reward MDP with $A_{tot}$ total actions and mixing time bound $t_{mix}$ our method computes an $\epsilon$-optimal policy with an expected $\widetilde{O}(t_{mix}^2 A_{tot} \epsilon^{-2})$ samples from the state-transition matrix, removing the ergodicity dependence of prior art. When applied to a $\gamma$-discounted MDP with $A_{tot}$ total actions our method computes an $\epsilon$-optimal policy with an expected $\widetilde{O}((1-\gamma)^{-4} A_{tot} \epsilon^{-2})$ samples, improving over the best-known primal-dual methods while matching the state-of-the-art up to a $(1-\gamma)^{-1}$ factor. Both methods are model-free, update state values and policy simultaneously, and run in time linear in the number of samples taken.
Wu Lin · Mark Schmidt · Mohammad Emtiyaz Khan

The Bayesian learning rule is a natural-gradient variational inference method, which not only contains many existing learning algorithms as special cases but also enables the design of new algorithms. Unfortunately, when variational parameters lie in an open constraint set, the rule may not satisfy the constraint and requires line-searches which could slow down the algorithm. In this work, we address this issue for positive-definite constraints by proposing an improved rule that naturally handles the constraints. Our modification is obtained by using Riemannian gradient methods, and is valid when the approximation attains a block-coordinate natural parameterization (e.g., Gaussian distributions and their mixtures). Our method outperforms existing methods without any significant increase in computation. Our work makes it easier to apply the rule in the presence of positive-definite constraints in parameter spaces.

Cong Han Lim · Raquel Urtasun · Ersin Yumer

We introduce a new framework for the exact point-wise ℓp robustness verification problem that exploits the layer-wise geometric structure of deep feed-forward networks with rectified linear activations (ReLU networks). The activation regions of the network partition the input space, and one can verify the ℓp robustness around a point by checking all the activation regions within the desired radius. The GeoCert algorithm (Jordan et al., NeurIPS 2019) treats this partition as a generic polyhedral complex in order to detect which region to check next. In contrast, our LayerCert framework considers the nested hyperplane arrangement structure induced by the layers of the ReLU network and explores regions in a hierarchical manner. We show that, under certain conditions on the algorithm parameters, LayerCert provably reduces the number and size of the convex programs that one needs to solve compared to GeoCert. Furthermore, our LayerCert framework allows the incorporation of lower bounding routines based on convex relaxations to further improve performance. Experimental results demonstrate that LayerCert can significantly reduce both the number of convex programs solved and the running time over the state-of-the-art.

Eric Zhan · Albert Tseng · Yisong Yue · Adith Swaminathan · Matthew Hausknecht
We study the problem of controllable generation of long-term sequential behaviors, where the goal is to calibrate to multiple behavior styles simultaneously. In contrast to the well-studied areas of controllable generation of images, text, and speech, there are two questions that pose significant challenges when generating long-term behaviors: how should we specify the factors of variation to control, and how can we ensure that the generated behavior faithfully demonstrates combinatorially many styles? We leverage programmatic labeling functions to specify controllable styles, and derive a formal notion of style-consistency as a learning objective, which can then be solved using conventional policy learning approaches. We evaluate our framework using demonstrations from professional basketball players and agents in the MuJoCo physics environment, and show that existing approaches that do not explicitly enforce style-consistency fail to generate diverse behaviors whereas our learned policies can be calibrated for up to $4^5 (1024)$ distinct style combinations.
Taylor Webb · Zachary Dulberg · Steven Frankland · Alexander Petrov · Randall O'Reilly · Jonathan Cohen

Extrapolation -- the ability to make inferences that go beyond the scope of one's experiences -- is a hallmark of human intelligence. By contrast, the generalization exhibited by contemporary neural network algorithms is largely limited to interpolation between data points in their training corpora. In this paper, we consider the challenge of learning representations that support extrapolation. We introduce a novel visual analogy benchmark that allows the graded evaluation of extrapolation as a function of distance from the convex domain defined by the training data. We also introduce a simple technique, context normalization, that encourages representations that emphasize the relations between objects. We find that this technique enables a significant improvement in the ability to extrapolate, considerably outperforming a number of competitive techniques.

Sanjeev Arora · Simon Du · Sham Kakade · Yuping Luo · Nikunj Umesh Saunshi

A common strategy in modern learning systems is to learn a representation that is useful for many tasks, a.k.a. representation learning. We study this strategy in the imitation learning setting for Markov decision processes (MDPs) where multiple experts' trajectories are available. We formulate representation learning as a bi-level optimization problem where the outer" optimization tries to learn the joint representation and theinner" optimization encodes the imitation learning setup and tries to learn task-specific parameters. We instantiate this framework for the imitation learning settings of behavior cloning and observation-alone. Theoretically, we show using our framework that representation learning can provide sample complexity benefits for imitation learning in both settings. We also provide proof-of-concept experiments to verify our theory.

Nilesh Tripuraneni · Lester Mackey
Standard methods in supervised learning separate training and prediction: the model is fit independently of any test points it may encounter. However, can knowledge of the next test point $\mathbf{x}_{\star}$ be exploited to improve prediction accuracy? We address this question in the context of linear prediction, showing how techniques from semi-parametric inference can be used transductively to combat regularization bias. We first lower bound the $\mathbf{x}_{\star}$ prediction error of ridge regression and the Lasso, showing that they must incur significant bias in certain test directions. We then provide non-asymptotic upper bounds on the $\mathbf{x}_{\star}$ prediction error of two transductive prediction rules. We conclude by showing the efficacy of our methods on both synthetic and real data, highlighting the improvements single point transductive prediction can provide in settings with distribution shift.
Samrath Sinha · Han Zhang · Anirudh Goyal · Yoshua Bengio · Hugo Larochelle · Augustus Odena

Recent work suggests that Generative Adversarial Networks (GANs) benefit disproportionately from large mini-batch sizes. This finding is interesting but also discouraging -- large batch sizes are slow and expensive to emulate on conventional hardware. Thus, it would be nice if there were some trick by which we could generate batches that were effectively big though small in practice. In this work, we propose such a trick, inspired by the use of Coreset-selection in active learning. When training a GAN, we draw a large batch of samples from the prior and then compress that batch using Coreset-selection. To create effectively large batches of real images, we create a cached dataset of Inception activations of each training image, randomly project them down to a smaller dimension, and then use Coreset-selection on those projected embeddings at training time. We conduct experiments showing that this technique substantially reduces training time and memory usage for modern GAN variants, that it reduces the fraction of dropped modes in a synthetic dataset, and that it helps us use GANs to reach a new state of the art in anomaly detection.

Wenbo Ren · Jia Liu · Ness Shroff
This paper studies the sample complexity (aka number of comparisons) bounds for the active best-$k$ items selection from pairwise comparisons. From a given set of items, the learner can make pairwise comparisons on every pair of items, and each comparison returns an independent noisy result about the preferred item. At any time, the learner can adaptively choose a pair of items to compare according to past observations (i.e., active learning). The learner's goal is to find the (approximately) best-$k$ items with a given confidence, while trying to use as few comparisons as possible. In this paper, we study two problems: (i) finding the probably approximately correct (PAC) best-$k$ items and (ii) finding the exact best-$k$ items, both under strong stochastic transitivity and stochastic triangle inequality. For PAC best-$k$ items selection, we first show a lower bound and then propose an algorithm whose sample complexity upper bound matches the lower bound up to a constant factor. For the exact best-$k$ items selection, we first prove a worst-instance lower bound. We then propose two algorithms based on our PAC best items selection algorithms: one works for $k=1$ and is sample complexity optimal up to a loglog factor, and the other works for …

Poster Session 34 Thu 16 Jul 07:00 a.m.  

Uri Alon · Roy Sadaka · Omer Levy · Eran Yahav

[ Virtual ]

We address the problem of any-code completion - generating a missing piece of source code in a given program without any restriction on the vocabulary or structure. We introduce a new approach to any-code completion that leverages the strict syntax of programming languages to model a code snippet as a tree - structural language modeling (SLM). SLM estimates the probability of the program's abstract syntax tree (AST) by decomposing it into a product of conditional probabilities over its nodes. We present a neural model that computes these conditional probabilities by considering all AST paths leading to a target node. Unlike previous techniques that have severely restricted the kinds of expressions that can be generated in this task, our approach can generate arbitrary code in any programming language. Our model significantly outperforms both seq2seq and a variety of structured approaches in generating Java and C# code. Our code, data, and trained models are available at http://github.com/tech-srl/slm-code-generation/. An online demo is available at http://AnyCodeGen.org.

Yiping Lu · Chao Ma · Yulong Lu · Jianfeng Lu · Lexing Ying

Training deep neural networks with stochastic gradient descent (SGD) can often achieve zero training loss on real-world tasks although the optimization landscape is known to be highly non-convex. To understand the success of SGD for training deep neural networks, this work presents a mean-field analysis of deep residual networks, based on a line of works which interpret the continuum limit of the deep residual network as an ordinary differential equation as the the network capacity tends to infinity. Specifically, we propose a \textbf{new continuum limit} of deep residual networks, which enjoys a good landscape in the sense that \textbf{every local minimizer is global}. This characterization enables us to derive the first global convergence result for multilayer neural networks in the mean-field regime. Furthermore, our proof does not rely on the convexity of the loss landscape, but instead, an assumption on the global minimizer should achieve zero loss which can be achieved when the model shares a universal approximation property. Key to our result is the observation that a deep residual network resembles a shallow network ensemble~\cite{veit2016residual}, \emph{i.e.} a two-layer network. We bound the difference between the shallow network and our ResNet model via the adjoint sensitivity method, which enables us …

Esther Rolf · Max Simchowitz · Sarah Dean · Lydia T. Liu · Daniel Bjorkegren · Moritz Hardt · Joshua Blumenstock

While real-world decisions involve many competing objectives, algorithmic decisions are often evaluated with a single objective function. In this paper, we study algorithmic policies which explicitly trade off between a private objective (such as profit) and a public objective (such as social welfare). We analyze a natural class of policies which trace an empirical Pareto frontier based on learned scores, and focus on how such decisions can be made in noisy or data-limited regimes. Our theoretical results characterize the optimal strategies in this class, bound the Pareto errors due to inaccuracies in the scores, and show an equivalence between optimal strategies and a rich class of fairness-constrained profit-maximizing policies. We then present empirical results in two different contexts --- online content recommendation and sustainable abalone fisheries --- to underscore the generality of our approach to a wide range of practical decisions. Taken together, these results shed light on inherent trade-offs in using machine learning for decisions that impact social welfare.

Robert Mattila · Cristian R. Rojas · Eric Moulines · Vikram Krishnamurthy · Bo Wahlberg

Can the parameters of a hidden Markov model (HMM) be estimated from a single sweep through the observations -- and additionally, without being trapped at a local optimum in the likelihood surface? That is the premise of recent method of moments algorithms devised for HMMs. In these, correlations between consecutive pair- or triplet-wise observations are empirically estimated and used to compute estimates of the HMM parameters. Albeit computationally very attractive, the main drawback is that by restricting to only low-order correlations in the data, information is being neglected which results in a loss of accuracy (compared to standard maximum likelihood schemes). In this paper, we propose extending these methods (both pair- and triplet-based) by also including non-consecutive correlations in a way which does not significantly increase the computational cost (which scales linearly with the number of additional lags included). We prove strong consistency of the new methods, and demonstrate an improved performance in numerical experiments on both synthetic and real-world financial time-series datasets.

Aidan Curtis · Minjian Xin · Dilip Arumugam · Kevin Feigelis · Daniel Yamins

Identifying algorithms that flexibly and efficiently discover temporally-extended multi-phase plans is an essential step for the advancement of robotics and model-based reinforcement learning. The core problem of long-range planning is finding an efficient way to search through the tree of possible action sequences. Existing non-learned planning solutions from the Task and Motion Planning (TAMP) literature rely on the existence of logical descriptions for the effects and preconditions for actions. This constraint allows TAMP methods to efficiently reduce the tree search problem but limits their ability to generalize to unseen and complex physical environments. In contrast, deep reinforcement learning (DRL) methods use flexible neural-network-based function approximators to discover policies that generalize naturally to unseen circumstances. However, DRL methods struggle to handle the very sparse reward landscapes inherent to long-range multi-step planning situations. Here, we propose the Curious Sample Planner (CSP), which fuses elements of TAMP and DRL by combining a curiosity-guided sampling strategy with imitation learning to accelerate planning. We show that CSP can efficiently discover interesting and complex temporally-extended plans for solving a wide range of physically realistic 3D tasks. In contrast, standard planning and learning methods often fail to solve these tasks at all or do so only with …

Sofien Dhouib · Ievgen Redko · Carole Lartizien

In this paper, we propose a new theoretical analysis of unsupervised domain adaptation that relates notions of large margin separation, adversarial learning and optimal transport. This analysis generalizes previous work on the subject by providing a bound on the target margin violation rate, thus reflecting a better control of the quality of separation between classes in the target domain than bounding the misclassification rate. The bound also highlights the benefit of a large margin separation on the source domain for adaptation and introduces an optimal transport (OT) based distance between domains that has the virtue of being task-dependent, contrary to other approaches. From the obtained theoretical results, we derive a novel algorithmic solution for domain adaptation that introduces a novel shallow OT-based adversarial approach and outperforms other OT-based DA baselines on several simulated and real-world classification tasks.

Jize Zhang · Bhavya Kailkhura · T. Yong-Jin Han

This paper studies the problem of post-hoc calibration of machine learning classifiers. We introduce the following desiderata for uncertainty calibration: (a) accuracy-preserving, (b) data-efficient, and (c) high expressive power. We show that none of the existing methods satisfy all three requirements, and demonstrate how Mix-n-Match calibration strategies (i.e., ensemble and composition) can help achieve remarkably better data-efficiency and expressive power while provably maintaining the classification accuracy of the original classifier. Mix-n-Match strategies are generic in the sense that they can be used to improve the performance of any off-the-shelf calibrator. We also reveal potential issues in standard evaluation practices. Popular approaches (e.g., histogram-based expected calibration error (ECE)) may provide misleading results especially in small-data regime. Therefore, we propose an alternative data-efficient kernel density-based estimator for a reliable evaluation of the calibration performance and prove its asymptotically unbiasedness and consistency. Our approaches outperform state-of-the-art solutions on both the calibration as well as the evaluation tasks in most of the experimental settings. Our codes are available at https://github.com/zhang64- llnl/Mix-n-Match-Calibration.

Olivier Gouvert · Thomas Oberlin · Cedric Fevotte

We introduce a new non-negative matrix factorization (NMF) method for ordinal data, called OrdNMF. Ordinal data are categorical data which exhibit a natural ordering between the categories. In particular, they can be found in recommender systems, either with explicit data (such as ratings) or implicit data (such as quantized play counts). OrdNMF is a probabilistic latent factor model that generalizes Bernoulli-Poisson factorization (BePoF) and Poisson factorization (PF) applied to binarized data. Contrary to these methods, OrdNMF circumvents binarization and can exploit a more informative representation of the data. We design an efficient variational algorithm based on a suitable model augmentation and related to variational PF. In particular, our algorithm preserves the scalability of PF and can be applied to huge sparse datasets. We report recommendation experiments on explicit and implicit datasets, and show that OrdNMF outperforms BePoF and PF applied to binarized data.

Yu Bai · Chi Jin
Self-play, where the algorithm learns by playing against itself without requiring any direct supervision, has become the new weapon in modern Reinforcement Learning (RL) for achieving superhuman performance in practice. However, the majority of exisiting theory in reinforcement learning only applies to the setting where the agent plays against a fixed environment; it remains largely open whether self-play algorithms can be provably effective, especially when it is necessary to manage the exploration/exploitation tradeoff. We study self-play in competitive reinforcement learning under the setting of Markov games, a generalization of Markov decision processes to the two-player case. We introduce a self-play algorithm---Value Iteration with Upper/Lower Confidence Bound (VI-ULCB)---and show that it achieves regret $\mathcal{\tilde{O}}(\sqrt{T})$ after playing $T$ steps of the game, where the regret is measured by the agent's performance against a fully adversarial opponent who can exploit the agent's strategy at any step. We also introduce an explore-then-exploit style algorithm, which achieves a slightly worse regret of $\mathcal{\tilde{O}}(T^{2/3})$, but is guaranteed to run in polynomial time even in the worst case. To the best of our knowledge, our work presents the first line of provably sample-efficient self-play algorithms for competitive reinforcement learning.
Max Horn · Michael Moor · Christian Bock · Bastian Rieck · Karsten Borgwardt

Despite the eminent successes of deep neural networks, many architectures are often hard to transfer to irregularly-sampled and asynchronous time series that commonly occur in real-world datasets, especially in healthcare applications. This paper proposes a novel approach for classifying irregularly-sampled time series with unaligned measurements, focusing on high scalability and data efficiency. Our method SeFT (Set Functions for Time Series) is based on recent advances in differentiable set function learning, extremely parallelizable with a beneficial memory footprint, thus scaling well to large datasets of long time series and online monitoring scenarios. Furthermore, our approach permits quantifying per-observation contributions to the classification outcome. We extensively compare our method with existing algorithms on multiple healthcare time series datasets and demonstrate that it performs competitively whilst significantly reducing runtime.

Kai-Hung Chang · Chin-Yi Cheng

[ Virtual ]

The structural design process for buildings is time-consuming and laborious. To automate this process, structural engineers combine optimization methods with simulation tools to find an optimal design with minimal building mass subject to building regulations. However, structural engineers in practice often avoid optimization and compromise on a suboptimal design for the majority of buildings, due to the large size of the design space, the iterative nature of the optimization methods, and the slow simulation tools. In this work, we formulate the building structures as graphs and create an end-to-end pipeline that can learn to propose the optimal cross-sections of columns and beams by training together with a pre-trained differentiable structural simulator. The performance of the proposed structural designs is comparable to the ones optimized by genetic algorithm (GA), with all the constraints satisfied. The optimal structural design with the reduced the building mass can not only lower the material cost, but also decrease the carbon footprint.

Luca Rendsburg · Holger Heidrich · Ulrike von Luxburg

[ Virtual ]

A graph generative model takes a graph as input and is supposed to generate new graphs that ``look like'' the input graph. While most classical models focus on few, hand-selected graph statistics and are too simplistic to reproduce real-world graphs, NetGAN recently emerged as an attractive alternative: by training a GAN to learn the random walk distribution of the input graph, the algorithm is able to reproduce a large number of important network patterns simultaneously, without explicitly specifying any of them. In this paper, we investigate the implicit bias of NetGAN. We find that the root of its generalization properties does not lie in the GAN architecture, but in an inconspicuous low-rank approximation of the logits random walk transition matrix. Step by step we can strip NetGAN of all unnecessary parts, including the GAN, and obtain a highly simplified reformulation that achieves comparable generalization results, but is orders of magnitudes faster and easier to adapt. Being much simpler on the conceptual side, we reveal the implicit inductive bias of the algorithm --- an important step towards increasing the interpretability, transparency and acceptance of machine learning systems.

Michael Muehlebach · Michael Jordan

This article derives lower bounds on the convergence rate of continuous-time gradient-based optimization algorithms. The algorithms are subjected to a time-normalization constraint that avoids a reparametrization of time in order to make the discussion of continuous-time convergence rates meaningful. We reduce the multi-dimensional problem to a single dimension, recover well-known lower bounds from the discrete-time setting, and provide insights into why these lower bounds occur. We further explicitly provide algorithms that achieve the proposed lower bounds, even when the function class under consideration includes certain non-convex functions.

Ashish Chiplunkar · Sagar Kale · Sivaramakrishnan Natarajan Ramamoorthy

Fueled by massive data, important decision making is being automated with the help of algorithms, therefore, fairness in algorithms has become an especially important research topic. In this work, we design new streaming and distributed algorithms for the fair k-center problem that models fair data summarization. The streaming and distributed models of computation have an attractive feature of being able to handle massive data sets that do not fit into main memory. Our main contributions are: (a) the first distributed algorithm; which has provably constant approximation ratio and is extremely parallelizable, and (b) a two-pass streaming algorithm with a provable approximation guarantee matching the best known algorithm (which is not a streaming algorithm). Our algorithms have the advantages of being easy to implement in practice, being fast with linear running times, having very small working memory and communication, and outperforming existing algorithms on several real and synthetic data sets. To complement our distributed algorithm, we also give a hardness result for natural distributed algorithms, which holds for even the special case of k-center.

Huan Xiong · Lei Huang · Mengyang Yu · Li Liu · Fan Zhu · Ling Shao

[ Virtual ]

One fundamental problem in deep learning is understanding the outstanding performance of deep Neural Networks (NNs) in practice. One explanation for the superiority of NNs is that they can realize a large class of complicated functions, i.e., they have powerful expressivity. The expressivity of a ReLU NN can be quantified by the maximal number of linear regions it can separate its input space into. In this paper, we provide several mathematical results needed for studying the linear regions of CNNs, and use them to derive the maximal and average numbers of linear regions for one-layer ReLU CNNs. Furthermore, we obtain upper and lower bounds for the number of linear regions of multi-layer ReLU CNNs. Our results suggest that deeper CNNs have more powerful expressivity than their shallow counterparts, while CNNs have more expressivity than fully-connected NNs per parameter.

William Fedus · Prajit Ramachandran · Rishabh Agarwal · Yoshua Bengio · Hugo Larochelle · Mark Rowland · Will Dabney

[ Virtual ]

Experience replay is central to off-policy algorithms in deep reinforcement learning (RL), but there remain significant gaps in our understanding. We therefore present a systematic and extensive analysis of experience replay in Q-learning methods, focusing on two fundamental properties: the replay capacity and the ratio of learning updates to experience collected (replay ratio). Our additive and ablative studies upend conventional wisdom around experience replay — greater capacity is found to substantially increase the performance of certain algorithms, while leaving others unaffected. Counterintuitively we show that theoretically ungrounded, uncorrected n-step returns are uniquely beneficial while other techniques confer limited benefit for sifting through larger memory. Separately, by directly controlling the replay ratio we contextualize previous observations in the literature and empirically measure its importance across a variety of deep RL algorithms. Finally, we conclude by testing a set of hypotheses on the nature of these performance benefits.

Pan Xu · Quanquan Gu
Q-learning with neural network function approximation (neural Q-learning for short) is among the most prevalent deep reinforcement learning algorithms. Despite its empirical success, the non-asymptotic convergence rate of neural Q-learning remains virtually unknown. In this paper, we present a finite-time analysis of a neural Q-learning algorithm, where the data are generated from a Markov decision process, and the action-value function is approximated by a deep ReLU neural network. We prove that neural Q-learning finds the optimal policy with $O(1/\sqrt{T})$ convergence rate if the neural function approximator is sufficiently overparameterized, where $T$ is the number of iterations. To our best knowledge, our result is the first finite-time analysis of neural Q-learning under non-i.i.d. data assumption.
Per Sidén · Fredrik Lindsten

Gaussian Markov random fields (GMRFs) are probabilistic graphical models widely used in spatial statistics and related fields to model dependencies over spatial structures. We establish a formal connection between GMRFs and convolutional neural networks (CNNs). Common GMRFs are special cases of a generative model where the inverse mapping from data to latent variables is given by a 1-layer linear CNN. This connection allows us to generalize GMRFs to multi-layer CNN architectures, effectively increasing the order of the corresponding GMRF in a way which has favorable computational scaling. We describe how well-established tools, such as autodiff and variational inference, can be used for simple and efficient inference and learning of the deep GMRF. We demonstrate the flexibility of the proposed model and show that it outperforms the state-of-the-art on a dataset of satellite temperatures, in terms of prediction and predictive uncertainty.

Kristy Choi · Curtis Hawthorne · Ian Simon · Monica Dinculescu · Jesse Engel

We consider the problem of learning high-level controls over the global structure of generated sequences, particularly in the context of symbolic music generation with complex language models. In this work, we present the Transformer autoencoder, which aggregates encodings of the input data across time to obtain a global representation of style from a given performance. We show it is possible to combine this global representation with other temporally distributed embeddings, enabling improved control over the separate aspects of performance style and melody. Empirically, we demonstrate the effectiveness of our method on various music generation tasks on the MAESTRO dataset and a YouTube dataset with 10,000+ hours of piano performances, where we achieve improvements in terms of log-likelihood and mean listening scores as compared to baselines.

Andrea Zanette · Alessandro Lazaric · Mykel Kochenderfer · Emma Brunskill
We study the exploration problem with approximate linear action-value functions in episodic reinforcement learning under the notion of low inherent Bellman error, a condition normally employed to show convergence of approximate value iteration. First we relate this condition to other common frameworks and show that it is strictly more general than the low rank (or linear) MDP assumption of prior work. Second we provide an algorithm with a high probability regret bound $\widetilde O(\sum_{t=1}^H d_t \sqrt{K} + \sum_{t=1}^H \sqrt{d_t} \IBE K)$ where $H$ is the horizon, $K$ is the number of episodes, $\IBE$ is the value if the inherent Bellman error and $d_t$ is the feature dimension at timestep $t$. In addition, we show that the result is unimprovable beyond constants and logs by showing a matching lower bound. This has two important consequences: 1) it shows that exploration is possible using only \emph{batch assumptions} with an algorithm that achieves the optimal statistical rate for the setting we consider, which is more general than prior work on low-rank MDPs 2) the lack of closedness (measured by the inherent Bellman error) is only amplified by $\sqrt{d_t}$ despite working in the online setting. Finally, the algorithm reduces to the celebrated \textsc{LinUCB} when …
Maya Gupta · Erez Louidor · Oleksandr Mangylov · Nobu Morioka · Taman Narayan · Sen Zhao

We propose new multi-input shape constraints across four intuitive categories: complements, diminishers, dominance, and unimodality constraints. We show these shape constraints can be checked and even enforced when training machine-learned models for linear models, generalized additive models, and the nonlinear function class of multi-layer lattice models. Toy examples and real-world experiments illustrate how the different shape constraints can be used to increase interpretability and better regularize machine-learned models.

Hengyuan Hu · Alexander Peysakhovich · Adam Lerer · Jakob Foerster

We consider the problem of zero-shot coordination - constructing AI agents that can coordinate with novel partners they have not seen before (e.g.humans). Standard Multi-Agent Reinforcement Learning (MARL) methods typically focus on the self-play (SP) setting where agents construct strategies by playing the game with themselves repeatedly. Unfortunately, applying SP naively to the zero-shot coordination problem can produce agents that establish highly specialized conventions that do not carry over to novel partners they have not been trained with. We introduce a novel learning algorithm called other-play (OP), that enhances self-play by looking for more robust strategies. We characterize OP theoretically as well as experimentally. We study the cooperative card game Hanabi and show that OP agents achieve higher scores when paired with independently trained agents as well as with human players than SP agents.

Eran Malach · Gilad Yehudai · Shai Shalev-Schwartz · Ohad Shamir

The lottery ticket hypothesis (Frankle and Carbin, 2018), states that a randomly-initialized network contains a small subnetwork such that, when trained in isolation, can compete with the performance of the original network. We prove an even stronger hypothesis (as was also conjectured in Ramanujan et al., 2019), showing that for every bounded distribution and every target network with bounded weights, a sufficiently over-parameterized neural network with random weights contains a subnetwork with roughly the same accuracy as the target network, without any further training.

Cheng Zheng · Bo Zong · Wei Cheng · Dongjin Song · Jingchao Ni · Wenchao Yu · Haifeng Chen · Wei Wang

Graph representation learning serves as the core of important prediction tasks, ranging from product recommendation to fraud detection. Real-life graphs usually have complex information in the local neighborhood, where each node is described by a rich set of features and connects to dozens or even hundreds of neighbors. Despite the success of neighborhood aggregation in graph neural networks, task-irrelevant information is mixed into nodes' neighborhood, making learned models suffer from sub-optimal generalization performance. In this paper, we present NeuralSparse, a supervised graph sparsification technique that improves generalization power by learning to remove potentially task-irrelevant edges from input graphs. Our method takes both structural and non-structural information as input, utilizes deep neural networks to parameterize sparsification processes, and optimizes the parameters by feedback signals from downstream tasks. Under the NeuralSparse framework, supervised graph sparsification could seamlessly connect with existing graph neural networks for more robust performance. Experimental results on both benchmark and private datasets show that NeuralSparse can yield up to 7.2% improvement in testing accuracy when working with existing graph neural networks on node classification tasks.

Hadrien Hendrikx · Lin Xiao · Sebastien Bubeck · Francis Bach · Laurent Massoulié

We consider the setting of distributed empirical risk minimization where multiple machines compute the gradients in parallel and a centralized server updates the model parameters. In order to reduce the number of communications required to reach a given accuracy, we propose a preconditioned accelerated gradient method where the preconditioning is done by solving a local optimization problem over a subsampled dataset at the server. The convergence rate of the method depends on the square root of the relative condition number between the global and local loss functions. We estimate the relative condition number for linear prediction models by studying uniform concentration of the Hessians over a bounded domain, which allows us to derive improved convergence rates for existing preconditioned gradient methods and our accelerated method. Experiments on real-world datasets illustrate the benefits of acceleration in the ill-conditioned regime.

Colin Wei · Sham Kakade · Tengyu Ma

Dropout is a widely-used regularization technique, often required to obtain state-of-the-art for a number of architectures. This work demonstrates that dropout introduces two distinct but entangled regularization effects: an explicit effect (also studied in prior work) which occurs since dropout modifies the expected training objective, and, perhaps surprisingly, an additional implicit effect from the stochasticity in the dropout training update. This implicit regularization effect is analogous to the effect of stochasticity in small mini-batch stochastic gradient descent. We disentangle these two effects through controlled experiments. We then derive analytic simplifications which characterize each effect in terms of the derivatives of the model and the loss, for deep neural networks. We demonstrate these simplified, analytic regularizers accurately capture the important aspects of dropout, showing they faithfully replace dropout in practice.

Mukund Sundararajan · Kedar Dhamdhere · Ashish Agarwal
The attribution problem, that is the problem of attributing a model's prediction to its base features, is well-studied. We extend the notion of attribution to also apply to feature interactions. The Shapley value is a commonly used method to attribute a model's prediction to its base features. We propose a generalization of the Shapley value called Shapley-Taylor index that attributes the model's prediction to interactions of subsets of features up to some size $k$. The method is analogous to how the truncated Taylor Series decomposes the function value at a certain point using its derivatives at a different point. In fact, we show that the Shapley Taylor index is equal to the Taylor Series of the multilinear extension of the set-theoretic behavior of the model. We axiomatize this method using the standard Shapley axioms---linearity, dummy, symmetry and efficiency---and an additional axiom that we call the interaction distribution axiom. This new axiom explicitly characterizes how interactions are distributed for a class of functions that model pure interaction. We contrast the Shapley-Taylor index against the previously proposed Shapley Interaction index from the cooperative game theory literature. We also apply the Shapley Taylor index to three models and identify interesting qualitative insights.

Poster Session 35 Thu 16 Jul 08:00 a.m.  

Przemysław Spurek · Sebastian Winczowski · Jacek Tabor · Maciej Zamorski · Maciej Zieba · Tomasz Trzcinski

[ Virtual ]

In this work, we propose a novel method for generating 3D point clouds that leverage properties of hyper networks. Contrary to the existing methods that learn only the representation of a 3D object, our approach simultaneously finds a representation of the object and its 3D surfaces. The main idea of our HyperCloud method is to build a hyper network that returns weights of a particular neural network (target network) trained to map points from a uniform unit ball distribution into a 3D shape. As a consequence, a particular 3D shape can be generated using point-by-point sampling from the assumed prior distribution and transforming sampled points with the target network. Since the hyper network is based on an auto-encoder architecture trained to reconstruct realistic 3D shapes, the target network weights can be considered a parametrisation of the surface of a 3D shape, and not a standard representation of point cloud usually returned by competitive approaches. The proposed architecture allows to find mesh-based representation of 3D objects in a generative manner, while providing point clouds en pair in quality with the state-of-the-art methods.

Hankook Lee · Sung Ju Hwang · Jinwoo Shin

[ Virtual ]

Self-supervised learning, which learns by constructing artificial labels given only the input signals, has recently gained considerable attention for learning representations with unlabeled datasets, i.e., learning without any human-annotated supervision. In this paper, we show that such a technique can be used to significantly improve the model accuracy even under fully-labeled datasets. Our scheme trains the model to learn both original and self-supervised tasks, but is different from conventional multi-task learning frameworks that optimize the summation of their corresponding losses. Our main idea is to learn a single unified task with respect to the joint distribution of the original and self-supervised labels, i.e., we augment original labels via self-supervision. This simple, yet effective approach allows to train models easier by relaxing a certain invariant constraint during learning the original and self-supervised tasks simultaneously. It also enables an aggregated inference which combines the predictions from different augmentations to improve the prediction accuracy. Furthermore, we propose a novel knowledge transfer technique, which we refer to as self-distillation, that has the effect of the aggregated inference in a single (faster) inference. We demonstrate the large accuracy improvement and wide applicability of our framework on various fully-supervised settings, e.g., the few-shot and imbalanced classification …

Yu Sun · Xiaolong Wang · Zhuang Liu · John Miller · Alexei Efros · Moritz Hardt

[ Virtual ]

In this paper, we propose Test-Time Training, a general approach for improving the performance of predictive models when training and test data come from different distributions. We turn a single unlabeled test sample into a self-supervised learning problem, on which we update the model parameters before making a prediction. This also extends naturally to data in an online stream. Our simple approach leads to improvements on diverse image classification benchmarks aimed at evaluating robustness to distribution shifts.

Tianyi Zhou · Shengjie Wang · Jeff Bilmes

[ Virtual ]

Semi-supervised learning (SSL) leverages unlabeled data when training a model with insufficient labeled data. A common strategy for SSL is to enforce the consistency of model outputs between similar samples, e.g., neighbors or data augmentations of the same sample. However, model outputs can vary dramatically on unlabeled data over different training stages, e.g., when using large learning rates. This can introduce harmful noises and inconsistent objectives over time that may lead to concept drift and catastrophic forgetting. In this paper, we study the dynamics of neural net outputs in SSL and show that selecting and using first the unlabeled samples with more consistent outputs over the course of training (i.e., "time-consistency") can improve the final test accuracy and save computation. Under the time-consistent data selection, we design an SSL objective composed of two self-supervised losses, i.e., a consistency loss between a sample and its augmentation, and a contrastive loss encouraging different samples to have different outputs. Our approach achieves SOTA on several SSL benchmarks with much fewer computations.

Tyler Johnson · Pulkit Agrawal · Haijie Gu · Carlos Guestrin

When using large-batch training to speed up stochastic gradient descent, learning rates must adapt to new batch sizes in order to maximize speed-ups and preserve model quality. Re-tuning learning rates is resource intensive, while fixed scaling rules often degrade model quality. We propose AdaScale SGD, an algorithm that reliably adapts learning rates to large-batch training. By continually adapting to the gradient's variance, AdaScale automatically achieves speed-ups for a wide range of batch sizes. We formally describe this quality with AdaScale’s convergence bound, which maintains final objective values, even as batch sizes grow large and the number of iterations decreases. In empirical comparisons, AdaScale trains well beyond the batch size limits of popular “linear learning rate scaling” rules. This includes large-batch training with no model degradation for machine translation, image classification, object detection, and speech recognition tasks. AdaScale's qualitative behavior is similar to that of "warm-up" heuristics, but unlike warm-up, this behavior emerges naturally from a principled mechanism. The algorithm introduces negligible computational overhead and no new hyperparameters, making AdaScale an attractive choice for large-scale training in practice.

Angelos Filos · Panagiotis Tigas · Rowan McAllister · Nicholas Rhinehart · Sergey Levine · Yarin Gal

Out-of-training-distribution (OOD) scenarios are a common challenge of learning agents at deployment, typically leading to arbitrary deductions and poorly-informed decisions. In principle, detection of and adaptation to OOD scenes can mitigate their adverse effects. In this paper, we highlight the limitations of current approaches to novel driving scenes and propose an epistemic uncertainty-aware planning method, called \emph{robust imitative planning} (RIP). Our method can detect and recover from some distribution shifts, reducing the overconfident and catastrophic extrapolations in OOD scenes. If the model's uncertainty is too great to suggest a safe course of action, the model can instead query the expert driver for feedback, enabling sample-efficient online adaptation, a variant of our method we term \emph{adaptive robust imitative planning} (AdaRIP). Our methods outperform current state-of-the-art approaches in the nuScenes \emph{prediction} challenge, but since no benchmark evaluating OOD detection and adaption currently exists to assess \emph{control}, we introduce an autonomous car novel-scene benchmark, \texttt{CARNOVEL}, to evaluate the robustness of driving agents to a suite of tasks with distribution shifts.

Chao Li · Zhun Sun

Tensor network (TN) decomposition is a promising framework to represent extremely high-dimensional problems with few parameters. However, it is challenging to search the (near-)optimal topological structure for TN decomposition, since the number of candidate solutions exponentially grows with increasing the order of a tensor. In this paper, we claim that this issue can be practically tackled by evolutionary algorithms in an affordable manner. We encode the complex topological structures into binary strings, and develop a simple genetic meta-algorithm to search the optimal topology on Hamming space. The experimental results by both synthetic and real-world data demonstrate that our method can effectively discover the ground-truth topology or even better structures with few number of generations, and significantly boost the representational power of TN decomposition compared with well-known tensor-train (TT) or tensor-ring (TR) models.

Remi Munos · Julien Perolat · Jean-Baptiste Lespiau · Mark Rowland · Bart De Vylder · Marc Lanctot · Finbarr Timbers · Daniel Hennes · Shayegan Omidshafiei · Audrunas Gruslys · Mohammad Gheshlaghi Azar · Edward Lockhart · Karl Tuyls

We introduce and analyze a class of algorithms, called Mirror Ascent against an Improved Opponent (MAIO), for computing Nash equilibria in two-player zero-sum games, both in normal form and in sequential form with imperfect information. These algorithms update the policy of each player with a mirror-ascent step to maximize the value of playing against an improved opponent. An improved opponent can be a best response, a greedy policy, a policy improved by policy gradient, or by any other reinforcement learning or search techniques. We establish a convergence result of the last iterate to the set of Nash equilibria and show that the speed of convergence depends on the amount of improvement offered by these improved policies. In addition, we show that under some condition, if we use a best response as improved policy, then an exponential convergence rate is achieved.

Mert Pilanci · Tolga Ergen
We develop exact representations of two-layer neural networks with rectified linear units in terms of a single convex program with number of variables polynomial in the number of training samples and number of hidden neurons. Our theory utilizes semi-infinite duality and minimum norm regularization. Moreover, we show that certain standard convolutional linear networks are equivalent to $\ell_1$ regularized linear models in a polynomial sized discrete Fourier feature space.
Anne Gael Manegueu · Claire Vernade · Alexandra Carpentier · Michal Valko

Significant work has been recently dedicated to the stochastic delayed bandit setting because of its relevance in applications. The applicability of existing algorithms is however restricted by the fact that strong assumptions are often made on the delay distributions, such as full observability, restrictive shape constraints, or uniformity over arms. In this work, we weaken them significantly and only assume that there is a bound on the tail of the delay. In particular, we cover the important case where the delay distributions vary across arms, and the case where the delays are heavy-tailed. Addressing these difficulties, we propose a simple but efficient UCB-based algorithm called the PATIENTBANDITS. We provide both problem-dependent and problem-independent bounds on the regret as well as performance lower bounds.

Changhee Lee · Mihaela van der Schaar

Due to the wider availability of modern electronic health records, patient care data is often being stored in the form of time-series. Clustering such time-series data is crucial for patient phenotyping, anticipating patients’ prognoses by identifying “similar” patients, and designing treatment guidelines that are tailored to homogeneous patient subgroups. In this paper, we develop a deep learning approach for clustering time-series data, where each cluster comprises patients who share similar future outcomes of interest (e.g., adverse events, the onset of comorbidities). To encourage each cluster to have homogeneous future outcomes, the clustering is carried out by learning discrete representations that best describe the future outcome distribution based on novel loss functions. Experiments on two real-world datasets show that our model achieves superior clustering performance over state-of-the-art benchmarks and identifies meaningful clusters that can be translated into actionable information for clinical decision-making.

Karthik Abinav Sankararaman · Soham De · Zheng Xu · W. Ronny Huang · Tom Goldstein

This paper studies how neural network architecture affects the speed of training. We introduce a simple concept called gradient confusion to help formally analyze this. When gradient confusion is high, stochastic gradients produced by different data samples may be negatively correlated, slowing down convergence. But when gradient confusion is low, data samples interact harmoniously, and training proceeds quickly. Through theoretical and experimental results, we demonstrate how the neural network architecture affects gradient confusion, and thus the efficiency of training. Our results show that, for popular initialization techniques, increasing the width of neural networks leads to lower gradient confusion, and thus faster model training. On the other hand, increasing the depth of neural networks has the opposite effect. Our results indicate that alternate initialization techniques or networks using both batch normalization and skip connections help reduce the training burden of very deep networks.

Amitay Bar · Ronen Talmon · Ron Meir

[ Virtual ]

Options have been shown to be an effective tool in reinforcement learning, facilitating improved exploration and learning. In this paper, we present an approach based on spectral graph theory and derive an algorithm that systematically discovers options without access to a specific reward or task assignment. As opposed to the common practice used in previous methods, our algorithm makes full use of the spectrum of the graph Laplacian. Incorporating modes associated with higher graph frequencies unravels domain subtleties, which are shown to be useful for option discovery. Using geometric and manifold-based analysis, we present a theoretical justification for the algorithm. In addition, we showcase its performance in several domains, demonstrating clear improvements compared to competing methods.

Maarten Buyl · Tijl De Bie

As machine learning algorithms are increasingly deployed for high-impact automated decision making, ethical and increasingly also legal standards demand that they treat all individuals fairly, without discrimination based on their age, gender, race or other sensitive traits. In recent years much progress has been made on ensuring fairness and reducing bias in standard machine learning settings. Yet, for network embedding, with applications in vulnerable domains ranging from social network analysis to recommender systems, current options remain limited both in number and performance. We thus propose DeBayes: a conceptually elegant Bayesian method that is capable of learning debiased embeddings by using a biased prior. Our experiments show that these representations can then be used to perform link prediction that is significantly more fair in terms of popular metrics such as demographic parity and equalized opportunity.

Yutaro Yamada · Ofir Lindenbaum · Sahand Negahban · Yuval Kluger
Feature selection problems have been extensively studied in the setting of linear estimation (e.g. LASSO), but less emphasis has been placed on feature selection for non-linear functions. In this study, we propose a method for feature selection in neural network estimation problems. The new procedure is based on probabilistic relaxation of the $\ell_0$ norm of features, or the count of the number of selected features. Our $\ell_0$-based regularization relies on a continuous relaxation of the Bernoulli distribution; such relaxation allows our model to learn the parameters of the approximate Bernoulli distributions via gradient descent. The proposed framework simultaneously learns either a nonlinear regression or classification function while selecting a small subset of features. We provide an information-theoretic justification for incorporating Bernoulli distribution into feature selection. Furthermore, we evaluate our method using synthetic and real-life data to demonstrate that our approach outperforms other commonly used methods in both predictive performance and feature selection.
Zhize Li · Dmitry Kovalev · Xun Qian · Peter Richtarik

[ Virtual ]

Due to the high communication cost in distributed and federated learning problems, methods relying on compression of communicated messages are becoming increasingly popular. While in other contexts the best performing gradient-type methods invariably rely on some form of acceleration/momentum to reduce the number of iterations, there are no methods which combine the benefits of both gradient compression and acceleration. In this paper, we remedy this situation and propose the first {\em accelerated compressed gradient descent (ACGD)} methods. In the single machine regime, we prove that ACGD enjoys the rate $O\Big((1+\omega)\sqrt{\frac{L}{\mu}}\log \frac{1}{\epsilon}\Big)$ for $\mu$-strongly convex problems and $O\Big((1+\omega)\sqrt{\frac{L}{\epsilon}}\Big)$ for convex problems, respectively, where $\omega$ is the compression parameter. Our results improve upon the existing non-accelerated rates $O\Big((1+\omega)\frac{L}{\mu}\log \frac{1}{\epsilon}\Big)$ and $O\Big((1+\omega)\frac{L}{\epsilon}\Big)$, respectively, and recover the optimal rates of accelerated gradient descent as a special case when no compression ($\omega=0$) is applied. We further propose a distributed variant of ACGD (called ADIANA) and prove the convergence rate $\widetilde{O}\Big(\omega+\sqrt{\frac{L}{\mu}}+\sqrt{\big(\frac{\omega}{n}+\sqrt{\frac{\omega}{n}}\big)\frac{\omega L}{\mu}}\Big)$, where $n$ is the number of devices/workers and $\widetilde{O}$ hides the logarithmic factor $\log \frac{1}{\epsilon}$. This improves upon the previous best result $\widetilde{O}\Big(\omega + \frac{L}{\mu}+\frac{\omega L}{n\mu} \Big)$ achieved by the DIANA method. Finally, we conduct several experiments on real-world datasets which corroborate our theoretical …
lei luo · yanfu Zhang · Heng Huang

[ Virtual ]

Nonnegative Matrix Factorization (NMF) has become an increasingly important research topic in machine learning. Despite all the practical success, most of existing NMF models are still vulnerable to adversarial attacks. To overcome this limitation, we propose a novel Adversarial NMF (ANMF) approach in which an adversary can exercise some control over the perturbed data generation process. Different from the traditional NMF models which focus on either the regular input or certain types of noise, our model considers potential test adversaries that are beyond the pre-defined constraints, which can cope with various noises (or perturbations). We formulate the proposed model as a bilevel optimization problem and use Alternating Direction Method of Multipliers (ADMM) to solve it with convergence analysis. Theoretically, the robustness analysis of ANMF is established under mild conditions dedicating asymptotically unbiased prediction. Extensive experiments verify that ANMF is robust to a broad categories of perturbations, and achieves state-of-the-art performances on distinct real-world benchmark datasets.

Michael Lohaus · Michaël Perrot · Ulrike von Luxburg

[ Virtual ]

We address the problem of classification under fairness constraints. Given a notion of fairness, the goal is to learn a classifier that is not discriminatory against a group of individuals. In the literature, this problem is often formulated as a constrained optimization problem and solved using relaxations of the fairness constraints. We show that many existing relaxations are unsatisfactory: even if a model satisfies the relaxed constraint, it can be surprisingly unfair. We propose a principled framework to solve this problem. This new approach uses a strongly convex formulation and comes with theoretical guarantees on the fairness of its solution. In practice, we show that this method gives promising results on real data.

Dongsung Huh

Deep neural networks exhibit complex learning dynamics due to the non-convexity of loss landscapes. Second-order optimization methods facilitate learning dynamics by compensating for ill-conditioned curvature. We provide analytical description of how curvature-correction changes the learning dynamics in deep linear neural networks. It reveals that curvature-correction preserves the path of parameter dynamics, and thus only modifies the temporal profile along the path. This accelerates the convergence dynamics by reducing the nonlinear effect of depth on the learning dynamics of the input-output map. Our analysis also reveals an undesirable effect of curvature correction that compromises stability of parameters dynamics during learning, especially with block-diagonal approximation of natural gradient. We introduce fractional curvature-correction, which resolves the vanishing/exploding update problem while exhibiting most of the acceleration benefit of full curvature correction.

Marc Abeille · Alessandro Lazaric
We study the exploration-exploitation dilemma in the linear quadratic regulator (LQR) setting. Inspired by the extended value iteration algorithm used in optimistic algorithms for finite MDPs, we propose to relax the optimistic optimization of \ofulq and cast it into a constrained \textit{extended} LQR problem, where an additional control variable implicitly selects the system dynamics within a confidence interval. We then move to the corresponding Lagrangian formulation for which we prove strong duality. As a result, we show that an $\epsilon$-optimistic controller can be computed efficiently by solving at most $O\big(\log(1/\epsilon)\big)$ Riccati equations. Finally, we prove that relaxing the original \ofu problem does not impact the learning performance, thus recovering the $\wt O(\sqrt{T})$ regret of \ofulq. To the best of our knowledge, this is the first computationally efficient confidence-based algorithm for LQR with worst-case optimal regret guarantees.
Subho Banerjee · Saurabh Jha · Zbigniew Kalbarczyk · Ravishankar Iyer

The problem of scheduling of workloads onto heterogeneous processors (e.g., CPUs, GPUs, FPGAs) is of fundamental importance in modern data centers. Current system schedulers rely on application/system-specific heuristics that have to be built on a case-by-case basis. Recent work has demonstrated ML techniques for automating the heuristic search by using black-box approaches which require significant training data and time, which make them challenging to use in practice. This paper presents Symphony, a scheduling framework that addresses the challenge in two ways: (i) a domain-driven Bayesian reinforcement learning (RL) model for scheduling, which inherently models the resource dependencies identified from the system architecture; and (ii) a sampling-based technique to compute the gradients of a Bayesian model without performing full probabilistic inference. Together, these techniques reduce both the amount of training data and the time required to produce scheduling policies that significantly outperform black-box approaches by up to 2.2×.

Xuanqing Liu · Hsiang-Fu Yu · Inderjit Dhillon · Cho-Jui Hsieh

We introduce a new way of learning to encode position information for non-recurrent models, such as Transformer models. Unlike RNN and LSTM, which contain inductive bias by loading the input tokens sequentially, non-recurrent models are less sensitive to position. The main reason is that position information among input units is not encoded inherently, i.e., they are permutation equivalent, this problem justifies why all of the existing models are accompanied by position encoding/embedding layer at the input. However, this solution has clear limitations: the sinusoidal position encoding is not flexible enough as it is manually designed and does not contain any learnable parameters, whereas the position embedding restricts the maximum length of input sequences. It is thus desirable to design a new position layer that contains learnable parameters to adjust to different datasets and different architectures. At the same time, we would also like it to extrapolate in accordance with the variable length of inputs. In our proposed solution, we borrow from the recent Neural ODE approach, which may be viewed as a versatile continuous version of a ResNet. This model is capable of modeling many kinds of dynamical systems. We model the evolution of encoded results along position index by …

Ilai Bistritz · Tavor Z Baharav · Amir Leshem · Nicholas Bambos

Consider N cooperative but non-communicating players where each plays one out of M arms for T turns. Players have different utilities for each arm, representable as an NxM matrix. These utilities are unknown to the players. In each turn players receive noisy observations of their utility for their selected arm. However, if any other players selected the same arm that turn, they will all receive zero utility due to the conflict. No other communication or coordination between the players is possible. Our goal is to design a distributed algorithm that learns the matching between players and arms that achieves max-min fairness while minimizing the regret. We present an algorithm and prove that it is regret optimal up to a \log\log T factor. This is the first max-min fairness multi-player bandit algorithm with (near) order optimal regret.

Badih Ghazi · Ravi Kumar · Pasin Manurangsi · Rasmus Pagh

Differential privacy (DP) is a formal notion for quantifying the privacy loss of algorithms. Algorithms in the central model of DP achieve high accuracy but make the strongest trust assumptions whereas those in the local DP model make the weakest trust assumptions but incur substantial accuracy loss. The shuffled DP model [Bittau et al 2017, Erlingsson et al 2019, Cheu et al 19] has recently emerged as a feasible middle ground between the central and local models, providing stronger trust assumptions than the former while promising higher accuracies than the latter. In this paper, we obtain practical communication-efficient algorithms in the shuffled DP model for two basic aggregation primitives used in machine learning: 1) binary summation, and 2) histograms over a moderate number of buckets. Our algorithms achieve accuracy that is arbitrarily close to that of central DP algorithms with an expected communication per user essentially matching what is needed without any privacy constraints! We demonstrate the practicality of our algorithms by experimentally evaluating them and comparing their performance to several widely-used protocols such as Randomized Response [Warner 1965] and RAPPOR [Erlingsson et al. 2014].

Eugene Golikov

Obtaining theoretical guarantees for neural networks training appears to be a hard problem in a general case. Recent research has been focused on studying this problem in the limit of infinite width and two different theories have been developed: a mean-field (MF) and a constant kernel (NTK) limit theories. We propose a general framework that provides a link between these seemingly distinct theories. Our framework out of the box gives rise to a discrete-time MF limit which was not previously explored in the literature. We prove a convergence theorem for it, and show that it provides a more reasonable approximation for finite-width nets compared to the NTK limit if learning rates are not very small. Also, our framework suggests a limit model that coincides neither with the MF limit nor with the NTK one. We show that for networks with more than two hidden layers RMSProp training has a non-trivial MF limit but GD training does not have one. Overall, our framework demonstrates that both MF and NTK limits have considerable limitations in approximating finite-sized neural nets, indicating the need for designing more accurate infinite-width approximations for them.

Zahra Monfared · Daniel Durstewitz

Recurrent neural networks (RNN) as used in machine learning are commonly formulated in discrete time, i.e. as recursive maps. This brings a lot of advantages for training models on data, e.g. for the purpose of time series prediction or dynamical systems identification, as powerful and efficient inference algorithms exist for discrete time systems and numerical integration of differential equations is not necessary. On the other hand, mathematical analysis of dynamical systems inferred from data is often more convenient and enables additional insights if these are formulated in continuous time, i.e. as systems of ordinary (or partial) differential equations (ODE). Here we show how to perform such a translation from discrete to continuous time for a particular class of ReLU-based RNN. We prove three theorems on the mathematical equivalence between the discrete and continuous time formulations under a variety of conditions, and illustrate how to use our mathematical results on different machine learning and nonlinear dynamical systems examples.


Poster Session 36 Thu 16 Jul 09:00 a.m.  

Yura Malitsky · Konstantin Mishchenko

[ Virtual ]

We present a strikingly simple proof that two rules are sufficient to automate gradient descent: 1) don't increase the stepsize too fast and 2) don't overstep the local curvature. No need for functional values, no line search, no information about the function except for the gradients. By following these rules, you get a method adaptive to the local geometry, with convergence guarantees depending only on smoothness in a neighborhood of a solution. Given that the problem is convex, our method will converge even if the global smoothness constant is infinity. As an illustration, it can minimize arbitrary continuously twice-differentiable convex function. We examine its performance on a range of convex and nonconvex problems, including logistic regression and matrix factorization.

Grigory Malinovsky · Dmitry Kovalev · Elnur Gasanov · Laurent CONDAT · Peter Richtarik

[ Virtual ]

Most algorithms for solving optimization problems or finding saddle points of convex-concave functions are fixed-point algorithms. In this work we consider the generic problem of finding a fixed point of an average of operators, or an approximation thereof, in a distributed setting. Our work is motivated by the needs of federated learning. In this context, each local operator models the computations done locally on a mobile device. We investigate two strategies to achieve such a consensus: one based on a fixed number of local steps, and the other based on randomized computations. In both cases, the goal is to limit communication of the locally-computed variables, which is often the bottleneck in distributed frameworks. We perform convergence analysis of both methods and conduct a number of experiments highlighting the benefits of our approach.

Vinayak Abrol · Pulkit Sharma

Archetypal analysis (AA) aims to extract patterns using self-expressive decomposition of data as convex combinations of extremal points (on the convex hull) of the data. This work presents a computationally efficient greedy AA (GAA) algorithm. GAA leverages the underlying geometry of AA, is scalable to larger datasets, and has significantly faster convergence rate. To achieve this, archetypes are learned via sparse projection of data. In the transformed space, GAA employs an iterative subset selection approach to identify archetypes based on the sparsity of convex representations. The work further presents the use of GAA algorithm for extended AA models such as robust and kernel AA. Experimental results show that GAA is considerably faster while performing comparable to existing methods for tasks such as classification, data visualization/categorization.

Stéphane d'Ascoli · Maria Refinetti · Giulio Biroli · Florent Krzakala
Deep neural networks can achieve remarkable generalization performances while interpolating the training data. Rather than the U-curve emblematic of the bias-variance trade-off, their test error often follows a ``double descent"---a mark of the beneficial role of overparametrization. In this work, we develop a quantitative theory for this phenomenon in the so-called lazy learning regime of neural networks, by considering the problem of learning a high-dimensional function with random features regression. We obtain a precise asymptotic expression for the bias-variance decomposition of the test error, and show that the bias displays a phase transition at the interpolation threshold, beyond it which it remains constant. We disentangle the variances stemming from the sampling of the dataset, from the additive noise corrupting the labels, and from the initialization of the weights. We demonstrate that the latter two contributions are the crux of the double descent: they lead to the overfitting peak at the interpolation threshold and to the decay of the test error upon overparametrization. We quantify how they are suppressed by ensembling the outputs of $K$ independently initialized estimators. For $K\rightarrow \infty$, the test error is monotonously decreasing and remains constant beyond the interpolation threshold. We further compare the effects of overparametrizing, …
Christopher Anders · Plamen Pasliev · Ann-Kathrin Dombrowski · Klaus-robert Mueller · Pan Kessel
Explanation methods promise to make black-box classifiers more transparent. As a result, it is hoped that they can act as proof for a sensible, fair and trustworthy decision-making process of the algorithm and thereby increase its acceptance by the end-users. In this paper, we show both theoretically and experimentally that these hopes are presently unfounded. Specifically, we show that, for any classifier $g$, one can always construct another classifier $\tilde{g}$ which has the same behavior on the data (same train, validation, and test error) but has arbitrarily manipulated explanation maps. We derive this statement theoretically using differential geometry and demonstrate it experimentally for various explanation methods, architectures, and datasets. Motivated by our theoretical insights, we then propose a modification of existing explanation methods which makes them significantly more robust.
Rémy Degenne · Pierre Menard · Xuedong Shang · Michal Valko

We investigate an active \emph{pure-exploration} setting, that includes \emph{best-arm identification}, in the context of \emph{linear stochastic bandits}. While asymptotically optimal algorithms exist for standard \emph{multi-armed bandits}, the existence of such algorithms for the best-arm identification in linear bandits has been elusive despite several attempts to address it. First, we provide a thorough comparison and new insight over different notions of optimality in the linear case, including G-optimality, transductive optimality from optimal experimental design and asymptotic optimality. Second, we design the first asymptotically optimal algorithm for fixed-confidence pure exploration in linear bandits. As a consequence, our algorithm naturally bypasses the pitfall caused by a simple but difficult instance, that most prior algorithms had to be engineered to deal with explicitly. Finally, we avoid the need to fully solve an optimal design problem by providing an approach that entails an efficient implementation.

Markos Georgopoulos · Grigorios Chrysos · Maja Pantic · Yannis Panagakis

Deep generative models rely on their inductive bias to facilitate generalization, especially for problems with high dimensional data, like images. However, empirical studies have shown that variational autoencoders (VAE) and generative adversarial networks (GAN) lack the generalization ability that occurs naturally in human perception. For example, humans can visualize a woman smiling after only seeing a smiling man. On the contrary, the standard conditional VAE (cVAE) is unable to generate unseen attribute combinations. To this end, we extend cVAE by introducing a multilinear latent conditioning framework that captures the multiplicative interactions between the attributes. We implement two variants of our model and demonstrate their efficacy on MNIST, Fashion-MNIST and CelebA. Altogether, we design a novel conditioning framework that can be used with any architecture to synthesize unseen attribute combinations.

Ankit Goyal · Jia Deng

The ability to jointly understand the geometry of objects and plan actions for manipulating them is crucial for intelligent agents. We refer to this ability as geometric planning. Recently, many interactive environments have been proposed to evaluate intelligent agents on various skills, however, none of them cater to the needs of geometric planning. We present PackIt, a virtual environment to evaluate and potentially learn the ability to do geometric planning, where an agent needs to take a sequence of actions to pack a set of objects into a box with limited space. We also construct a set of challenging packing tasks using an evolutionary algorithm. Further, we study various baselines for the task that include model-free learning-based and heuristic-based methods, as well as search-based optimization methods that assume access to the model of the environment.

Charlie Nash · Yaroslav Ganin · S. M. Ali Eslami · Peter Battaglia

Polygon meshes are an efficient representation of 3D geometry, and are of central importance in computer graphics, robotics and games development. Existing learning-based approaches for object synthesis have avoided the challenges of working with 3D meshes, instead using alternative object representations that are more compatible with neural architectures and training approaches. We present PolyGen, a generative model of 3D objects which models the mesh directly, predicting vertices and faces sequentially using a Transformer-based architecture. Our model can condition on a range of inputs, including object classes, voxels, and images, and because the model is probabilistic it can produce samples that capture uncertainty in ambiguous scenarios. We show that the model is capable of producing high-quality, usable meshes, and establish log-likelihood benchmarks for the mesh-modelling task. We also evaluate the conditional models on surface reconstruction metrics against alternative methods, and demonstrate competitive performance despite not training directly on this task.

Ahmet Alacaoglu · Yura Malitsky · Panayotis Mertikopoulos · Volkan Cevher
In this paper, we focus on a theory-practice gap for Adam and its variants (AMSGrad, AdamNC, etc.). In practice, these algorithms are used with a constant first-order moment parameter $\beta_{1}$ (typically between $0.9$ and $0.99$). In theory, regret guarantees for online convex optimization require a rapidly decaying $\beta_{1}\to0$ schedule. We show that this is an artifact of the standard analysis, and we propose a novel framework that allows us to derive optimal, data-dependent regret bounds with a constant $\beta_{1}$, without further assumptions. We also demonstrate the flexibility of our analysis on a wide range of different algorithms and settings.
Nathan Kallus

We study optimal covariate balance for causal inferences from observational data when rich covariates and complex relationships necessitate flexible modeling with neural networks. Standard approaches such as propensity weighting and matching/balancing fail in such settings due to miscalibrated propensity nets and inappropriate covariate representations, respectively. We propose a new method based on adversarial training of a weighting and a discriminator network that effectively addresses this methodological gap. This is demonstrated through new theoretical characterizations and empirical results on both synthetic and clinical data showing how causal analyses can be salvaged in such challenging settings.

Jongseok Lee · Matthias Humt · Jianxiang Feng · Rudolph Triebel

We present a sparse representation of model uncertainty for Deep Neural Networks (DNNs) where the parameter posterior is approximated with an inverse formulation of the Multivariate Normal Distribution (MND), also known as the information form. The key insight of our work is that the information matrix, i.e. the inverse of the covariance matrix tends to be sparse in its spectrum. Therefore, dimensionality reduction techniques such as low rank approximations (LRA) can be effectively exploited. To achieve this, we develop a novel sparsification algorithm and derive a cost-effective analytical sampler. As a result, we show that the information form can be scalably applied to represent model uncertainty in DNNs. Our exhaustive theoretical analysis and empirical evaluations on various benchmarks show the competitiveness of our approach over the current methods.

Armin Eftekhari

Linear networks provide valuable insights into the workings of neural networks in general. This paper identifies conditions under which the gradient flow provably trains a linear network, in spite of the non-strict saddle points present in the optimization landscape. This paper also provides the computational complexity of training linear networks with gradient flow. To achieve these results, this work develops a machinery to provably identify the stable set of gradient flow, which then enables us to improve over the state of the art in the literature of linear networks (Bah et al., 2019;Arora et al., 2018a). Crucially, our results appear to be the first to break away from the lazy training regime which has dominated the literature of neural networks. This work requires the network to have a layer with one neuron, which subsumes the networks with a scalar output, but extending the results of this theoretical work to all linear networks remains a challenging open problem.

Cyrille W. Combettes · Sebastian Pokutta

[ Virtual ]

The Frank-Wolfe algorithm has become a popular first-order optimization algorithm for it is simple and projection-free, and it has been successfully applied to a variety of real-world problems. Its main drawback however lies in its convergence rate, which can be excessively slow due to naive descent directions. We propose to speed up the Frank-Wolfe algorithm by better aligning the descent direction with that of the negative gradient via a subroutine. This subroutine chases the negative gradient direction in a matching pursuit-style while still preserving the projection-free property. Although the approach is reasonably natural, it produces very significant results. We derive convergence rates $\mathcal{O}(1/t)$ to $\mathcal{O}(e^{-\omega t})$ of our method and we demonstrate its competitive advantage both per iteration and in CPU time over the state-of-the-art in a series of computational experiments.
David Romero · Erik Bekkers · Jakub Tomczak · Mark Hoogendoorn

Although group convolutional networks are able to learn powerful representations based on symmetry patterns, they lack explicit means to learn meaningful relationships among them (e.g., relative positions and poses). In this paper, we present attentive group equivariant convolutions, a generalization of the group convolution, in which attention is applied during the course of convolution to accentuate meaningful symmetry combinations and suppress non-plausible, misleading ones. We indicate that prior work on visual attention can be described as special cases of our proposed framework and show empirically that our attentive group equivariant convolutional networks consistently outperform conventional group convolutional networks on benchmark image datasets. Simultaneously, we provide interpretability to the learned concepts through the visualization of equivariant attention maps.

Miles Lopes · Jessie X.T. Chen

Randomized Newton methods have recently become the focus of intense research activity in large-scale and distributed optimization. In general, these methods are based on a computation-accuracy trade-off'', which allows the user to gain scalability in exchange for error in the solution. However, the user does not know how much error is created by the randomized approximation, which can be detrimental in two ways: On one hand, the user may try to assess the unknown error with theoretical worst-case error bounds, but this approach is impractical when the bounds involve unknown constants, and it often leads to excessive computation. On the other hand, the user may select thesketch size'' and stopping criteria in a heuristic manner, but this can lead to unreliable results. Motivated by these difficulties, we show how bootstrapping can be used to directly estimate the unknown error, which prevents excessive computation, and offers more confidence about the quality of a randomized solution. Furthermore, we show that the error estimation adds little computational cost to existing randomized Newton methods (e.g. \textsc{newton sketch} and \textsc{giant}), and it performs well empirically.

Markus Nagel · Rana Ali Amjad · Marinus van Baalen · Christos Louizos · Tijmen Blankevoort

When quantizing neural networks, assigning each floating-point weight to its nearest fixed-point value is the predominant approach. We find that, perhaps surprisingly, this is not the best we can do. In this paper, we propose AdaRound, a better weight-rounding mechanism for post-training quantization that adapts to the data and the task loss. AdaRound is fast, does not require fine-tuning of the network, and only uses a small amount of unlabelled data. We start by theoretically analyzing the rounding problem for a pre-trained neural network. By approximating the task loss with a Taylor series expansion, the rounding task is posed as a quadratic unconstrained binary optimization problem. We simplify this to a layer-wise local loss and propose to optimize this loss with a soft relaxation. AdaRound not only outperforms rounding-to-nearest by a significant margin but also establishes a new state-of-the-art for post-training quantization on several networks and tasks. Without fine-tuning, we can quantize the weights of Resnet18 and Resnet50 to 4 bits while staying within an accuracy loss of 1%.


Poster Session 37 Thu 16 Jul 10:00 a.m.  

Alex Gittens · Kareem Aggour · Bülent Yener

[ Virtual ]

This work considers the canonical polyadic decomposition (CPD) of tensors using proximally regularized sketched alternating least squares algorithms. First, it establishes a sublinear rate of convergence for proximally regularized sketched CPD algorithms under two natural conditions that are known to be satisfied by many popular forms of sketching. Second, it demonstrates that the iterative nature of CPD algorithms can be exploited algorithmically to choose more performant sketching rates. This is accomplished by introducing CPD-MWU, a proximally-regularized sketched alternating least squares algorithm that adaptively selects the sketching rate at each iteration. On both synthetic and real data we observe that for noisy tensors CPD-MWU produces decompositions of comparable accuracy to the standard CPD decomposition in less time, often half the time; for ill-conditioned tensors, given the same time budget, CPD-MWU produces decompositions with an order-of-magnitude lower relative error. For a representative real-world dataset CPD-MWU produces residual errors on average 20% lower than CPRAND-MIX and 44% lower than SPALS, two recent sketched CPD algorithms.

Konstantinos Pitas

[ Virtual ]

Explaining how overparametrized neural networks simultaneously achieve low risk and zero empirical risk on benchmark datasets is an open problem. PAC-Bayes bounds optimized using variational inference (VI) have been recently proposed as a promising direction in obtaining non-vacuous bounds. We show empirically that this approach gives negligible gains when modelling the posterior as a Gaussian with diagonal covariance---known as the mean-field approximation. We investigate common explanations, such as the failure of VI due to problems in optimization or choosing a suboptimal prior. Our results suggest that investigating richer posteriors is the most promising direction forward.

Qi Wang · Herke van Hoof

[ Virtual ]

Neural processes (NPs) constitute a family of variational approximate models for stochastic processes with promising properties in computational efficiency and uncertainty quantification. These processes use neural networks with latent variable inputs to induce a predictive distribution. However, the expressiveness of vanilla NPs is limited as they only use a global latent variable, while target-specific local variation may be crucial sometimes. To address this challenge, we investigate NPs systematically and present a new variant of NP model that we call Doubly Stochastic Variational Neural Process (DSVNP). This model combines the global latent variable and local latent variables for prediction. We evaluate this model in several experiments, and our results demonstrate competitive prediction performance in multi-output regression and uncertainty estimation in classification.

Robert Peharz · Steven Lang · Antonio Vergari · Karl Stelzner · Alejandro Molina · Martin Trapp · Guy Van den Broeck · Kristian Kersting · Zoubin Ghahramani

[ Virtual ]

Probabilistic circuits (PCs) are a promising avenue for probabilistic modeling, as they permit a wide range of exact and efficient inference routines. Recent ``deep-learning-style'' implementations of PCs strive for a better scalability, but are still difficult to train on real-world data, due to their sparsely connected computational graphs. In this paper, we propose Einsum Networks (EiNets), a novel implementation design for PCs, improving prior art in several regards. At their core, EiNets combine a large number of arithmetic operations in a single monolithic einsum-operation, leading to speedups and memory savings of up to two orders of magnitude, in comparison to previous implementations. As an algorithmic contribution, we show that the implementation of Expectation-Maximization (EM) can be simplified for PCs, by leveraging automatic differentiation. Furthermore, we demonstrate that EiNets scale well to datasets which were previously out of reach, such as SVHN and CelebA, and that they can be used as faithful generative image models.

Davin Choo · Christoph Grunau · Julian Portmann · Vaclav Rozhon

[ Virtual ]

The k-means++ algorithm of Arthur and Vassilvitskii (SODA 2007) is a state-of-the-art algorithm for solving the k-means clustering problem and is known to give an O(log k) approximation. Recently, Lattanzi and Sohler (ICML 2019) proposed augmenting k-means++ with O(k log log k) local search steps to yield a constant approximation (in expectation) to the k-means clustering problem. In this paper, we improve their analysis to show that, for any arbitrarily small constant epsilon > 0, with only epsilon * k additional local search steps, one can achieve a constant approximation guarantee (with high probability in k), resolving an open problem in their paper.

Saeed Amizadeh · Hamid Palangi · Alex Polozov · Yichen Huang · Kazuhito Koishida

[ Virtual ]

Visual reasoning tasks such as visual question answering (VQA) require an interplay of visual perception with reasoning about the question semantics grounded in perception. However, recent advances in this area are still primarily driven by perception improvements (e.g. scene graph generation) rather than reasoning. Neuro-symbolic models such as Neural Module Networks bring the benefits of compositional reasoning to VQA, but they are still entangled with visual representation learning, and thus neural reasoning is hard to improve and assess on its own. To address this, we propose (1) a framework to isolate and evaluate the reasoning aspect of VQA separately from its perception, and (2) a novel top-down calibration technique that allows the model to answer reasoning questions even with imperfect perception. To this end, we introduce a Differentiable First-Order Logic formalism for VQA that explicitly decouples question answering from visual perception. On the challenging GQA dataset, this framework is used to perform in-depth, disentangled comparisons between well-known VQA models leading to informative insights regarding the participating models as well as the task.

Rob Cornish · Anthony Caterini · George Deligiannidis · Arnaud Doucet

[ Virtual ]

We show that normalising flows become pathological when used to model targets whose supports have complicated topologies. In this scenario, we prove that a flow must become arbitrarily numerically noninvertible in order to approximate the target closely. This result has implications for all flow-based models, and especially residual flows (ResFlows), which explicitly control the Lipschitz constant of the bijection used. To address this, we propose continuously indexed flows (CIFs), which replace the single bijection used by normalising flows with a continuously indexed family of bijections, and which can intuitively "clean up" mass that would otherwise be misplaced by a single bijection. We show theoretically that CIFs are not subject to the same topological limitations as normalising flows, and obtain better empirical performance on a variety of models and benchmarks.

Alexey Drutsa

[ Virtual ]

We study revenue optimization learning algorithms for repeated second-price auctions with reserve where a seller interacts with multiple strategic bidders each of which holds a fixed private valuation for a good and seeks to maximize his expected future cumulative discounted surplus. We propose a novel algorithm that has strategic regret upper bound of $O(\log\log T)$ for worst-case valuations. This pricing is based on our novel transformation that upgrades an algorithm designed for the setup with a single buyer to the multi-buyer case. We provide theoretical guarantees on the ability of a transformed algorithm to learn the valuation of a strategic buyer, which has uncertainty about the future due to the presence of rivals.
Hai Phan · My T. Thai · Han Hu · Ruoming Jin · Tong Sun · Dejing Dou

[ Virtual ]

In this paper, we aim to develop a scalable algorithm to preserve differential privacy (DP) in adversarial learning for deep neural networks (DNNs), with certified robustness to adversarial examples. By leveraging the sequential composition theory in DP, we randomize both input and latent spaces to strengthen our certified robustness bounds. To address the trade-off among model utility, privacy loss, and robustness, we design an original adversarial objective function, based on the post-processing property in DP, to tighten the sensitivity of our model. A new stochastic batch training is proposed to apply our mechanism on large DNNs and datasets, by bypassing the vanilla iterative batch-by-batch training in DP DNNs. An end-to-end theoretical analysis and evaluations show that our mechanism notably improves the robustness and scalability of DP DNNs.

Wessel Bruinsma · Eric Perim Martins · William Tebbutt · Scott Hosking · Arno Solin · Richard E Turner

[ Virtual ]

Multi-output Gaussian processes (MOGPs) leverage the flexibility and interpretability of GPs while capturing structure across outputs, which is desirable, for example, in spatio-temporal modelling. The key problem with MOGPs is their computational scaling $O(n^3 p^3)$, which is cubic in the number of both inputs $n$ (e.g., time points or locations) and outputs $p$. For this reason, a popular class of MOGPs assumes that the data live around a low-dimensional linear subspace, reducing the complexity to $O(n^3 m^3)$. However, this cost is still cubic in the dimensionality of the subspace $m$, which is still prohibitively expensive for many applications. We propose the use of a sufficient statistic of the data to accelerate inference and learning in MOGPs with orthogonal bases. The method achieves linear scaling in $m$ in practice, allowing these models to scale to large $m$ without sacrificing significant expressivity or requiring approximation. This advance opens up a wide range of real-world tasks and can be combined with existing GP approximations in a plug-and-play way. We demonstrate the efficacy of the method on various synthetic and real-world data sets.
Maria Gorinova · Dave Moore · Matthew Hoffman

Probabilistic programming has emerged as a powerful paradigm in statistics, applied science, and machine learning: by decoupling modelling from inference, it promises to allow modellers to directly reason about the processes generating data. However, the performance of inference algorithms can be dramatically affected by the parameterisation used to express a model, requiring users to transform their programs in non-intuitive ways. We argue for automating these transformations, and demonstrate that mechanisms available in recent modelling frameworks can implement non-centring and related reparameterisations. This enables new inference algorithms, and we propose two: a simple approach using interleaved sampling and a novel variational formulation that searches over a continuous space of parameterisations. We show that these approaches enable robust inference across a range of models, and can yield more efficient samplers than the best fixed parameterisation.

Leonard Hasenclever · Fabio Pardo · Raia Hadsell · Nicolas Heess · Josh Merel

Learning to control complex bodies and reuse learned behaviors is a longstanding challenge in continuous control. We study the problem of learning reusable humanoid skills by imitating motion capture data and joint training with complementary tasks. We show that it is possible to learn reusable skills through reinforcement learning on 50 times more motion capture data than prior work. We systematically compare a variety of different network architectures across different data regimes both in terms of imitation performance as well as transfer to challenging locomotion tasks. Finally we show that it is possible to interleave the motion capture tracking with training on complementary tasks, enriching the resulting skill space, and enabling the reuse of skills not well covered by the motion capture data such as getting up from the ground or catching a ball.

Badr-Eddine Chérief-Abdellatif

Variational inference is becoming more and more popular for approximating intractable posterior distributions in Bayesian statistics and machine learning. Meanwhile, a few recent works have provided theoretical justification and new insights on deep neural networks for estimating smooth functions in usual settings such as nonparametric regression. In this paper, we show that variational inference for sparse deep learning retains precisely the same generalization properties than exact Bayesian inference. In particular, we show that a wise choice of the neural network architecture leads to near-minimax rates of convergence for H\"older smooth functions. Additionally, we show that the model selection framework over the architecture of the network via ELBO maximization does not overfit and adaptively achieves the optimal rate of convergence.

Wendelin Boehmer · Vitaly Kurin · Shimon Whiteson

This paper introduces the deep coordination graph (DCG) for collaborative multi-agent reinforcement learning. DCG strikes a flexible trade-off between representational capacity and generalization by factoring the joint value function of all agents according to a coordination graph into payoffs between pairs of agents. The value can be maximized by local message passing along the graph, which allows training of the value function end-to-end with Q-learning. Payoff functions are approximated with deep neural networks that employ parameter sharing and low-rank approximations to significantly improve sample efficiency. We show that DCG can solve predator-prey tasks that highlight the relative overgeneralization pathology, as well as challenging StarCraft II micromanagement tasks.

Yuan Zhou · Hongseok Yang · Yee-Whye Teh · Tom Rainforth

Universal probabilistic programming systems (PPSs) provide a powerful framework for specifying rich probabilistic models. They further attempt to automate the process of drawing inferences from these models, but doing this successfully is severely hampered by the wide range of non--standard models they can express. As a result, although one can specify complex models in a universal PPS, the provided inference engines often fall far short of what is required. In particular, we show that they produce surprisingly unsatisfactory performance for models where the support varies between executions, often doing no better than importance sampling from the prior. To address this, we introduce a new inference framework: Divide, Conquer, and Combine, which remains efficient for such models, and show how it can be implemented as an automated and generic PPS inference engine. We empirically demonstrate substantial performance improvements over existing approaches on three examples.

Emilien Dupont · Miguel Angel Bautista Martin · Alex Colburn · Aditya Sankar · Joshua M Susskind · Qi Shan

We propose a framework for learning neural scene representations directly from images, without 3D supervision. Our key insight is that 3D structure can be imposed by ensuring that the learned representation transforms like a real 3D scene. Specifically, we introduce a loss which enforces equivariance of the scene representation with respect to 3D transformations. Our formulation allows us to infer and render scenes in real time while achieving comparable results to models requiring minutes for inference. In addition, we introduce two challenging new datasets for scene representation and neural rendering, including scenes with complex lighting and backgrounds. Through experiments, we show that our model achieves compelling results on these datasets as well as on standard ShapeNet benchmarks.

Arthur Jacot · Berfin Simsek · Francesco Spadaro · Clement Hongler · Franck Gabriel
Random Features (RF) models are used as efficient parametric approximations of kernel methods. We investigate, by means of random matrix theory, the connection between Gaussian RF models and Kernel Ridge Regression (KRR). For a Gaussian RF model with $P$ features, $N$ data points, and a ridge $\lambda$, we show that the average (i.e. expected) RF predictor is close to a KRR predictor with an \textit{effective ridge} $\tilde{\lambda}$. We show that $\tilde{\lambda} > \lambda$ and $\tilde{\lambda} \searrow \lambda$ monotonically as $P$ grows, thus revealing the \textit{implicit regularization effect} of finite RF sampling. We then compare the risk (i.e. test error) of the $\tilde{\lambda}$-KRR predictor with the average risk of the $\lambda$-RF predictor and obtain a precise and explicit bound on their difference. Finally, we empirically find an extremely good agreement between the test errors of the average $\lambda$-RF predictor and $\tilde{\lambda}$-KRR predictor.
Omer Gottesman · Joseph Futoma · Yao Liu · Sonali Parbhoo · Leo Celi · Emma Brunskill · Finale Doshi-Velez

Off-policy evaluation in reinforcement learning offers the chance of using observational data to improve future outcomes in domains such as healthcare and education, but safe deployment in high stakes settings requires ways of assessing its validity. Traditional measures such as confidence intervals may be insufficient due to noise, limited data and confounding. In this paper we develop a method that could serve as a hybrid human-AI system, to enable human experts to analyze the validity of policy evaluation estimates. This is accomplished by highlighting observations in the data whose removal will have a large effect on the OPE estimate, and formulating a set of rules for choosing which ones to present to domain experts for validation. We develop methods to compute exactly the influence functions for fitted Q-evaluation with two different function classes: kernel-based and linear least squares, as well as importance sampling methods. Experiments on medical simulations and real-world intensive care unit data demonstrate that our method can be used to identify limitations in the evaluation process and make evaluation more robust.

Jean Tarbouriech · Evrard Garcelon · Michal Valko · Matteo Pirotta · Alessandro Lazaric
Many popular reinforcement learning problems (e.g., navigation in a maze, some Atari games, mountain car) are instances of the episodic setting under its stochastic shortest path (SSP) formulation, where an agent has to achieve a goal state while minimizing the cumulative cost. Despite the popularity of this setting, the exploration-exploitation dilemma has been sparsely studied in general SSP problems, with most of the theoretical literature focusing on different problems (i.e., fixed-horizon and infinite-horizon) or making the restrictive loop-free SSP assumption (i.e., no state can be visited twice during an episode). In this paper, we study the general SSP problem with no assumption on its dynamics (some policies may actually never reach the goal). We introduce UC-SSP, the first no-regret algorithm in this setting, and prove a regret bound scaling as $\widetilde{\mathcal{O}}( D S \sqrt{ A D K})$ after $K$ episodes for any unknown SSP with $S$ states, $A$ actions, positive costs and SSP-diameter $D$, defined as the smallest expected hitting time from any starting state to the goal. We achieve this result by crafting a novel stopping rule, such that UC-SSP may interrupt the current policy if it is taking too long to achieve the goal and switch to alternative …
Scott Pesme · Aymeric Dieuleveut · Nicolas Flammarion

Constant step-size Stochastic Gradient Descent exhibits two phases: a transient phase during which iterates make fast progress towards the optimum, followed by a stationary phase during which iterates oscillate around the optimal point. In this paper, we show that efficiently detecting this transition and appropriately decreasing the step size can lead to fast convergence rates. We analyse the classical statistical test proposed by Pflug (1983), based on the inner product between consecutive stochastic gradients. Even in the simple case where the objective function is quadratic we show that this test cannot lead to an adequate convergence diagnostic. We then propose a novel and simple statistical procedure that accurately detects stationarity and we provide experimental results showing state-of-the-art performance on synthetic and real-word datasets.

Jeremias Knoblauch · Hisham Husain · Tom Diethe

Continual Learning (CL) algorithms incrementally learn a predictor or representation across multiple sequentially observed tasks. Designing CL algorithms that perform reliably and avoid so-called catastrophic forgetting has proven a persistent challenge. The current paper develops a theoretical approach that explains why. In particular, we derive the computational properties which CL algorithms would have to possess in order to avoid catastrophic forgetting. Our main finding is that such optimal CL algorithms generally solve an NP-hard problem and will require perfect memory to do so. The findings are of theoretical interest, but also explain the excellent performance of CL algorithms using experience replay, episodic memory and core sets relative to regularization-based approaches.

Alexandre Sablayrolles · Douze Matthijs · Cordelia Schmid · Herve Jegou

Data tracing determines whether a particular image dataset has been used to train a model. We propose a new technique, radioactive data, that makes imperceptible changes to this dataset such that any model trained on it will bear an identifiable mark. Given a trained model, our technique detects the use of radioactive data and provides a level of confidence (p-value). Experiments on large-scale benchmarks (Imagenet), with standard architectures (Resnet-18, VGG-16, Densenet-121) and training procedures, show that we detect radioactive data with high confidence (p<0.0001) when only 1% of the data used to trained a model is radioactive. Our radioactive mark is resilient to strong data augmentations and variations of the model architecture. As a result, it offers a much higher signal-to-noise ratio than data poisoning and backdoor methods.

Yehuda Dar · Paul Mayer · Lorenzo Luzi · Richard Baraniuk

We study the linear subspace fitting problem in the overparameterized setting, where the estimated subspace can perfectly interpolate the training examples. Our scope includes the least-squares solutions to subspace fitting tasks with varying levels of supervision in the training data (i.e., the proportion of input-output examples of the desired low-dimensional mapping) and orthonormality of the vectors defining the learned operator. This flexible family of problems connects standard, unsupervised subspace fitting that enforces strict orthonormality with a corresponding regression task that is fully supervised and does not constrain the linear operator structure. This class of problems is defined over a supervision-orthonormality plane, where each coordinate induces a problem instance with a unique pair of supervision level and softness of orthonormality constraints. We explore this plane and show that the generalization errors of the corresponding subspace fitting problems follow double descent trends as the settings become more supervised and less orthonormally constrained.

Anton Obukhov · Maxim Rakhuba · Stamatios Georgoulis · Menelaos Kanakis · Dengxin Dai · Luc Van Gool

We introduce T-Basis, a novel concept for a compact representation of a set of tensors, each of an arbitrary shape, which is often seen in Neural Networks. Each of the tensors in the set is modeled using Tensor Rings, though the concept applies to other Tensor Networks. Owing its name to the T-shape of nodes in diagram notation of Tensor Rings, T-Basis is simply a list of equally shaped three-dimensional tensors, used to represent Tensor Ring nodes. Such representation allows us to parameterize the tensor set with a small number of parameters (coefficients of the T-Basis tensors), scaling logarithmically with each tensor's size in the set and linearly with the dimensionality of T-Basis. We evaluate the proposed approach on the task of neural network compression and demonstrate that it reaches high compression rates at acceptable performance drops. Finally, we analyze memory and operation requirements of the compressed networks and conclude that T-Basis networks are equally well suited for training and inference in resource-constrained environments and usage on the edge devices. Project website: obukhov.io/tbasis.

Rotem Mulayoff · Tomer Michaeli

It is well known that (stochastic) gradient descent has an implicit bias towards flat minima. In deep neural network training, this mechanism serves to screen out minima. However, the precise effect that this has on the trained network is not yet fully understood. In this paper, we characterize the flat minima in linear neural networks trained with a quadratic loss. First, we show that linear ResNets with zero initialization necessarily converge to the flattest of all minima. We then prove that these minima correspond to nearly balanced networks whereby the gain from the input to any intermediate representation does not change drastically from one layer to the next. Finally, we show that consecutive layers in flat minima solutions are coupled. That is, one of the left singular vectors of each weight matrix, equals one of the right singular vectors of the next matrix. This forms a distinct path from input to output, that, as we show, is dedicated to the signal that experiences the largest gain end-to-end. Experiments indicate that these properties are characteristic of both linear and nonlinear models trained in practice.

Laura Rieger · Chandan Singh · William Murdoch · Bin Yu

[ Virtual ]

For an explanation of a deep learning model to be effective, it must provide both insight into a model and suggest a corresponding action in order to achieve some objective. Too often, the litany of proposed explainable deep learning methods stop at the first step, providing practitioners with insight into a model, but no way to act on it. In this paper, we propose contextual decomposition explanation penalization (CDEP), a method which enables practitioners to leverage existing explanation methods to increase the predictive accuracy of a deep learning model. In particular, when shown that a model has incorrectly assigned importance to some features, CDEP enables practitioners to correct these errors by inserting domain knowledge into the model via explanations. We demonstrate the ability of CDEP to increase performance on an array of toy and real datasets.

Samuel Smith · Erich Elsen · Soham De

[ Virtual ]

It has long been argued that minibatch stochastic gradient descent can generalize better than large batch gradient descent in deep neural networks. However recent papers have questioned this claim, arguing that this effect is simply a consequence of suboptimal hyperparameter tuning or insufficient compute budgets when the batch size is large. In this paper, we perform carefully designed experiments and rigorous hyperparameter sweeps on a range of popular models, which verify that small or moderately large batch sizes can substantially outperform very large batches on the test set. This occurs even when both models are trained for the same number of iterations and large batches achieve smaller training losses. Our results confirm that the noise in stochastic gradients can enhance generalization. We study how the optimal learning rate schedule changes as the epoch budget grows, and we provide a theoretical account of our observations based on the stochastic differential equation perspective of SGD dynamics.

Rasheed El-Bouri · David Eyre · Peter Watkinson · Tingting Zhu · David Clifton

[ Virtual ]

Accurate and reliable prediction of hospital admission location is important due to resource-constraints and space availability in a clinical setting, particularly when dealing with patients who come from the emergency department. In this work we propose a student-teacher network via reinforcement learning to deal with this specific problem. A representation of the weights of the student network is treated as the state and is fed as an input to the teacher network. The teacher network's action is to select the most appropriate batch of data to train the student network on from a training set sorted according to entropy. By validating on three datasets, not only do we show that our approach outperforms state-of-the-art methods on tabular data and performs competitively on image recognition, but also that novel curricula are learned by the teacher network. We demonstrate experimentally that the teacher network can actively learn about the student network and guide it to achieve better performance than if trained alone.

Christos Matsoukas · Albert Bou Hernandez · Yue Liu · Karin Dembrower · Gisele Miranda · Emir Konuk · Johan Fredin Haslum · Athanasios Zouzos · Peter Lindholm · Fredrik Strand · Kevin Smith

Evidence suggests that networks trained on large datasets generalize well not solely because of the numerous training examples, but also class diversity which encourages learning of enriched features. This raises the question of whether this remains true when data is scarce - is there an advantage to learning with additional labels in low-data regimes? In this work, we consider a task that requires difficult-to-obtain expert annotations: tumor segmentation in mammography images. We show that, in low-data settings, performance can be improved by complementing the expert annotations with seemingly uninformative labels from non-expert annotators, turning the task into a multi-class problem. We reveal that these gains increase when less expert data is available, and uncover several interesting properties through further studies. We demonstrate our findings on CSAW-S, a new dataset that we introduce here, and confirm them on two public datasets.

Thomas Scialom · Paul-Alexis Dray · Sylvain Lamprier · Benjamin Piwowarski · Jacopo Staiano

We introduce a novel approach for sequence decoding, Discriminative Adversarial Search (DAS), which has the desirable properties of alleviating the effects of exposure bias without requiring external metrics. Inspired by Generative Adversarial Networks (GANs), wherein a discriminator is used to improve the generator, our method differs from GANs in that the generator parameters are not updated at training time and the discriminator is used to drive sequence generation at inference time. We investigate the effectiveness of the proposed approach on the task of Abstractive Summarization: the results obtained show that a naive application of DAS improves over the state-of-the-art methods, with further gains obtained via discriminator retraining. Moreover, we show how DAS can be effective for cross-domain adaptation. Finally, all results reported are obtained without additional rule-based filtering strategies, commonly used by the best performing systems available: this indicates that DAS can effectively be deployed without relying on post-hoc modifications of the generated outputs.

Kirill Neklyudov · Max Welling · Evgenii Egorov · Dmitry Vetrov

Markov Chain Monte Carlo (MCMC) is a computational approach to fundamental problems such as inference, integration, optimization, and simulation. The field has developed a broad spectrum of algorithms, varying in the way they are motivated, the way they are applied and how efficiently they sample. Despite all the differences, many of them share the same core principle, which we unify as the Involutive MCMC (iMCMC) framework. Building upon this, we describe a wide range of MCMC algorithms in terms of iMCMC, and formulate a number of "tricks" which one can use as design principles for developing new MCMC algorithms. Thus, iMCMC provides a unified view of many known MCMC algorithms, which facilitates the derivation of powerful extensions. We demonstrate the latter with two examples where we transform known reversible MCMC algorithms into more efficient irreversible ones.

Qiang Zhang · Aldo Lipani · Omer Kirnap · Emine Yilmaz

Capturing the occurrence dynamics is crucial to predicting which type of events will happen next and when. A common method to do this is through Hawkes processes. To enhance their capacity, recurrent neural networks (RNNs) have been incorporated due to RNNs' successes in processing sequential data such as languages. Recent evidence suggests that self-attention is more competent than RNNs in dealing with languages. However, we are unaware of the effectiveness of self-attention in the context of Hawkes processes. This study aims to fill the gap by designing a self-attentive Hawkes process (SAHP). SAHP employs self-attention to summarise the influence of history events and compute the probability of the next event. One deficit of the conventional self-attention when applied to event sequences is that its positional encoding only considers the order of a sequence ignoring the time intervals between events. To overcome this deficit, we modify its encoding by translating time intervals into phase shifts of sinusoidal functions. Experiments on goodness-of-fit and prediction tasks show the improved capability of SAHP. Furthermore, SAHP is more interpretable than RNN-based counterparts because the learnt attention weights reveal contributions of one event type to the happening of another type. To the best of our knowledge, …

Pierre Ablin · Gabriel Peyré · Thomas Moreau

In min-min optimization or max-min optimization, one has to compute the gradient of a function defined as a minimum. In most cases, the minimum has no closed-form, and an approximation is obtained via an iterative algorithm. There are two usual ways of estimating the gradient of the function: using either an analytic formula obtained by assuming exactness of the approximation, or automatic differentiation through the algorithm. In this paper, we study the asymptotic error made by these estimators as a function of the optimization error. We find that the error of the automatic estimator is close to the square of the error of the analytic estimator, reflecting a super-efficiency phenomenon. The convergence of the automatic estimator greatly depends on the convergence of the Jacobian of the algorithm. We analyze it for gradient descent and stochastic gradient descent and derive convergence rates for the estimators in these cases. Our analysis is backed by numerical experiments on toy problems and on Wasserstein barycenter computation. Finally, we discuss the computational complexity of these estimators and give practical guidelines to chose between them.

Angelos Katharopoulos · Apoorv Vyas · Nikolaos Pappas · François Fleuret
Transformers achieve remarkable performance in several tasks but due to their quadratic complexity, with respect to the input's length, they are prohibitively slow for very long sequences. To address this limitation, we express the self-attention as a linear dot-product of kernel feature maps and make use of the associativity property of matrix products to reduce the complexity from $\bigO{N^2}$ to $\bigO{N}$, where $N$ is the sequence length. We show that this formulation permits an iterative implementation that dramatically accelerates autoregressive transformers and reveals their relationship to recurrent neural networks. Our \textit{Linear Transformers} achieve similar performance to vanilla Transformers and they are up to 4000x faster on autoregressive prediction of very long sequences.
Elad Sarafian · Mor Sinay · yoram louzoun · Noa Agmon · Sarit Kraus

[ Virtual ]

Black-Box Optimization (BBO) methods can find optimal policies for systems that interact with complex environments with no analytical representation. As such, they are of interest in many Artificial Intelligence (AI) domains. Yet classical BBO methods fall short in high-dimensional non-convex problems. They are thus often overlooked in real-world AI tasks. Here we present a BBO method, termed Explicit Gradient Learning (EGL), that is designed to optimize high-dimensional ill-behaved functions. We derive EGL by finding weak spots in methods that fit the objective function with a parametric Neural Network (NN) model and obtain the gradient signal by calculating the parametric gradient. Instead of fitting the function, EGL trains a NN to estimate the objective gradient directly. We prove the convergence of EGL to a stationary point and its robustness in the optimization of integrable functions. We evaluate EGL and achieve state-of-the-art results in two challenging problems: (1) the COCO test suite against an assortment of standard BBO methods; and (2) in a high-dimensional non-convex image generation task.

Aditya Rajagopal · Diederik Vink · Stylianos Venieris · Christos-Savvas Bouganis

[ Virtual ]

Large-scale convolutional neural networks (CNNs) suffer from very long training times, spanning from hours to weeks, limiting the productivity and experimentation of deep learning practitioners. As networks grow in size and complexity, training time can be reduced through low-precision data representations and computations, however, in doing so the final accuracy suffers due to the problem of vanishing gradients. Existing state-of-the-art methods combat this issue by means of a mixed-precision approach utilising two different precision levels, FP32 (32-bit floating-point) and FP16/FP8 (16-/8-bit floating-point), leveraging the hardware support of recent GPU architectures for FP16 operations to obtain performance gains. This work pushes the boundary of quantised training by employing a multilevel optimisation approach that utilises multiple precisions including low-precision fixed-point representations resulting in a novel training strategy MuPPET; it combines the use of multiple number representation regimes together with a precision-switching mechanism that decides at run time the transition point between precision regimes. Overall, the proposed strategy tailors the training process to the hardware-level capabilities of the target hardware architecture and yields improvements in training time and energy efficiency compared to state-of-the-art approaches. Applying MuPPET on the training of AlexNet, ResNet18 and GoogLeNet on ImageNet (ILSVRC12) and targeting an NVIDIA Turing GPU, …

Vincent Dutordoir · Nicolas Durrande · James Hensman

[ Virtual ]

We introduce a new class of inter-domain variational Gaussian processes (GP) where data is mapped onto the unit hypersphere in order to use spherical harmonic representations. Our inference scheme is comparable to variational Fourier features, but it does not suffer from the curse of dimensionality, and leads to diagonal covariance matrices between inducing variables. This enables a speed-up in inference, because it bypasses the need to invert large covariance matrices. Our experiments show that our model is able to fit a regression model for a dataset with 6 million entries two orders of magnitude faster compared to standard sparse GPs, while retaining state of the art accuracy. We also demonstrate competitive performance on classification with non-conjugate likelihoods.

Zoltán Á. Milacski · Barnabás Póczos · Andras Lorincz

[ Virtual ]

Deep Neural Networks (DNNs) achieve the state-of-the-art results on a wide range of image processing tasks, however, the majority of such solutions are problem-specific, like most AI algorithms. The One Network to Solve Them All (OneNet) procedure has been suggested to resolve this issue by exploiting a DNN as the proximal operator in Alternating Direction Method of Multipliers (ADMM) solvers for various imaging problems. In this work, we make two contributions, both facilitating end-to-end learning using backpropagation. First, we generalize OneNet to videos by augmenting its convolutional prior network with bidirectional recurrent connections; second, we extend the fixed fully connected linear ADMM data step with another trainable bidirectional convolutional recurrent network. In our computational experiments on the Rotated MNIST, Scanned CIFAR-10 and UCF-101 data sets, the proposed modifications improve performance by a large margin compared to end-to-end convolutional OneNet and 3D Wavelet sparsity on several video processing problems: pixelwise inpainting-denoising, blockwise inpainting, scattered inpainting, super resolution, compressive sensing, deblurring, frame interpolation, frame prediction and colorization. Our two contributions are complementary, and using them together yields the best results.

Thomas Quinn · Dang Nguyen · Santu Rana · Sunil Gupta · Svetha Venkatesh

Abstract Interpretability allows the domain-expert to directly evaluate the model's relevance and reliability, a practice that offers assurance and builds trust. In the healthcare setting, interpretable models should implicate relevant biological mechanisms independent of technical factors like data pre-processing. We define personalized interpretability as a measure of sample-specific feature attribution, and view it as a minimum requirement for a precision health model to justify its conclusions. Some health data, especially those generated by high-throughput sequencing experiments, have nuances that compromise precision health models and their interpretation. These data are compositional, meaning that each feature is conditionally dependent on all other features. We propose the Deep Compositional Data Analysis (DeepCoDA) framework to extend precision health modelling to high-dimensional compositional data, and to provide personalized interpretability through patient-specific weights. Our architecture maintains state-of-the-art performance across 25 real-world data sets, all while producing interpretations that are both personalized and fully coherent for compositional data.

Francesco Croce · Matthias Hein

The field of defense strategies against adversarial attacks has significantly grown over the last years, but progress is hampered as the evaluation of adversarial defenses is often insufficient and thus gives a wrong impression of robustness. Many promising defenses could be broken later on, making it difficult to identify the state-of-the-art. Frequent pitfalls in the evaluation are improper tuning of hyperparameters of the attacks, gradient obfuscation or masking. In this paper we first propose two extensions of the PGD-attack overcoming failures due to suboptimal step size and problems of the objective function. We then combine our novel attacks with two complementary existing ones to form a parameter-free, computationally affordable and user-independent ensemble of attacks to test adversarial robustness. We apply our ensemble to over 50 models from papers published at recent top machine learning and computer vision venues. In all except one of the cases we achieve lower robust test accuracy than reported in these papers, often by more than 10\%, identifying several broken defenses.


Poster Session 38 Thu 16 Jul 11:00 a.m.  

Csaba Toth · Harald Oberhauser

[ Virtual ]

We develop a Bayesian approach to learning from sequential data by using Gaussian processes (GPs) with so-called signature kernels as covariance functions. This allows to make sequences of different length comparable and to rely on strong theoretical results from stochastic analysis. Signatures capture sequential structure with tensors that can scale unfavourably in sequence length and state space dimension. To deal with this, we introduce a sparse variational approach with inducing tensors. We then combine the resulting GP with LSTMs and GRUs to build larger models that leverage the strengths of each of these approaches and benchmark the resulting GPs on multivariate time series (TS) classification datasets.

Vien Mai · Mikael Johansson

[ Virtual ]

Stochastic gradient methods with momentum are widely used in applications and at the core of optimization subroutines in many popular machine learning libraries. However, their sample complexities have not been obtained for problems beyond those that are convex or smooth. This paper establishes the convergence rate of a stochastic subgradient method with a momentum term of Polyak type for a broad class of non-smooth, non-convex, and constrained optimization problems. Our key innovation is the construction of a special Lyapunov function for which the proven complexity can be achieved without any tuning of the momentum parameter. For smooth problems, we extend the known complexity bound to the constrained case and demonstrate how the unconstrained case can be analyzed under weaker assumptions than the state-of-the-art. Numerical results confirm our theoretical developments.

Roberta Raileanu · Max Goldstein · Arthur Szlam · Facebook Rob Fergus

[ Virtual ]

Standard RL algorithms assume fixed environment dynamics and require a significant amount of interaction to adapt to new environments. We introduce Policy-Dynamics Value Functions (PD-VF), a novel approach for rapidly adapting to dynamics different from those previously seen in training. PD-VF explicitly estimates the cumulative reward in a space of policies and environments. An ensemble of conventional RL policies is used to gather experience on training environments, from which embeddings of both policies and environments can be learned. Then, a value function conditioned on both embeddings is trained. At test time, a few actions are sufficient to infer the environment embedding, enabling a policy to be selected by maximizing the learned value function (which requires no additional environment interaction). We show that our method can rapidly adapt to new dynamics on a set of MuJoCo domains.

Federica Gerace · Bruno Loureiro · Florent Krzakala · Marc Mezard · Lenka Zdeborova

[ Virtual ]

We study generalised linear regression and classification for a synthetically generated dataset encompassing different problems of interest, such as learning with random features, neural networks in the lazy training regime, and the hidden manifold model. We consider the high-dimensional regime and using the replica method from statistical physics, we provide a closed-form expression for the asymptotic generalisation performance in these problems, valid in both the under- and over-parametrised regimes and for a broad choice of generalised linear model loss functions. In particular, we show how to obtain analytically the so-called double descent behaviour for logistic regression with a peak at the interpolation threshold, we illustrate the superiority of orthogonal against random Gaussian projections in learning with random features, and discuss the role played by correlations in the data generated by the hidden manifold model. Beyond the interest in these particular problems, the theoretical formalism introduced in this manuscript provides a path to further extensions to more complex tasks.

Emmanuel Bengio · Joelle Pineau · Doina Precup

[ Virtual ]

We study the link between generalization and interference in temporal-difference (TD) learning. Interference is defined as the inner product of two different gradients, representing their alignment; this quantity emerges as being of interest from a variety of observations about neural networks, parameter sharing and the dynamics of learning. We find that TD easily leads to low-interference, under-generalizing parameters, while the effect seems reversed in supervised learning. We hypothesize that the cause can be traced back to the interplay between the dynamics of interference and bootstrapping. This is supported empirically by several observations: the negative relationship between the generalization gap and interference in TD, the negative effect of bootstrapping on interference and the local coherence of targets, and the contrast between the propagation rate of information in TD(0) versus TD($\lambda$) and regression tasks such as Monte-Carlo policy evaluation. We hope that these new findings can guide the future discovery of better bootstrapping methods.
Joel Frank · Thorsten Eisenhofer · Lea Schönherr · Asja Fischer · Dorothea Kolossa · Thorsten Holz

[ Virtual ]

Deep neural networks can generate images that are astonishingly realistic, so much so that it is often hard for humans to distinguish them from actual photos. These achievements have been largely made possible by Generative Adversarial Networks (GANs). While deep fake images have been thoroughly investigated in the image domain—a classical approach from the area of image forensics—an analysis in the frequency domain has been missing so far. In this paper,we address this shortcoming and our results reveal that in frequency space, GAN-generated images exhibit severe artifacts that can be easily identified. We perform a comprehensive analysis, showing that these artifacts are consistent across different neural network architectures, data sets, and resolutions. In a further investigation, we demonstrate that these artifacts are caused by upsampling operations found in all current GAN architectures, indicating a structural and fundamental problem in the way images are generated via GANs. Based on this analysis, we demonstrate how the frequency representation can be used to identify deep fake images in an automated way, surpassing state-of-the-art methods.

Nikola Konstantinov · Elias Frantar · Dan Alistarh · Christoph H. Lampert

[ Virtual ]

We study the problem of learning from multiple untrusted data sources, a scenario of increasing practical relevance given the recent emergence of crowdsourcing and collaborative learning paradigms. Specifically, we analyze the situation in which a learning system obtains datasets from multiple sources, some of which might be biased or even adversarially perturbed. It is known that in the single-source case, an adversary with the power to corrupt a fixed fraction of the training data can prevent PAC-learnability, that is, even in the limit of infinitely much training data, no learning system can approach the optimal test error. In this work we show that, surprisingly, the same is not true in the multi-source setting, where the adversary can arbitrarily corrupt a fixed fraction of the data sources. Our main results are a generalization bound that provides finite-sample guarantees for this learning setting, as well as corresponding lower bounds. Besides establishing PAC-learnability our results also show that in a cooperative learning setting sharing data with other parties has provable benefits, even if some participants are malicious.

William Wilkinson · Paul Chang · Michael Andersen · Arno Solin

[ Virtual ]

We formulate approximate Bayesian inference in non-conjugate temporal and spatio-temporal Gaussian process models as a simple parameter update rule applied during Kalman smoothing. This viewpoint encompasses most inference schemes, including expectation propagation (EP), the classical (Extended, Unscented, \etc) Kalman smoothers, and variational inference. We provide a unifying perspective on these algorithms, showing how replacing the power EP moment matching step with linearisation recovers the classical smoothers. EP provides some benefits over the traditional methods via introduction of the so-called cavity distribution, and we combine these benefits with the computational efficiency of linearisation, providing extensive empirical analysis demonstrating the efficacy of various algorithms under this unifying framework. We provide a fast implementation of all methods in JAX.

Ramin Hasani · Mathias Lechner · Alexander Amini · Daniela Rus · Radu Grosu

We propose a neural information processing system obtained by re-purposing the function of a biological neural circuit model to govern simulated and real-world control tasks. Inspired by the structure of the nervous system of the soil-worm, C. elegans, we introduce ordinary neural circuits (ONCs), defined as the model of biological neural circuits reparameterized for the control of alternative tasks. We first demonstrate that ONCs realize networks with higher maximum flow compared to arbitrary wired networks. We then learn instances of ONCs to control a series of robotic tasks, including the autonomous parking of a real-world rover robot. For reconfiguration of the purpose of the neural circuit, we adopt a search-based optimization algorithm. Ordinary neural circuits perform on par and, in some cases, significantly surpass the performance of contemporary deep learning models. ONC networks are compact, 77% sparser than their counterpart neural controllers, and their neural dynamics are fully interpretable at the cell-level.

Anastasiia Koloskova · Nicolas Loizou · Sadra Boreiri · Martin Jaggi · Sebastian Stich

Decentralized stochastic optimization methods have gained a lot of attention recently, mainly because of their cheap per iteration cost, data locality, and their communication-efficiency. In this paper we introduce a unified convergence analysis that covers a large variety of decentralized SGD methods which so far have required different intuitions, have different applications, and which have been developed separately in various communities.

Our algorithmic framework covers local SGD updates and synchronous and pairwise gossip updates on adaptive network topology. We derive universal convergence rates for smooth (convex and non-convex) problems and the rates interpolate between the heterogeneous (non-identically distributed data) and iid-data settings, recovering linear convergence rates in many special cases, for instance for over-parametrized models. Our proofs rely on weak assumptions (typically improving over prior work in several aspects) and recover (and improve) the best known complexity results for a host of important scenarios, such as for instance coorperative SGD and federated averaging (local SGD).

Nicolai Engelmann · Dominik Linzner · Heinz Koeppl

Structured stochastic processes evolving in continuous time present a widely adopted framework to model phenomena occurring in nature and engineering. However, such models are often chosen to satisfy the Markov property to maintain tractability. One of the more popular of such memoryless models are Continuous Time Bayesian Networks (CTBNs). In this work, we lift its restriction to exponential survival times to arbitrary distributions. Current extensions achieve this via auxiliary states, which hinder tractability. To avoid that, we introduce a set of node-wise clocks to construct a collection of graph-coupled semi-Markov chains. We provide algorithms for parameter and structure inference, which make use of local dependencies and conduct experiments on synthetic data and a data-set generated through a benchmark tool for gene regulatory networks. In doing so, we point out advantages compared to current CTBN extensions.

Nemanja Djuric · Zhuang Wang · Slobodan Vucetic

Adaptive Multi-hyperplane Machine (AMM) is an online algorithm for learning Multi-hyperplane Machine (MM), a classification model which allows multiple hyperplanes per class. AMM is based on Stochastic Gradient Descent (SGD), with training time comparable to linear Support Vector Machine (SVM) and significantly higher accuracy. On the other hand, empirical results indicate there is a large accuracy gap between AMM and non-linear SVMs. In this paper we show that this performance gap is not due to limited representability of the MM model, as it can represent arbitrary concepts. We set to explain the connection between the AMM and Learning Vector Quantization (LVQ) algorithms, and introduce a novel Growing AMM (GAMM) classifier motivated by Growing LVQ, that imputes duplicate hyperplanes into the MM model during SGD training. We provide theoretical results showing that GAMM has favorable convergence properties, and analyze the generalization bound of the MM models. Experiments indicate that GAMM achieves significantly improved accuracy on non-linear problems, with only slightly slower training compared to AMM. On some tasks GAMM comes close to non-linear SVM, and outperforms other popular classifiers such as Neural Networks and Random Forests.

Amos Gropp · Lior Yariv · Niv Haim · Matan Atzmon · Yaron Lipman

Representing shapes as level-sets of neural networks has been recently proved to be useful for different shape analysis and reconstruction tasks. So far, such representations were computed using either: (i) pre-computed implicit shape representations; or (ii) loss functions explicitly defined over the neural level-sets.

In this paper we offer a new paradigm for computing high fidelity implicit neural representations directly from raw data (i.e., point clouds, with or without normal information). We observe that a rather simple loss function, encouraging the neural network to vanish on the input point cloud and to have a unit norm gradient, possesses an implicit geometric regularization property that favors smooth and natural zero level-set surfaces, avoiding bad zero-loss solutions. We provide a theoretical analysis of this property for the linear case, and show that, in practice, our method leads to state-of-the-art implicit neural representations with higher level-of-details and fidelity compared to previous methods.

Srinivasan Arunachalam · Reevu Maity

Boosting is a technique that boosts a weak and inaccurate machine learning algorithm into a strong accurate learning algorithm. The AdaBoost algorithm by Freund and Schapire (for which they were awarded the G{\"o}del prize in 2003) is one of the widely used boosting algorithms, with many applications in theory and practice. Suppose we have a gamma-weak learner for a Boolean concept class C that takes time R(C), then the time complexity of AdaBoost scales as VC(C)poly(R(C), 1/gamma), where VC(C) is the VC-dimension of C. In this paper, we show how quantum techniques can improve the time complexity of classical AdaBoost. To this end, suppose we have a gamma-weak quantum learning algorithm for a Boolean concept class C that takes time Q(C), we introduce a quantum boosting algorithm whose complexity scales as sqrt{VC(C)}poly(Q(C),1/gamma); thereby achieving quadratic quantum improvement over classical AdaBoost in terms of  VC(C). 

Daniyar Chumbalov · Lucas Maystre · Matthias Grossglauser

We consider the problem of finding a target object t using pairwise comparisons, by asking an oracle questions of the form “Which object from the pair (i,j) is more similar to t?”. Objects live in a space of latent features, from which the oracle generates noisy answers. First, we consider the non-blind setting where these features are accessible. We propose a new Bayesian comparison-based search algorithm with noisy answers; it has low computational complexity yet is efficient in the number of queries. We provide theoretical guarantees, deriving the form of the optimal query and proving almost sure convergence to the target t. Second, we consider the blind setting, where the object features are hidden from the search algorithm. In this setting, we combine our search method and a new distributional triplet embedding algorithm into one scalable learning framework called Learn2Search. We show that the query complexity of our approach on two real-world datasets is on par with the non-blind setting, which is not achievable using any of the current state-of-the-art embedding methods. Finally, we demonstrate the efficacy of our framework by conducting a movie actors search experiment with real users.

Yuguang Wang · Ming Li · Zheng Ma · Guido Montufar · Xiaosheng Zhuang · Yanan Fan

[ Virtual ]

Deep Graph Neural Networks (GNNs) are useful models for graph classification and graph-based regression tasks. In these tasks, graph pooling is a critical ingredient by which GNNs adapt to input graphs of varying size and structure. We propose a new graph pooling operation based on compressive Haar transforms --- \emph{HaarPooling}. HaarPooling implements a cascade of pooling operations; it is computed by following a sequence of clusterings of the input graph. A HaarPooling layer transforms a given input graph to an output graph with a smaller node number and the same feature dimension; the compressive Haar transform filters out fine detail information in the Haar wavelet domain. In this way, all the HaarPooling layers together synthesize the features of any given input graph into a feature vector of uniform size. Such transforms provide a sparse characterization of the data and preserve the structure information of the input graph. GNNs implemented with standard graph convolution layers and HaarPooling layers achieve state of the art performance on diverse graph classification and regression problems.

Jin Xu · Jean-Francois Ton · Hyunjik Kim · Adam Kosiorek · Yee-Whye Teh

[ Virtual ]

We develop a functional encoder-decoder approach to supervised meta-learning, where labeled data is encoded into an infinite-dimensional functional representation rather than a finite-dimensional one. Furthermore, rather than directly producing the representation, we learn a neural update rule resembling functional gradient descent which iteratively improves the representation. The final representation is used to condition the decoder to make predictions on unlabeled data. Our approach is the first to demonstrates the success of encoder-decoder style meta-learning methods like conditional neural processes on large-scale few-shot classification benchmarks such as miniImageNet and tieredImageNet, where it achieves state-of-the-art performance.

Ioana Bica · Ahmed Alaa · Mihaela van der Schaar

[ Virtual ]

The estimation of treatment effects is a pervasive problem in medicine. Existing methods for estimating treatment effects from longitudinal observational data assume that there are no hidden confounders, an assumption that is not testable in practice and, if it does not hold, leads to biased estimates. In this paper, we develop the Time Series Deconfounder, a method that leverages the assignment of multiple treatments over time to enable the estimation of treatment effects in the presence of multi-cause hidden confounders. The Time Series Deconfounder uses a novel recurrent neural network architecture with multitask output to build a factor model over time and infer latent variables that render the assigned treatments conditionally independent; then, it performs causal inference using these latent variables that act as substitutes for the multi-cause unobserved confounders. We provide a theoretical analysis for obtaining unbiased causal effects of time-varying exposures using the Time Series Deconfounder. Using both simulated and real data we show the effectiveness of our method in deconfounding the estimation of treatment responses over time.

Adrià Puigdomenech Badia · Bilal Piot · Steven Kapturowski · Pablo Sprechmann · Oleksandr Vitvitskyi · Zhaohan Guo · Charles Blundell

Atari games have been a long-standing benchmark in the reinforcement learning (RL) community for the past decade. This benchmark was proposed to test general competency of RL algorithms. Previous work has achieved good average performance by doing outstandingly well on many games of the set, but very poorly in several of the most challenging games. We propose Agent57, the first deep RL agent that outperforms the standard human benchmark on all 57 Atari games. To achieve this result, we train a neural network which parameterizes a family of policies ranging from very exploratory to purely exploitative. We propose an adaptive mechanism to choose which policy to prioritize throughout the training process. Additionally, we utilize a novel parameterization of the architecture that allows for more consistent and stable learning.

Vlad Niculae · Andre Filipe Torres Martins

Structured predictors require solving a combinatorial optimization problem over a large number of structures, such as dependency trees or alignments. When embedded as structured hidden layers in a neural net, argmin differentiation and efficient gradient computation are further required. Recently, SparseMAP has been proposed as a differentiable, sparse alternative to maximum a posteriori (MAP) and marginal inference. SparseMAP returns an interpretable combination of a small number of structures; its sparsity being the key to efficient optimization. However, SparseMAP requires access to an exact MAP oracle in the structured model, excluding, e.g., loopy graphical models or logic constraints, which generally require approximate inference. In this paper, we introduce LP-SparseMAP, an extension of SparseMAP addressing this limitation via a local polytope relaxation. LP-SparseMAP uses the flexible and powerful language of factor graphs to define expressive hidden structures, supporting coarse decompositions, hard logic constraints, and higher-order correlations. We derive the forward and backward algorithms needed for using LP-SparseMAP as a structured hidden or output layer. Experiments in three structured tasks show benefits versus SparseMAP and Structured SVM.

Chengcheng Wan · Henry (Hank) Hoffmann · Shan Lu · Michael Maire

We propose a novel variant of SGD customized for training network architectures that support anytime behavior: such networks produce a series of increasingly accurate outputs over time. Efficient architectural designs for these networks focus on re-using internal state; subnetworks must produce representations relevant for both imme- diate prediction as well as refinement by subse- quent network stages. We consider traditional branched networks as well as a new class of re- cursively nested networks. Our new optimizer, Orthogonalized SGD, dynamically re-balances task-specific gradients when training a multitask network. In the context of anytime architectures, this optimizer projects gradients from later out- puts onto a parameter subspace that does not in- terfere with those from earlier outputs. Experi- ments demonstrate that training with Orthogonal- ized SGD significantly improves generalization accuracy of anytime networks.

Sung Whan Yoon · Do-Yeon Kim · Jun Seo · Jaekyun Moon

Learning novel concepts while preserving prior knowledge is a long-standing challenge in machine learning. The challenge gets greater when a novel task is given with only a few labeled examples, a problem known as incremental few-shot learning. We propose XtarNet, which learns to extract task-adaptive representation (TAR) for facilitating incremental few-shot learning. The method utilizes a backbone network pretrained on a set of base categories while also employing additional modules that are meta-trained across episodes. Given a new task, the novel feature extracted from the meta-trained modules is mixed with the base feature obtained from the pretrained model. The process of combining two different features provides TAR and is also controlled by meta-trained modules. The TAR contains effective information for classifying both novel and base categories. The base and novel classifiers quickly adapt to a given task by utilizing the TAR. Experiments on standard image datasets indicate that XtarNet achieves state-of-the-art incremental few-shot learning performance. The concept of TAR can also be used in conjunction with existing incremental few-shot learning methods; extensive simulation results in fact show that applying TAR enhances the known methods significantly.


Poster Session 39 Thu 16 Jul 12:00 p.m.  

Alberto Maria Metelli · Flavio Mazzolini · Lorenzo Bisi · Luca Sabbioni · Marcello Restelli

[ Virtual ]

The choice of the control frequency of a system has a relevant impact on the ability of reinforcement learning algorithms to learn a highly performing policy. In this paper, we introduce the notion of action persistence that consists in the repetition of an action for a fixed number of decision steps, having the effect of modifying the control frequency. We start analyzing how action persistence affects the performance of the optimal policy, and then we present a novel algorithm, Persistent Fitted Q-Iteration (PFQI), that extends FQI, with the goal of learning the optimal value function at a given persistence. After having provided a theoretical study of PFQI and a heuristic approach to identify the optimal persistence, we present an experimental campaign on benchmark domains to show the advantages of action persistence and proving the effectiveness of our persistence selection method.

Gal Yehuda · Moshe Gabel · Assaf Schuster

[ Virtual ]

Can deep neural networks learn to solve any task, and in particular problems of high complexity? This question attracts a lot of interest, with recent works tackling computationally hard tasks such as the traveling salesman problem and satisfiability. In this work we offer a different perspective on this question. Given the common assumption that NP != coNP we prove that any polynomial-time sample generator for an NP-hard problem samples, in fact, from an easier sub-problem. We empirically explore a case study, Conjunctive Query Containment, and show how common data generation techniques generate biased data-sets that lead practitioners to over-estimate model accuracy. Our results suggest that machine learning approaches that require training on a dense uniform sampling from the target distribution cannot be used to solve computationally hard problems, the reason being the difficulty of generating sufficiently large and unbiased training sets.

samuel cohen · Rendani Mbuvha · Tshilidzi Marwala · Marc Deisenroth

Gaussian processes (GPs) are nonparametric Bayesian models that have been applied to regression and classification problems. One of the approaches to alleviate their cubic training cost is the use of local GP experts trained on subsets of the data. In particular, product-of-expert models combine the predictive distributions of local experts through a tractable product operation. While these expert models allow for massively distributed computation, their predictions typically suffer from erratic behaviour of the mean or uncalibrated uncertainty quantification. By calibrating predictions via a tempered softmax weighting, we provide a solution to these problems for multiple product-of-expert models, including the generalised product of experts and the robust Bayesian committee machine. Furthermore, we leverage the optimal transport literature and propose a new product-of-expert model that combines predictions of local experts by computing their Wasserstein barycenter, which can be applied to both regression and classification.

Guy Hacohen · Leshem Choshen · Daphna Weinshall

We report a series of robust empirical observations, demonstrating that deep Neural Networks learn the examples in both the training and test sets in a similar order. This phenomenon is observed in all the commonly used benchmarks we evaluated, including many image classification benchmarks, and one text classification benchmark. While this phenomenon is strongest for models of the same architecture, it also crosses architectural boundaries -- models of different architectures start by learning the same examples, after which the more powerful model may continue to learn additional examples. We further show that this pattern of results reflects the interplay between the way neural networks learn benchmark datasets. Thus, when fixing the architecture, we show synthetic datasets where this pattern ceases to exist. When fixing the dataset, we show that other learning paradigms may learn the data in a different order. We hypothesize that our results reflect how neural networks discover structure in natural datasets.

Andrea Hornakova · Roberto Henschel · Bodo Rosenhahn · Paul Swoboda

We present an extension to the disjoint paths problem in which additional lifted edges are introduced to provide path connectivity priors. We call the resulting optimization problem the lifted disjoint paths problem. We show that this problem is NP-hard by reduction from integer multicommodity flow and 3-SAT. To enable practical global optimization, we propose several classes of linear inequalities that produce a high-quality LP-relaxation. Additionally, we propose efficient cutting plane algorithms for separating the proposed linear inequalities. The lifted disjoint path problem is a natural model for multiple object tracking and allows an elegant mathematical formulation for long range temporal interactions. Lifted edges help to prevent id switches and to re-identify persons. Our lifted disjoint paths tracker achieves nearly optimal assignments with respect to input detections. As a consequence, it leads on all three main benchmarks of the MOT challenge, improving significantly over state-of-the-art.

Chen-Yu Wei · Mehdi Jafarnia · Haipeng Luo · Hiteshi Sharma · Rahul Jain
Model-free reinforcement learning is known to be memory and computation efficient and more amendable to large scale problems. In this paper, two model-free algorithms are introduced for learning infinite-horizon average-reward Markov Decision Processes (MDPs). The first algorithm reduces the problem to the discounted-reward version and achieves $\mathcal{O}(T^{2/3})$ regret after $T$ steps, under the minimal assumption of weakly communicating MDPs. To our knowledge, this is the first model-free algorithm for general MDPs in this setting. The second algorithm makes use of recent advances in adaptive algorithms for adversarial multi-armed bandits and improves the regret to $\mathcal{O}(\sqrt{T})$, albeit with a stronger ergodic assumption. This result significantly improves over the $\mathcal{O}(T^{3/4})$ regret achieved by the only existing model-free algorithm by Abbasi-Yadkori et al. (2019) for ergodic MDPs in the infinite-horizon average-reward setting.
Jorg Bornschein · Francesco Visin · Simon Osindero

Highly overparametrized neural networks can display curiously strong generalization performance -- a phenomenon that has recently garnered a wealth of theoretical and empirical research in order to better understand it. In contrast to most previous work, which typically considers the performance as a function of the model size, in this paper we empirically study the generalization performance as the size of the training set varies over multiple orders of magnitude. These systematic experiments lead to some interesting and potentially very useful observations; perhaps most notably that training on smaller subsets of the data can lead to more reliable model selection decisions whilst simultaneously enjoying smaller computational overheads. Our experiments furthermore allow us to estimate Minimum Description Lengths for common datasets given modern neural network architectures, thereby paving the way for principled model selection taking into account Occams-razor.

Filip Hanzely · Dmitry Kovalev · Peter Richtarik

We propose an accelerated version of stochastic variance reduced coordinate descent -- ASVRCD. As other variance reduced coordinate descent methods such as SEGA or SVRCD, our method can deal with problems that include a non-separable and non-smooth regularizer, while accessing a random block of partial derivatives in each iteration only. However, ASVRCD incorporates Nesterov's momentum, which offers favorable iteration complexity guarantees over both SEGA and SVRCD. As a by-product of our theory, we show that a variant of Katyusha (Allen-Zhu, 2017) is a specific case of ASVRCD, recovering the optimal oracle complexity for the finite sum objective.

Hang Lai · Jian Shen · Weinan Zhang · Yong Yu

[ Virtual ]

Model-based reinforcement learning approaches leverage a forward dynamics model to support planning and decision making, which, however, may fail catastrophically if the model is inaccurate. Although there are several existing methods dedicated to combating the model error, the potential of the single forward model is still limited. In this paper, we propose to additionally construct a backward dynamics model to reduce the reliance on accuracy in forward model predictions. We develop a novel method, called Bidirectional Model-based Policy Optimization (BMPO) to utilize both the forward model and backward model to generate short branched rollouts for policy optimization. Furthermore, we theoretically derive a tighter bound of return discrepancy, which shows the superiority of BMPO against the one using merely the forward model. Extensive experiments demonstrate that BMPO outperforms state-of-the-art model-based methods in terms of sample efficiency and asymptotic performance.

Yuchao Cai · Hanyuan Hang · Hanfang Yang · Zhouchen Lin
In this paper, we propose a boosting algorithm for regression problems called \textit{boosted histogram transform for regression} (BHTR) based on histogram transforms composed of random rotations, stretchings, and translations. From the theoretical perspective, we first prove fast convergence rates for BHTR under the assumption that the target function lies in the spaces $C^{0,\alpha}$. Moreover, if the target function resides in the subspace $C^{1,\alpha}$, by establishing the upper bound of the convergence rate for the boosted regressor, i.e. BHTR, and the lower bound for base regressors, i.e. histogram transform regressors (HTR), we manage to explain the benefits of the boosting procedure. In the experiments, compared with other state-of-the-art algorithms such as gradient boosted regression tree (GBRT), Breiman's forest, and kernel-based methods, our BHTR algorithm shows promising performance on both synthetic and real datasets.
Kangrui Wang · Oliver Hamelijnck · Theodoros Damoulas · Mark Steel

We describe a framework for constructing nonstationary nonseparable random fields based on an infinite mixture of convolved stochastic processes. When the mixing process is stationary but the convolution function is nonstationary we arrive at nonseparable kernels with constant non-separability that are available in closed form. When the mixing is nonstationary and the convolution function is stationary we arrive at nonseparable random fields that have varying nonseparability and better preserve local structure. These fields have natural interpretations through the spectral representation of stochastic differential equations (SDEs) and are demonstrated on a range of synthetic benchmarks and spatio-temporal applications in geostatistics and machine learning. We show how a single Gaussian process (GP) with these random fields can computationally and statistically outperform both separable and existing nonstationary nonseparable approaches such as treed GPs and deep GP constructions.

Yihan Wang · Huan Zhang · Hongge Chen · Duane Boning · Cho-Jui Hsieh
Recent papers have demonstrated that ensemble stumps and trees could be vulnerable to small input perturbations, so robustness verification and defense for those models have become an important research problem. However, due to the structure of decision trees, where each node makes decision purely based on one feature value, all the previous works only consider the $\ell_\infty$ norm perturbation. To study robustness with respect to a general $\ell_p$ norm perturbation, one has to consider the correlation between perturbations on different features, which has not been handled by previous algorithms. In this paper, we study the problem of robustness verification and certified defense with respect to general $\ell_p$ norm perturbations for ensemble decision stumps and trees. For robustness verification of ensemble stumps, we prove that complete verification is NP-complete for $p\in(0, \infty)$ while polynomial time algorithms exist for $p=0$ or $\infty$. For $p\in(0, \infty)$ we develop an efficient dynamic programming based algorithm for sound verification of ensemble stumps. For ensemble trees, we generalize the previous multi-level robustness verification algorithm to $\ell_p$ norm. We demonstrate the first certified defense method for training ensemble stumps and trees with respect to $\ell_p$ norm perturbations, and verify its effectiveness empirically on real datasets.
Alexia Jolicoeur-Martineau
We take a more rigorous look at Relativistic Generative Adversarial Networks (RGANs) and prove that the objective function of the discriminator is a statistical divergence for any concave function $f$ with minimal properties ($f(0)=0$, $f'(0) \neq 0$, $\sup_x f(x)>0$). We devise additional variants of relativistic $f$-divergences. We show that the Wasserstein distance is weaker than $f$-divergences which are weaker than relativistic $f$-divergences. Given the good performance of RGANs, this suggests that Wasserstein GAN does not performs well primarily because of the weak metric, but rather because of regularization and the use of a relativistic discriminator. We introduce the minimum-variance unbiased estimator (MVUE) for Relativistic paired GANs (RpGANs; originally called RGANs which could bring confusion) and show that it does not perform better. We show that the estimator of Relativistic average GANs (RaGANs) is asymptotically unbiased and that the finite-sample bias is small; removing this bias does not improve performance.
Wei Chen · Xiaoming Sun · Jialin Zhang · Zhijie Zhang
We revisit the optimization from samples (OPS) model, which studies the problem of optimizing objective functions directly from the sample data. Previous results showed that we cannot obtain a constant approximation ratio for the maximum coverage problem using polynomially many independent samples of the form $\{S_i, f(S_i)\}_{i=1}^t$ (Balkanski et al., 2017), even if coverage functions are $(1 - \epsilon)$-PMAC learnable using these samples (Badanidiyuru et al., 2012), which means most of the function values can be approximately learned very well with high probability. In this work, to circumvent the impossibility result of OPS, we propose a stronger model called optimization from structured samples (OPSS) for coverage functions, where the data samples encode the structural information of the functions. We show that under three general assumptions on the sample distributions, we can design efficient OPSS algorithms that achieve a constant approximation for the maximum coverage problem. We further prove a constant lower bound under these assumptions, which is tight when not considering computational efficiency. Moreover, we also show that if we remove any one of the three assumptions, OPSS for the maximum coverage problem has no constant approximation.
Mingtian Zhang · Peter Hayes · Thomas Bird · Raza Habib · David Barber
For distributions $\mathbb{P}$ and $\mathbb{Q}$ with different supports or undefined densities, the divergence $\textrm{D}(\mathbb{P}||\mathbb{Q})$ may not exist. We define a Spread Divergence $\tilde{\textrm{D}}(\mathbb{P}||\mathbb{Q})$ on modified $\mathbb{P}$ and $\mathbb{Q}$ and describe sufficient conditions for the existence of such a divergence. We demonstrate how to maximize the discriminatory power of a given divergence by parameterizing and learning the spread. We also give examples of using a Spread Divergence to train implicit generative models, including linear models (Independent Components Analysis) and non-linear models (Deep Generative Networks).

Poster Session 40 Thu 16 Jul 01:00 p.m.  

Rixon Crane · Fred Roosta

We present a novel communication-efficient Newton-type algorithm for finite-sum optimization over a distributed computing environment. Our method, named DINO, overcomes both theoretical and practical shortcomings of similar existing methods. Under minimal assumptions, we guarantee global sub-linear convergence of DINO to a first-order stationary point for general non-convex functions and arbitrary data distribution over the network. Furthermore, for functions satisfying Polyak-Lojasiewicz (PL) inequality, we show that DINO enjoys a linear convergence rate. Our proposed algorithm is practically parameter free, in that it will converge regardless of the selected hyper-parameters, which are easy to tune. Additionally, its sub-problems are simple linear least-squares, for which efficient solvers exist, and numerical simulations demonstrate the efficiency of DINO as compared with similar alternatives.

Nathan Kallus · Masatoshi Uehara

Policy gradient methods in reinforcement learning update policy parameters by taking steps in the direction of an estimated gradient of policy value. In this paper, we consider the efficient estimation of policy gradients from off-policy data, where the estimation is particularly non-trivial. We derive the asymptotic lower bound on the feasible mean-squared error in both Markov and non-Markov decision processes and show that existing estimators fail to achieve it in general settings. We propose a meta-algorithm that achieves the lower bound without any parametric assumptions and exhibits a unique 4-way double robustness property. We discuss how to estimate nuisances that the algorithm relies on. Finally, we establish guarantees at the rate at which we approach a stationary point when we take steps in the direction of our new estimated policy gradient.

Yi-Hsuan Wu · Chia-Hung Yuan · Shan-Hung (Brandon) Wu

[ Virtual ]

Deep neural networks are shown to be vulnerable to adversarial attacks. This motivates robust learning techniques, such as the adversarial training, whose goal is to learn a network that is robust against adversarial attacks. However, the sample complexity of robust learning can be significantly larger than that of “standard” learning. In this paper, we propose improving the adversarial robustness of a network by leveraging the potentially large test data seen at runtime. We devise a new defense method, called runtime masking and cleansing (RMC), that adapts the network at runtime before making a prediction to dynamically mask network gradients and cleanse the model of the non-robust features inevitably learned during the training process due to the size limit of the training set. We conduct experiments on real-world datasets and the results demonstrate the effectiveness of RMC empirically.

Sai Ganesh Nagarajan · David Balduzzi · Georgios Piliouras

[ Virtual ]

Games are an increasingly useful tool for training and testing learning algorithms. Recent examples include GANs, AlphaZero and the AlphaStar league. However, multi-agent learning can be extremely difficult to predict and control. Learning dynamics even in simple games can yield chaotic behavior. In this paper, we present basic \emph{mechanism design} tools for constructing games with predictable and controllable dynamics. We show that arbitrarily large and complex network games, encoding both cooperation (team play) and competition (zero-sum interaction), exhibit conservation laws when agents use the standard regret-minimizing dynamics known as Follow-the-Regularized-Leader. These laws persist when different agents use different dynamics and encode long-range correlations between agents' behavior, even though the agents may not interact directly. Moreover, we provide sufficient conditions under which the dynamics have multiple, linearly independent, conservation laws. Increasing the number of conservation laws results in more predictable dynamics, eventually making chaotic behavior formally impossible in some cases.

Michihiro Yasunaga · Percy Liang

[ Virtual ]

We consider the problem of learning to repair programs from diagnostic feedback (e.g., compiler error messages). Program repair is challenging for two reasons: First, it requires reasoning and tracking symbols across source code and diagnostic feedback. Second, labeled datasets available for program repair are relatively small. In this work, we propose novel solutions to these two challenges. First, we introduce a program-feedback graph, which connects symbols relevant to program repair in source code and diagnostic feedback, and then apply a graph neural network on top to model the reasoning process. Second, we present a self-supervised learning paradigm for program repair that leverages unlabeled programs available online to create a large amount of extra program repair examples, which we use to pre-train our models. We evaluate our proposed approach on two applications: correcting introductory programming assignments (DeepFix dataset) and correcting the outputs of program synthesis (SPoC dataset). Our final system, DrRepair, significantly outperforms prior work, achieving 68.2\% full repair rate on DeepFix (+22.9\% over the prior best), and 48.4\% synthesis success rate on SPoC (+3.7\% over the prior best).

Akifumi Wachi · Yanan Sui

[ Virtual ]

Safe reinforcement learning has been a promising approach for optimizing the policy of an agent that operates in safety-critical applications. In this paper, we propose an algorithm, SNO-MDP, that explores and optimizes Markov decision processes under unknown safety constraints. Specifically, we take a step-wise approach for optimizing safety and cumulative reward. In our method, the agent first learns safety constraints by expanding the safe region, and then optimizes the cumulative reward in the certified safe region. We provide theoretical guarantees on both the satisfaction of the safety constraint and the near-optimality of the cumulative reward under proper regularity assumptions. In our experiments, we demonstrate the effectiveness of SNO-MDP through two experiments: one uses a synthetic data in a new, openly-available environment named GP-Safety-Gym, and the other simulates Mars surface exploration by using real observation data.

Wuyang Chen · Zhiding Yu · Zhangyang “Atlas” Wang · Anima Anandkumar

Models trained on synthetic images often face degraded generalization to real data. As a convention, these models are often initialized with ImageNet pretrained representation. Yet the role of ImageNet knowledge is seldom discussed despite common practices that leverage this knowledge to maintain the generalization ability. An example is the careful hand-tuning of early stopping and layer-wise learning rates, which is shown to improve synthetic-to-real generalization but is also laborious and heuristic. In this work, we explicitly encourage the synthetically trained model to maintain similar representations with the ImageNet pretrained model, and propose a \textit{learning-to-optimize (L2O)} strategy to automate the selection of layer-wise learning rates. We demonstrate that the proposed framework can significantly improve the synthetic-to-real generalization performance without seeing and training on real data, while also benefiting downstream tasks such as domain adaptation. Code is available at: https://github.com/NVlabs/ASG.

Inseop Chung · SeongUk Park · Jangho Kim · NOJUN KWAK

Feature maps contain rich information about image intensity and spatial correlation. However, previous online knowledge distillation methods only utilize the class probabilities. Thus in this paper, we propose an online knowledge distillation method that transfers not only the knowledge of the class probabilities but also that of the feature map using the adversarial training framework. We train multiple networks simultaneously by employing discriminators to distinguish the feature map distributions of different networks. Each network has its corresponding discriminator which discriminates the feature map from its own as fake while classifying that of the other network as real. By training a network to fool the corresponding discriminator, it can learn the other network's feature map distribution. We show that our method performs better than the conventional direct alignment method such as L1 and is more suitable for online distillation. Also, we propose a novel cyclic learning scheme for training more than two networks together. We have applied our method to various network architectures on the classification task and discovered a significant improvement of performance especially in the case of training a pair of a small network and a large one.

Yuko Kuroki · Atsushi Miyauchi · Junya Honda · Masashi Sugiyama

\emph{Dense subgraph discovery} aims to find a dense component in edge-weighted graphs. This is a fundamental graph-mining task with a variety of applications and thus has received much attention recently. Although most existing methods assume that each individual edge weight is easily obtained, such an assumption is not necessarily valid in practice. In this paper, we introduce a novel learning problem for dense subgraph discovery in which a learner queries edge subsets rather than only single edges and observes a noisy sum of edge weights in a queried subset. For this problem, we first propose a polynomial-time algorithm that obtains a nearly-optimal solution with high probability. Moreover, to deal with large-sized graphs, we design a more scalable algorithm with a theoretical guarantee. Computational experiments using real-world graphs demonstrate the effectiveness of our algorithms.

Zhiyu Yao · Yunbo Wang · Mingsheng Long · Jianmin Wang

This paper explores a new research problem of unsupervised transfer learning across multiple spatiotemporal prediction tasks. Unlike most existing transfer learning methods that focus on fixing the discrepancy between supervised tasks, we study how to transfer knowledge from a zoo of unsupervisedly learned models towards another predictive network. Our motivation is that models from different sources are expected to understand the complex spatiotemporal dynamics from different perspectives, thereby effectively supplementing the new task, even if the task has sufficient training samples. Technically, we propose a differentiable framework named transferable memory. It adaptively distills knowledge from a bank of memory states of multiple pretrained RNNs, and applies it to the target network via a novel recurrent structure called the Transferable Memory Unit (TMU). Compared with finetuning, our approach yields significant improvements on three benchmarks for spatiotemporal prediction, and benefits the target task even from less relevant pretext ones.


Town Hall Meeting Thu 16 Jul 02:00 p.m.  

The townhall meeting is open to all registered attendees of ICML’20 and is an opportunity to connect, ask questions and provide feedback to the ICML president, board, ICML’20 and ’21 general and program chairs. It will start with an overview summarizing this year’s effort, plans for next year, and then an open exchange - questions/feedback can be typed in chat or by raising a hand on Zoom with live responses.


Poster Session 41 Thu 16 Jul 03:00 p.m.  

Fabian Pedregosa · Damien Scieur

[ Virtual ]

We develop a framework for the average-case analysis of random quadratic problems and derive algorithms that are optimal under this analysis. This yields a new class of methods that achieve acceleration given a model of the Hessian's eigenvalue distribution. We develop explicit algorithms for the uniform, Marchenko-Pastur, and exponential distributions. These methods are momentum-based algorithms, whose hyper-parameters can be estimated without knowledge of the Hessian's smallest singular value, in contrast with classical accelerated methods like Nesterov acceleration and Polyak momentum. Through empirical benchmarks on quadratic and logistic regression problems, we identify regimes in which the the proposed methods improve over classical (worst-case) accelerated methods.

Florence Regol · Soumyasundar Pal · Yingxue Zhang · Mark Coates

[ Virtual ]

Node classification in attributed graphs is an important task in multiple practical settings, but it can often be difficult or expensive to obtain labels. Active learning can improve the achieved classification performance for a given budget on the number of queried labels. The best existing methods are based on graph neural networks, but they often perform poorly unless a sizeable validation set of labelled nodes is available in order to choose good hyperparameters. We propose a novel graph-based active learning algorithm for the task of node classification in attributed graphs; our algorithm uses graph cognizant logistic regression, equivalent to a linearized graph-convolutional neural network (GCN), for the prediction phase and maximizes the expected error reduction in the query phase. To reduce the delay experienced by a labeller interacting with the system, we derive a preemptive querying system that calculates a new query during the labelling process, and to address the setting where learning starts with almost no labelled data, we also develop a hybrid algorithm that performs adaptive model averaging of label propagation and linearized GCN inference. We conduct experiments on five public benchmark datasets, demonstrating a significant improvement over state-of-the-art approaches and illustrate the practical value of the method …

YUREN MAO · Weiwei Liu · Xuemin Lin

[ Virtual ]

Adversarial Multi-task Representation Learning (AMTRL) methods are able to boost the performance of Multi-task Representation Learning (MTRL) models. However, the theoretical mechanism behind AMTRL is less investigated. To fill this gap, we study the generalization error bound of AMTRL through the lens of Lagrangian duality . Based on the duality, we proposed an novel adaptive AMTRL algorithm which improves the performance of original AMTRL methods. The extensive experiments back up our theoretical analysis and validate the superiority of our proposed algorithm.

Juntang Zhuang · Nicha Dvornek · Xiaoxiao Li · Sekhar Tatikonda · Xenophon Papademetris · James Duncan

[ Virtual ]

The empirical performance of neural ordinary differential equations (NODEs) is significantly inferior to discrete-layer models on benchmark tasks (e.g. image classification). We demonstrate an explanation is the inaccuracy of existing gradient estimation methods: the adjoint method has numerical errors in reverse-mode integration; the naive method suffers from a redundantly deep computation graph. We propose the Adaptive Checkpoint Adjoint (ACA) method: ACA applies a trajectory checkpoint strategy which records the forward- mode trajectory as the reverse-mode trajectory to guarantee accuracy; ACA deletes redundant components for shallow computation graphs; and ACA supports adaptive solvers. On image classification tasks, compared with the adjoint and naive method, ACA achieves half the error rate in half the training time; NODE trained with ACA outperforms ResNet in both accuracy and test-retest reliability. On time-series modeling, ACA outperforms competing methods. Furthermore, NODE with ACA can incorporate physical knowledge to achieve better accuracy.

Tianju Xue · Alex Beatson · Sigrid Adriaenssens · Ryan P. Adams

[ Virtual ]

Optimizing the parameters of partial differential equations (PDEs), i.e., PDE-constrained optimization (PDE-CO), allows us to model natural systems from observations or perform rational design of structures with complicated mechanical, thermal, or electromagnetic properties. However, PDE-CO is often computationally prohibitive due to the need to solve the PDE---typically via finite element analysis (FEA)---at each step of the optimization procedure. In this paper we propose amortized finite element analysis (AmorFEA), in which a neural network learns to produce accurate PDE solutions, while preserving many of the advantages of traditional finite element methods. This network is trained to directly minimize the potential energy from which the PDE and finite element method are derived, avoiding the need to generate costly supervised training data by solving PDEs with traditional FEA. As FEA is a variational procedure, AmorFEA is a direct analogue to popular amortized inference approaches in latent variable models, with the finite element basis acting as the variational family. AmorFEA can perform PDE-CO without the need to repeatedly solve the associated PDE, accelerating optimization when compared to a traditional workflow using FEA and the adjoint method.

Jiabao Lei · Kui Jia

[ Virtual ]

This paper studies a problem of learning surface mesh via implicit functions in an emerging field of deep learning surface reconstruction, where implicit functions are popularly implemented as multi-layer perceptrons (MLPs) with rectified linear units (ReLU). To achieve meshing from the learned implicit functions, existing methods adopt the de-facto standard algorithm of marching cubes; while promising, they suffer from loss of precision learned in the MLPs, due to the discretization nature of marching cubes. Motivated by the knowledge that a ReLU based MLP partitions its input space into a number of linear regions, we identify from these regions analytic cells and faces that are associated with zero-level isosurface of the implicit function, and characterize the conditions under which the identified faces are guaranteed to connect and form a closed, piecewise planar surface. We propose a naturally parallelizable algorithm of analytic marching to exactly recover the mesh captured by a learned MLP. Experiments on deep learning mesh reconstruction verify the advantages of our algorithm over existing ones.

Thibaut Vidal · Maximilian Schiffer

[ Virtual ]

The use of machine learning algorithms in finance, medicine, and criminal justice can deeply impact human lives. As a consequence, research into interpretable machine learning has rapidly grown in an attempt to better control and fix possible sources of mistakes and biases. Tree ensembles, in particular, offer a good prediction quality in various domains, but the concurrent use of multiple trees reduces the interpretability of the ensemble. Against this background, we study born-again tree ensembles, i.e., the process of constructing a single decision tree of minimum size that reproduces the exact same behavior as a given tree ensemble in its entire feature space. To find such a tree, we develop a dynamic-programming based algorithm that exploits sophisticated pruning and bounding rules to reduce the number of recursive calls. This algorithm generates optimal born-again trees for many datasets of practical interest, leading to classifiers which are typically simpler and more interpretable without any other form of compromise.

Huang Hengguan · Fuzhao Xue · Hao Wang · Ye Wang

[ Virtual ]

Lying at the core of human intelligence, relational thinking is characterized by initially relying on innumerable unconscious percepts pertaining to relations between new sensory signals and prior knowledge, consequently becoming a recognizable concept or object through coupling and transformation of these percepts. Such mental processes are difficult to model in real-world problems such as in conversational automatic speech recognition (ASR), as the percepts (if they are modelled as graphs indicating relationships among utterances) are supposed to be innumerable and not directly observable. In this paper, we present a Bayesian nonparametric deep learning method called deep graph random process (DGP) that can generate an infinite number of probabilistic graphs representing percepts. We further provide a closed-form solution for coupling and transformation of these percept graphs for acoustic modeling. Our approach is able to successfully infer relations among utterances without using any relational data during training. Experimental evaluations on ASR tasks including CHiME-2 and CHiME-5 demonstrate the effectiveness and benefits of our method.

Ting Chen · Lala Li · Yizhou Sun

[ Virtual ]

Embedding layers are commonly used to map discrete symbols into continuous embedding vectors that reflect their semantic meanings. Despite their effectiveness, the number of parameters in an embedding layer increases linearly with the number of symbols and poses a critical challenge on memory and storage constraints. In this work, we propose a generic and end-to-end learnable compression framework termed differentiable product quantization (DPQ). We present two instantiations of DPQ that leverage different approximation techniques to enable differentiability in end-to-end learning. Our method can readily serve as a drop-in alternative for any existing embedding layer. Empirically, DPQ offers significant compression ratios (14-238X) at negligible or no performance cost on 10 datasets across three different language tasks.

Farzan Farnia · Asuman Ozdaglar

[ Virtual ]

Generative adversarial networks (GANs) represent a zero-sum game between two machine players, a generator and a discriminator, designed to learn the distribution of data. While GANs have achieved state-of-the-art performance in several benchmark learning tasks, GAN minimax optimization still poses great theoretical and empirical challenges. GANs trained using first-order optimization methods commonly fail to converge to a stable solution where the players cannot improve their objective, i.e., the Nash equilibrium of the underlying game. Such issues raise the question of the existence of Nash equilibria in GAN zero-sum games. In this work, we show through theoretical and numerical results that indeed GAN zero-sum games may have no Nash equilibria. To characterize an equilibrium notion applicable to GANs, we consider the equilibrium of a new zero-sum game with an objective function given by a proximal operator applied to the original objective, a solution we call the proximal equilibrium. Unlike the Nash equilibrium, the proximal equilibrium captures the sequential nature of GANs, in which the generator moves first followed by the discriminator. We prove that the optimal generative model in Wasserstein GAN problems provides a proximal equilibrium. Inspired by these results, we propose a new approach, which we call proximal training, for …

Rares-Darius Buhai · Yoni Halpern · Yoon Kim · Andrej Risteski · David Sontag

[ Virtual ]

One of the most surprising and exciting discoveries in supervised learning was the benefit of overparameterization (i.e. training a very large model) to improving the optimization landscape of a problem, with minimal effect on statistical performance (i.e. generalization). In contrast, unsupervised settings have been under-explored, despite the fact that it was observed that overparameterization can be helpful as early as Dasgupta & Schulman (2007). We perform an empirical study of different aspects of overparameterization in unsupervised learning of latent variable models via synthetic and semi-synthetic experiments. We discuss benefits to different metrics of success (recovering the parameters of the ground-truth model, held-out log-likelihood), sensitivity to variations of the training algorithm, and behavior as the amount of overparameterization increases. We find that across a variety of models (noisy-OR networks, sparse coding, probabilistic context-free grammars) and training algorithms (variational inference, alternating minimization, expectation-maximization), overparameterization can significantly increase the number of ground truth latent variables recovered.

Amit Dhurandhar · Karthikeyan Shanmugam · Ronny Luss

[ Virtual ]

There has been recent interest in improving performance of simple models for multiple reasons such as interpretability, robust learning from small data, deployment in memory constrained settings as well as environmental considerations. In this paper, we propose a novel method SRatio that can utilize information from high performing complex models (viz. deep neural networks, boosted trees, random forests) to reweight a training dataset for a potentially low performing simple model of much lower complexity such as a decision tree or a shallow network enhancing its performance. Our method also leverages the per sample hardness estimate of the simple model which is not the case with the prior works which primarily consider the complex model's confidences/predictions and is thus conceptually novel. Moreover, we generalize and formalize the concept of attaching probes to intermediate layers of a neural network to other commonly used classifiers and incorporate this into our method. The benefit of these contributions is witnessed in the experiments where on 6 UCI datasets and CIFAR-10 we outperform competitors in a majority (16 out of 27) of the cases and tie for best performance in the remaining cases. In fact, in a couple of cases, we even approach the complex model's …

Songzhu Zheng · Pengxiang Wu · Aman Goswami · Mayank Goswami · Dimitris Metaxas · Chao Chen

[ Virtual ]

To collect large scale annotated data, it is inevitable to introduce label noise, i.e., incorrect class labels. To be robust against label noise, many successful methods rely on the noisy classifiers (i.e., models trained on the noisy training data) to determine whether a label is trustworthy. However, it remains unknown why this heuristic works well in practice. In this paper, we provide the first theoretical explanation for these methods. We prove that the prediction of a noisy classifier can indeed be a good indicator of whether the label of a training data is clean. Based on the theoretical result, we propose a novel algorithm that corrects the labels based on the noisy classifier prediction. The corrected labels are consistent with the true Bayesian optimal classifier with high probability. We incorporate our label correction algorithm into the training of deep neural networks and train models that achieve superior testing performance on multiple public datasets.

Joon Kim · Jiahao Chen · Ameet Talwalkar

[ Virtual ]

Group fairness, a class of fairness notions that measure how different groups of individuals are treated differently according to their protected attributes, has been shown to conflict with one another, often with a necessary cost in loss of model's predictive performance. We propose a general diagnostic that enables systematic characterization of these trade-offs in group fairness. We observe that the majority of group fairness notions can be expressed via the fairness-confusion tensor, which is the confusion matrix split according to the protected attribute values. We frame several optimization problems that directly optimize both accuracy and fairness objectives over the elements of this tensor, which yield a general perspective for understanding multiple trade-offs including group fairness incompatibilities. It also suggests an alternate post-processing method for designing fair classifiers. On synthetic and real datasets, we demonstrate the use cases of our diagnostic, particularly on understanding the trade-off landscape between accuracy and fairness.

Yuji Roh · Kangwook Lee · Steven Whang · Changho Suh

[ Virtual ]

Trustworthy AI is a critical issue in machine learning where, in addition to training a model that is accurate, one must consider both fair and robust training in the presence of data bias and poisoning. However, the existing model fairness techniques mistakenly view poisoned data as an additional bias to be fixed, resulting in severe performance degradation. To address this problem, we propose FR-Train, which holistically performs fair and robust model training. We provide a mutual information-based interpretation of an existing adversarial training-based fairness-only method, and apply this idea to architect an additional discriminator that can identify poisoned data using a clean validation set and reduce its influence. In our experiments, FR-Train shows almost no decrease in fairness and accuracy in the presence of data poisoning by both mitigating the bias and defending against poisoning. We also demonstrate how to construct clean validation sets using crowdsourcing, and release new benchmark datasets.

Ankit Raj · Yoram Bresler · Bo Li

[ Virtual ]

Deep-learning-based methods for various applications have been shown vulnerable to adversarial examples. Here we address the use of deep-learning networks as inverse problem solvers, which has generated much excitement and even adoption efforts by the main equipment vendors for medical imaging including computed tomography (CT) and MRI. However, the recent demonstration that such networks suffer from a similar vulnerability to adversarial attacks potentially undermines their future. We propose to modify the training strategy of end-to-end deep-learning-based inverse problem solvers to improve robustness. To this end, we introduce an auxiliary net-work to generate adversarial examples, which is used in a min-max formulation to build robust image reconstruction networks. Theoretically, we argue that for such inverse problem solvers, one should analyze and study the effect of adversaries in the measurement-space, instead of in the signal-space used in previous work. We show for a linear reconstruction scheme that our min-max formulation results in a singular-value filter regularized solution, which suppresses the effect of adversarial examples. Numerical experiments using the proposed min-max scheme confirm convergence to this solution. We complement the theory by experiments on non-linear Compressive Sensing(CS) reconstruction by a deep neural network on two standard datasets, and, using anonymized clinical data, on …

Xiao Shi Huang · Felipe Perez · Jimmy Ba · Maksims Volkovs

[ Virtual ]

The Transformer architecture has achieved considerable success recently; the key component of the Transformer is the attention layer that enables the model to focus on important regions within an input sequence. Gradient optimization with attention layers can be notoriously difficult requiring tricks such as learning rate warmup to prevent divergence. As Transformer models are becoming larger and more expensive to train, recent research has focused on understanding and improving optimization in these architectures. In this work our contributions are two-fold: we first investigate and empirically validate the source of optimization problems in the encoder-decoder Transformer architecture; we then propose a new weight initialization scheme with theoretical justification, that enables training without warmup or layer normalization. Empirical results on public machine translation benchmarks show that our approach achieves leading accuracy, allowing to train deep Transformer models with 200 layers in both encoder and decoder (over 1000 attention/MLP blocks) without difficulty. Code for this work is available here:~\url{https://github.com/layer6ai-labs/T-Fixup}.

Dylan Peifer · Michael Stillman · Daniel Halpern-Leistner

[ Virtual ]

Studying the set of exact solutions of a system of polynomial equations largely depends on a single iterative algorithm, known as Buchberger’s algorithm. Optimized versions of this algorithm are crucial for many computer algebra systems (e.g., Mathematica, Maple, Sage). We introduce a new approach to Buchberger’s algorithm that uses reinforcement learning agents to perform S-pair selection, a key step in the algorithm. We then study how the difficulty of the problem depends on the choices of domain and distribution of polynomials, about which little is known. Finally, we train a policy model using proximal policy optimization (PPO) to learn S-pair selection strategies for random systems of binomial equations. In certain domains, the trained model outperforms state-of-the-art selection heuristics in total number of polynomial additions performed, which provides a proof-of-concept that recent developments in machine learning have the potential to improve performance of algorithms in symbolic computation.

Hanrui Zhang · Vincent Conitzer

[ Virtual ]

We study problems where a learner aims to learn the valuations of an agent by observing which goods he buys under varying price vectors. More specifically, we consider the case of a $k$-demand agent, whose valuation over the goods is additive when receiving up to $k$ goods, but who has no interest in receiving more than $k$ goods. We settle the query complexity for the active-learning (preference elicitation) version, where the learner chooses the prices to post, by giving a {\em biased binary search} algorithm, generalizing the classical binary search procedure. We complement our query complexity upper bounds by lower bounds that match up to lower-order terms. We also study the passive-learning version in which the learner does not control the prices, and instead they are sampled from some distribution. We show that in the PAC model for passive learning, any {\em empirical risk minimizer} has a sample complexity that is optimal up to a factor of $\widetilde{O}(k)$.
Daoli Zhu · Lei Zhao

[ Virtual ]

Linear constrained convex programming (LCCP) has many practical applications, including support vector machine (SVM) and machine learning portfolio (MLP) problems. We propose the randomized primal-dual coordinate (RPDC) method, a randomized coordinate extension of the first-order primal-dual method by Cohen and Zhu, 1984 and Zhao and Zhu, 2019, to solve LCCP. We randomly choose a block of variables based on the uniform distribution and apply linearization and a Bregman-like function (core function) to the selected block to obtain simple parallel primal-dual decomposition for LCCP. We establish almost surely convergence and expected O(1/t) convergence rate. Under global strong metric subregularity, we establish the linear convergence of RPDC. Finally, we discuss the implementation details of RPDC and present numerical experiments on SVM and MLP problems to verify the linear convergence.

Giuseppe Vietri · Grace Tian · Mark Bun · Thomas Steinke · Steven Wu

[ Virtual ]

We present three new algorithms for constructing differentially private synthetic data---a sanitized version of a sensitive dataset that approximately preserves the answers to a large collection of statistical queries. All three algorithms are \emph{oracle-efficient} in the sense that they are computationally efficient when given access to an optimization oracle. Such an oracle can be implemented using many existing (non-private) optimization tools such as sophisticated integer program solvers. While the accuracy of the synthetic data is contingent on the oracle's optimization performance, the algorithms satisfy differential privacy even in the worst case. For all three algorithms, we provide theoretical guarantees for both accuracy and privacy. Through empirical evaluation, we demonstrate that our methods scale well with both the dimensionality of the data and the number of queries. Compared to the state-of-the-art method High-Dimensional Matrix Mechanism (McKenna et al.~VLDB 2018), our algorithms provide better accuracy in the large workload and high privacy regime (corresponding to low privacy loss $\eps$).
Zhimei Li · Yaowu Zhang

[ Virtual ]

In this work, we propose a robust test for the multivariate two-sample problem through projective ensemble, which is a generalization of the Cramer-von Mises statistic. The proposed test statistic has a simple closed-form expression without any tuning parameters involved, it is easy to implement can be computed in quadratic time. Moreover, our test is insensitive to the dimension and consistent against all fixed alternatives, it does not require the moment assumption and is robust to the presence of outliers. We study the asymptotic behaviors of the test statistic under the null and two kinds of alternative hypotheses. We also suggest a permutation procedure to approximate critical values and employ its consistency. We demonstrate the effectiveness of our test through extensive simulation studies and a real data application.

Kimon Fountoulakis · Di Wang · Shenghao Yang

[ Virtual ]

Local graph clustering and the closely related seed set expansion problem are primitives on graphs that are central to a wide range of analytic and learning tasks such as local clustering, community detection, semi-supervised learning, nodes ranking and feature inference. Prior work on local graph clustering mostly falls into two categories with numerical and combinatorial roots respectively, in this work we draw inspiration from both fields and propose a family of convex optimization formulations based on the idea of diffusion with $p$-norm network flow for $p\in (1,\infty)$. In the context of local clustering, we characterize the optimal solutions for these optimization problems and show their usefulness in finding low conductance cuts around input seed set. In particular, we achieve quadratic approximation of conductance in the case of $p=2$ similar to the Cheeger-type bounds of spectral methods, constant factor approximation when $p\rightarrow\infty$ similar to max-flow based methods, and a smooth transition for general $p$ values in between. Thus, our optimization formulation can be viewed as bridging the numerical and combinatorial approaches, and we can achieve the best of both worlds in terms of speed and noise robustness. We show that the proposed problem can be solved in strongly local running time …
Rachel Cummings · Sara Krehbiel · Yuliia Lut · Wanrong Zhang

[ Virtual ]

The change-point detection problem seeks to identify distributional changes in streams of data. Increasingly, tools for change-point detection are applied in settings where data may be highly sensitive and formal privacy guarantees are required, such as identifying disease outbreaks based on hospital records, or IoT devices detecting activity within a home. Differential privacy has emerged as a powerful technique for enabling data analysis while preventing information leakage about individuals. Much of the prior work on change-point detection---including the only private algorithms for this problem---requires complete knowledge of the pre-change and post-change distributions, which is an unrealistic assumption for many practical applications of interest. This work develops differentially private algorithms for solving the change-point detection problem when the data distributions are unknown. Additionally, the data may be sampled from distributions that change smoothly over time, rather than fixed pre-change and post-change distributions. We apply our algorithms to detect changes in the linear trends of such data streams. Finally, we also provide experimental results to empirically validate the performance of our algorithms.

Brahma Pavse · Ishan Durugkar · Josiah Hanna · Peter Stone

[ Virtual ]

Temporal difference (TD) learning is one of the main foundations of modern reinforcement learning. This paper studies the use of TD(0), a canonical TD algorithm, to estimate the value function of a given policy from a batch of data. In this batch setting, we show that TD(0) may converge to an inaccurate value function because the update following an action is weighted according to the number of times that action occurred in the batch -- not the true probability of the action under the given policy. To address this limitation, we introduce \textit{policy sampling error corrected}-TD(0) (PSEC-TD(0)). PSEC-TD(0) first estimates the empirical distribution of actions in each state in the batch and then uses importance sampling to correct for the mismatch between the empirical weighting and the correct weighting for updates following each action. We refine the concept of a certainty-equivalence estimate and argue that PSEC-TD(0) is a more data efficient estimator than TD(0) for a fixed batch of data. Finally, we conduct an empirical evaluation of PSEC-TD(0) on three batch value function learning tasks, with a hyperparameter sensitivity analysis, and show that PSEC-TD(0) produces value function estimates with lower mean squared error than TD(0).

Yuan Deng · Sébastien Lahaie · Vahab Mirrokni

[ Virtual ]

Motivated by the repeated sale of online ads via auctions, optimal pricing in repeated auctions has attracted a large body of research. While dynamic mechanisms offer powerful techniques to improve on both revenue and efficiency by optimizing auctions across different items, their reliance on exact distributional information of buyers' valuations (present and future) limits their use in practice. In this paper, we propose robust dynamic mechanism design. We develop a new framework to design dynamic mechanisms that are robust to both estimation errors in value distributions and strategic behavior. We apply the framework in learning environments, leading to the first policy that achieves provably low regret against the optimal dynamic mechanism in contextual auctions, where the dynamic benchmark has full and accurate distributional information.

Chen Dan · Yuting Wei · Pradeep Ravikumar

[ Virtual ]

Adversarial robustness has become a fundamental requirement in modern machine learning applications. Yet, there has been surprisingly little statistical understanding so far. In this paper, we provide the first result of the \emph{optimal} minimax guarantees for the excess risk for adversarially robust classification, under Gaussian mixture model proposed by \cite{schmidt2018adversarially}. The results are stated in terms of the \emph{Adversarial Signal-to-Noise Ratio (AdvSNR)}, which generalizes a similar notion for standard linear classification to the adversarial setting. For the Gaussian mixtures with AdvSNR value of $r$, we prove an excess risk lower bound of order $\Theta(e^{-(\frac{1}{2}+o(1)) r^2} \frac{d}{n})$ and design a computationally efficient estimator that achieves this optimal rate. Our results built upon minimal assumptions while cover a wide spectrum of adversarial perturbations including $\ell_p$ balls for any $p \ge 1$.
Brian Zhang · Tuomas Sandholm

[ Virtual ]

Computational equilibrium finding in large zero-sum extensive-form imperfect-information games has led to significant recent AI breakthroughs. The fastest algorithms for the problem are new forms of counterfactual regret minimization (Brown & Sandholm, 2019). In this paper we present a totally different approach to the problem, which is competitive and often orders of magnitude better than the prior state of the art. The equilibrium-finding problem can be formulated as a linear program (LP) (Koller et al., 1994), but solving it as an LP has not been scalable due to the memory requirements of LP solvers, which can often be quadratically worse than CFR-based algorithms. We give an efficient practical algorithm that factors a large payoff matrix into a product of two matrices that are typically dramatically sparser. This allows us to express the equilibrium-finding problem as a linear program with size only a logarithmic factor worse than CFR, and thus allows linear program solvers to run on such games. With experiments on poker endgames, we demonstrate in practice, for the first time, that modern linear program solvers are competitive against even game-specific modern variants of CFR in solving large extensive-form games, and can be used to compute exact solutions unlike iterative …

Krzysztof Choromanski · David Cheikhi · Jared Quincy Davis · Valerii Likhosherstov · Achille Nazaret · Achraf Bahamou · Xingyou Song · Mrugank Akarte · Jack Parker-Holder · Jacob Bergquist · Yuan Gao · Aldo Pacchiano · Tamas Sarlos · Adrian Weller · Vikas Sindhwani

[ Virtual ]

We present a new class of stochastic, geometrically-driven optimization algorithms on the orthogonal group O(d) and naturally reductive homogeneous manifolds obtained from the action of the rotation group SO(d). We theoretically and experimentally demonstrate that our methods can be applied in various fields of machine learning including deep, convolutional and recurrent neural networks, reinforcement learning, normalizing flows and metric learning. We show an intriguing connection between efficient stochastic optimization on the orthogonal group and graph theory (e.g. matching problem, partition functions over graphs, graph-coloring). We leverage the theory of Lie groups and provide theoretical results for the designed class of algorithms. We demonstrate broad applicability of our methods by showing strong performance on the seemingly unrelated tasks of learning world models to obtain stable policies for the most difficult Humanoid agent from OpenAI Gym and improving convolutional neural networks.

Xin Su · Yizhou Jiang · Shangqi Guo · Feng Chen

[ Virtual ]

Beyond machine learning's success in the specific tasks, research for learning multiple tasks simultaneously is referred to as multi-task learning. However, existing multi-task learning needs manual definition of tasks and manual task annotation. A crucial problem for advanced intelligence is how to understand the human task concept using basic input-output pairs. Without task definition, samples from multiple tasks are mixed together and result in a confusing mapping challenge. We propose Confusing Supervised Learning (CSL) that takes these confusing samples and extracts task concepts by differentiating between these samples. We theoretically proved the feasibility of the CSL framework and designed an iterative algorithm to distinguish between tasks. The experiments demonstrate that our CSL methods could achieve a human-like task understanding without task labeling in multi-function regression problems and multi-task recognition problems.

Peisong Wang · Qiang Chen · Xiangyu He · Jian Cheng

[ Virtual ]

Network quantization is essential for deploying deep models to IoT devices due to its high efficiency. Most existing quantization approaches rely on the full training datasets and the time-consuming fine-tuning to retain accuracy. Post-training quantization does not have these problems, however, it has mainly been shown effective for 8-bit quantization due to the simple optimization strategy. In this paper, we propose a Bit-Split and Stitching framework (Bit-split) for lower-bit post-training quantization with minimal accuracy degradation. The proposed framework is validated on a variety of computer vision tasks, including image classification, object detection, instance segmentation, with various network architectures. Specifically, Bit-split can achieve near-original model performance even when quantizing FP32 models to INT3 without fine-tuning.

Damien Scieur · Fabian Pedregosa

[ Virtual ]

Polyak momentum (PM), also known as the heavy-ball method, is a widely used optimization method that enjoys an asymptotic optimal worst-case complexity on quadratic objectives. However, its remarkable empirical success is not fully explained by this optimality, as the worst-case analysis --contrary to the average-case-- is not representative of the expected complexity of an algorithm. In this work we establish a novel link between PM and the average-case analysis. Our main contribution is to prove that \emph{any} optimal average-case method converges in the number of iterations to PM, under mild assumptions. This brings a new perspective on this classical method, showing that PM is asymptotically both worst-case and average-case optimal.

Micah Goldblum · Steven Reich · Liam Fowl · Renkun Ni · Valeriia Cherepanova · Tom Goldstein

[ Virtual ]

Meta-learning algorithms produce feature extractors which achieve state-of-the-art performance on few-shot classification. While the literature is rich with meta-learning methods, little is known about why the resulting feature extractors perform so well. We develop a better understanding of the underlying mechanics of meta-learning and the difference between models trained using meta-learning and models which are trained classically. In doing so, we introduce and verify several hypotheses for why meta-learned models perform better. Furthermore, we develop a regularizer which boosts the performance of standard training routines for few-shot classification. In many cases, our routine outperforms meta-learning while simultaneously running an order of magnitude faster.

Corinna Cortes · Giulia DeSalvo · Claudio Gentile · Mehryar Mohri · Ningshan Zhang

We present a new active learning algorithm that adaptively partitions the input space into a finite number of regions, and subsequently seeks a distinct predictor for each region, while actively requesting labels. We prove theoretical guarantees for both the generalization error and the label complexity of our algorithm, and analyze the number of regions defined by the algorithm under some mild assumptions. We also report the results of an extensive suite of experiments on several real-world datasets demonstrating substantial empirical benefits over existing single-region and non-adaptive region-based active learning baselines.

Yunhua Xiang · Noah Simon

Graphical modeling has been broadly useful for exploring the dependence structure among features in a dataset. However, the strength of graphical modeling hinges on our ability to encode and estimate conditional dependencies. In particular, commonly used measures such as partial correlation are only meaningful under strongly parametric (in this case, multivariate Gaussian) assumptions. These assumptions are unverifiable, and there is often little reason to believe they hold in practice. In this paper, we instead consider 3 non-parametric measures of conditional dependence. These measures are meaningful without structural assumptions on the multivariate distribution of the data. In addition, we show that for 2 of these measures there are simple, strong plug-in estimators that require only the estimation of a conditional mean. These plug-in estimators (1) are asymptotically linear and non-parametrically efficient, (2) allow incorporation of flexible machine learning techniques for conditional mean estimation, and (3) enable the construction of valid Wald-type confidence intervals. In addition, by leveraging the influence function of these estimators, one can obtain intervals with simultaneous coverage guarantees for all pairs of features.

Risheng Liu · Pan Mu · Xiaoming Yuan · Shangzhi Zeng · Jin Zhang

In recent years, a variety of gradient-based bi-level optimization methods have been developed for learning tasks. However, theoretical guarantees of these existing approaches often heavily rely on the simplification that for each fixed upper-level variable, the lower-level solution must be a singleton (a.k.a., Lower-Level Singleton, LLS). In this work, by formulating bi-level models from the optimistic viewpoint and aggregating hierarchical objective information, we establish Bi-level Descent Aggregation (BDA), a flexible and modularized algorithmic framework for bi-level programming. Theoretically, we derive a new methodology to prove the convergence of BDA without the LLS condition. Furthermore, we improve the convergence properties of conventional first-order bi-level schemes (under the LLS simplification) based on our proof recipe. Extensive experiments justify our theoretical results and demonstrate the superiority of the proposed BDA for different tasks, including hyper-parameter optimization and meta learning.

Bingcong Li · Lingda Wang · Georgios B. Giannakis

The variance reduction class of algorithms including the representative ones, SVRG and SARAH, have well documented merits for empirical risk minimization problems. However, they require grid search to tune parameters (step size and the number of iterations per inner loop) for optimal performance. This work introduces almost tune-free' SVRG and SARAH schemes equipped with i) Barzilai-Borwein (BB) step sizes; ii) averaging; and, iii) the inner loop length adjusted to the BB step sizes. In particular, SVRG, SARAH, and their BB variants are first reexamined through anestimate sequence' lens to enable new averaging methods that tighten their convergence rates theoretically, and improve their performance empirically when the step size or the inner loop length is chosen large. Then a simple yet effective means to adjust the number of iterations per inner loop is developed to enhance the merits of the proposed averaging schemes and BB step sizes. Numerical tests corroborate the proposed methods.

Brian Brubach · Darshan Chakrabarti · John P Dickerson · Samir Khuller · Aravind Srinivasan · Leonidas Tsepenekas
Clustering is a foundational problem in machine learning with numerous applications. As machine learning increases in ubiquity as a backend for automated systems, concerns about fairness arise. Much of the current literature on fairness deals with discrimination against protected classes in supervised learning (group fairness). We define a different notion of fair clustering wherein the probability that two points (or a community of points) become separated is bounded by an increasing function of their pairwise distance (or community diameter). We capture the situation where data points represent people who gain some benefit from being clustered together. Unfairness arises when certain points are deterministically separated, either arbitrarily or by someone who intends to harm them as in the case of gerrymandering election districts. In response, we formally define two new types of fairness in the clustering setting, pairwise fairness and community preservation. To explore the practicality of our fairness goals, we devise an approach for extending existing $k$-center algorithms to satisfy these fairness constraints. Analysis of this approach proves that reasonable approximations can be achieved while maintaining fairness. In experiments, we compare the effectiveness of our approach to classical $k$-center algorithms/heuristics and explore the tradeoff between optimal clustering and fairness.
Tianyu Wang · Cynthia Rudin
We study the bandit problem where the underlying expected reward is a Bounded Mean Oscillation (BMO) function. BMO functions are allowed to be discontinuous and unbounded, and are useful in modeling signals with singularities in the domain. We develop a toolset for BMO bandits, and provide an algorithm that can achieve poly-log $\delta$-regret -- a regret measured against an arm that is optimal after removing a $\delta$-sized portion of the arm space.
Shali Jiang · Henry Chai · Javier Gonzalez · Roman Garnett

Finite-horizon sequential experimental design (SED) arises naturally in many contexts, including hyperparameter tuning in machine learning among more traditional settings. Computing the optimal policy for such problems requires solving Bellman equations, which are generally intractable. Most existing work resorts to severely myopic approximations by limiting the decision horizon to only a single time-step, which can underweight exploration in favor of exploitation. We present BINOCULARS: Batch-Informed NOnmyopic Choices, Using Long-horizons for Adaptive, Rapid SED, a general framework for deriving efficient, nonmyopic approximations to the optimal experimental policy. Our key idea is simple and surprisingly effective: we first compute a one-step optimal batch of experiments, then select a single point from this batch to evaluate. We realize BINOCULARS for Bayesian optimization and Bayesian quadrature -- two notable example problems with radically different objectives -- and demonstrate that BINOCULARS significantly outperforms significantly outperforms myopic alternatives in real-world scenarios.

Evangelia Gergatsouli · Brendan Lucier · Christos Tzamos
In many practical applications, heuristic or approximation algorithms are used to efficiently solve the task at hand. However their solutions frequently do not satisfy natural monotonicity properties expected to hold in the optimum. In this work we develop algorithms that are able to restore monotonicity in the parameters of interest. Specifically, given oracle access to a possibly non monotone function, we provide an algorithm that restores monotonicity while degrading the expected value of the function by at most $\epsilon$. The number of queries required is at most logarithmic in $1/\epsilon$ and exponential in the number of parameters. We also give a lower bound showing that this exponential dependence is necessary. Finally, we obtain improved query complexity bounds for restoring the weaker property of $k$-marginal monotonicity. Under this property, every $k$-dimensional projection of the function is required to be monotone. The query complexity we obtain only scales exponentially with $k$ and is polynomial in the number of parameters.
Matthew Hoffman · Yian Ma

Variational inference (VI) and Markov chain Monte Carlo (MCMC) are approximate posterior inference algorithms that are often said to have complementary strengths, with VI being fast but biased and MCMC being slower but asymptotically unbiased. In this paper, we analyze gradient-based MCMC and VI procedures and find theoretical and empirical evidence that these procedures are not as different as one might think. In particular, a close examination of the Fokker-Planck equation that governs the Langevin dynamics (LD) MCMC procedure reveals that LD implicitly follows a gradient flow that corresponds to an VI procedure based on optimizing a nonparametric normalizing flow. The evolution under gradient descent of real-world VI approximations that use tractable, parametric flows can thus be seen as an approximation to the evolution of a population of LD-MCMC chains. This result suggests that the transient bias of LD (due to the Markov chain not having burned in) may track that of VI (due to the optimizer not having converged), up to differences due to VI’s asymptotic bias and parameter geometry. Empirically, we find that the transient biases of these algorithms (and their momentum-accelerated counterparts) do evolve similarly. This suggests that practitioners with a limited time budget may get more …

Jiaming Song · Stefano Ermon

Generative adversarial networks (GANs) variants approximately minimize divergences between the model and the data distribution using a discriminator. Wasserstein GANs (WGANs) enjoy superior empirical performance, however, unlike in f-GANs, the discriminator does not provide an estimate for the ratio between model and data densities, which is useful in applications such as inverse reinforcement learning. To overcome this limitation, we propose an new training objective where we additionally optimize over a set of importance weights over the generated samples. By suitably constraining the feasible set of importance weights, we obtain a family of objectives which includes and generalizes the original f-GAN and WGAN objectives. We show that a natural extension outperforms WGANs while providing density ratios as in f-GAN, and demonstrate empirical success on distribution modeling, density ratio estimation and image generation.

Mark Braverman · Xinyi Chen · Sham Kakade · Karthik Narasimhan · Cyril Zhang · Yi Zhang

Building accurate language models that capture meaningful long-term dependencies is a core challenge in natural language processing. Towards this end, we present a calibration-based approach to measure long-term discrepancies between a generative sequence model and the true distribution, and use these discrepancies to improve the model. Empirically, we show that state-of-the-art language models, including LSTMs and Transformers, are miscalibrated: the entropy rates of their generations drift dramatically upward over time. We then provide provable methods to mitigate this phenomenon. Furthermore, we show how this calibration-based approach can also be used to measure the amount of memory that language models use for prediction.

Sam Witty · Kenta Takatsu · David Jensen · Vikash Mansinghka

Latent confounders---unobserved variables that influence both treatment and outcome---can bias estimates of causal effects. In some cases, these confounders are shared across observations, e.g. all students in a school are influenced by the school's culture in addition to any educational interventions they receive individually. This paper shows how to model latent confounders that have this structure and thereby improve estimates of causal effects. The key innovations are a hierarchical Bayesian model, Gaussian processes with structured latent confounders (GP-SLC), and a Monte Carlo inference algorithm for this model based on elliptical slice sampling. GP-SLC provides principled Bayesian uncertainty estimates of individual treatment effect with minimal assumptions about the functional forms relating confounders, covariates, treatment, and outcomes. This paper also proves that, for linear functional forms, accounting for the structure in latent confounders is sufficient for asymptotically consistent estimates of causal effect. Finally, this paper shows GP-SLC is competitive with or more accurate than widely used causal inference techniques such as multi-level linear models and Bayesian additive regression trees. Benchmark datasets include the Infant Health and Development Program and a dataset showing the effect of changing temperatures on state-wide energy consumption across New England.

Pengyu Cheng · Weituo Hao · Shuyang Dai · Jiachang Liu · Zhe Gan · Lawrence Carin

There has been considerable recent interest in mutual information (MI) minimization for various machine learning tasks. However, estimating and minimizing MI in high-dimensional spaces remains a challenging problem, especially when only samples are accessible, rather than the underlying distribution forms. Previous works mainly focus on MI lower bound approximation, which is not applicable to MI minimization problems. In this paper, we propose a novel Contrastive Log-ratio Upper Bound (CLUB) of mutual information. We provide a theoretical analysis of the properties of CLUB and its variational approximation. Based on this upper bound, we introduce an accelerated MI minimization training scheme, that bridges MI minimization with negative sampling. Simulation studies on Gaussian distributions show that CLUB provides reliable estimates. Real-world MI minimization experiments, including domain adaptation and the information bottleneck, further demonstrate the effectiveness of the proposed method.

Prasad Chalasani · Jiefeng Chen · Amrita Roy Chowdhury · Xi Wu · Somesh Jha
We show new connections between adversarial learning and explainability for deep neural networks (DNNs). One form of explanation of the output of a neural network model in terms of its input features, is a vector of feature-attributions, which can be generated by various techniques such as Integrated Gradients (IG), DeepSHAP, LIME, and CXPlain. Two desirable characteristics of an attribution-based explanation are: (1) \textit{sparseness}: the attributions of irrelevant or weakly relevant features should be negligible, thus resulting in \textit{concise} explanations in terms of the significant features, and (2) \textit{stability}: it should not vary significantly within a small local neighborhood of the input. Our first contribution is a theoretical exploration of how these two properties (when using IG-based attributions) are related to adversarial training, for a class of 1-layer networks (which includes logistic regression models for binary and multi-class classification); for these networks we show that (a) adversarial training using an $\ell_\infty$-bounded adversary produces models with sparse attribution vectors, and (b) natural model-training while encouraging stable explanations (via an extra term in the loss function), is equivalent to adversarial training. Our second contribution is an empirical verification of phenomenon (a), which we show, somewhat surprisingly, occurs \textit{not only in 1-layer networks, but …
Harsh Satija · Philip Amortila · Joelle Pineau

Although Reinforcement Learning (RL) algorithms have found tremendous success in simulated domains, they often cannot directly be applied to physical systems, especially in cases where there are hard constraints to satisfy (e.g. on safety or resources). In standard RL, the agent is incentivized to explore any behavior as long as it maximizes rewards, but in the real world, undesired behavior can damage either the system or the agent in a way that breaks the learning process itself. In this work, we model the problem of learning with constraints as a Constrained Markov Decision Process and provide a new on-policy formulation for solving it. A key contribution of our approach is to translate cumulative cost constraints into state-based constraints. Through this, we define a safe policy improvement method which maximizes returns while ensuring that the constraints are satisfied at every step. We provide theoretical guarantees under which the agent converges while ensuring safety over the course of training. We also highlight the computational advantages of this approach. The effectiveness of our approach is demonstrated on safe navigation tasks and in safety-constrained versions of MuJoCo environments, with deep neural networks.

Louis-Pascal Xhonneux · Meng Qu · Jian Tang

This paper builds on the connection between graph neural networks and traditional dynamical systems. We propose continuous graph neural networks (CGNN), which generalise existing graph neural networks with discrete dynamics in that they can be viewed as a specific discretisation scheme. The key idea is how to characterise the continuous dynamics of node representations, i.e. the derivatives of node representations, w.r.t. time.Inspired by existing diffusion-based methods on graphs (e.g. PageRank and epidemic models on social networks), we define the derivatives as a combination of the current node representations,the representations of neighbors, and the initial values of the nodes. We propose and analyse two possible dynamics on graphs—including each dimension of node representations (a.k.a. the feature channel) change independently or interact with each other—both with theoretical justification. The proposed continuous graph neural net-works are robust to over-smoothing and hence allow us to build deeper networks, which in turn are able to capture the long-range dependencies between nodes. Experimental results on the task of node classification demonstrate the effectiveness of our proposed approach over competitive baselines.

Mingyuan Zhang · Harish Guruprasad Ramaswamy · Shivani Agarwal
The F-measure is a widely used performance measure for multi-label classification, where multiple labels can be active in an instance simultaneously (e.g. in image tagging, multiple tags can be active in any image). In particular, the F-measure explicitly balances recall (fraction of active labels predicted to be active) and precision (fraction of labels predicted to be active that are actually so), both of which are important in evaluating the overall performance of a multi-label classifier. As with most discrete prediction problems, however, directly optimizing the F-measure is computationally hard. In this paper, we explore the question of designing convex surrogate losses that are calibrated for the F-measure -- specifically, that have the property that minimizing the surrogate loss yields (in the limit of sufficient data) a Bayes optimal multi-label classifier for the F-measure. We show that the F-measure for an $s$-label problem, when viewed as a $2^s \times 2^s$ loss matrix, has rank at most $s^2+1$, and apply a result of Ramaswamy et al. (2014) to design a family of convex calibrated surrogates for the F-measure. The resulting surrogate risk minimization algorithms can be viewed as decomposing the multi-label F-measure learning problem into $s^2+1$ binary class probability estimation problems. We …
Yingyi Ma · Vignesh Ganapathiraman · Yaoliang Yu · Xinhua Zhang

Invariance (defined in a general sense) has been one of the most effective priors for representation learning. Direct factorization of parametric models is feasible only for a small range of invariances, while regularization approaches, despite improved generality, lead to nonconvex optimization. In this work, we develop a \emph{convex} representation learning algorithm for a variety of generalized invariances that can be modeled as semi-norms. Novel Euclidean embeddings are introduced for kernel representers in a semi-inner-product space, and approximation bounds are established. This allows invariant representations to be learned efficiently and effectively as confirmed in our experiments, along with accurate predictions.

Yuchen Lu · Soumye Singhal · Florian Strub · Aaron Courville · Olivier Pietquin

Supervised learning methods excel at capturing statistical properties of language when trained over large text corpora. Yet, these models often produce inconsistent outputs in goal-oriented language settings as they are not trained to complete the underlying task. Moreover, as soon as the agents are finetuned to maximize task completion, they suffer from the so-called language drift phenomenon: they slowly lose syntactic and semantic properties of language as they only focus on solving the task. In this paper, we propose a generic approach to counter language drift called Seeded iterated learning(SIL). We periodically refine a pretrained student agent by imitating data sampled from a newly generated teacher agent. At each time step, the teacher is created by copying the student agent, before being finetuned to maximize task completion.SIL does not require external syntactic constraint nor semantic knowledge, making it a valuable task-agnostic finetuning protocol. We evaluate SIL in a toy-setting Lewis Game, and then scale it up to the translation game with natural language. In both settings, SIL helps counter language drift as well as it improves the task completion compared to baselines.

Qianli Shen · Yan Li · Haoming Jiang · Zhaoran Wang · Tuo Zhao
Deep reinforcement learning (RL) has achieved great empirical successes in various domains. However, the large search space of neural networks requires a large amount of data, which makes the current RL algorithms not sample efficient. Motivated by the fact that many environments with continuous state space have smooth transitions, we propose to learn a smooth policy that behaves smoothly with respect to states. We develop a new framework --- \textbf{S}mooth \textbf{R}egularized \textbf{R}einforcement \textbf{L}earning ($\textbf{SR}^2\textbf{L}$), where the policy is trained with smoothness-inducing regularization. Such regularization effectively constrains the search space, and enforces smoothness in the learned policy. Moreover, our proposed framework can also improve the robustness of policy against measurement error in the state space, and can be naturally extended to distribubutionally robust setting. We apply the proposed framework to both on-policy (TRPO) and off-policy algorithm (DDPG). Through extensive experiments, we demonstrate that our method achieves improved sample efficiency and robustness.
Michal Lukasik · Srinadh Bhojanapalli · Aditya Menon · Sanjiv Kumar

Label smoothing is commonly used in training deep learning models, wherein one-hot training labels are mixed with uniform label vectors. Empirically, smoothing has been shown to improve both predictive performance and model calibration. In this paper, we study whether label smoothing is also effective as a means of coping with label noise. While label smoothing apparently amplifies this problem --- being equivalent to injecting symmetric noise to the labels --- we show how it relates to a general family of loss-correction techniques from the label noise literature. Building on this connection, we show that label smoothing is competitive with loss-correction under label noise. Further, we show that when distilling models from noisy data, label smoothing of the teacher is beneficial; this is in contrast to recent findings for noise-free problems, and sheds further light on settings where label smoothing is beneficial.

Jingyu Zhao · Feiqing Huang · Jia Lv · Yanjie Duan · Zhen Qin · Guodong Li · Guangjian Tian

The LSTM network was proposed to overcome the difficulty in learning long-term dependence, and has made significant advancements in applications. With its success and drawbacks in mind, this paper raises the question -do RNN and LSTM have long memory? We answer it partially by proving that RNN and LSTM do not have long memory from a statistical perspective. A new definition for long memory networks is further introduced, and it requires the model weights to decay at a polynomial rate. To verify our theory, we convert RNN and LSTM into long memory networks by making a minimal modification, and their superiority is illustrated in modeling longterm dependence of various datasets.

Ashley Edwards · Himanshu Sahni · Rosanne Liu · Jane Hung · Ankit Jain · Rui Wang · Adrien Ecoffet · Thomas Miconi · Charles Isbell · Jason Yosinski
In this paper, we introduce a novel form of value function, $Q(s, s')$, that expresses the utility of transitioning from a state $s$ to a neighboring state $s'$ and then acting optimally thereafter. In order to derive an optimal policy, we develop a forward dynamics model that learns to make next-state predictions that maximize this value. This formulation decouples actions from values while still learning off-policy. We highlight the benefits of this approach in terms of value function transfer, learning within redundant action spaces, and learning off-policy from state observations generated by sub-optimal or completely random policies. Code and videos are available at http://sites.google.com/view/qss-paper.
Maggie Makar · Fredrik Johansson · John Guttag · David Sontag

Estimation of individual treatment effects is commonly used as the basis for contextual decision making in fields such as healthcare, education, and economics. However, it is often sufficient for the decision maker to have estimates of upper and lower bounds on the potential outcomes of decision alternatives to assess risks and benefits. We show that, in such cases, we can improve sample efficiency by estimating simple functions that bound these outcomes instead of estimating their conditional expectations, which may be complex and hard to estimate. Our analysis highlights a trade-off between the complexity of the learning task and the confidence with which the learned bounds hold. Guided by these findings, we develop an algorithm for learning upper and lower bounds on potential outcomes which optimize an objective function defined by the decision maker, subject to the probability that bounds are violated being small. Using a clinical dataset and a well-known causality benchmark, we demonstrate that our algorithm outperforms baselines, providing tighter, more reliable bounds.

Yasutoshi Ida · Sekitoshi Kanai · Yasuhiro Fujiwara · Tomoharu Iwata · Koh Takeuchi · Hisashi Kashima

The deterministic CUR matrix decomposition is a low-rank approximation method to analyze a data matrix. It has attracted considerable attention due to its high interpretability, which results from the fact that the decomposed matrices consist of subsets of the original columns and rows of the data matrix. The subset is obtained by optimizing an objective function with sparsity-inducing norms via coordinate descent. However, the existing algorithms for optimization incur high computation costs. This is because coordinate descent iteratively updates all the parameters in the objective until convergence. This paper proposes a fast deterministic CUR matrix decomposition. Our algorithm safely skips unnecessary updates by efficiently evaluating the optimality conditions for the parameters to be zeros. In addition, we preferentially update the parameters that must be nonzeros. Theoretically, our approach guarantees the same result as the original approach. Experiments demonstrate that our algorithm speeds up the deterministic CUR while achieving the same accuracy.

Edric Tam · David Dunson

We introduce a novel regularization approach for deep learning that incorporates and respects the underlying graphical structure of the neural network. Existing regularization methods often focus on penalizing weights in a global/uniform manner that ignores the connectivity structure of the neural network. We propose to use the Fiedler value of the neural network's underlying graph as a tool for regularization. We provide theoretical support for this approach via spectral graph theory. We show several useful properties of the Fiedler value that makes it suitable for regularization. We provide an approximate, variational approach for faster computation during training. We provide bounds on such approximations. We provide an alternative formulation of this framework in the form of a structurally weighted L1 penalty, thus linking our approach to sparsity induction. We performed experiments on datasets that compare Fiedler regularization with traditional regularization methods such as Dropout and weight decay. Results demonstrate the efficacy of Fiedler regularization.

Dimitris Tsipras · Shibani Santurkar · Logan Engstrom · Andrew Ilyas · Aleksander Madry

Building rich machine learning datasets in a scalable manner often necessitates a crowd-sourced data collection pipeline. In this work, we use human studies to investigate the consequences of employing such a pipeline, focusing on the popular ImageNet dataset. We study how specific design choices in the ImageNet creation process impact the fidelity of the resulting dataset---including the introduction of biases that state-of-the-art models exploit. Our analysis pinpoints how a noisy data collection pipeline can lead to a systematic misalignment between the resulting benchmark and the real-world task it serves as a proxy for. Finally, our findings emphasize the need to augment our current model training and evaluation toolkit to take such misalignment into account.

Wenhui Yu · Zheng Qin

\textbf{G}raph \textbf{C}onvolutional \textbf{N}etwork (\textbf{GCN}) is widely used in graph data learning tasks such as recommendation. However, when facing a large graph, the graph convolution is very computationally expensive thus is simplified in all existing GCNs, yet is seriously impaired due to the oversimplification. To address this gap, we leverage the \textit{original graph convolution} in GCN and propose a \textbf{L}ow-pass \textbf{C}ollaborative \textbf{F}ilter (\textbf{LCF}) to make it applicable to the large graph. LCF is designed to remove the noise caused by exposure and quantization in the observed data, and it also reduces the complexity of graph convolution in an unscathed way. Experiments show that LCF improves the effectiveness and efficiency of graph convolution and our GCN outperforms existing GCNs significantly. Codes are available on \url{https://github.com/Wenhui-Yu/LCFN}.

Hoang NT · Takanori Maehara
In this paper, we study the graph classification problem from the graph homomorphism perspective. We consider the homomorphisms from $F$ to $G$, where $G$ is a graph of interest (e.g. molecules or social networks) and $F$ belongs to some family of graphs (e.g. paths or non-isomorphic trees). We show that graph homomorphism numbers provide a natural invariant (isomorphism invariant and $\mathcal{F}$-invariant) embedding maps which can be used for graph classification. Viewing the expressive power of a graph classifier by the $\mathcal{F}$-indistinguishable concept, we prove the universality property of graph homomorphism vectors in approximating $\mathcal{F}$-invariant functions. In practice, by choosing $\mathcal{F}$ whose elements have bounded tree-width, we show that the homomorphism method is efficient compared with other methods.
Rakshit Trivedi · Jiachen Yang · Hongyuan Zha

Formation mechanisms are fundamental to the study of complex networks, but learning them from observations is challenging. In real-world domains, one often has access only to the final constructed graph, instead of the full construction process, and observed graphs exhibit complex structural properties. In this work, we propose GraphOpt, an end-to-end framework that jointly learns an implicit model of graph structure formation and discovers an underlying optimization mechanism in the form of a latent objective function. The learned objective can serve as an explanation for the observed graph properties, thereby lending itself to transfer across different graphs within a domain. GraphOpt poses link formation in graphs as a sequential decision-making process and solves it using maximum entropy inverse reinforcement learning algorithm. Further, it employs a novel continuous latent action space that aids scalability. Empirically, we demonstrate that GraphOpt discovers a latent objective transferable across graphs with different characteristics. GraphOpt also learns a robust stochastic policy that achieves competitive link prediction performance without being explicitly trained on this task and further enables construction of graphs with properties similar to those of the observed graph.

Kaiyi Ji · Zhe Wang · Bowen Weng · Yi Zhou · Wei Zhang · Yingbin LIANG

Variance-reduced algorithms, although achieve great theoretical performance, can run slowly in practice due to the periodic gradient estimation with a large batch of data. Batch-size adaptation thus arises as a promising approach to accelerate such algorithms. However, existing schemes either apply prescribed batch-size adaption rule or exploit the information along optimization path via additional backtracking and condition verification steps. In this paper, we propose a novel scheme, which eliminates backtracking line search but still exploits the information along optimization path by adapting the batch size via history stochastic gradients. We further theoretically show that such a scheme substantially reduces the overall complexity for popular variance-reduced algorithms SVRG and SARAH/SPIDER for both conventional nonconvex optimization and reinforcement learning problems. To this end, we develop a new convergence analysis framework to handle the dependence of the batch size on history stochastic gradients. Extensive experiments validate the effectiveness of the proposed batch-size adaptation scheme.

Chris Finlay · Joern-Henrik Jacobsen · Levon Nurbekyan · Adam Oberman

Training neural ODEs on large datasets has not been tractable due to the necessity of allowing the adaptive numerical ODE solver to refine its step size to very small values. In practice this leads to dynamics equivalent to many hundreds or even thousands of layers. In this paper, we overcome this apparent difficulty by introducing a theoretically-grounded combination of both optimal transport and stability regularizations which encourage neural ODEs to prefer simpler dynamics out of all the dynamics that solve a problem well. Simpler dynamics lead to faster convergence and to fewer discretizations of the solver, considerably decreasing wall-clock time without loss in performance. Our approach allows us to train neural ODE-based generative models to the same performance as the unregularized dynamics, with significant reductions in training time. This brings neural ODEs closer to practical relevance in large-scale applications.

Blair Bilodeau · Dylan Foster · Daniel Roy
We consider the classical problem of sequential probability assignment under logarithmic loss while competing against an arbitrary, potentially nonparametric class of experts. We obtain improved bounds on the minimax regret via a new approach that exploits the self-concordance property of the logarithmic loss. We show that for any expert class with (sequential) metric entropy $\mathcal{O}(\gamma^{-p})$ at scale $\gamma$, the minimax regret is $\mathcal{O}(n^{\frac{p}{p+1}})$, and that this rate cannot be improved without additional assumptions on the expert class under consideration. As an application of our techniques, we resolve the minimax regret for nonparametric Lipschitz classes of experts.
Aadirupa Saha · Pierre Gaillard · Michal Valko
In this paper, we consider the problem of sleeping bandits with stochastic action sets and adversarial rewards. In this setting, in contrast to most work in bandits, the actions may not be available at all times. For instance, some products might be out of stock in item recommendation. The best existing efficient (i.e., polynomial-time) algorithms for this problem only guarantee a $O(T^{2/3})$ upper-bound on the regret. Yet, inefficient algorithms based on EXP4 can achieve $O(\sqrt{T})$. In this paper, we provide a new computationally efficient algorithm inspired by EXP3 satisfying a regret of order $O(\sqrt{T})$ when the availabilities of each action $i \in \cA$ are independent. We then study the most general version of the problem where at each round available sets are generated from some unknown arbitrary distribution (i.e., without the independence assumption) and propose an efficient algorithm with $O(\sqrt {2^K T})$ regret guarantee. Our theoretical results are corroborated with experimental evaluations.
Yi Li · David Woodruff
We give the first input-sparsity time algorithms for the rank-$k$ low rank approximation problem in every Schatten norm. Specifically, for a given $n\times n$ matrix $A$, our algorithm computes $Y,Z\in \R^{n\times k}$, which, with high probability, satisfy $\|A-YZ^T\|_p \leq (1+\eps)\|A-A_k\|_p$, where $\|M\|_p = \left (\sum_{i=1}^n \sigma_i(M)^p \right )^{1/p}$ is the Schatten $p$-norm of a matrix $M$ with singular values $\sigma_1(M), \ldots, \sigma_n(M)$, and where $A_k$ is the best rank-$k$ approximation to $A$. Our algorithm runs in time $\tilde{O}(\nnz(A) + n^{\alpha_p}\poly(k/\eps))$, where $\alpha_p = 1$ for $p\in [1,2)$ and $\alpha_p = 1 + (\omega-1)(1-2/p)$ for $p>2$ and $\omega \approx 2.374$ is the exponent of matrix multiplication. For the important case of $p = 1$, which corresponds to the more ``robust'' nuclear norm, we obtain $\tilde{O}(\nnz(A) + n \cdot \poly(k/\epsilon))$ time, which was previously only known for the Frobenius norm $(p = 2)$. Moreover, since $\alpha_p < \omega$ for every $p$, our algorithm has a better dependence on $n$ than that in the singular value decomposition for every $p$. Crucial to our analysis is the use of dimensionality reduction for Ky-Fan $p$-norms.
Zhun Deng · Cynthia Dwork · Jialiang Wang · Linjun Zhang

Robust optimization has been widely used in nowadays data science, especially in adversarial training. However, little research has been done to quantify how robust optimization changes the optimizers and the prediction losses comparing to standard training. In this paper, inspired by the influence function in robust statistics, we introduce the Adversarial Influence Function (AIF) as a tool to investigate the solution produced by robust optimization. The proposed AIF enjoys a closed-form and can be calculated efficiently. To illustrate the usage of AIF, we apply it to study model sensitivity -- a quantity defined to capture the change of prediction losses on the natural data after implementing robust optimization. We use AIF to analyze how model complexity and randomized smoothing affect the model sensitivity with respect to specific models. We further derive AIF for kernel regressions, with a particular application to neural tangent kernels, and experimentally demonstrate the effectiveness of the proposed AIF. Lastly, the theories of AIF will be extended to distributional robust optimization.

Shiyu Chang · Yang Zhang · Mo Yu · Tommi Jaakkola

Selective rationalization improves neural network interpretability by identifying a small subset of input features — the rationale — that best explains or supports the prediction. A typical rationalization criterion, i.e. maximum mutual information (MMI), finds the rationale that maximizes the prediction performance based only on the rationale. However, MMI can be problematic because it picks up spurious correlations between the input features and the output. Instead, we introduce a game-theoretic invariant rationalization criterion where the rationales are constrained to enable the same predictor to be optimal across different environments. We show both theoretically and empirically that the proposed rationales can rule out spurious correlations and generalize better to different test scenarios. The resulting explanations also align better with human judgments. Our implementations are publicly available at https://github.com/code-terminator/invariant_rationalization.

Tamara Fernandez · Arthur Gretton · Nicolas Rivera · Wenkai Xu

Survival Analysis and Reliability Theory are concerned with the analysis of time-to-event data, in which observations correspond to waiting times until an event of interest, such as death from a particular disease or failure of a component in a mechanical system. This type of data is unique due to the presence of censoring, a type of missing data that occurs when we do not observe the actual time of the event of interest but instead we have access to an approximation for it given by random interval in which the observation is known to belong.

Most traditional methods are not designed to deal with censoring, and thus we need to adapt them to censored time-to-event data. In this paper, we focus on non-parametric Goodness-of-Fit testing procedures based on combining the Stein's method and kernelized discrepancies. While for uncensored data, there is a natural way of implementing a kernelized Stein discrepancy test, for censored data there are several options, each of them with different advantages and disadvantages. In this paper we propose a collection of kernelized Stein discrepancy tests for time-to-event data, and we study each of them theoretically and empirically. Our experimental results show that our proposed methods perform better …

Joey Bose · Ariella Smofsky · Renjie Liao · Prakash Panangaden · Will Hamilton
The choice of approximate posterior distributions plays a central role in stochastic variational inference (SVI). One effective solution is the use of normalizing flows \cut{defined on Euclidean spaces} to construct flexible posterior distributions. However, one key limitation of existing normalizing flows is that they are restricted to the Euclidean space and are ill-equipped to model data with an underlying hierarchical structure. To address this fundamental limitation, we present the first extension of normalizing flows to hyperbolic spaces. We first elevate normalizing flows to hyperbolic spaces using coupling transforms defined on the tangent bundle, termed Tangent Coupling ($\mathcal{TC}$). We further introduce Wrapped Hyperboloid Coupling ($\mathcal{W}\mathbb{H}C$), a fully invertible and learnable transformation that explicitly utilizes the geometric structure of hyperbolic spaces, allowing for expressive posteriors while being efficient to sample from. We demonstrate the efficacy of our novel normalizing flow over hyperbolic VAEs and Euclidean normalizing flows. Our approach achieves improved performance on density estimation, as well as reconstruction of real-world graph data, which exhibit a hierarchical structure. Finally, we show that our approach can be used to power a generative model over hierarchical data using hyperbolic latent variables.
Jingwei Zhuo · Ziru Xu · Wei Dai · Han Zhu · HAN LI · Jian Xu · Kun Gai

Retrieving relevant targets from an extremely large target set under computational limits is a common challenge for information retrieval and recommendation systems. Tree models, which formulate targets as leaves of a tree with trainable node-wise scorers, have attracted a lot of interests in tackling this challenge due to their logarithmic computational complexity in both training and testing. Tree-based deep models (TDMs) and probabilistic label trees (PLTs) are two representative kinds of them. Though achieving many practical successes, existing tree models suffer from the training-testing discrepancy, where the retrieval performance deterioration caused by beam search in testing is not considered in training. This leads to an intrinsic gap between the most relevant targets and those retrieved by beam search with even the optimally trained node-wise scorers. We take a first step towards understanding and analyzing this problem theoretically, and develop the concept of Bayes optimality under beam search and calibration under beam search as general analyzing tools for this purpose. Moreover, to eliminate the discrepancy, we propose a novel algorithm for learning optimal tree models under beam search. Experiments on both synthetic and real data verify the rationality of our theoretical analysis and demonstrate the superiority of our algorithm compared to …

Tanmay Shankar · Abhinav Gupta

In this paper, we address the discovery of robotic options from demonstrations in an unsupervised manner. Specifically, we present a framework to jointly learn low-level control policies and higher-level policies of how to use them from demonstrations of a robot performing various tasks. By representing options as continuous latent variables, we frame the problem of learning these options as latent variable inference. We then present a temporally causal variant of variational inference based on a temporal factorization of trajectory likelihoods, that allows us to infer options in an unsupervised manner. We demonstrate the ability of our framework to learn such options across three robotic demonstration datasets.

Jiacheng Cheng · Tongliang Liu · Kotagiri Ramamohanarao · Dacheng Tao
Instance- and Label-dependent label Noise (ILN) widely exists in real-world datasets but has been rarely studied. In this paper, we focus on Bounded Instance- and Label-dependent label Noise (BILN), a particular case of ILN where the label noise rates---the probabilities that the true labels of examples flip into the corrupted ones---have upper bound less than $1$. Specifically, we introduce the concept of distilled examples, i.e. examples whose labels are identical with the labels assigned for them by the Bayes optimal classifier, and prove that under certain conditions classifiers learnt on distilled examples will converge to the Bayes optimal classifier. Inspired by the idea of learning with distilled examples, we then propose a learning algorithm with theoretical guarantees for its robustness to BILN. At last, empirical evaluations on both synthetic and real-world datasets show effectiveness of our algorithm in learning with BILN.
Adam Ibrahim · Waïss Azizian · Gauthier Gidel · Ioannis Mitliagkas
Recent successes of game-theoretic formulations in ML have caused a resurgence of research interest in differentiable games. Overwhelmingly, that research focuses on methods and upper bounds on their speed of convergence. In this work, we approach the question of fundamental iteration complexity by providing lower bounds to complement the linear (i.e. geometric) upper bounds observed in the literature on a wide class of problems. We cast saddle-point and min-max problems as 2-player games. We leverage tools from single-objective convex optimisation to propose new linear lower bounds for convex-concave games. Notably, we give a linear lower bound for $n$-player differentiable games, by using the spectral properties of the update operator. We then propose a new definition of the condition number arising from our lower bound analysis. Unlike past definitions, our condition number captures the fact that linear rates are possible in games, even in the absence of strong convexity or strong concavity in the variables.
Guangzeng Xie · Luo Luo · yijiang lian · Zhihua Zhang
This paper studies the lower bound complexity for minimax optimization problem whose objective function is the average of $n$ individual smooth convex-concave functions. We consider the algorithm which gets access to gradient and proximal oracle for each individual component. For the strongly-convex-strongly-concave case, we prove such an algorithm can not reach an $\varepsilon$-suboptimal point in fewer than $\Omega\left((n+\kappa)\log(1/\varepsilon)\right)$ iterations, where $\kappa$ is the condition number of the objective function. This lower bound matches the upper bound of the existing incremental first-order oracle algorithm stochastic variance-reduced extragradient. We develop a novel construction to show the above result, which partitions the tridiagonal matrix of classical examples into $n$ groups. This construction is friendly to the analysis of incremental gradient and proximal oracle and we also extend the analysis to general convex-concave cases.
Srinadh Bhojanapalli · Chulhee Yun · Ankit Singh Rawat · Sashank Jakkam Reddi · Sanjiv Kumar

Attention based Transformer architecture has enabled significant advances in the field of natural language processing. In addition to new pre-training techniques, recent improvements crucially rely on working with a relatively larger embedding dimension for tokens. Unfortunately, this leads to models that are prohibitively large to be employed in the downstream tasks. In this paper we identify one of the important factors contributing to the large embedding size requirement. In particular, our analysis highlights that the scaling between the number of heads and the size of each head in the current architecture gives rise to a low-rank bottleneck in attention heads, causing this limitation. We further validate this in our experiments. As a solution we propose to set the head size of an attention unit to input sequence length, and independent of the number of heads, resulting in multi-head attention layers with provably more expressive power. We empirically show that this allows us to train models with a relatively smaller embedding dimension and with better performance scaling.

Kezhen Chen · Qiuyuan Huang · Hamid Palangi · Paul Smolensky · Ken Forbus · Jianfeng Gao

Generating formal-language programs represented by relational tuples, such as Lisp programs or mathematical operations, to solve problems stated in natural language is a challenging task because it requires explicitly capturing discrete symbolic structural information implicit in the input. However, most general neural sequence models do not explicitly capture such structural information, limiting their performance on these tasks. In this paper, we propose a new encoder-decoder model based on a structured neural representation, Tensor Product Representations (TPRs), for mapping Natural-language problems to Formal-language solutions, called TPN2F. The encoder of TP-N2F employs TPR ‘binding’ to encode natural-language symbolic structure in vector space and the decoder uses TPR ‘unbinding’ to generate, in symbolic space, a sequential program represented by relational tuples, each consisting of a relation (or operation) and a number of arguments. TP-N2F considerably outperforms LSTM-based seq2seq models on two benchmarks and creates new state-of-the-art results. Ablation studies show that improvements can be attributed to the use of structured TPRs explicitly in both the encoder and decoder. Analysis of the learned structures shows how TPRs enhance the interpretability of TP-N2F.

Silviu Pitis · Harris Chan · Stephen Zhao · Bradly Stadie · Jimmy Ba

What goals should a multi-goal reinforcement learning agent pursue during training in long-horizon tasks? When the desired (test time) goal distribution is too distant to offer a useful learning signal, we argue that the agent should not pursue unobtainable goals. Instead, it should set its own intrinsic goals that maximize the entropy of the historical achieved goal distribution. We propose to optimize this objective by having the agent pursue past achieved goals in sparsely explored areas of the goal space, which focuses exploration on the frontier of the achievable goal set. We show that our strategy achieves an order of magnitude better sample efficiency than the prior state of the art on long-horizon multi-goal tasks including maze navigation and block stacking.

Seong-Jin Park · Seungju Han · Ji-won Baek · Insoo Kim · Juhwan Song · Hae Beom Lee · Jae-Joon Han · Sung Ju Hwang

Humans have the ability to robustly recognize objects with various factors of variations such as nonrigid transformations, background noises, and changes in lighting conditions. However, training deep learning models generally require huge amount of data instances under diverse variations, to ensure its robustness. To alleviate the need of collecting large amount of data and better learn to generalize with scarce data instances, we propose a novel meta-learning method which learns to transfer factors of variations from one class to another, such that it can improve the classification performance on unseen examples. Transferred variations generate virtual samples that augment the feature space of the target class during training, simulating upcoming query samples with similar variations. By sharing the factors of variations across different classes, the model becomes more robust to variations in the unseen examples and tasks using small number of examples per class. We validate our model on multiple benchmark datasets for few-shot classification and face recognition, on which our model significantly improves the performance of the base model, outperforming relevant baselines.

Yaqi Duan · Zeyu Jia · Mengdi Wang
This paper studies the statistical theory of off-policy evaluation with function approximation in batch data reinforcement learning problem. We consider a regression-based fitted Q-iteration method, show that it is equivalent to a model-based method that estimates a conditional mean embedding of the transition operator, and prove that this method is information-theoretically optimal and has nearly minimal estimation error. In particular, by leveraging contraction property of Markov processes and martingale concentration, we establish a finite-sample instance-dependent error upper bound and a nearly-matching minimax lower bound. The policy evaluation error depends sharply on a restricted $\chi^2$-divergence over the function class between the long-term distribution of target policy and the distribution of past data. This restricted $\chi^2$-divergence characterizes the statistical limit of off-policy evaluation and is both instance-dependent and function-class-dependent. Further, we provide an easily computable confidence bound for the policy evaluator, which may be useful for optimistic planning and safe policy improvement.
Quinlan Sykora · Mengye Ren · Raquel Urtasun

In this paper we tackle the problem of routing multiple agents in a coordinated manner. This is a complex problem that has a wide range of applications in fleet management to achieve a common goal, such as mapping from a swarm of robots and ride sharing. Traditional methods are typically not designed for realistic environments which contain sparsely connected graphs and unknown traffic, and are often too slow in runtime to be practical. In contrast, we propose a graph neural network based model that is able to perform multi-agent routing based on learned value iteration in a sparsely connected graph with dynamically changing traffic conditions. Moreover, our learned communication module enables the agents to coordinate online and adapt to changes more effectively. We created a simulated environment to mimic realistic mapping performed by autonomous vehicles with unknown minimum edge coverage and traffic conditions; our approach significantly outperforms traditional solvers both in terms of total cost and runtime. We also show that our model trained with only two agents on graphs with a maximum of 25 nodes can easily generalize to situations with more agents and/or nodes.

Debabrata Mahapatra · Vaibhav Rajan

Multi-Task Learning (MTL) is a well established paradigm for jointly learning models for multiple correlated tasks. Often the tasks conflict, requiring trade-offs between them during optimization. In such cases, multi-objective optimization based MTL methods can be used to find one or more Pareto optimal solutions. A common requirement in MTL applications, that cannot be addressed by these methods, is to find a solution satisfying userspecified preferences with respect to task-specific losses. We advance the state-of-the-art by developing the first gradient-based multi-objective MTL algorithm to solve this problem. Our unique approach combines multiple gradient descent with carefully controlled ascent to traverse the Pareto front in a principled manner, which also makes it robust to initialization. The scalability of our algorithm enables its use in large-scale deep networks for MTL. Assuming only differentiability of the task-specific loss functions, we provide theoretical guarantees for convergence. Our experiments show that our algorithm outperforms the best competing methods on benchmark datasets.

Hongyuan Mei · Guanghui Qin · Minjie Xu · Jason Eisner

Learning how to predict future events from patterns of past events is difficult when the set of possible event types is large. Training an unrestricted neural model might overfit to spurious patterns. To exploit domain-specific knowledge of how past events might affect an event's present probability, we propose using a temporal deductive database to track structured facts over time. Rules serve to prove facts from other facts and from past events. Each fact has a time-varying state---a vector computed by a neural net whose topology is determined by the fact's provenance, including its experience of past events. The possible event types at any time are given by special facts, whose probabilities are neurally modeled alongside their states. In both synthetic and real-world domains, we show that neural probabilistic models derived from concise Datalog programs improve prediction by encoding appropriate domain knowledge in their architecture.

Yanzhi Chen · Renjie Xie · Zhanxing Zhu

Deep neural networks have been proven to be vulnerable to the so-called adversarial attacks. Recently there have been efforts to defend such attacks with deep generative models. These defense often predict by inverting the deep generative models rather than simple feedforward propagation. Such defenses are difficult to attack due to obfuscated gradient. In this work, we develop a new gradient approximation attack to break these defenses. The idea is to view the inversion phase as a dynamical system, through which we extract the gradient w.r.t the input by tracing its recent trajectory. An amortized strategy is further developed to accelerate the attack. Experiments show that our attack breaks state-of-the-art defenses (e.g DefenseGAN, ABS) much more effectively than other attacks. Additionally, our empirical results provide insights for understanding the weaknesses of deep generative model-based defenses.

Tianyi Lin · Chi Jin · Michael Jordan
We consider nonconvex-concave minimax problems, $\min_{\mathbf{x}} \max_{\mathbf{y} \in \mathcal{Y}} f(\mathbf{x}, \mathbf{y})$, where $f$ is nonconvex in $\mathbf{x}$ but concave in $\mathbf{y}$ and $\mathcal{Y}$ is a convex and bounded set. One of the most popular algorithms for solving this problem is the celebrated gradient descent ascent (GDA) algorithm, which has been widely used in machine learning, control theory and economics. Despite the extensive convergence results for the convex-concave setting, GDA with equal stepsize can converge to limit cycles or even diverge in a general setting. In this paper, we present the complexity results on two-time-scale GDA for solving nonconvex-concave minimax problems, showing that the algorithm can find a stationary point of the function $\Phi(\cdot) := \max_{\mathbf{y} \in \mathcal{Y}} f(\cdot, \mathbf{y})$ efficiently. To the best our knowledge, this is the first nonasymptotic analysis for two-time-scale GDA in this setting, shedding light on its superior practical performance in training generative adversarial networks (GANs) and other real applications.
Corinna Cortes · Giulia DeSalvo · Claudio Gentile · Mehryar Mohri · Ningshan Zhang

A general framework for online learning with partial information is one where feedback graphs specify which losses can be observed by the learner. We study a challenging scenario where feedback graphs vary stochastically with time and, more importantly, where graphs and losses are dependent. This scenario appears in several real-world applications that we describe where the outcome of actions are correlated. We devise a new algorithm for this setting that exploits the stochastic properties of the graphs and that benefits from favorable regret guarantees. We present a detailed theoretical analysis of this algorithm, and also report the result of a series of experiments on real-world datasets, which show that our algorithm outperforms standard baselines for online learning with feedback graphs.

Kefan Dong · Yuping Luo · Tianhe (Kevin) Yu · Chelsea Finn · Tengyu Ma

We compare the model-free reinforcement learning with the model-based approaches through the lens of the expressive power of neural networks for policies, Q-functions, and dynamics. We show, theoretically and empirically, that even for one-dimensional continuous state space, there are many MDPs whose optimal Q-functions and policies are much more complex than the dynamics. For these MDPs, model-based planning is a favorable algorithm, because the resulting policies can approximate the optimal policy significantly better than a neural network parameterization can, and model-free or model-based policy optimization rely on policy parameterization. Motivated by the theory, we apply a simple multi-step model-based bootstrapping planner (BOOTS) to bootstrap a weak Q-function into a stronger policy. Empirical results show that applying BOOTS on top of model-based or model-free policy optimization algorithms at the test time improves the performance on benchmark tasks.

Minh Hoang · Carleton Kingsford

Kernel selection for kernel-based methods is prohibitively expensive due to the NP-hard nature of discrete optimization. Since gradient-based optimizers are not applicable due to the lack of a differentiable objective function, many state-of-the-art solutions resort to heuristic search or gradient-free optimization. These approaches, however, require imposing restrictive assumptions on the explorable space of structures such as limiting the active candidate pool, thus depending heavily on the intuition of domain experts. This paper instead proposes \textbf{DTERGENS}, a novel generative search framework that constructs and optimizes a high-performance composite kernel expressions generator. \textbf{DTERGENS} does not restrict the space of candidate kernels and is capable of obtaining flexible length expressions by jointly optimizing a generative termination criterion. We demonstrate that our framework explores more diverse kernels and obtains better performance than state-of-the-art approaches on many real-world predictive tasks.

Zhengyang Shen · Lingshen He · Zhouchen Lin · Jinwen Ma
Recent research has shown that incorporating equivariance into neural network architectures is very helpful, and there have been some works investigating the equivariance of networks under group actions. However, as digital images and feature maps are on the discrete meshgrid, corresponding equivariance-preserving transformation groups are very limited. In this work, we deal with this issue from the connection between convolutions and partial differential operators (PDOs). In theory, assuming inputs to be smooth, we transform PDOs and propose a system which is equivariant to a much more general continuous group, the $n$-dimension Euclidean group. In implementation, we discretize the system using the numerical schemes of PDOs, deriving approximately equivariant convolutions (PDO-eConvs). Theoretically, the approximation error of PDO-eConvs is of the quadratic order. It is the first time that the error analysis is provided when the equivariance is approximate. Extensive experiments on rotated MNIST and natural image classification show that PDO-eConvs perform competitively yet use parameters much more efficiently. Particularly, compared with Wide ResNets, our methods result in better results using only 12.6% parameters.
Juan Perdomo · Tijana Zrnic · Celestine Mendler-Dünner · Moritz Hardt

When predictions support decisions they may influence the outcome they aim to predict. We call such predictions performative; the prediction influences the target. Performativity is a well-studied phenomenon in policy-making that has so far been neglected in supervised learning. When ignored, performativity surfaces as undesirable distribution shift, routinely addressed with retraining. We develop a risk minimization framework for performative prediction bringing together concepts from statistics, game theory, and causality. A conceptual novelty is an equilibrium notion we call performative stability. Performative stability implies that the predictions are calibrated not against past outcomes, but against the future outcomes that manifest from acting on the prediction. Our main results are necessary and sufficient conditions for the convergence of retraining to a performatively stable point of nearly minimal loss. In full generality, performative prediction strictly subsumes the setting known as strategic classification. We thus also give the first sufficient conditions for retraining to overcome strategic feedback effects.

Ali Siahkamari · Aditya Gangrade · Brian Kulis · Venkatesh Saligrama
We present a new piecewise linear regression methodology that utilises fitting a \emph{difference of convex} functions (DC functions) to the data. These are functions $f$ that may be represented as the difference $\phi_1 - \phi_2$ for a choice of \emph{convex} functions $\phi_1, \phi_2$. The method proceeds by estimating piecewise-liner convex functions, in a manner similar to max-affine regression, whose difference approximates the data. The choice of the function is regularised by a new seminorm over the class of DC functions that controls the $\ell_\infty$ Lipschitz constant of the estimate. The resulting methodology can be efficiently implemented via Quadratic programming \emph{even in high dimensions}, and is shown to have close to minimax statistical risk. We empirically validate the method, showing it to be practically implementable, and to outperform existing regression methods in accuracy on real-world datasets.
Yuda Song · Aditi Mavalankar · Wen Sun · Sicun Gao

The high sample complexity of reinforcement learning challenges its use in practice. A promising approach is to quickly adapt pre-trained policies to new environments. Existing methods for this policy adaptation problem typically rely on domain randomization and meta-learning, by sampling from some distribution of target environments during pre-training, and thus face difficulty on out-of-distribution target environments. We propose new model-based mechanisms that are able to make online adaptation in unseen target environments, by combining ideas from no-regret online learning and adaptive control. We prove that the approach learns policies in the target environment that can quickly recover trajectories from the source environment, and establish the rate of convergence in general settings. We demonstrate the benefits of our approach for policy adaptation in a diverse set of continuous control tasks, achieving the performance of state-of-the-art methods with much lower sample complexity. Our project website, including code, can be found at https://yudasong.github.io/PADA.

Nina Balcan · Tuomas Sandholm · Ellen Vitercik

Automating algorithm configuration is growing increasingly necessary as algorithms come with more and more tunable parameters. It is common to tune parameters using machine learning, optimizing algorithmic performance (runtime or solution quality, for example) using a training set of problem instances from the specific domain at hand. We investigate a fundamental question about these techniques: how large should the training set be to ensure that a parameter’s average empirical performance over the training set is close to its expected, future performance? We answer this question for algorithm configuration problems that exhibit a widely-applicable structure: the algorithm's performance as a function of its parameters can be approximated by a “simple” function. We show that if this approximation holds under the L∞-norm, we can provide strong sample complexity bounds, but if the approximation holds only under the Lp-norm for p < ∞, it is not possible to provide meaningful sample complexity bounds in the worst case. We empirically evaluate our bounds in the context of integer programming, obtaining sample complexity bounds that are up to 700 times smaller than the previously best-known bounds.

Chi Jin · Akshay Krishnamurthy · Max Simchowitz · Tiancheng Yu
Exploration is widely regarded as one of the most challenging aspects of reinforcement learning (RL), with many naive approaches succumbing to exponential sample complexity. To isolate the challenges of exploration, we propose the following ``reward-free RL'' framework. In the exploration phase, the agent first collects trajectories from an MDP $M$ without a pre-specified reward function. After exploration, it is tasked with computing a near-policies under the transitions of $\mathcal{M}$ for a collection of given reward functions. This framework is particularly suitable where there are many reward functions of interest, or where the reward function is shaped by an external agent to elicit desired behavior. We give an efficient algorithm that conducts $\widetilde{O}(S^2A\mathrm{poly}(H)/\epsilon^2)$ episodes of exploration, and returns $\epsilon$-suboptimal policies for an arbitrary number of reward functions. We achieve this by finding exploratory policies that jointly visit each ``significant'' state with probability proportional to its maximum visitation probability under any possible policy. Moreover, our planning procedure can be instantiated by any black-box approximate planner, such as value iteration or natural policy gradient. Finally, we give a nearly-matching $\Omega(S^2AH^2/\epsilon^2)$ lower bound, demonstrating the near-optimality of our algorithm in this setting.
Utku Evci · Trevor Gale · Jacob Menick · Pablo Samuel Castro · Erich Elsen

Many applications require sparse neural networks due to space or inference time restrictions. There is a large body of work on training dense networks to yield sparse networks for inference, but this limits the size of the largest trainable sparse model to that of the largest trainable dense model. In this paper we introduce a method to train sparse neural networks with a fixed parameter count and a fixed computational cost throughout training, without sacrificing accuracy relative to existing dense-to-sparse training methods. Our method updates the topology of the sparse network during training by using parameter magnitudes and infrequent gradient calculations. We show that this approach requires fewer floating-point operations (FLOPs) to achieve a given level of accuracy compared to prior techniques. We demonstrate state-of-the-art sparse training results on a variety of networks and datasets, including ResNet-50, MobileNets on Imagenet-2012, and RNNs on WikiText-103. Finally, we provide some insights into why allowing the topology to change during the optimization can overcome local minima encountered when the topology remains static.

Jaesik Yoon · Gautam Singh · Sungjin Ahn

When tasks change over time, meta-transfer learning seeks to improve the efficiency of learning a new task via both meta-learning and transfer-learning. While the standard attention has been effective in a variety of settings, we question its effectiveness in improving meta-transfer learning since the tasks being learned are dynamic and the amount of context can be substantially smaller. In this paper, using a recently proposed meta-transfer learning model, Sequential Neural Processes (SNP), we first empirically show that it suffers from a similar underfitting problem observed in the functions inferred by Neural Processes. However, we further demonstrate that unlike the meta-learning setting, the standard attention mechanisms are not effective in meta-transfer setting. To resolve, we propose a new attention mechanism, Recurrent Memory Reconstruction (RMR), and demonstrate that providing an imaginary context that is recurrently updated and reconstructed with interaction is crucial in achieving effective attention for meta-transfer learning. Furthermore, incorporating RMR into SNP, we propose Attentive Sequential Neural Processes-RMR (ASNP-RMR) and demonstrate in various tasks that ASNP-RMR significantly outperforms the baselines.

Yuhao Zhang · Aws Albarghouthi · Loris D'Antoni

Deep neural networks for natural language processing tasks are vulnerable to adversarial input perturbations. In this paper, we present a versatile language for programmatically specifying string transformations---e.g., insertions, deletions, substitutions, swaps, etc.---that are relevant to the task at hand. We then present an approach to adversarially training models that are robust to such user-defined string transformations. Our approach combines the advantages of search-based techniques for adversarial training with abstraction-based techniques. Specifically, we show how to decompose a set of user-defined string transformations into two component specifications, one that benefits from search and another from abstraction. We use our technique to train models on the AG and SST2 datasets and show that the resulting models are robust to combinations of user-defined transformations mimicking spelling mistakes and other meaning-preserving transformations.

Yi-Ling Qiao · Junbang Liang · Vladlen Koltun · Ming Lin

Differentiable physics is a powerful approach to learning and control problems that involve physical objects and environments. While notable progress has been made, the capabilities of differentiable physics solvers remain limited. We develop a scalable framework for differentiable physics that can support a large number of objects and their interactions. To accommodate objects with arbitrary geometry and topology, we adopt meshes as our representation and leverage the sparsity of contacts for scalable differentiable collision handling. Collisions are resolved in localized regions to minimize the number of optimization variables even when the number of simulated objects is high. We further accelerate implicit differentiation of optimization with nonlinear constraints. Experiments demonstrate that the presented framework requires up to two orders of magnitude less memory and computation in comparison to recent particle-based methods. We further validate the approach on inverse problems and control scenarios, where it outperforms derivative-free and model-free baselines by at least an order of magnitude.

Lijun Wu · Shufang Xie · Yingce Xia · Yang Fan · Jian-Huang Lai · Tao Qin · Tie-Yan Liu
Tokenization is the first step of many natural language processing (NLP) tasks and plays an important role for neural NLP models. Tokenizaton method such as byte-pair encoding (BPE), which can greatly reduce the large vocabulary and deal with out-of-vocabulary words, has shown to be effective and is widely adopted for sequence generation tasks. While various tokenization methods exist, there is no common acknowledgement which is the best. In this work, we propose to leverage the mixed representations from different tokenization methods for sequence generation tasks, in order to boost the model performance with unique characteristics and advantages of individual tokenization methods. Specifically, we introduce a new model architecture to incorporate mixed representations and a co-teaching algorithm to better utilize the diversity of different tokenization methods. Our approach achieves significant improvements on neural machine translation (NMT) tasks with six language pairs (e.g., English$\leftrightarrow$German, English$\leftrightarrow$Romanian), as well as an abstractive summarization task.
Qinqing Zheng · Jinshuo Dong · Qi Long · Weijie Su
Datasets containing sensitive information are often sequentially analyzed by many algorithms and, accordingly, a fundamental question in differential privacy is concerned with how the overall privacy bound degrades under composition. To address this question, we introduce a family of analytical and sharp privacy bounds under composition using the Edgeworth expansion in the framework of the recently proposed $f$-differential privacy. In short, whereas the existing composition theorem, for example, relies on the central limit theorem, our new privacy bounds under composition gain improved tightness by leveraging the refined approximation accuracy of the Edgeworth expansion. Our approach is easy to implement and computationally efficient for any number of compositions. The superiority of these new bounds is confirmed by an asymptotic error analysis and an application to quantifying the overall privacy guarantees of noisy stochastic gradient descent used in training private deep neural networks.
Vitchyr Pong · Murtaza Dalal · Steven Lin · Ashvin Nair · Shikhar Bahl · Sergey Levine

Autonomous agents that must exhibit flexible and broad capabilities will need to be equipped with large repertoires of skills. Defining each skill with a manually-designed reward function limits this repertoire and imposes a manual engineering burden. Self-supervised agents that set their own goals can automate this process, but designing appropriate goal setting objectives can be difficult, and often involves heuristic design decisions. In this paper, we propose a formal exploration objective for goal-reaching policies that maximizes state coverage. We show that this objective is equivalent to maximizing goal reaching performance together with the entropy of the goal distribution, where goals correspond to full state observations. To instantiate this principle, we present an algorithm called Skew-Fit for learning a maximum-entropy goal distributions. We prove that, under regularity conditions, Skew-Fit converges to a uniform distribution over the set of valid states, even when we do not know this set beforehand. Our experiments show that combining Skew-Fit for learning goal distributions with existing goal-reaching methods outperforms a variety of prior methods on open-sourced visual goal-reaching tasks. Moreover, we demonstrate that Skew-Fit enables a real-world robot to learn to open a door, entirely from scratch, from pixels, and without any manually-designed reward function.

Kyriakos Axiotis · Maxim Sviridenko
The goal of Sparse Convex Optimization is to optimize a convex function $f$ under a sparsity constraint $s\leq s^*\gamma$, where $s^*$ is the target number of non-zero entries in a feasible solution (sparsity) and $\gamma\geq 1$ is an approximation factor. There has been a lot of work to analyze the sparsity guarantees of various algorithms (LASSO, Orthogonal Matching Pursuit (OMP), Iterative Hard Thresholding (IHT)) in terms of the Restricted Condition Number $\kappa$. The best known algorithms guarantee to find an approximate solution of value $f(x^*)+\epsilon$ with the sparsity bound of $\gamma = O\left(\kappa\min\left\{\log \frac{f(x^0)-f(x^*)}{\epsilon}, \kappa\right\}\right)$, where $x^*$ is the target solution. We present a new Adaptively Regularized Hard Thresholding (ARHT) algorithm that makes significant progress on this problem by bringing the bound down to $\gamma=O(\kappa)$, which has been shown to be tight for a general class of algorithms including LASSO, OMP, and IHT. This is achieved without significant sacrifice in the runtime efficiency compared to the fastest known algorithms. We also provide a new analysis of OMP with Replacement (OMPR) for general $f$, under the condition $s > s^* \frac{\kappa^2}{4}$, which yields Compressed Sensing bounds under the Restricted Isometry Property (RIP). When compared to other Compressed Sensing approaches, it has the …
Blake Bordelon · Abdulkadir Canatar · Cengiz Pehlevan

We derive analytical expressions for the generalization performance of kernel regression as a function of the number of training samples using theoretical methods from Gaussian processes and statistical physics. Our expressions apply to wide neural networks due to an equivalence between training them and kernel regression with the Neural Tangent Kernel (NTK). By computing the decomposition of the total generalization error due to different spectral components of the kernel, we identify a new spectral principle: as the size of the training set grows, kernel machines and neural networks fit successively higher spectral modes of the target function. When data are sampled from a uniform distribution on a high-dimensional hypersphere, dot product kernels, including NTK, exhibit learning stages where different frequency modes of the target function are learned. We verify our theory with simulations on synthetic data and MNIST dataset.

Sudeep Salgia · Qing Zhao · Sattar Vakili

A framework based on iterative coordinate minimization (CM) is developed for stochastic convex optimization. Given that exact coordinate minimization is impossible due to the unknown stochastic nature of the objective function, the crux of the proposed optimization algorithm is an optimal control of the minimization precision in each iteration. We establish the optimal precision control and the resulting order-optimal regret performance for strongly convex and separably nonsmooth functions. An interesting finding is that the optimal progression of precision across iterations is independent of the low-dimension CM routine employed, suggesting a general framework for extending low-dimensional optimization routines to high-dimensional problems. The proposed algorithm is amenable to online implementation and inherits the scalability and parallelizability properties of CM for large-scale optimization. Requiring only a sublinear order of message exchanges, it also lends itself well to distributed computing as compared with the alternative approach of coordinate gradient descent.

Quoc Tran-Dinh · Nhan H Pham · Lam Nguyen
We develop two new stochastic Gauss-Newton algorithms for solving a class of non-convex stochastic compositional optimization problems frequently arising in practice. We consider both the expectation and finite-sum settings under standard assumptions, and use both classical stochastic and SARAH estimators for approximating function values and Jacobians. In the expectation case, we establish $\BigO{\varepsilon^{-2}}$ iteration-complexity to achieve a stationary point in expectation and estimate the total number of stochastic oracle calls for both function value and its Jacobian, where $\varepsilon$ is a desired accuracy. In the finite sum case, we also estimate $\BigO{\varepsilon^{-2}}$ iteration-complexity and the total oracle calls with high probability. To our best knowledge, this is the first time such global stochastic oracle complexity is established for stochastic Gauss-Newton methods. Finally, we illustrate our theoretical results via two numerical examples on both synthetic and real datasets.
John Miller · Smitha Milli · Moritz Hardt

Consequential decision-making incentivizes individuals to strategically adapt their behavior to the specifics of the decision rule. While a long line of work has viewed strategic adaptation as gaming and attempted to mitigate its effects, recent work has instead sought to design classifiers that incentivize individuals to improve a desired quality. Key to both accounts is a cost function that dictates which adaptations are rational to undertake. In this work, we develop a causal framework for strategic adaptation. Our causal perspective clearly distinguishes between gaming and improvement and reveals an important obstacle to incentive design. We prove any procedure for designing classifiers that incentivize improvement must inevitably solve a non-trivial causal inference problem. We show a similar result holds for designing cost functions that satisfy the requirements of previous work. With the benefit of hindsight, our results show much of the prior work on strategic classification is causal modeling in disguise.

Priyank Jaini · Ivan Kobyzev · Yaoliang Yu · Marcus Brubaker

We investigate the ability of popular flow models to capture tail-properties of a target density by studying the increasing triangular maps used in these flow methods acting on a tractable source density. We show that the density quantile functions of the source and target density provide a precise characterization of the slope of transformation required to capture tails in a target density. We further show that any Lipschitz-continuous transport map acting on a source density will result in a density with similar tail properties as the source, highlighting the trade-off between the importance of choosing a complex source density and a sufficiently expressive transformation to capture desirable properties of a target density. Subsequently, we illustrate that flow models like Real-NVP, MAF, and Glow as implemented lack the ability to capture a distribution with non-Gaussian tails. We circumvent this problem by proposing tail-adaptive flows consisting of a source distribution that can be learned simultaneously with the triangular map to capture tail-properties of a target density. We perform several synthetic and real-world experiments to complement our theoretical findings.

Hyeonseong Jeon · Young Oh Bang · Junyaup Kim · Simon Woo

Recent advancements in Generative Adversarial Networks (GANs) enable the generation of highly realistic images, raising concerns about their misuse for malicious purposes. Detecting these GAN-generated images (GAN-images) becomes increasingly challenging due to the significant reduction of underlying artifacts and specific patterns. The absence of such traces can hinder detection algorithms from identifying GAN-images and transferring knowledge to identify other types of GAN-images as well. In this work, we present the Transferable GAN-images Detection framework T-GD, a robust transferable framework for an effective detection of GAN-images. T-GD is composed of a teacher and a student model that can iteratively teach and evaluate each other to improve the detection performance. First, we train the teacher model on the source dataset and use it as a starting point for learning the target dataset. To train the student model, we inject noise by mixing up the source and target datasets, while constraining the weight variation to preserve the starting point. Our approach is a self-training method, but distinguishes itself from prior approaches by focusing on improving the transferability of GAN-image detection. T-GD achieves high performance on the source dataset by overcoming catastrophic forgetting and effectively detecting state-of-the-art GAN-images with only a small volume of …

Yuxin Wen · Shuai Li · Kui Jia
The problem of adversarial examples has shown that modern Neural Network (NN) models could be rather fragile. Among the more established techniques to solve the problem, one is to require the model to be {\it $\epsilon$-adversarially robust} (AR); that is, to require the model not to change predicted labels when any given input examples are perturbed within a certain range. However, it is observed that such methods would lead to standard performance degradation, i.e., the degradation on natural examples. In this work, we study the degradation through the regularization perspective. We identify quantities from generalization analysis of NNs; with the identified quantities we empirically find that AR is achieved by regularizing/biasing NNs towards less confident solutions by making the changes in the feature space (induced by changes in the instance space) of most layers smoother uniformly in all directions; so to a certain extent, it prevents sudden change in prediction w.r.t. perturbations. However, the end result of such smoothing concentrates samples around decision boundaries, resulting in less confident solutions, and leads to worse standard performance. Our studies suggest that one might consider ways that build AR into NNs in a gentler way to avoid the problematic regularization.
Hassan Rafique · Tong Wang · Qihang Lin · Arshia Singhani

We propose a novel type of hybrid model for multi-class classification, which utilizes competing linear models to collaborate with an existing black-box model, promoting transparency in the decision-making process. Our proposed hybrid model, Model-Agnostic Linear Competitors (MALC), brings together the interpretable power of linear models and the good predictive performance of the state-of-the-art black-box models. We formulate the training of a MALC model as a convex optimization problem, optimizing the predictive accuracy and transparency (defined as the percentage of data captured by the linear models) in the objective function. Experiments show that MALC offers more model flexibility for users to balance transparency and accuracy, in contrast to the currently available choice of either a pure black-box model or a pure interpretable model. The human evaluation also shows that more users are likely to choose MALC for this model flexibility compared with interpretable models and black-box models.

Tongzhou Wang · Phillip Isola

Contrastive representation learning has been outstandingly successful in practice. In this work, we identify two key properties related to the contrastive loss: (1) alignment (closeness) of features from positive pairs, and (2) uniformity of the induced distribution of the (normalized) features on the hypersphere. We prove that, asymptotically, the contrastive loss optimizes these properties, and analyze their positive effects on downstream tasks. Empirically, we introduce an optimizable metric to quantify each property. Extensive experiments on standard vision and language datasets confirm the strong agreement between both metrics and downstream task performance. Directly optimizing for these two metrics leads to representations with comparable or better performance at downstream tasks than contrastive learning.

Shaocong Ma · Yi Zhou

Although SGD with random reshuffle has been widely-used in machine learning applications, there is a limited understanding of how model characteristics affect the convergence of the algorithm. In this work, we introduce model incoherence to characterize the diversity of model characteristics and study its impact on convergence of SGD with random reshuffle \shaocong{under weak strong convexity}. Specifically, {\em minimizer incoherence} measures the discrepancy between the global minimizers of a sample loss and those of the total loss and affects the convergence error of SGD with random reshuffle. In particular, we show that the variable sequence generated by SGD with random reshuffle converges to a certain global minimizer of the total loss under full minimizer coherence. The other {\em curvature incoherence} measures the quality of condition numbers of the sample losses and determines the convergence rate of SGD. With model incoherence, our results show that SGD has a faster convergence rate and smaller convergence error under random reshuffle than those under random sampling, and hence provide justifications to the superior practical performance of SGD with random reshuffle.

Siamak Ravanbakhsh

Group invariant and equivariant Multilayer Perceptrons (MLP), also known as Equivariant Networks, have achieved remarkable success in learning on a variety of data structures, such as sequences, images, sets, and graphs. Using tools from group theory, this paper proves the universality of a broad class of equivariant MLPs with a single hidden layer. In particular, it is shown that having a hidden layer on which the group acts regularly is sufficient for universal equivariance (invariance). A corollary is unconditional universality of equivariant MLPs for Abelian groups, such as CNNs with a single hidden layer. A second corollary is the universality of equivariant MLPs with a high-order hidden layer, where we give both group-agnostic bounds and means for calculating group-specific bounds on the order of hidden layer that guarantees universal equivariance (invariance).

Guanyi Wang · Santanu Dey

Sparse principal component analysis (PCA) is a widely-used dimensionality reduction tool in statistics and machine learning. Most methods mentioned in literature are either heuristics for good primal feasible solutions under statistical assumptions or ADMM-type algorithms with stationary/critical points convergence property for the regularized reformulation of sparse PCA. However, none of these methods can efficiently verify the quality of the solutions via comparing current objective values with their dual bounds, especially in model-free case. We propose a new framework that finds out upper (dual) bounds for the sparse PCA within polynomial time via solving a convex integer program (IP). We show that, in the worst-case, the dual bounds provided by the convex IP is within an affine function of the global optimal value. Moreover, in contrast to the semi-definition relaxation, this framework is much easier to scale on large cases. Numerical results on both artificial and real cases are reported to demonstrate the advantages of our method.


Poster Session 42 Thu 16 Jul 04:00 p.m.  

Peng Wang · Zirui Zhou · Anthony Man-Cho So

[ Virtual ]

Learning community structures in graphs that are randomly generated by stochastic block models (SBMs) has received much attention lately. In this paper, we focus on the problem of exactly recovering the communities in a binary symmetric SBM, where a graph of $n$ vertices is partitioned into two equal-sized communities and the vertices are connected with probability $p = \alpha\log(n)/n$ within communities and $q = \beta\log(n)/n$ across communities for some $\alpha>\beta>0$. We propose a two-stage iterative algorithm for solving this problem, which employs the power method with a random starting point in the first-stage and turns to a generalized power method that can identify the communities in a finite number of iterations in the second-stage. It is shown that for any fixed $\alpha$ and $\beta$ such that $\sqrt{\alpha} - \sqrt{\beta} > \sqrt{2}$, which is known to be the information-theoretical limit for exact recovery, the proposed algorithm exactly identifies the underlying communities in $\tilde{O}(n)$ running time with probability tending to one as $n\rightarrow\infty$. As far as we know, this is the first algorithm with nearly-linear running time that achieves exact recovery at the information-theoretical limit. We also present numerical results of the proposed algorithm to support and complement our theoretical development.
Evangelos Chatziafratis · Sai Ganesh Nagarajan · Ioannis Panageas

[ Virtual ]

The expressivity of neural networks as a function of their depth, width and type of activation units has been an important question in deep learning theory. Recently, depth separation results for ReLU networks were obtained via a new connection with dynamical systems, using a generalized notion of fixed points of a continuous map $f$, called periodic points. In this work, we strengthen the connection with dynamical systems and we improve the existing width lower bounds along several aspects. Our first main result is period-specific width lower bounds that hold under the stronger notion of $L^1$-approximation error, instead of the weaker classification error. Our second contribution is that we provide sharper width lower bounds, still yielding meaningful exponential depth-width separations, in regimes where previous results wouldn't apply. A byproduct of our results is that there exists a universal constant characterizing the depth-width trade-offs, as long as $f$ has odd periods. Technically, our results follow by unveiling a tighter connection between the following three quantities of a given function: its period, its Lipschitz constant and the growth rate of the number of oscillations arising under compositions of the function $f$ with itself.
Shengpu Tang · Aditya Modi · Michael Sjoding · Jenna Wiens

[ Virtual ]

Standard reinforcement learning (RL) aims to find an optimal policy that identifies the best action for each state. However, in healthcare settings, many actions may be near-equivalent with respect to the reward (e.g., survival). We consider an alternative objective -- learning set-valued policies to capture near-equivalent actions that lead to similar cumulative rewards. We propose a model-free algorithm based on temporal difference learning and a near-greedy heuristic for action selection. We analyze the theoretical properties of the proposed algorithm, providing optimality guarantees and demonstrate our approach on simulated environments and a real clinical task. Empirically, the proposed algorithm exhibits good convergence properties and discovers meaningful near-equivalent actions. Our work provides theoretical, as well as practical, foundations for clinician/human-in-the-loop decision making, in which humans (e.g., clinicians, patients) can incorporate additional knowledge (e.g., side effects, patient preference) when selecting among near-equivalent actions.

DiJia Su · Jayden Ooi · Tyler Lu · Dale Schuurmans · Craig Boutilier

[ Virtual ]

Delusional bias is a fundamental source of error in approximate Q-learning. To date, the only techniques that explicitly address delusion require comprehensive search using tabular value estimates. In this paper, we develop efficient methods to mitigate delusional bias by training Q-approximators with labels that are "consistent" with the underlying greedy policy class. We introduce a simple penalization scheme that encourages Q-labels used across training batches to remain (jointly) consistent with the expressible policy class. We also propose a search framework that allows multiple Q-approximators to be generated and tracked, thus mitigating the effect of premature (implicit) policy commitments. Experimental results demonstrate that these methods can improve the performance of Q-learning in a variety of Atari games, sometimes dramatically.

Tianxiao Shen · Jonas Mueller · Regina Barzilay · Tommi Jaakkola

[ Virtual ]

Generative autoencoders offer a promising approach for controllable text generation by leveraging their learned sentence representations. However, current models struggle to maintain coherent latent spaces required to perform meaningful text manipulations via latent vector operations. Specifically, we demonstrate by example that neural encoders do not necessarily map similar sentences to nearby latent vectors. A theoretical explanation for this phenomenon establishes that high-capacity autoencoders can learn an arbitrary mapping between sequences and associated latent representations. To remedy this issue, we augment adversarial autoencoders with a denoising objective where original sentences are reconstructed from perturbed versions (referred to as DAAE). We prove that this simple modification guides the latent space geometry of the resulting model by encouraging the encoder to map similar texts to similar latent representations. In empirical comparisons with various types of autoencoders, our model provides the best trade-off between generation quality and reconstruction capacity. Moreover, the improved geometry of the DAAE latent space enables \textit{zero-shot} text style transfer via simple latent vector arithmetic.

Xiang Jiang · Qicheng Lao · Stan Matwin · Mohammad Havaei

[ Virtual ]

We present an approach for unsupervised domain adaptation—with a strong focus on practical considerations of within-domain class imbalance and between-domain class distribution shift—from a class-conditioned domain alignment perspective. Current methods for class-conditioned domain alignment aim to explicitly minimize a loss function based on pseudo-label estimations of the target domain. However, these methods suffer from pseudo-label bias in the form of error accumulation. We propose a method that removes the need for explicit optimization of model parameters from pseudo-labels. Instead, we present a sampling-based implicit alignment approach, where the sample selection is implicitly guided by the pseudo-labels. Theoretical analysis reveals the existence of a domain-discriminator shortcut in misaligned classes, which is addressed by the proposed approach to facilitate domain-adversarial learning. Empirical results and ablation studies confirm the effectiveness of the proposed approach, especially in the presence of within-domain class imbalance and between-domain class distribution shift.

Sanghamitra Dutta · Dennis Wei · Hazar Yueksel · Pin-Yu Chen · Sijia Liu · Kush Varshney

[ Virtual ]

A trade-off between accuracy and fairness is almost taken as a given in the existing literature on fairness in machine learning. Yet, it is not preordained that accuracy should decrease with increased fairness. Novel to this work, we examine fair classification through the lens of mismatched hypothesis testing: trying to find a classifier that distinguishes between two ideal distributions when given two mismatched distributions that are biased. Using Chernoff information, a tool in information theory, we theoretically demonstrate that, contrary to popular belief, there always exist ideal distributions such that optimal fairness and accuracy (with respect to the ideal distributions) are achieved simultaneously: there is no trade-off. Moreover, the same classifier yields the lack of a trade-off with respect to ideal distributions while yielding a trade-off when accuracy is measured with respect to the given (possibly biased) dataset. To complement our main result, we formulate an optimization to find ideal distributions and derive fundamental limits to explain why a trade-off exists on the given biased dataset. We also derive conditions under which active data collection can alleviate the fairness-accuracy trade-off in the real world. Our results lead us to contend that it is problematic to measure accuracy with respect to …

Nghia Hoang · Thanh Lam · Bryan Kian Hsiang Low · Patrick Jaillet

[ Virtual ]

Model fusion is an emerging study in collective learning where heterogeneous experts with private data and learning architectures need to combine their black-box knowledge for better performance. Existing literature achieves this via a local knowledge distillation scheme that transfuses the predictive patterns of each pre-trained expert onto a white-box imitator model, which can be incorporated efficiently into a global model. This scheme however does not extend to multi-task scenarios where different experts were trained to solve different tasks and only part of their distilled knowledge is relevant to a new task. To address this multi-task challenge, we develop a new fusion paradigm that represents each expert as a distribution over a spectrum of predictive prototypes, which are isolated from task-specific information encoded within the prototype distribution. The task-agnostic prototypes can then be reintegrated to generate a new model that solves a new task encoded with a different prototype distribution. The fusion and adaptation performance of the proposed framework is demonstrated empirically on several real-world benchmark datasets.

Alex Ayoub · Zeyu Jia · Csaba Szepesvari · Mengdi Wang · Lin Yang

[ Virtual ]

This paper studies model-based reinforcement learning (RL) for regret minimization. We focus on finite-horizon episodic RL where the transition model P belongs to a known family of models, a special case of which is when models in the model class take the form of linear mixtures. We propose a model based RL algorithm that is based on the optimism principle: In each episode, the set of models that are `consistent' with the data collected is constructed. The criterion of consistency is based on the total squared error that the model incurs on the task of predicting state values as determined by the last value estimate along the transitions. The next value function is then chosen by solving the optimistic planning problem with the constructed set of models. We derive a bound on the regret, which, in the special case of linear mixtures, takes the form O(d (H^3 T)^(1/2) ), where H, T and d are the horizon, the total number of steps and the dimension of the parameter vector, respectively. In particular, this regret bound is independent of the total number of states or actions, and is close to a lower bound Omega( (HdT)^(1/2) ). For a general model family, …

Wengong Jin · Regina Barzilay · Tommi Jaakkola

[ Virtual ]

Drug discovery aims to find novel compounds with specified chemical property profiles. In terms of generative modeling, the goal is to learn to sample molecules in the intersection of multiple property constraints. This task becomes increasingly challenging when there are many property constraints. We propose to offset this complexity by composing molecules from a vocabulary of substructures that we call molecular rationales. These rationales are identified from molecules as substructures that are likely responsible for each property of interest. We then learn to expand rationales into a full molecule using graph generative models. Our final generative model composes molecules as mixtures of multiple rationale completions, and this mixture is fine-tuned to preserve the properties of interest. We evaluate our model on various drug design tasks and demonstrate significant improvements over state-of-the-art baselines in terms of accuracy, diversity, and novelty of generated compounds.

Yu Chen · Zhenming LIU · Bin Ren · Xin Jin

[ Virtual ]

Efficient construction of checkpoints/snapshots is a critical tool for training and diagnosing deep learning models. In this paper, we propose a lossy compression scheme for checkpoint constructions (called LC-Checkpoint). LC-Checkpoint simultaneously maximizes the compression rate and optimizes the recovery speed, under the assumption that SGD is used to train the model. LC-Checkpoint uses quantization and priority promotion to store the most crucial information for SGD to recover, and then uses a Huffman coding to leverage the non-uniform distribution of the gradient scales. Our extensive experiments show that LC-Checkpoint achieves a compression rate up to 28× and recovery speedup up to 5.77× over a state-of-the-art algorithm (SCAR).

Miaoyun Zhao · Yulai Cong · Lawrence Carin

[ Virtual ]

Recent work has shown generative adversarial networks (GANs) can generate highly realistic images, that are often indistinguishable (by humans) from real images. Most images so generated are not contained in the training dataset, suggesting potential for augmenting training sets with GAN-generated data. While this scenario is of particular relevance when there are limited data available, there is still the issue of training the GAN itself based on that limited data. To facilitate this, we leverage existing GAN models pretrained on large-scale datasets (like ImageNet) to introduce additional knowledge (which may not exist within the limited data), following the concept of transfer learning. Demonstrated by natural-image generation, we reveal that low-level filters (those close to observations) of both the generator and discriminator of pretrained GANs can be transferred to facilitate generation in a perceptually-distinct target domain with limited training data. To further adapt the transferred filters to the target domain, we propose adaptive filter modulation (AdaFM). An extensive set of experiments is presented to demonstrate the effectiveness of the proposed techniques on generation with limited data.

Jeff Calder · Brendan Cook · Matthew Thorpe · Dejan Slepcev

[ Virtual ]

We propose a new framework, called Poisson learning, for graph based semi-supervised learning at very low label rates. Poisson learning is motivated by the need to address the degeneracy of Laplacian semi-supervised learning in this regime. The method replaces the assignment of label values at training points with the placement of sources and sinks, and solves the resulting Poisson equation on the graph. The outcomes are provably more stable and informative than those of Laplacian learning. Poisson learning is efficient and simple to implement, and we present numerical experiments showing the method is superior to other recent approaches to semi-supervised learning at low label rates on MNIST, FashionMNIST, and Cifar-10. We also propose a graph-cut enhancement of Poisson learning, called Poisson MBO, that gives higher accuracy and can incorporate prior knowledge of relative class sizes.

Zhongxiang Dai · Yizhou Chen · Bryan Kian Hsiang Low · Patrick Jaillet · Teck-Hua Ho

[ Virtual ]

This paper presents a recursive reasoning formalism of Bayesian optimization (BO) to model the reasoning process in the interactions between boundedly rational, self-interested agents with unknown, complex, and costly-to-evaluate payoff functions in repeated games, which we call Recursive Reasoning-Based BO (R2-B2). Our R2-B2 algorithm is general in that it does not constrain the relationship among the payoff functions of different agents and can thus be applied to various types of games such as constant-sum, general-sum, and common-payoff games. We prove that by reasoning at level 2 or more and at one level higher than the other agents, our R2-B2 agent can achieve faster asymptotic convergence to no regret than that without utilizing recursive reasoning. We also propose a computationally cheaper variant of R2-B2 called R2-B2-Lite at the expense of a weaker convergence guarantee. The performance and generality of our R2-B2 algorithm are empirically demonstrated using synthetic games, adversarial machine learning, and multi-agent reinforcement learning.

Yang Yu · Shih-Kang Chao · Guang Cheng

[ Virtual ]

In this paper, we propose a bootstrap method applied to massive data processed distributedly in a large number of machines. This new method is computationally efficient in that we bootstrap on the master machine without over-resampling, typically required by existing methods \cite{kleiner2014scalable,sengupta2016subsampled}, while provably achieving optimal statistical efficiency with minimal communication. Our method does not require repeatedly re-fitting the model but only applies multiplier bootstrap in the master machine on the gradients received from the worker machines. Simulations validate our theory.

Lijun Ding · Yingjie Fei · Qiantong Xu · Chengrun Yang

[ Virtual ]

We develop a novel variant of the classical Frank-Wolfe algorithm, which we call spectral Frank-Wolfe, for convex optimization over a spectrahedron. The spectral Frank-Wolfe algorithm has a novel ingredient: it computes a few eigenvectors of the gradient and solves a small-scale subproblem in each iteration. Such a procedure overcomes the slow convergence of the classical Frank-Wolfe algorithm due to ignoring eigenvalue coalescence. We demonstrate that strict complementarity of the optimization problem is key to proving linear convergence of various algorithms, such as the spectral Frank-Wolfe algorithm as well as the projected gradient method and its accelerated version. We showcase that the strict complementarity is equivalent to the eigengap assumption on the gradient at the optimal solution considered in the literature. As a byproduct of this observation, we also develop a generalized block Frank-Wolfe algorithm and prove its linear convergence.

Nicolas Loizou · Hugo Berard · Alexia Jolicoeur-Martineau · Pascal Vincent · Simon Lacoste-Julien · Ioannis Mitliagkas

[ Virtual ]

The success of adversarial formulations in machine learning has brought renewed motivation for smooth games. In this work, we focus on the class of stochastic Hamiltonian methods and provide the first convergence guarantees for certain classes of stochastic smooth games. We propose a novel unbiased estimator for the stochastic Hamiltonian gradient descent (SHGD) and highlight its benefits. Using tools from the optimization literature we show that SHGD converges linearly to the neighbourhood of a stationary point. To guarantee convergence to the exact solution, we analyze SHGD with a decreasing step-size and we also present the first stochastic variance reduced Hamiltonian method. Our results provide the first global non-asymptotic last-iterate convergence guarantees for the class of stochastic unconstrained bilinear games and for the more general class of stochastic games that satisfy a ``sufficiently bilinear" condition, notably including some non-convex non-concave problems. We supplement our analysis with experiments on stochastic bilinear and sufficiently bilinear games, where our theory is shown to be tight, and on simple adversarial machine learning formulations.

Vasileios Lioutas · Yuhong Guo

[ Virtual ]

To date, most state-of-the-art sequence modeling architectures use attention to build generative models for language based tasks. Some of these models use all the available sequence tokens to generate an attention distribution which results in time complexity of $O(n^2)$. Alternatively, they utilize depthwise convolutions with softmax normalized kernels of size $k$ acting as a limited-window self-attention, resulting in time complexity of $O(k{\cdot}n)$. In this paper, we introduce Time-aware Large Kernel (TaLK) Convolutions, a novel adaptive convolution operation that learns to predict the size of a summation kernel instead of using a fixed-sized kernel matrix. This method yields a time complexity of $O(n)$, effectively making the sequence encoding process linear to the number of tokens. We evaluate the proposed method on large-scale standard machine translation, abstractive summarization and language modeling datasets and show that TaLK Convolutions constitute an efficient improvement over other attention/convolution based approaches.
Yang Li · Shoaib Akbar · Junier Oliva
Understanding the dependencies among features of a dataset is at the core of most unsupervised learning tasks. However, a majority of generative modeling approaches are focused solely on the joint distribution $p(x)$ and utilize models where it is intractable to obtain the conditional distribution of some arbitrary subset of features $x_u$ given the rest of the observed covariates $x_o$: $p(x_u \mid x_o)$. Traditional conditional approaches provide a model for a \emph{fixed} set of covariates conditioned on another \emph{fixed} set of observed covariates. Instead, in this work we develop a model that is capable of yielding \emph{all} conditional distributions $p(x_u \mid x_o)$ (for arbitrary $x_u$) via tractable conditional likelihoods. We propose a novel extension of (change of variables based) flow generative models, arbitrary conditioning flow models (ACFlow). ACFlow can be conditioned on arbitrary subsets of observed covariates, which was previously infeasible. We further extend ACFlow to model the joint distributions $p(x)$ and arbitrary marginal distributions $p(x_u)$. We also apply ACFlow to the imputation of features, and develop a unified platform for both multiple and single imputation by introducing an auxiliary objective that provides a principled single ``best guess'' for flow models. Extensive empirical evaluations show that our model achieves state-of-the-art performance …
Xuezhou Zhang · Yuzhe Ma · Adish Singla · Jerry Zhu
In reward-poisoning attacks against reinforcement learning (RL), an attacker can perturb the environment reward $r_t$ into $r_t+\delta_t$ at each step, with the goal of forcing the RL agent to learn a nefarious policy. We categorize such attacks by the infinity-norm constraint on $\delta_t$: We provide a lower threshold below which reward-poisoning attack is infeasible and RL is certified to be safe; we provide a corresponding upper threshold above which the attack is feasible. Feasible attacks can be further categorized as non-adaptive where $\delta_t$ depends only on $(s_t,a_t, s_{t+1})$, or adaptive where $\delta_t$ depends further on the RL agent's learning process at time $t$. Non-adaptive attacks have been the focus of prior works. However, we show that under mild conditions, adaptive attacks can achieve the nefarious policy in steps polynomial in state-space size $|S|$, whereas non-adaptive attacks require exponential steps. We provide a constructive proof that a Fast Adaptive Attack strategy achieves the polynomial rate. Finally, we show that empirically an attacker can find effective reward-poisoning attacks using state-of-the-art deep RL techniques.
Parsa Saadatpanah · Ali Shafahi · Tom Goldstein

It is well-known that many machine learning models are susceptible to adversarial attacks, in which an attacker evades a classifier by making small perturbations to inputs. This paper discusses how industrial copyright detection tools, which serve a central role on the web, are susceptible to adversarial attacks. As proof of concept, we describe a well-known music identification method and implement this system in the form of a neural net. We then attack this system using simple gradient methods and show that it is easily broken with white-box attacks. By scaling these perturbations up, we can create transfer attacks on industrial systems, such as the AudioTag copyright detector and YouTube's Content ID system, using perturbations that are audible but significantly smaller than a random baseline. Our goal is to raise awareness of the threats posed by adversarial examples in this space and to highlight the importance of hardening copyright detection systems to attacks.

Lingxiao Wang · Zhuoran Yang · Zhaoran Wang

Multi-agent reinforcement learning (MARL) achieves significant empirical successes. However, MARL suffers from the curse of many agents. In this paper, we exploit the symmetry of agents in MARL. In the most generic form, we study a mean-field MARL problem. Such a mean-field MARL is defined on mean-field states, which are distributions that are supported on continuous space. Based on the mean embedding of the distributions, we propose MF-FQI algorithm, which solves the mean-field MARL and establishes a non-asymptotic analysis for MF-FQI algorithm. We highlight that MF-FQI algorithm enjoys a ``blessing of many agents'' property in the sense that a larger number of observed agents improves the performance of MF-FQI algorithm.

Ying Jin · Zhaoran Wang · Junwei Lu

We study the computational and statistical tradeoffs in inferring combinatorial structures of high dimensional simple zero-field ferromagnetic Ising model. Under the framework of oracle computational model where an algorithm interacts with an oracle that discourses a randomized version of truth, we characterize the computational lower bounds of learning combinatorial structures in polynomial time, under which no algorithms within polynomial-time can distinguish between graphs with and without certain structures. This hardness of learning with limited computational budget is shown to be characterized by a novel quantity called vertex overlap ratio. Such quantity is universally valid for many specific graph structures including cliques and nearest neighbors. On the other side, we attain the optimal rates for testing these structures against empty graph by proposing the quadratic testing statistics to match the lower bounds. We also investigate the relationship between computational bounds and information-theoretic bounds for such problems, and found gaps between the two boundaries in inferring some particular structures, especially for those with dense edges.

Youzhi Zhang · Bo An

Efficiently computing equilibria for multiplayer games is still an open challenge in computational game theory. This paper focuses on computing Team-Maxmin Equilibria (TMEs), which is an important solution concept for zero-sum multiplayer games where players in a team having the same utility function play against an adversary independently. Existing algorithms are inefficient to compute TMEs in large games, especially when the strategy space is too large to be represented due to limited memory. In two-player games, the Incremental Strategy Generation (ISG) algorithm is an efficient approach to avoid enumerating all pure strategies. However, the study of ISG for computing TMEs is completely unexplored. To fill this gap, we first study the properties of ISG for multiplayer games, showing that ISG converges to a Nash equilibrium (NE) but may not converge to a TME. Second, we design an ISG variant for TMEs (ISGT) by exploiting that a TME is an NE maximizing the team’s utility and show that ISGT converges to a TME and the impossibility of relaxing conditions in ISGT. Third, to further improve the scalability, we design an ISGT variant (CISGT) by using the strategy space for computing an equilibrium that is close to a TME but is easier …

Amrita Roy Chowdhury · Theodoros Rekatsinas · Somesh Jha
Directed graphical models (DGMs) are a class of probabilistic models that are widely used for predictive analysis in sensitive domains such as medical diagnostics. In this paper, we present an algorithm for differentially-private learning of the parameters of a DGM. Our solution optimizes for the utility of inference queries over the DGM and \textit{adds noise that is customized to the properties of the private input dataset and the graph structure of the DGM}. To the best of our knowledge, this is the first explicit data-dependent privacy budget allocation algorithm in the context of DGMs. We compare our algorithm with a standard data-independent approach over a diverse suite of benchmarks and demonstrate that our solution requires a privacy budget that is roughly $3\times$ smaller to obtain the same or higher utility.
Marko Vasic · Cameron Chalk · Sarfraz Khurshid · David Soloveichik

Embedding computation in molecular contexts incompatible with traditional electronics is expected to have wide ranging impact in synthetic biology, medicine, nanofabrication and other fields. A key remaining challenge lies in developing programming paradigms for molecular computation that are well-aligned with the underlying chemical hardware and do not attempt to shoehorn ill-fitting electronics paradigms. We discover a surprisingly tight connection between a popular class of neural networks (binary-weight ReLU aka BinaryConnect) and a class of coupled chemical reactions that are absolutely robust to reaction rates. The robustness of rate-independent chemical computation makes it a promising target for bioengineering implementation. We show how a BinaryConnect neural network trained in silico using well-founded deep learning optimization techniques, can be compiled to an equivalent chemical reaction network, providing a novel molecular programming paradigm. We illustrate such translation on the paradigmatic IRIS and MNIST datasets. Toward intended applications of chemical computation, we further use our method to generate a chemical reaction network that can discriminate between different virus types based on gene expression levels. Our work sets the stage for rich knowledge transfer between neural network and molecular programming communities.

Heewoo Jun · Rewon Child · Mark Chen · John Schulman · Aditya Ramesh · Alec Radford · Ilya Sutskever

We present distribution augmentation (DistAug), a simple and powerful method of regularizing generative models. Our approach applies augmentation functions to data and, importantly, conditions the generative model on the specific function used. Unlike typical data augmentation, DistAug allows usage of functions which modify the target density, enabling aggressive augmentations more commonly seen in supervised and self-supervised learning. We demonstrate this is a more effective regularizer than standard methods, and use it to train a 152M parameter autoregressive model on CIFAR-10 to 2.56 bits per dim (relative to the state-of-the-art 2.80). Samples from this model attain FID 12.75 and IS 8.40, outperforming the majority of GANs. We further demonstrate the technique is broadly applicable across model architectures and problem domains.

Yi Su · Maria Dimakopoulou · Akshay Krishnamurthy · Miroslav Dudik

We propose a new framework for designing estimators for off-policy evaluation in contextual bandits. Our approach is based on the asymptotically optimal doubly robust estimator, but we shrink the importance weights to minimize a bound on the mean squared error, which results in a better bias-variance tradeoff in finite samples. We use this optimization-based framework to obtain three estimators: (a) a weight-clipping estimator, (b) a new weight-shrinkage estimator, and (c) the first shrinkage-based estimator for combinatorial action sets. Extensive experiments in both standard and combinatorial bandit benchmark problems show that our estimators are highly adaptive and typically outperform state-of-the-art methods.

Zhizhong Han · Chao Chen · Yushen Liu · Matthias Zwicker

Differentiable renderers have been used successfully for unsupervised 3D structure learning from 2D images because they can bridge the gap between 3D and 2D. To optimize 3D shape parameters, current renderers rely on pixel-wise losses between rendered images of 3D reconstructions and ground truth images from corresponding viewpoints. Hence they require interpolation of the recovered 3D structure at each pixel, visibility handling, and optionally evaluating a shading model. In contrast, here we propose a Differentiable Renderer Without Rendering (DRWR) that omits these steps. DRWR only relies on a simple but effective loss that evaluates how well the projections of reconstructed 3D point clouds cover the ground truth object silhouette. Specifically, DRWR employs a smooth silhouette loss to pull the projection of each individual 3D point inside the object silhouette, and a structure-aware repulsion loss to push each pair of projections that fall inside the silhouette far away from each other. Although we omit surface interpolation, visibility handling, and shading, our results demonstrate that DRWR achieves state-of-the-art accuracies under widely used benchmarks, outperforming previous methods both qualitatively and quantitatively. In addition, our training times are significantly lower due to the simplicity of DRWR.

Pingchuan Ma · Tao Du · Wojciech Matusik

Tasks in multi-task learning often correlate, conflict, or even compete with each other. As a result, a single solution that is optimal for all tasks rarely exists. Recent papers introduced the concept of Pareto optimality to this field and directly cast multi-task learning as multi-objective optimization problems, but solutions returned by existing methods are typically finite, sparse, and discrete. We present a novel, efficient method that generates locally continuous Pareto sets and Pareto fronts, which opens up the possibility of continuous analysis of Pareto optimal solutions in machine learning problems. We scale up theoretical results in multi-objective optimization to modern machine learning problems by proposing a sample-based sparse linear system, for which standard Hessian-free solvers in machine learning can be applied. We compare our method to the state-of-the-art algorithms and demonstrate its usage of analyzing local Pareto sets on various multi-task classification and regression problems. The experimental results confirm that our algorithm reveals the primary directions in local Pareto sets for trade-off balancing, finds more solutions with different trade-offs efficiently, and scales well to tasks with millions of parameters.

Subhroshekhar Ghosh · Krishna Balasubramanian · Xiaochuan Yang
We propose a novel stochastic network model, called Fractal Gaussian Network (FGN), that embodies well-defined and analytically tractable fractal structures. Such fractal structures have been empirically observed in diverse applications. FGNs interpolate continuously between the popular purely random geometric graphs (a.k.a. the Poisson Boolean network), and random graphs with increasingly fractal behavior. In fact, they form a parametric family of sparse random geometric graphs that are parametrised by a fractality parameter $\nu$ which governs the strength of the fractal structure. FGNs are driven by the latent spatial geometry of Gaussian Multiplicative Chaos (GMC), a canonical model of fractality in its own right. We explore the natural question of detecting the presence of fractality and the problem of parameter estimation based on observed network data. Finally, we explore fractality in community structures by unveiling a natural stochastic block model in the setting of FGNs.
Jeffrey Negrea · Gintare Karolina Dziugaite · Daniel Roy

We propose to study the generalization error of a learned predictor h^ in terms of that of a surrogate (potentially randomized) classifier that is coupled to h^ and designed to trade empirical risk for control of generalization error. In the case where h^ interpolates the data, it is interesting to consider theoretical surrogate classifiers that are partially derandomized or rerandomized, e.g., fit to the training data but with modified label noise. We show that replacing h^ by its conditional distribution with respect to an arbitrary sigma-field is a viable method to derandomize. We give an example, inspired by the work of Nagarajan and Kolter (2019), where the learned classifier h^ interpolates the training data with high probability, has small risk, and, yet, does not belong to a nonrandom class with a tight uniform bound on two-sided generalization error. At the same time, we bound the risk of h^ in terms of a surrogate that is constructed by conditioning and shown to belong to a nonrandom class with uniformly small generalization error.

Suraj Nair · Silvio Savarese · Chelsea Finn

Learned dynamics models combined with both planning and policy learning algorithms have shown promise in enabling artificial agents to learn to perform many diverse tasks with limited supervision. However, one of the fundamental challenges in using a learned forward dynamics model is the mismatch between the objective of the learned model (future state reconstruction), and that of the downstream planner or policy (completing a specified task). This issue is exacerbated by vision-based control tasks in diverse real-world environments, where the complexity of the real world dwarfs model capacity. In this paper, we propose to direct prediction towards task relevant information, enabling the model to be aware of the current task and encouraging it to only model relevant quantities of the state space, resulting in a learning objective that more closely matches the downstream task. Further, we do so in an entirely self-supervised manner, without the need for a reward function or image labels. We find that our method more effectively models the relevant parts of the scene conditioned on the goal, and as a result outperforms standard task-agnostic dynamics models and model-free reinforcement learning.

Soham Dan · Bhaswar B. Bhattacharya
Hypothesis testing of random networks is an emerging area of modern research, especially in the high-dimensional regime, where the number of samples is smaller or comparable to the size of the graph. In this paper we consider the goodness-of-fit testing problem for large inhomogeneous random (IER) graphs, where given a (known) reference symmetric matrix $Q \in [0, 1]^{n \times n}$ and $m$ independent samples from an IER graph given by an unknown symmetric matrix $P \in [0, 1]^{n \times n}$, the goal is to test the hypothesis $P=Q$ versus $||P-Q|| \geq \varepsilon$, where $||\cdot||$ is some specified norm on symmetric matrices. Building on recent related work on two-sample testing for IER graphs, we derive the optimal minimax sample complexities for the goodness-of-fit problem in various natural norms, such as the Frobenius norm and the operator norm. We also propose practical implementations of natural test statistics, using their asymptotic distributions and through the parametric bootstrap. We compare the performances of the different tests in simulations, and show that the proposed tests outperform the baseline tests across various natural random graphs models.
Denny Zhou · Mao Ye · Chen Chen · Tianjian Meng · Mingxing Tan · Xiaodan Song · Quoc Le · Qiang Liu · Dale Schuurmans

For deploying a deep learning model into production, it needs to be both accurate and compact to meet the latency and memory constraints. This usually results in a network that is deep (to ensure performance) and yet thin (to improve computational efficiency). In this paper, we propose an efficient method to train a deep thin network with a theoretic guarantee. Our method is motivated by model compression. It consists of three stages. In the first stage, we sufficiently widen the deep thin network and train it until convergence. In the second stage, we use this well-trained deep wide network to warm up (or initialize) the original deep thin network. This is achieved by letting the thin network imitate the immediate outputs of the wide network from layer to layer. In the last stage, we further fine tune this well initialized deep thin network. The theoretical guarantee is established by using mean field analysis. It shows the advantage of layerwise imitation over traditional training deep thin networks from scratch by backpropagation. We also conduct large-scale empirical experiments to validate our approach. By training with our method, ResNet50 can outperform ResNet101, and BERTBASE can be comparable with BERTLARGE, where both …

Liqun Chen · Zhe Gan · Yu Cheng · Linjie Li · Lawrence Carin · Jingjing Liu

Cross-domain alignment between two sets of entities (e.g., objects in an image, words in a sentence) is fundamental to both computer vision and natural language processing. Existing methods mainly focus on designing advanced attention mechanisms to simulate soft alignment, where no training signals are provided to explicitly encourage alignment. Plus, the learned attention matrices are often dense and difficult to interpret. We propose Graph Optimal Transport (GOT), a principled framework that builds upon recent advances in Optimal Transport (OT). In GOT, cross-domain alignment is formulated as a graph matching problem, by representing entities as a dynamically-constructed graph. Two types of OT distances are considered: (i) Wasserstein distance (WD) for node (entity) matching; and (ii) Gromov-Wasserstein distance (GWD) for edge (structure) matching. Both WD and GWD can be incorporated into existing neural network models, effectively acting as a drop-in regularizer.
The inferred transport plan also yields sparse and self-normalized alignment, enhancing the interpretability of the learned model. Experiments show consistent outperformance of GOT over baselines across a wide range of tasks, including image-text retrieval, visual question answering, image captioning, machine translation, and text summarization.

Jiaxuan You · Jure Leskovec · Kaiming He · Saining Xie

Neural networks are often represented as graphs of connections between neurons. However, despite their wide use, there is currently little understanding of the relationship between the graph structure of the neural network and its predictive performance. Here we systematically investigate how does the graph structure of neural networks affect their predictive performance. To this end, we develop a novel graph-based representation of neural networks called relational graph, where layers of neural network computation correspond to rounds of message exchange along the graph structure. Using this representation we show that: (1) graph structure of neural networks matters; (2) a “sweet spot” of relational graphs lead to neural networks with significantly improved predictive performance; (3) neural network’s performance is approximately a smooth function of the clustering coefficient and average path length of its relational graph; (4) our findings are consistent across many different tasks and datasets; (5) top architectures can be identified efficiently; (6) well-performing neural networks have graph structure surprisingly similar to those of real biological neural networks. Our work opens new directions for the design of neural architectures and the understanding on neural networks in general.

Hrayr Harutyunyan · Kyle Reing · Greg Ver Steeg · Aram Galstyan
In the presence of noisy or incorrect labels, neural networks have the undesirable tendency to memorize information about the noise. Standard regularization techniques such as dropout, weight decay or data augmentation sometimes help, but do not prevent this behavior. If one considers neural network weights as random variables that depend on the data and stochasticity of training, the amount of memorized information can be quantified with the Shannon mutual information between weights and the vector of all training labels given inputs, $I(w; \Y \mid \X)$. We show that for any training algorithm, low values of this term correspond to reduction in memorization of label-noise and better generalization bounds. To obtain these low values, we propose training algorithms that employ an auxiliary network that predicts gradients in the final layers of a classifier without accessing labels. We illustrate the effectiveness of our approach on versions of MNIST, CIFAR-10, and CIFAR-100 corrupted with various noise models, and on a large-scale dataset Clothing1M that has noisy labels.
Dipendra Kumar Misra · Mikael Henaff · Akshay Krishnamurthy · John Langford

We present an algorithm, HOMER, for exploration and reinforcement learning in rich observation environments that are summarizable by an unknown latent state space. The algorithm interleaves representation learning to identify a new notion of kinematic state abstraction with strategic exploration to reach new states using the learned abstraction. The algorithm provably explores the environment with sample complexity scaling polynomially in the number of latent states and the time horizon, and, crucially, with no dependence on the size of the observation space, which could be infinitely large. This exploration guarantee further enables sample-efficient global policy optimization for any reward function. On the computational side, we show that the algorithm can be implemented efficiently whenever certain supervised learning problems are tractable. Empirically, we evaluate HOMER on a challenging exploration problem, where we show that the algorithm is more sample efficient than standard reinforcement learning baselines.

Karl Stratos · Sam Wiseman

We propose learning discrete structured representations from unlabeled data by maximizing the mutual information between a structured latent variable and a target variable. Calculating mutual information is intractable in this setting. Our key technical contribution is an adversarial objective that can be used to tractably estimate mutual information assuming only the feasibility of cross entropy calculation. We develop a concrete realization of this general formulation with Markov distributions over binary encodings. We report critical and unexpected findings on practical aspects of the objective such as the choice of variational priors. We apply our model on document hashing and show that it outperforms current best baselines based on discrete and vector quantized variational autoencoders. It also yields highly compressed interpretable representations.

Alexander Bogatskiy · Brandon Anderson · Jan T Offermann · Marwah Roussi · David Miller · Risi Kondor

We present a neural network architecture that is fully equivariant with respect to transformations under the Lorentz group, a fundamental symmetry of space and time in physics. The architecture is based on the theory of the finite-dimensional representations of the Lorentz group and the equivariant nonlinearity involves the tensor product. For classification tasks in particle physics, we show that such an equivariant architecture leads to drastically simpler models that have relatively few learnable parameters and are much more physically interpretable than leading approaches that use CNNs and point cloud approaches. The performance of the network is tested on a public classification dataset [https://zenodo.org/record/2603256] for tagging top quark decays given energy-momenta of jet constituents produced in proton-proton collisions.

Ashok Cutkosky · Harsh Mehta
We provide an improved analysis of normalized SGD showing that adding momentum provably removes the need for large batch sizes on non-convex objectives. Then, we consider the case of objectives with bounded second derivative and show that in this case a small tweak to the momentum formula allows normalized SGD with momentum to find an $\epsilon$-critical point in $O(1/\epsilon^{3.5})$ iterations, matching the best-known rates without accruing any logarithmic factors or dependence on dimension. We provide an adaptive learning rate schedule that automatically improves convergence rates when the variance in the gradients is small. Finally, we show that our method is effective when employed on popular large scale tasks such as ResNet-50 and BERT pretraining, matching the performance of the disparate methods used to get state-of-the-art results on both tasks.
Lin Chen · Yifei Min · Mingrui Zhang · Amin Karbasi
Despite remarkable success in practice, modern machine learning models have been found to be susceptible to adversarial attacks that make human-imperceptible perturbations to the data, but result in serious and potentially dangerous prediction errors. To address this issue, practitioners often use adversarial training to learn models that are robust against such attacks at the cost of higher generalization error on unperturbed test sets. The conventional wisdom is that more training data should shrink the gap between the generalization error of adversarially-trained models and standard models. However, we study the training of robust classifiers for both Gaussian and Bernoulli models under $\ell_\infty$ attacks, and we prove that more data may actually increase this gap. Furthermore, our theoretical results identify if and when additional data will finally begin to shrink the gap. Lastly, we experimentally demonstrate that our results also hold for linear regression models, which may indicate that this phenomenon occurs more broadly.
Rupert Freeman · David Pennock · Chara Podimata · Jennifer Wortman Vaughan

We study online learning settings in which experts act strategically to maximize their influence on the learning algorithm's predictions by potentially misreporting their beliefs about a sequence of binary events. Our goal is twofold. First, we want the learning algorithm to be no-regret with respect to the best fixed expert in hindsight. Second, we want incentive compatibility, a guarantee that each expert's best strategy is to report his true beliefs about the realization of each event. To achieve this goal, we build on the literature on wagering mechanisms, a type of multi-agent scoring rule. We provide algorithms that achieve no regret and incentive compatibility for myopic experts for both the full and partial information settings. In experiments on datasets from FiveThirtyEight, our algorithms have regret comparable to classic no-regret algorithms, which are not incentive-compatible. Finally, we identify an incentive-compatible algorithm for forward-looking strategic agents that exhibits diminishing regret in practice.

Xingjun Ma · Hanxun Huang · Yisen Wang · Simone Romano · Sarah Erfani · James Bailey

Robust loss functions are essential for training accurate deep neural networks (DNNs) in the presence of noisy (incorrect) labels. It has been shown that the commonly used Cross Entropy (CE) loss is not robust to noisy labels. Whilst new loss functions have been designed, they are only partially robust. In this paper, we theoretically show by applying a simple normalization that: \emph{any loss can be made robust to noisy labels}. However, in practice, simply being robust is not sufficient for a loss function to train accurate DNNs. By investigating several robust loss functions, we find that they suffer from a problem of {\em underfitting}. To address this, we propose a framework to build robust loss functions called \emph{Active Passive Loss} (APL). APL combines two robust loss functions that mutually boost each other. Experiments on benchmark datasets demonstrate that the family of new loss functions created by our APL framework can consistently outperform state-of-the-art methods by large margins, especially under large noise rates such as 60\% or 80\% incorrect labels.

Di Wang · Hanshen Xiao · Srinivas Devadas · Jinhui Xu
In this paper, we consider the problem of designing Differentially Private (DP) algorithms for Stochastic Convex Optimization (SCO) on heavy-tailed data. The irregularity of such data violates some key assumptions used in almost all existing DP-SCO and DP-ERM methods, resulting in failure to provide the DP guarantees. To better understand this type of challenges, we provide in this paper a comprehensive study of DP-SCO under various settings. First, we consider the case where the loss function is strongly convex and smooth. For this case, we propose a method based on the sample-and-aggregate framework, which has an excess population risk of $\tilde{O}(\frac{d^3}{n\epsilon^4})$ (after omitting other factors), where $n$ is the sample size and $d$ is the dimensionality of the data. Then, we show that with some additional assumptions on the loss functions, it is possible to reduce the \textit{expected} excess population risk to $\tilde{O}(\frac{ d^2}{ n\epsilon^2 })$. To lift these additional conditions, we also provide a gradient smoothing and trimming based scheme to achieve excess population risks of $\tilde{O}(\frac{ d^2}{n\epsilon^2})$ and $\tilde{O}(\frac{d^\frac{2}{3}}{(n\epsilon^2)^\frac{1}{3}})$ for strongly convex and general convex loss functions, respectively, \textit{with high probability}. Experiments on both synthetic and real-world datasets suggest that our algorithms can effectively deal with the challenges …
Xinjie Fan · Yuguang Yue · Purnamrita Sarkar · Y. X. Rachel Wang

Tuning hyperparameters for unsupervised learning problems is difficult in general due to the lack of ground truth for validation. However, the success of most clustering methods depends heavily on the correct choice of the involved hyperparameters. Take for example the Lagrange multipliers of penalty terms in semidefinite programming (SDP) relaxations of community detection in networks, or the bandwidth parameter needed in the Gaussian kernel used to construct similarity matrices for spectral clustering. Despite the popularity of these clustering algorithms, there are not many provable methods for tuning these hyperparameters. In this paper, we provide an overarching framework with provable guarantees for tuning hyperparameters in the above class of problems under two different models. Our framework can be augmented with a cross validation procedure to do model selection as well. In a variety of simulation and real data experiments, we show that our framework outperforms other widely used tuning procedures in a broad range of parameter settings.

Lucas Caccia · Eugene Belilovsky · Massimo Caccia · Joelle Pineau

We introduce and study the problem of Online Continual Compression, where one attempts to simultaneously learn to compress and store a representative dataset from a non i.i.d data stream, while only observing each sample once. A naive application of auto-encoder in this setting encounters a major challenge: representations derived from earlier encoder states must be usable by later decoder states. We show how to use discrete auto-encoders to effectively address this challenge and introduce Adaptive Quantization Modules (AQM) to control variation in the compression ability of the module at any given stage of learning. This enables selecting an appropriate compression for incoming samples, while taking into account overall memory constraints and current progress of the learned compression. Unlike previous methods, our approach does not require any pretraining, even on challenging datasets. We show that using AQM to replace standard episodic memory in continual learning settings leads to significant gains on continual learning benchmarks with images, LiDAR, and reinforcement learning agents.

Aditya Bhaskara · Ashok Cutkosky · Ravi Kumar · Manish Purohit
We consider a variant of the classical online linear optimization problem in which at every step, the online player receives a ``hint'' vector before choosing the action for that round. Rather surprisingly, it was shown that if the hint vector is guaranteed to have a positive correlation with the cost vector, then the online player can achieve a regret of $O(\log T)$, thus significantly improving over the $O(\sqrt{T})$ regret in the general setting. However, the result and analysis require the correlation property at \emph{all} time steps, thus raising the natural question: can we design online learning algorithms that are resilient to bad hints? In this paper we develop algorithms and nearly matching lower bounds for online learning with imperfect hints. Our algorithms are oblivious to the quality of the hints, and the regret bounds interpolate between the always-correlated hints case and the no-hints case. Our results also generalize, simplify, and improve upon previous results on optimistic regret bounds, which can be viewed as an additive version of hints.
Jinshuo Dong · David Durfee · Ryan Rogers

Composition is one of the most important properties of differential privacy (DP), as it allows algorithm designers to build complex private algorithms from DP primitives. We consider precise composition bounds of the overall privacy loss for exponential mechanisms, one of the fundamental classes of mechanisms in DP. Exponential mechanism has also become a fundamental building block in private machine learning, e.g. private PCA and hyper-parameter selection. We give explicit formulations of the optimal privacy loss for both the adaptive and non-adaptive composition of exponential mechanism. For the non-adaptive setting in which each mechanism has the same privacy parameter, we give an efficiently computable formulation of the optimal privacy loss. In the adaptive case, we derive a recursive formula and an efficiently computable upper bound. These precise understandings about the problem lead to a 40\% saving of the privacy budget in a practical application. Furthermore, the algorithm-specific analysis shows a difference in privacy parameters of adaptive and non-adaptive composition, which was widely believed to not exist based on the evidence from general analysis.

Zijun Zhang · Ruixiang ZHANG · Zongpeng Li · Yoshua Bengio · Liam Paull

Modern generative models are usually designed to match target distributions directly in the data space, where the intrinsic dimension of data can be much lower than the ambient dimension. We argue that this discrepancy may contribute to the difficulties in training generative models. We therefore propose to map both the generated and target distributions to the latent space using the encoder of a standard autoencoder, and train the generator (or decoder) to match the target distribution in the latent space. Specifically, we enforce the consistency in both the data space and the latent space with theoretically justified data and latent reconstruction losses. The resulting generative model, which we call a perceptual generative autoencoder (PGA), is then trained with a maximum likelihood or variational autoencoder (VAE) objective. With maximum likelihood, PGAs generalize the idea of reversible generative models to unrestricted neural network architectures and arbitrary number of latent dimensions. When combined with VAEs, PGAs substantially improve over the baseline VAEs in terms of sample quality. Compared to other autoencoder-based generative models using simple priors, PGAs achieve state-of-the-art FID scores on CIFAR-10 and CelebA.

Justin Domke

Black-box variational inference tries to approximate a complex target distribution through a gradient-based optimization of the parameters of a simpler distribution. Provable convergence guarantees require structural properties of the objective. This paper shows that for location-scale family approximations, if the target is M-Lipschitz smooth, then so is the “energy” part of the variational objective. The key proof idea is to describe gradients in a certain inner-product space, thus permitting the use of Bessel’s inequality. This result gives bounds on the location of the optimal parameters, and is a key ingredient for convergence guarantees.

Zehua Lai · Lek-Heng Lim

Stochastic optimization algorithms have become indispensable in modern machine learning. An unresolved foundational question in this area is the difference between with-replacement sampling and without-replacement sampling — does the latter have superior convergence rate compared to the former? A groundbreaking result of Recht and Re reduces the problem to a noncommutative analogue of the arithmetic-geometric mean inequality where n positive numbers are replaced by n positive definite matrices. If this inequality holds for all n, then without-replacement sampling indeed outperforms with-replacement sampling in some important optimization problems. The conjectured Recht–Re inequality has so far only been established for n = 2 and a special case of n = 3. We will show that the Recht–Re conjecture is false for general n. Our approach relies on the noncommutative Positivstellensatz, which allows us to reduce the conjectured inequality to a semidefinite program and the validity of the conjecture to certain bounds for the optimum values, which we show are false as soon as n = 5.

Lin Yang · Mengdi Wang
Exploration in reinforcement learning (RL) suffers from the curse of dimensionality when the state-action space is large. A common practice is to parameterize the high-dimensional value and policy functions using given features. However existing methods either have no theoretical guarantee or suffer a regret that is exponential in the planning horizon $H$.In this paper, we propose an online RL algorithm, namely the MatrixRL, that leverages ideas from linear bandit to learn a low-dimensional representation of the probability transition model while carefully balancing the exploitation-exploration tradeoff. We show that MatrixRL achieves a regret bound ${O}\big(H^2d\log T\sqrt{T}\big)$ where $d$ is the number of features, independent with the number of state-action pairs. MatrixRL has an equivalent kernelized version, which is able to work with an arbitrary kernel Hilbert space without using explicit features. In this case, the kernelized MatrixRL satisfies a regret bound ${O}\big(H^2\wt{d}\log T\sqrt{T}\big)$, where $\wt{d}$ is the effective dimension of the kernel space.
Pavel Izmailov · Polina Kirichenko · Marc Finzi · Andrew Wilson

Normalizing flows transform a latent distribution through an invertible neural network for a flexible and pleasingly simple approach to generative modelling, while preserving an exact likelihood. We propose FlowGMM, an end-to-end approach to generative semi supervised learning with normalizing flows, using a latent Gaussian mixture model. FlowGMM is distinct in its simplicity, unified treatment of labelled and unlabelled data with an exact likelihood, interpretability, and broad applicability beyond image data. We show promising results on a wide range of applications, including AG-News and Yahoo Answers text data, tabular data, and semi-supervised image classification. We also show that FlowGMM can discover interpretable structure, provide real-time optimization-free feature visualizations, and specify well calibrated predictive distributions.

Weili Nie · Tero Karras · Animesh Garg · Shoubhik Debnath · Anjul Patney · Ankit Patel · Anima Anandkumar

Disentanglement learning is crucial for obtaining disentangled representations and controllable generation. Current disentanglement methods face several inherent limitations: difficulty with high-resolution images, primarily focusing on learning disentangled representations, and non-identifiability due to the unsupervised setting. To alleviate these limitations, we design new architectures and loss functions based on StyleGAN (Karras et al., 2019), for semi-supervised high-resolution disentanglement learning. We create two complex high-resolution synthetic datasets for systematic testing. We investigate the impact of limited supervision and find that using only 0.25%~2.5% of labeled data is sufficient for good disentanglement on both synthetic and real datasets. We propose new metrics to quantify generator controllability, and observe there may exist a crucial trade-off between disentangled representation learning and controllable generation. We also consider semantic fine-grained image editing to achieve better generalization to unseen images.

Zhe Feng · David Parkes · Haifeng Xu
Motivated by economic applications such as recommender systems, we study the behavior of stochastic bandits algorithms under \emph{strategic behavior} conducted by rational actors, i.e., the arms. Each arm is a \emph{self-interested} strategic player who can modify its own reward whenever pulled, subject to a cross-period budget constraint, in order to maximize its own expected number of times of being pulled. We analyze the robustness of three popular bandit algorithms: UCB, $\varepsilon$-Greedy, and Thompson Sampling. We prove that all three algorithms achieve a regret upper bound $\mathcal{O}(\max \{ B, K\ln T\})$ where $B$ is the total budget across arms, $K$ is the total number of arms and $T$ is the running time of the algorithms. This regret guarantee holds for \emph{arbitrary adaptive} manipulation strategy of arms. Our second set of main results shows that this regret bound is \emph{tight}--- in fact, for UCB, it is tight even when we restrict the arms' manipulation strategies to form a \emph{Nash equilibrium}. We do so by characterizing the Nash equilibrium of the game induced by arms' strategic manipulations and show a regret lower bound of $\Omega(\max \{ B, K\ln T\})$ at the equilibrium.
Kun Xu · Chongxuan Li · Jun Zhu · Bo Zhang

Generative adversarial networks (GANs) are effective in generating realistic images but the training is often unstable. There are existing efforts that model the training dynamics of GANs in the parameter space but the analysis cannot directly motivate practically effective stabilizing methods. To this end, we present a conceptually novel perspective from control theory to directly model the dynamics of GANs in the frequency domain and provide simple yet effective methods to stabilize GAN's training. We first analyze the training dynamic of a prototypical Dirac GAN and adopt the widely-used closed-loop control (CLC) to improve its stability. We then extend CLC to stabilize the training dynamic of normal GANs, which can be implemented as an L2 regularizer on the output of the discriminator. Empirical results show that our method can effectively stabilize the training and obtain state-of-the-art performance on data generation tasks.

Justin Khim · Liu Leqi · Adarsh Prasad · Pradeep Ravikumar

The decision-theoretic foundations of classical machine learning models have largely focused on estimating model parameters that minimize the expectation of a given loss function. However, as machine learning models are deployed in varied contexts, such as in high-stakes decision-making and societal settings, it is clear that these models are not just evaluated by their average performances. In this work, we study a novel notion of L-Risk based on the classical idea of rank-weighted learning. These L-Risks, induced by rank-dependent weighting functions with bounded variation, is a unification of popular risk measures such as conditional value-at-risk and those defined by cumulative prospect theory. We give uniform convergence bounds of this broad class of risk measures and study their consequences on a logistic regression example.

Michael Zhu · Chang Liu · Jun Zhu

Particle-based Variational Inference methods (ParVIs), like Stein Variational Gradient Descent, are nonparametric variational inference methods that optimize a set of particles to best approximate a target distribution. ParVIs have been proposed as efficient approximate inference algorithms and as potential alternatives to MCMC methods. However, to our knowledge, the quality of the posterior approximation of particles from ParVIs has not been examined before for large-scale Bayesian inference problems. We conduct this analysis and evaluate the sample quality of particles produced by ParVIs, and we find that existing ParVI approaches using stochastic gradients converge insufficiently fast under sample quality metrics. We propose a novel variance reduction and quasi-Newton preconditioning framework for ParVIs, by leveraging the Riemannian structure of the Wasserstein space and advanced Riemannian optimization algorithms. Experimental results demonstrate the accelerated convergence of variance reduction and quasi-Newton methods for ParVIs for accurate posterior inference in large-scale and ill-conditioned problems.

Geon-Hyeong Kim · Youngsoo Jang · Hongseok Yang · Kee-Eung Kim

The recent development of flexible and scalable variational inference algorithms has popularized the use of deep probabilistic models in a wide range of applications. However, learning and reasoning about high-dimensional models with nondifferentiable densities are still a challenge. For such a model, inference algorithms struggle to estimate the gradients of variational objectives accurately, due to high variance in their estimates. To tackle this challenge, we present a novel variational inference algorithm for sequential data, which performs well even when the density from the model is not differentiable, for instance, due to the use of discrete random variables. The key feature of our algorithm is that it estimates future likelihoods at all time steps. The estimated future likelihoods form the core of our new low-variance gradient estimator. We formally analyze our gradient estimator from the perspective of variational objective, and show the effectiveness of our algorithm with synthetic and real datasets.

Feng Zhu · Zeyu Zheng
We consider a single-product dynamic pricing problem under a specific non-stationary setting, where the underlying demand process grows over time in expectation and also possibly in the level of random fluctuation. The decision maker sequentially sets price in each time period and learns the unknown demand model, with the goal of maximizing expected cumulative revenue over a time horizon $T$. We prove matching upper and lower bounds on regret and provide near-optimal pricing policies, showing how the growth rate of random fluctuation over time affects the best achievable regret order and the near-optimal policy design. In the analysis, we show that whether the seller knows the length of time horizon $T$ in advance or not surprisingly render different optimal regret orders. We then extend the demand model such that the optimal price may vary with time and present a novel and near-optimal policy for the extended model. Finally, we consider an analogous non-stationary setting in the canonical multi-armed bandit problem, and points out that knowing or not knowing the length of time horizon $T$ render the same optimal regret order, in contrast to the non-stationary dynamic pricing problem.

Poster Session 43 Thu 16 Jul 05:00 p.m.  

Evan Liu · Milad Hashemi · Kevin Swersky · Parthasarathy Ranganathan · Junwhan Ahn

[ Virtual ]

Program execution speed critically depends on increasing cache hits, as cache hits are orders of magnitude faster than misses. To increase cache hits, we focus on the problem of cache replacement: choosing which cache line to evict upon inserting a new line. This is challenging because it requires planning far ahead and currently there is no known practical solution. As a result, current replacement policies typically resort to heuristics designed for specific common access patterns, which fail on more diverse and complex access patterns. In contrast, we propose an imitation learning approach to automatically learn cache access patterns by leveraging Belady’s, an oracle policy that computes the optimal eviction decision given the future cache accesses. While directly applying Belady’s is infeasible since the future is unknown, we train a policy conditioned only on past accesses that accurately approximates Belady’s even on diverse and complex access patterns, and call this approach Parrot. When evaluated on 13 of the most memory-intensive SPEC applications, Parrot increases cache miss rates by 20% over the current state of the art. In addition, on a large-scale web search benchmark, Parrot increases cache hit rates by 61% over a conventional LRU policy. We release a Gym environment …

Lu Jiang · Di Huang · Mason Liu · Weilong Yang

[ Virtual ]

Performing controlled experiments on noisy data is essential in understanding deep learning across noise levels. Due to the lack of suitable datasets, previous research has only examined deep learning on controlled synthetic label noise, and real-world label noise has never been studied in a controlled setting. This paper makes three contributions. First, we establish the first benchmark of controlled real-world label noise from the web. This new benchmark enables us to study the web label noise in a controlled setting for the first time. The second contribution is a simple but effective method to overcome both synthetic and real noisy labels. We show that our method achieves the best result on our dataset as well as on two public benchmarks (CIFAR and WebVision). Third, we conduct the largest study by far into understanding deep neural networks trained on noisy labels across different noise levels, noise types, network architectures, and training settings.

Baharan Mirzasoleiman · Jeff Bilmes · Jure Leskovec

[ Virtual ]

Incremental gradient (IG) methods, such as stochastic gradient descent and its variants are commonly used for large scale optimization in machine learning. Despite the sustained effort to make IG methods more data-efficient, it remains an open question how to select a training data subset that can theoretically and practically perform on par with the full dataset. Here we develop CRAIG, a method to select a weighted subset (or coreset) of training data that closely estimates the full gradient by maximizing a submodular function. We prove that applying IG to this subset is guaranteed to converge to the (near)optimal solution with the same convergence rate as that of IG for convex optimization. As a result, CRAIG achieves a speedup that is inversely proportional to the size of the subset. To our knowledge, this is the first rigorous method for data-efficient training of general machine learning models. Our extensive set of experiments show that CRAIG, while achieving practically the same solution, speeds up various IG methods by up to 6x for logistic regression and 3x for training deep neural networks.

Natalia Martinez Gil · Martin Bertran · Guillermo Sapiro

[ Virtual ]

In this work we formulate and formally characterize group fairness as a multi-objective optimization problem, where each sensitive group risk is a separate objective. We propose a fairness criterion where a classifier achieves minimax risk and is Pareto-efficient w.r.t. all groups, avoiding unnecessary harm, and can lead to the best zero-gap model if policy dictates so. We provide a simple optimization algorithm compatible with deep neural networks to satisfy these constraints. Since our method does not require test-time access to sensitive attributes, it can be applied to reduce worst-case classification errors between outcomes in unbalanced classification problems. We test the proposed methodology on real case-studies of predicting income, ICU patient mortality, skin lesions classification, and assessing credit risk, demonstrating how our framework compares favorably to other approaches.

Wei Deng · Qi Feng · Liyao Gao · Faming Liang · Guang Lin

[ Virtual ]

Replica exchange Monte Carlo (reMC), also known as parallel tempering, is an important technique for accelerating the convergence of the conventional Markov Chain Monte Carlo (MCMC) algorithms. However, such a method requires the evaluation of the energy function based on the full dataset and is not scalable to big data. The na\"ive implementation of reMC in mini-batch settings introduces large biases, which cannot be directly extended to the stochastic gradient MCMC (SGMCMC), the standard sampling method for simulating from deep neural networks (DNNs). In this paper, we propose an adaptive replica exchange SGMCMC (reSGMCMC) to automatically correct the bias and study the corresponding properties. The analysis implies an acceleration-accuracy trade-off in the numerical discretization of a Markov jump process in a stochastic environment. Empirically, we test the algorithm through extensive experiments on various setups and obtain the state-of-the-art results on CIFAR10, CIFAR100, and SVHN in both supervised learning and semi-supervised learning tasks.

Wenlong Huang · Igor Mordatch · Deepak Pathak

[ Virtual ]

Reinforcement learning is typically concerned with learning control policies tailored to a particular agent. We investigate whether there exists a single policy that generalizes to controlling a wide variety of agent morphologies -- ones in which even dimensionality of state and action spaces changes. Such a policy would distill general and modular sensorimotor patterns that can be applied to control arbitrary agents. We propose a policy expressed as a collection of identical modular neural networks for each of the agent's actuators. Every module is only responsible for controlling its own actuator and receives information from its local sensors. In addition, messages are passed between modules, propagating information between distant modules. A single modular policy can successfully generate locomotion behaviors for over 20 planar agents with different skeletal structures such as monopod hoppers, quadrupeds, bipeds, and generalize to variants not seen during training -- a process that would normally require training and manual hyperparameter tuning for each morphology. We observe a wide variety of drastically diverse locomotion styles across morphologies as well as centralized coordination emerging via message passing between decentralized modules purely from the reinforcement learning objective. Video and code: https://huangwl18.github.io/modular-rl/

Yongchan Kwon · Wonyoung Kim · Joong-Ho (Johann) Won · Myunghee Cho Paik

[ Virtual ]

Wasserstein distributionally robust optimization (WDRO) attempts to learn a model that minimizes the local worst-case risk in the vicinity of the empirical data distribution defined by Wasserstein ball. While WDRO has received attention as a promising tool for inference since its introduction, its theoretical understanding has not been fully matured. Gao et al. (2017) proposed a minimizer based on a tractable approximation of the local worst-case risk, but without showing risk consistency. In this paper, we propose a minimizer based on a novel approximation theorem and provide the corresponding risk consistency results. Furthermore, we develop WDRO inference for locally perturbed data that include the Mixup (Zhang et al., 2017) as a special case. We show that our approximation and risk consistency results naturally extend to the cases when data are locally perturbed. Numerical experiments demonstrate robustness of the proposed method using image classification datasets. Our results show that the proposed method achieves significantly higher accuracy than baseline models on noisy datasets.

Shangtong Zhang · Bo Liu · Hengshuai Yao · Shimon Whiteson

[ Virtual ]

We present the first provably convergent two-timescale off-policy actor-critic algorithm (COF-PAC) with function approximation. Key to COF-PAC is the introduction of a new critic, the emphasis critic, which is trained via Gradient Emphasis Learning (GEM), a novel combination of the key ideas of Gradient Temporal Difference Learning and Emphatic Temporal Difference Learning. With the help of the emphasis critic and the canonical value function critic, we show convergence for COF-PAC, where the critics are linear and the actor can be nonlinear.

Hangbo Bao · Li Dong · Furu Wei · Wenhui Wang · Nan Yang · Xiaodong Liu · Yu Wang · Jianfeng Gao · Songhao Piao · Ming Zhou · Hsiao-Wuen Hon

[ Virtual ]

We propose to pre-train a unified language model for both autoencoding and partially autoregressive language modeling tasks using a novel training procedure, referred to as a pseudo-masked language model (PMLM). Given an input text with masked tokens, we rely on conventional masks to learn inter-relations between corrupted tokens and context via autoencoding, and pseudo masks to learn intra-relations between masked spans via partially autoregressive modeling. With well-designed position embeddings and self-attention masks, the context encodings are reused to avoid redundant computation. Moreover, conventional masks used for autoencoding provide global masking information, so that all the position embeddings are accessible in partially autoregressive language modeling. In addition, the two tasks pre-train a unified language model as a bidirectional encoder and a sequence-to-sequence decoder, respectively. Our experiments show that the unified language models pre-trained using PMLM achieve new state-of-the-art results on a wide range of language understanding and generation tasks across several widely used benchmarks. The code and pre-trained models are available at https://github.com/microsoft/unilm.

Yunzhu Li · Toru Lin · Kexin Yi · Daniel Bear · Daniel Yamins · Jiajun Wu · Josh Tenenbaum · Antonio Torralba

[ Virtual ]

Humans intuitively recognize objects' physical properties and predict their motion, even when the objects are engaged in complicated interactions. The abilities to perform physical reasoning and to adapt to new environments, while intrinsic to humans, remain challenging to state-of-the-art computational models. In this work, we present a neural model that simultaneously reasons about physics and makes future predictions based on visual and dynamics priors. The visual prior predicts a particle-based representation of the system from visual observations. An inference module operates on those particles, predicting and refining estimates of particle locations, object states, and physical parameters, subject to the constraints imposed by the dynamics prior, which we refer to as visual grounding. We demonstrate the effectiveness of our method in environments involving rigid objects, deformable materials, and fluids. Experiments show that our model can infer the physical properties within a few observations, which allows the model to quickly adapt to unseen scenarios and make accurate predictions into the future.

Jae Hyun Lim · Aaron Courville · Christopher Pal · Chin-Wei Huang

Entropy is ubiquitous in machine learning, but it is in general intractable to compute the entropy of the distribution of an arbitrary continuous random variable. In this paper, we propose the amortized residual denoising autoencoder (AR-DAE) to approximate the gradient of the log density function, which can be used to estimate the gradient of entropy. Amortization allows us to significantly reduce the error of the gradient approximator by approaching asymptotic optimality of a regular DAE, in which case the estimation is in theory unbiased. We conduct theoretical and experimental analyses on the approximation error of the proposed method, as well as extensive studies on heuristics to ensure its robustness. Finally, using the proposed gradient approximator to estimate the gradient of entropy, we demonstrate state-of-the-art performance on density estimation with variational autoencoders and continuous control with soft actor-critic.

Chuan Guo · Tom Goldstein · Awni Hannun · Laurens van der Maaten

Good data stewardship requires removal of data at the request of the data's owner. This raises the question if and how a trained machine-learning model, which implicitly stores information about its training data, should be affected by such a removal request. Is it possible to ``remove'' data from a machine-learning model? We study this problem by defining certified removal: a very strong theoretical guarantee that a model from which data is removed cannot be distinguished from a model that never observed the data to begin with. We develop a certified-removal mechanism for linear classifiers and empirically study learning settings in which this mechanism is practical.

Zhe Dong · Bryan Seybold · Kevin Murphy · Hung Bui

We propose an efficient inference method for switching nonlinear dynamical systems. The key idea is to learn an inference network which can be used as a proposal distribution for the continuous latent variables, while performing exact marginalization of the discrete latent variables. This allows us to use the reparameterization trick, and apply end-to-end training with stochastic gradient descent. We show that the proposed method can successfully segment time series data, including videos and 3D human pose, into meaningful ``regimes'' by using the piece-wise nonlinear dynamics.

Zhishuai Guo · Mingrui Liu · Zhuoning Yuan · Li Shen · Wei Liu · Tianbao Yang

In this paper, we study distributed algorithms for large-scale AUC maximization with a deep neural network as a predictive model.
Although distributed learning techniques have been investigated extensively in deep learning, they are not directly applicable to stochastic AUC maximization with deep neural networks due to its striking differences from standard loss minimization problems (e.g., cross-entropy). Towards addressing this challenge, we propose and analyze a communication-efficient distributed optimization algorithm based on a {\it non-convex concave} reformulation of the AUC maximization, in which the communication of both the primal variable and the dual variable between each worker and the parameter server only occurs after multiple steps of gradient-based updates in each worker. Compared with the naive parallel version of an existing algorithm that computes stochastic gradients at individual machines and averages them for updating the model parameter, our algorithm requires a much less number of communication rounds and still achieves linear speedup in theory. To the best of our knowledge, this is the \textbf{first} work that solves the {\it non-convex concave min-max} problem for AUC maximization with deep neural networks in a communication-efficient distributed manner while still maintaining the linear speedup property in theory. Our experiments on several benchmark datasets show …

Jay Heo · Junhyeon Park · Hyewon Jeong · Kwang Joon Kim · Juho Lee · Eunho Yang · Sung Ju Hwang

We propose a novel interactive learning framework which we refer to as Interactive Attention Learning (IAL), in which the human supervisors interactively manipulate the allocated attentions, to correct the model's behaviour by updating the attention-generating network. However, such a model is prone to overfitting due to scarcity of human annotations, and requires costly retraining. Moreover, it is almost infeasible for the human annotators to examine attentions on tons of instances and features. We tackle these challenges by proposing a sample-efficient attention mechanism and a cost-effective reranking algorithm for instances and features. First, we propose Neural Attention Processes (NAP), which is an attention generator that can update its behaviour by incorporating new attention-level supervisions without any retraining. Secondly, we propose an algorithm which prioritizes the instances and the features by their negative impacts, such that the model can yield large improvements with minimal human feedback. We validate IAL on various time-series datasets from multiple domains (healthcare, real-estate, and computer vision) on which it significantly outperforms baselines with conventional attention mechanisms, or without cost-effective reranking, with substantially less retraining and human-model interaction cost.

Christopher Bender · Yang Li · Yifeng Shi · Michael K. Reiter · Junier Oliva

In this work we develop a novel Bayesian neural network methodology to achieve strong adversarial robustness without the need for online adversarial training. Unlike previous efforts in this direction, we do not rely solely on the stochasticity of network weights by minimizing the divergence between the learned parameter distribution and a prior. Instead, we additionally require that the model maintain some expected uncertainty with respect to all input covariates. We demonstrate that by encouraging the network to distribute evenly across inputs, the network becomes less susceptible to localized, brittle features which imparts a natural robustness to targeted perturbations. We show empirical robustness on several benchmark datasets.

Junfeng Wen · Russell Greiner · Dale Schuurmans

In many real-world applications, we want to exploit multiple source datasets to build a model for a different but related target dataset. Despite the recent empirical success, most existing research has used ad-hoc methods to combine multiple sources, leading to a gap between theory and practice. In this paper, we develop a finite-sample generalization bound based on domain discrepancy and accordingly propose a theoretically justified optimization procedure. Our algorithm, Domain AggRegation Network (DARN), can automatically and dynamically balance between including more data to increase effective sample size and excluding irrelevant data to avoid negative effects during training. We find that DARN can significantly outperform the state-of-the-art alternatives on multiple real-world tasks, including digit/object recognition and sentiment analysis.

Jonathan Mamou · Hang Le · Miguel A del Rio Fernandez · Cory Stephenson · Hanlin Tang · Yoon Kim · SueYeon Chung

Deep neural networks (DNNs) have shown much empirical success in solving perceptual tasks across various cognitive modalities. While they are only loosely inspired by the biological brain, recent studies report considerable similarities between representations extracted from task-optimized DNNs and neural populations in the brain. DNNs have subsequently become a popular model class to infer computational principles underlying complex cognitive functions, and in turn, they have also emerged as a natural testbed for applying methods originally developed to probe information in neural populations. In this work, we utilize mean-field theoretic manifold analysis, a recent technique from computational neuroscience that connects geometry of feature representations with linear separability of classes, to analyze language representations from large-scale contextual embedding models. We explore representations from different model families (BERT, RoBERTa, GPT, etc.) and find evidence for emergence of linguistic manifolds across layer depth (e.g., manifolds for part-of-speech tags), especially in ambiguous data (i.e, words with multiple part-of-speech tags, or part-of-speech classes including many words). In addition, we find that the emergence of linear separability in these manifolds is driven by a combined reduction of manifolds’ radius, dimensionality and inter-manifold correlations.

Meng Qu · Tianyu Gao · Louis-Pascal Xhonneux · Jian Tang

This paper studies few-shot relation extraction, which aims at predicting the relation for a pair of entities in a sentence by training with a few labeled examples in each relation. To more effectively generalize to new relations, in this paper we study the relationships between different relations and propose to leverage a global relation graph. We propose a novel Bayesian meta-learning approach to effectively learn the posterior distribution of the prototype vectors of relations, where the initial prior of the prototype vectors is parameterized with a graph neural network on the global relation graph. Moreover, to effectively optimize the posterior distribution of the prototype vectors, we propose to use the stochastic gradient Langevin dynamics, which is related to the MAML algorithm but is able to handle the uncertainty of the prototype vectors. The whole framework can be effectively and efficiently optimized in an end-to-end fashion. Experiments on two benchmark datasets prove the effectiveness of our proposed approach against competitive baselines in both the few-shot and zero-shot settings.

Vikas K Garg · Stefanie Jegelka · Tommi Jaakkola

We address two fundamental questions about graph neural networks (GNNs). First, we prove that several important graph properties cannot be discriminated by GNNs that rely entirely on local information. Such GNNs include the standard message passing models, and more powerful spatial variants that exploit local graph structure (e.g., via relative orientation of messages, or local port ordering) to distinguish neighbors of each node. Our treatment includes a novel graph-theoretic formalism. Second, we provide the first data dependent generalization bounds for message passing GNNs. This analysis explicitly accounts for the local permutation invariance of GNNs. Our bounds are much tighter than existing VC-dimension based guarantees for GNNs, and are comparable to Rademacher bounds for recurrent neural networks.

Jimmy Lin · Chudi Zhong · Diane Hu · Cynthia Rudin · Margo Seltzer

Decision tree optimization is notoriously difficult from a computational perspective but essential for the field of interpretable machine learning. Despite efforts over the past 40 years, only recently have optimization breakthroughs been made that have allowed practical algorithms to find optimal decision trees. These new techniques have the potential to trigger a paradigm shift, where, it is possible to construct sparse decision trees to efficiently optimize a variety of objective functions, without relying on greedy splitting and pruning heuristics that often lead to suboptimal solutions. The contribution in this work is to provide a general framework for decision tree optimization that addresses the two significant open problems in the area: treatment of imbalanced data and fully optimizing over continuous variables. We present techniques that produce optimal decision trees over variety of objectives including F-score, AUC, and partial area under the ROC convex hull. We also introduce a scalable algorithm that produces provably optimal results in the presence of continuous variables and speeds up decision tree construction by several order of magnitude relative to the state-of-the art.

Sina Ghiassian · Andrew Patterson · Shivam Garg · Dhawal Gupta · Adam White · Martha White

It is still common to use Q-learning and temporal difference (TD) learning—even though they have divergence issues and sound Gradient TD alternatives exist—because divergence seems rare and they typically perform well. However, recent work with large neural network learning systems reveals that instability is more common than previously thought. Practitioners face a difficult dilemma: choose an easy to use and performant TD method, or a more complex algorithm that is more sound but harder to tune and all but unexplored with non-linear function approximation or control. In this paper, we introduce a new method called TD with Regularized Corrections (TDRC), that attempts to balance ease of use, soundness, and performance. It behaves as well as TD, when TD performs well, but is sound in cases where TD diverges. We empirically investigate TDRC across a range of problems, for both prediction and control, and for both linear and non-linear function approximation, and show, potentially for the first time, that gradient TD methods could be a better alternative to TD and Q-learning.

Yu Cheng · Ilias Diakonikolas · Rong Ge · Mahdi Soltanolkotabi

We study the problem of high-dimensional robust mean estimation in the presence of a constant fraction of adversarial outliers. A recent line of work has provided sophisticated polynomial-time algorithms for this problem with dimension-independent error guarantees for a range of natural distribution families. In this work, we show that a natural non-convex formulation of the problem can be solved directly by gradient descent. Our approach leverages a novel structural lemma, roughly showing that any approximate stationary point of our non-convex objective gives a near-optimal solution to the underlying robust estimation task. Our work establishes an intriguing connection between algorithmic high-dimensional robust statistics and non-convex optimization, which may have broader applications to other robust estimation tasks.

Siddharth Reddy · Anca Dragan · Sergey Levine · Shane Legg · Jan Leike

We seek to align agent behavior with a user's objectives in a reinforcement learning setting with unknown dynamics, an unknown reward function, and unknown unsafe states. The user knows the rewards and unsafe states, but querying the user is expensive. We propose an algorithm that safely and efficiently learns a model of the user's reward function by posing 'what if?' questions about hypothetical agent behavior. We start with a generative model of initial states and a forward dynamics model trained on off-policy data. Our method uses these models to synthesize hypothetical behaviors, asks the user to label the behaviors with rewards, and trains a neural network to predict the rewards. The key idea is to actively synthesize the hypothetical behaviors from scratch by maximizing tractable proxies for the value of information, without interacting with the environment. We call this method reward query synthesis via trajectory optimization (ReQueST). We evaluate ReQueST with simulated users on a state-based 2D navigation task and the image-based Car Racing video game. The results show that ReQueST significantly outperforms prior methods in learning reward models that transfer to new environments with different initial state distributions. Moreover, ReQueST safely trains the reward model to detect unsafe states, …

Jessica Hoffmann · Soumya Basu · Surbhi Goel · Constantine Caramanis

We consider the problem of learning the weighted edges of a balanced mixture of two undirected graphs from epidemic cascades. While mixture models are popular modeling tools, algorithmic development with rigorous guarantees has lagged. Graph mixtures are apparently no exception: until now, very little is known about whether this problem is solvable.

 To the best of our knowledge, we establish the first necessary and sufficient conditions for this problem to be solvable in polynomial time on edge-separated graphs. When the conditions are met, i.e., when the graphs are connected with at least three edges, we give an efficient algorithm for learning the weights of both graphs with optimal sample complexity (up to log factors). 

 We give complementary results and provide sample-optimal (up to log factors) algorithms for mixtures of directed graphs of out-degree at least three, and for mixture of undirected graphs of unbalanced and/or unknown priors.
Sebastian Claici · Mikhail Yurochkin · Soumya Ghosh · Justin Solomon

We propose a method to fuse posterior distributions learned from heterogeneous datasets. Our algorithm relies on a mean field assumption for both the fused model and the individual dataset posteriors and proceeds using a simple assign-and-average approach. The components of the dataset posteriors are assigned to the proposed global model components by solving a regularized variant of the assignment problem. The global components are then updated based on these assignments by their mean under a KL divergence. For exponential family variational distributions, our formulation leads to an efficient non-parametric algorithm for computing the fused model. Our algorithm is easy to describe and implement, efficient, and competitive with state-of-the-art on motion capture analysis, topic modeling, and federated learning of Bayesian neural networks.

Feihu Huang · Shangqian Gao · Jian Pei · Heng Huang
In the paper, we propose a class of efficient momentum-based policy gradient methods for the model-free reinforcement learning, which use adaptive learning rates and do not require any large batches. Specifically, we propose a fast important-sampling momentum-based policy gradient (IS-MBPG) method based on a new momentum-based variance reduced technique and the importance sampling technique. We also propose a fast Hessian-aided momentum-based policy gradient (HA-MBPG) method based on the momentum-based variance reduced technique and the Hessian-aided technique. Moreover, we prove that both the IS-MBPG and HA-MBPG methods reach the best known sample complexity of $O(\epsilon^{-3})$ for finding an $\epsilon$-stationary point of the nonconcave performance function, which only require one trajectory at each iteration. In particular, we present a non-adaptive version of IS-MBPG method, i.e., IS-MBPG*, which also reaches the best known sample complexity of $O(\epsilon^{-3})$ without any large batches. In the experiments, we apply four benchmark tasks to demonstrate the effectiveness of our algorithms.
Yue Sheng · Edgar Dobriban

To scale up data analysis, distributed and parallel computing approaches are increasingly needed. Here we study a fundamental problem in this area: How to do ridge regression in a distributed computing environment? We study one-shot methods constructing weighted combinations of ridge regression estimators computed on each machine. By analyzing the mean squared error in a high dimensional model where each predictor has a small effect, we discover several new phenomena including that the efficiency depends strongly on the signal strength, but does not degrade with many workers, the risk decouples over machines, and the unexpected consequence that the optimal weights do not sum to unity. We also propose a new optimally weighted one-shot ridge regression algorithm. Our results are supported by simulations and real data analysis.

Xinyi Wang · Hieu Pham · Paul Michel · Antonios Anastasopoulos · Jaime Carbonell · Graham Neubig

To acquire a new skill, humans learn better and faster if a tutor, based on their current knowledge level, informs them of how much attention they should pay to particular content or practice problems. Similarly, a machine learning model could potentially be trained better with a scorer that ``adapts'' to its current learning state and estimates the importance of each training data instance. Training such an adaptive scorer efficiently is a challenging problem; in order to precisely quantify the effect of a data instance at a given time during the training, it is typically necessary to first complete the entire training process. To efficiently optimize data usage, we propose a reinforcement learning approach called Differentiable Data Selection (DDS). In DDS, we formulate a scorer network as a learnable function of the training data, which can be efficiently updated along with the main model being trained. Specifically, DDS updates the scorer with an intuitive reward signal: it should up-weigh the data that has a similar gradient with a dev set upon which we would finally like to perform well. Without significant computing overhead, DDS delivers strong and consistent improvements over several strong baselines on two very different tasks of machine translation …

Ashok Cutkosky
We provide a new online learning algorithm that for the first time combines several disparate notions of adaptivity. First, our algorithm obtains a ``parameter-free'' regret bound that adapts to the norm of the comparator and the squared norm of the size of the gradients it observes. Second, it obtains a ``strongly-adaptive'' regret bound, so that for any given interval of length $N$, the regret over the interval is $\tilde O(\sqrt{N})$. Finally, our algorithm obtains an optimal ``dynamic'' regret bound: for any sequence of comparators with path-length $P$, our algorithm obtains regret $\tilde O(\sqrt{PN})$ over intervals of length $N$. Our primary technique for achieving these goals is a new method of combining constrained online learning regret bounds that does not rely on an expert meta-algorithm to aggregate learners.
Jiaqi Lv · Miao Xu · LEI FENG · Gang Niu · Xin Geng · Masashi Sugiyama

Partial-label learning (PLL) is a typical weakly supervised learning problem, where each training instance is equipped with a set of candidate labels among which only one is the true label. Most existing methods elaborately designed learning objectives as constrained optimizations that must be solved in specific manners, making their computational complexity a bottleneck for scaling up to big data. The goal of this paper is to propose a novel framework of PLL with flexibility on the model and optimization algorithm. More specifically, we propose a novel estimator of the classification risk, theoretically analyze the classifier-consistency, and establish an estimation error bound. Then we propose a progressive identification algorithm for approximately minimizing the proposed risk estimator, where the update of the model and identification of true labels are conducted in a seamless manner. The resulting algorithm is model-independent and loss-independent, and compatible with stochastic optimization. Thorough experiments demonstrate it sets the new state of the art.

Qi Lei · Jason Lee · Alexandros Dimakis · Constantinos Daskalakis

Generative adversarial networks (GANs) are a widely used framework for learning generative models. Wasserstein GANs (WGANs), one of the most successful variants of GANs, require solving a minmax optimization problem to global optimality, but are in practice successfully trained using stochastic gradient descent-ascent. In this paper, we show that, when the generator is a one-layer network, stochastic gradient descent-ascent converges to a global solution with polynomial time and sample complexity.

Yi Tay · Dara Bahri · Liu Yang · Don Metzler · Da-Cheng Juan

We propose Sparse Sinkhorn Attention, a new efficient and sparse method for learning to attend. Our method is based on differentiable sorting of internal representations. Concretely, we introduce a meta sorting network that learns to generate latent permutations over sequences. Given sorted sequences, we are then able to compute quasi-global attention with only local windows, improving the memory efficiency of the attention module. To this end, we propose new algorithmic innovations such as Causal Sinkhorn Balancing and SortCut, a dynamic sequence truncation method for tailoring Sinkhorn Attention for encoding and/or decoding purposes. Via extensive experiments on algorithmic seq2seq sorting, language modeling, pixel-wise image generation, document classification and natural language inference, we demonstrate that our memory efficient Sinkhorn Attention method is competitive with vanilla attention and consistently outperforms recently proposed efficient Transformer models such as Sparse Transformers.

Fariborz Salehi · Ehsan Abbasi · Babak Hassibi

Logistic models are commonly used for binary classification tasks. The success of such models has often been attributed to their connection to maximum-likelihood estimators. It has been shown that SGD algorithms , when applied on the logistic loss, converge to the max-margin classifier (a.k.a. hard-margin SVM). The performance of hard-margin SVM has been recently analyzed in~\cite{montanari2019generalization, deng2019model}. Inspired by these results, in this paper, we present and study a more general setting, where the underlying parameters of the logistic model possess certain structures (sparse, block-sparse, low-rank, etc.) and introduce a more general framework (which is referred to as “Generalized Margin Maximizer”, GMM). While classical max-margin classifiers minimize the 2-norm of the parameter vector subject to linearly separating the data, GMM minimizes any arbitrary convex function of the parameter vector. We provide a precise performance analysis of the generalization error of such methods and show improvement over the max-margin method which does not take into account the structure of the model. In future work we show that mirror descent algorithms, with a properly tuned step size, can be exploited to achieve GMM classifiers. Our theoretical results are validated by extensive simulation results across a range of parameter values, problem instances, and …


Poster Session 44 Thu 16 Jul 06:00 p.m.  

Sivan Sabato · Elad Yom-Tov

[ Virtual ]

We consider the study of a classification model whose properties are impossible to estimate using a validation set, either due to the absence of such a set or because access to the classifier, even as a black-box, is impossible. Instead, only aggregate statistics on the rate of positive predictions in each of several sub-populations are available, as well as the true rates of positive labels in each of these sub-populations. We show that these aggregate statistics can be used to lower-bound the discrepancy of a classifier, which is a measure that balances inaccuracy and unfairness. To this end, we define a new measure of unfairness, equal to the fraction of the population on which the classifier behaves differently, compared to its global, ideally fair behavior, as defined by the measure of equalized odds. We propose an efficient and practical procedure for finding the best possible lower bound on the discrepancy of the classifier, given the aggregate statistics, and demonstrate in experiments the empirical tightness of this lower bound, as well as its possible uses on various types of problems, ranging from estimating the quality of voting polls to measuring the effectiveness of patient identification from internet search queries. The code …

Michael Chang · Sid Kaushik · S. Matthew Weinberg · Thomas Griffiths · Sergey Levine

[ Virtual ]

This paper seeks to establish a framework for directing a society of simple, specialized, self-interested agents to solve what traditionally are posed as monolithic single-agent sequential decision problems. What makes it challenging to use a decentralized approach to collectively optimize a central objective is the difficulty in characterizing the equilibrium strategy profile of non-cooperative games. To overcome this challenge, we design a mechanism for defining the learning environment of each agent for which we know that the optimal solution for the global objective coincides with a Nash equilibrium strategy profile of the agents optimizing their own local objectives. The society functions as an economy of agents that learn the credit assignment process itself by buying and selling to each other the right to operate on the environment state. We derive a class of decentralized reinforcement learning algorithms that are broadly applicable not only to standard reinforcement learning but also for selecting options in semi-MDPs and dynamically composing computation graphs. Lastly, we demonstrate the potential advantages of a society's inherent modular structure for more efficient transfer learning.

Kinjal Basu · Amol Ghoting · Rahul Mazumder · Yao Pan

[ Virtual ]

Key problems arising in web applications (with millions of users and thousands of items) can be formulated as Linear Programs (LP) involving billions to trillions of decision variables and constraints. Despite the appeal of LP formulations, solving problems at these scales appears to be well beyond the capabilities of existing LP solvers. Often ad-hoc decomposition rules are used to approximately solve these LPs, which have limited optimality guarantees and lead to a sub-optimal performance in practice. In this work, we propose a distributed solver that solves a perturbation of the LP problems at scale via a gradient-based algorithm on the smooth dual of the perturbed LP with computational guarantees. The main workhorses of our algorithm are distributed matrix-vector multiplications (with load balancing) and efficient projection operations on distributed machines. Experiments on real-world data show that our proposed LP solver, ECLIPSE, can solve problems with $10^{12}$ decision variables -- well beyond the capabilities of current solvers.
Mengjiao Yang · Bo Dai · Hanjun Dai · Dale Schuurmans

[ Virtual ]

Recently there has been growing interest in modeling sets with exchangeability such as point clouds. A shortcoming of current approaches is that they restrict the cardinality of the sets considered or can only express limited forms of distribution over unobserved data. To overcome these limitations, we introduce Energy-Based Processes (EBPs), which extend energy based models to exchangeable data while allowing neural network parameterizations of the energy function. A key advantage of these models is the ability to express more flexible distributions over sets without restricting their cardinality. We develop an efficient training procedure for EBPs that demonstrates state-of-the-art performance on a variety of tasks such as point cloud generation, classification, denoising, and image completion

Georgios Smyrnis · Petros Maragos

[ Virtual ]

The field of tropical algebra is closely linked with the domain of neural networks with piecewise linear activations, since their output can be described via tropical polynomials in the max-plus semiring. In this work, we attempt to make use of methods stemming from a form of approximate division of such polynomials, which relies on the approximation of their Newton Polytopes, in order to minimize networks trained for multiclass classification problems. We make theoretical contributions in this domain, by proposing and analyzing methods which seek to reduce the size of such networks. In addition, we make experimental evaluations on the MNIST and Fashion-MNIST datasets, with our results demonstrating a significant reduction in network size, while retaining adequate performance.

Jincheng Mei · Chenjun Xiao · Csaba Szepesvari · Dale Schuurmans

[ Virtual ]

We make three contributions toward better understanding policy gradient methods in the tabular setting. First, we show that with the true gradient, policy gradient with a softmax parametrization converges at a $O(1/t)$ rate, with constants depending on the problem and initialization. This result significantly expands the recent asymptotic convergence results. The analysis relies on two findings: that the softmax policy gradient satisfies a \L{}ojasiewicz inequality, and the minimum probability of an optimal action during optimization can be bounded in terms of its initial value. Second, we analyze entropy regularized policy gradient and show that it enjoys a significantly faster linear convergence rate $O(e^{-t})$ toward softmax optimal policy. This result resolves an open question in the recent literature. Finally, combining the above two results and additional new $\Omega(1/t)$ lower bound results, we explain how entropy regularization improves policy optimization, even with the true gradient, from the perspective of convergence rate. The separation of rates is further explained using the notion of non-uniform \L{}ojasiewicz degree. These results provide a theoretical understanding of the impact of entropy and corroborate existing empirical studies.
Tonghan Wang · Heng Dong · Victor Lesser · Chongjie Zhang

[ Virtual ]

The role concept provides a useful tool to design and understand complex multi-agent systems, which allows agents with a similar role to share similar behaviors. However, existing role-based methods use prior domain knowledge and predefine role structures and behaviors. In contrast, multi-agent reinforcement learning (MARL) provides flexibility and adaptability, but less efficiency in complex tasks. In this paper, we synergize these two paradigms and propose a role-oriented MARL framework (ROMA). In this framework, roles are emergent, and agents with similar roles tend to share their learning and to be specialized on certain sub-tasks. To this end, we construct a stochastic role embedding space by introducing two novel regularizers and conditioning individual policies on roles. Experiments show that our method can learn specialized, dynamic, and identifiable roles, which help our method push forward the state of the art on the StarCraft II micromanagement benchmark. Demonstrative videos are available at https://sites.google.com/view/romarl/.

Sankalp Garg · Aniket Bajpai · Mausam

[ Virtual ]

A Relational Markov Decision Process (RMDP) is a first-order representation to express all instances of a single probabilistic planning domain with possibly unbounded number of objects. Early work in RMDPs outputs generalized (instance-independent) first-order policies or value functions as a means to solve all instances of a domain at once. Unfortunately, this line of work met with limited success due to inherent limitations of the representation space used in such policies or value functions. Can neural models provide the missing link by easily representing more complex generalized policies, thus making them effective on all instances of a given domain?

We present SymNet, the first neural approach for solving RMDPs that are expressed in the probabilistic planning language of RDDL. SymNet trains a set of shared parameters for an RDDL domain using training instances from that domain. For each instance, SymNet first converts it to an instance graph and then uses relational neural models to compute node embeddings. It then scores each ground action as a function over the first-order action symbols and node embeddings related to the action. Given a new test instance from the same domain, SymNet architecture with pre-trained parameters scores each ground action and chooses the best …

Alnur Ali · Edgar Dobriban · Ryan Tibshirani

[ Virtual ]

We study the implicit regularization of mini-batch stochastic gradient descent, when applied to the fundamental problem of least squares regression. We leverage a continuous-time stochastic differential equation having the same moments as stochastic gradient descent, which we call stochastic gradient flow. We give a bound on the excess risk of stochastic gradient flow at time $t$, over ridge regression with tuning parameter $\lambda = 1/t$. The bound may be computed from explicit constants (e.g., the mini-batch size, step size, number of iterations), revealing precisely how these quantities drive the excess risk. Numerical examples show the bound can be small, indicating a tight relationship between the two estimators. We give a similar result relating the coefficients of stochastic gradient flow and ridge. These results hold under no conditions on the data matrix $X$, and across the entire optimization path (not just at convergence).
Jonathan Lee · Aldo Pacchiano · Peter Bartlett · Michael Jordan
Maximum a posteriori (MAP) inference in discrete-valued Markov random fields is a fundamental problem in machine learning that involves identifying the most likely configuration of random variables given a distribution. Due to the difficulty of this combinatorial problem, linear programming (LP) relaxations are commonly used to derive specialized message passing algorithms that are often interpreted as coordinate descent on the dual LP. To achieve more desirable computational properties, a number of methods regularize the LP with an entropy term, leading to a class of smooth message passing algorithms with convergence guarantees. In this paper, we present randomized methods for accelerating these algorithms by leveraging techniques that underlie classical accelerated gradient methods. The proposed algorithms incorporate the familiar steps of standard smooth message passing algorithms, which can be viewed as coordinate minimization steps. We show that these accelerated variants achieve faster rates for finding $\epsilon$-optimal points of the unregularized problem, and, when the LP is tight, we prove that the proposed algorithms recover the true MAP solution in fewer iterations than standard message passing algorithms.
Kuno Kim · Megumi Sano · Julian De Freitas · Nick Haber · Daniel Yamins
World models are self-supervised predictive models of how the world evolves. Humans learn world models by curiously exploring their environment, in the process acquiring compact abstractions of high bandwidth sensory inputs, the ability to plan across long temporal horizons, and an understanding of the behavioral patterns of other agents. In this work, we study how to design such a curiosity-driven Active World Model Learning (AWML) system. To do so, we construct a curious agent building world models while visually exploring a 3D physical environment rich with distillations of representative real-world agents. We propose an AWML system driven by $\gamma$-Progress: a scalable and effective learning progress-based curiosity signal and show that $\gamma$-Progress naturally gives rise to an exploration policy that directs attention to complex but learnable dynamics in a balanced manner, as a result overcoming the ``white noise problem''. As a result, our $\gamma$-Progress-driven controller achieves significantly higher AWML performance than baseline controllers equipped with state-of-the-art exploration strategies such as Random Network Distillation and Model Disagreement.
Amirata Ghorbani · Michael Kim · James Zou

Shapley value is a classic notion from game theory, historically used to quantify the contributions of individuals within groups, and more recently applied to assign values to data points when training machine learning models. Despite its foundational role, a key limitation of the data Shapley framework is that it only provides valuations for points within a fixed data set. It does not account for statistical aspects of the data and does not give a way to reason about points outside the data set. To address these limitations, we propose a novel framework -- distributional Shapley -- where the value of a point is defined in the context of an underlying data distribution. We prove that distributional Shapley has several desirable statistical properties; for example, the values are stable under perturbations to the data points themselves and to the underlying data distribution. We leverage these properties to develop a new algorithm for estimating values from data, which comes with formal guarantees and runs two orders of magnitude faster than state-of-the-art algorithms for computing the (non-distributional) data Shapley values. We apply distributional Shapley to diverse data sets and demonstrate its utility in a data market setting.

Marjan Ghazvininejad · Vladimir Karpukhin · Luke Zettlemoyer · Omer Levy

Non-autoregressive machine translation models significantly speed up decoding by allowing for parallel prediction of the entire target sequence. However, modeling word order is more challenging due to the lack of autoregressive factors in the model. This difficultly is compounded during training with cross entropy loss, which can highly penalize small shifts in word order. In this paper, we propose aligned cross entropy (AXE) as an alternative loss function for training of non-autoregressive models. AXE uses a differentiable dynamic program to assign loss based on the best possible monotonic alignment between target tokens and model predictions. AXE-based training of conditional masked language models (CMLMs) substantially improves performance on major WMT benchmarks, while setting a new state of the art for non-autoregressive models.

Chaitanya Ryali · John Hopfield · Leopold Grinberg · Dmitry Krotov

The fruit fly Drosophila's olfactory circuit has inspired a new locality sensitive hashing (LSH) algorithm, FlyHash. In contrast with classical LSH algorithms that produce low dimensional hash codes, FlyHash produces sparse high-dimensional hash codes and has also been shown to have superior empirical performance compared to classical LSH algorithms in similarity search. However, FlyHash uses random projections and cannot learn from data. Building on inspiration from FlyHash and the ubiquity of sparse expansive representations in neurobiology, our work proposes a novel hashing algorithm BioHash that produces sparse high dimensional hash codes in a data-driven manner. We show that BioHash outperforms previously published benchmarks for various hashing methods. Since our learning algorithm is based on a local and biologically plausible synaptic plasticity rule, our work provides evidence for the proposal that LSH might be a computational reason for the abundance of sparse expansive motifs in a variety of biological systems. We also propose a convolutional variant BioConvHash that further improves performance. From the perspective of computer science, BioHash and BioConvHash are fast, scalable and yield compressed binary representations that are useful for similarity search.

Pang Wei Koh · Thao Nguyen · Yew Siang Tang · Stephen Mussmann · Emma Pierson · Been Kim · Percy Liang

We seek to learn models that we can interact with using high-level concepts: would the model predict severe arthritis if it thinks there is a bone spur in the x-ray? State-of-the-art models today do not typically support the manipulation of concepts like "the existence of bone spurs'', as they are trained end-to-end to go directly from raw input (e.g., pixels) to output (e.g., arthritis severity). We revisit the classic idea of first predicting concepts that are provided at training time, and then using these concepts to predict the label. By construction, we can intervene on these concept bottleneck models by editing their predicted concept values and propagating these changes to the final prediction. On x-ray grading and bird identification, concept bottleneck models achieve competitive accuracy with standard end-to-end models, while enabling interpretation in terms of high-level clinical concepts ("bone spurs") or bird attributes ("wing color"). These models also allow for richer human-model interaction: accuracy improves significantly if we can correct model mistakes on concepts at test time.

Michael Laskin · Aravind Srinivas · Pieter Abbeel

We present CURL: Contrastive Unsupervised Representations for Reinforcement Learning. CURL extracts high-level features from raw pixels using contrastive learning and performs off-policy control on top of the extracted features. CURL outperforms prior pixel-based methods, both model-based and model-free, on complex tasks in the DeepMind Control Suite and Atari Games showing 1.9x and 1.2x performance gains at the 100K environment and interaction steps benchmarks respectively. On the DeepMind Control Suite, CURL is the first image-based algorithm to nearly match the sample-efficiency of methods that use state-based features. Our code is open-sourced and available at https://www.github.com/MishaLaskin/curl.

Adam Elmachtoub · Jason Cheuk Nam Liang · Ryan McNellis

We consider the use of decision trees for decision-making problems under the predict-then-optimize framework. That is, we would like to first use a decision tree to predict unknown input parameters of an optimization problem, and then make decisions by solving the optimization problem using the predicted parameters. A natural loss function in this framework is to measure the suboptimality of the decisions induced by the predicted input parameters, as opposed to measuring loss using input parameter prediction error. This natural loss function is known in the literature as the Smart Predict-then-Optimize (SPO) loss, and we propose a tractable methodology called SPO Trees (SPOTs) for training decision trees under this loss. SPOTs benefit from the interpretability of decision trees, providing an interpretable segmentation of contextual features into groups with distinct optimal solutions to the optimization problem of interest. We conduct several numerical experiments on synthetic and real data including the prediction of travel times for shortest path problems and predicting click probabilities for news article recommendation. We demonstrate on these datasets that SPOTs simultaneously provide higher quality decisions and significantly lower model complexity than other machine learning approaches (e.g., CART) trained to minimize prediction error.

Jian Liang · Dapeng Hu · Jiashi Feng

Unsupervised domain adaptation (UDA) aims to leverage the knowledge learned from a labeled source dataset to solve similar tasks in a new unlabeled domain. Prior UDA methods typically require to access the source data when learning to adapt the model, making them risky and inefficient for decentralized private data. This work tackles a novel setting where only a trained source model is available and investigates how we can effectively utilize such a model without source data to solve UDA problems. We propose a simple yet generic representation learning framework, named Source HypOthesis Transfer (SHOT). SHOT freezes the classifier module (hypothesis) of the source model and learns the target-specific feature extraction module by exploiting both information maximization and self-supervised pseudo-labeling to implicitly align representations from the target domains to the source hypothesis. To verify its versatility, we evaluate SHOT in a variety of adaptation cases including closed-set, partial-set, and open-set domain adaptation. Experiments indicate that SHOT yields state-of-the-art results among multiple domain adaptation benchmarks.

Vaishaal Shankar · Rebecca Roelofs · Horia Mania · Alex Fang · Benjamin Recht · Ludwig Schmidt

We evaluate a wide range of ImageNet models with five trained human labelers. In our year-long experiment, trained humans first annotated 40,000 images from the ImageNet and ImageNetV2 test sets with multi-class labels to enable a semantically coherent evaluation. Then we measured the classification accuracy of the five trained humans on the full task with 1,000 classes. Only the latest models from 2020 are on par with our best human labeler, and human accuracy on the 590 object classes is still 4% and 10% higher than the best model on ImageNet and ImageNetV2, respectively. Moreover, humans achieve the same accuracy on ImageNet and ImageNetV2, while all models see a consistent accuracy drop. Overall, our results show that there is still substantial room for improvement on ImageNet and direct accuracy comparisons between humans and machines may overstate machine performance.

Aadirupa Saha · Aditya Gopalan
We consider PAC learning a good item from $k$-subsetwise feedback sampled from a Plackett-Luce probability model, with instance-dependent sample complexity performance. In the setting where subsets of a fixed size can be tested and top-ranked feedback is made available to the learner, we give an optimal instance-dependent algorithm with a sample complexity bound for PAC best arm identification algorithm of $O\bigg(\frac{\Theta_{[k]}}{k}\sum_{i = 2}^n\max\Big(1,\frac{1}{\Delta_i^2}\Big) \ln\frac{k}{\delta}\Big(\ln \frac{1}{\Delta_i}\Big)\bigg)$, $\Delta_i$ being the Plackett-Luce parameter gap between the best and the $i^{th}$ best item, and $\Theta_{[k]}$ is the sum of the Plackett-Luce parameters for top-$k$ items. The algorithm is based on a wrapper around a PAC winner-finding algorithm with weaker performance guarantees to adapt to the hardness of the input instance. The sample complexity is also shown to be multiplicatively better depending on the length of rank-ordered feedback available in each subset-wise play. We show optimality of our algorithms with matching sample complexity lower bounds. We next address the winner-finding problem in Plackett-Luce models in the fixed-budget setting with instance dependent upper and lower bounds on the misidentification probability, of $\Omega\left(\exp(-2 \tilde \Delta Q) \right)$ for a given budget $Q$, where $\tilde \Delta$ is an explicit instance-dependent problem complexity parameter. Numerical performance results are also …
Melikasadat Emami · Mojtaba Sahraee-Ardakan · Parthe Pandit · Sundeep Rangan · Alyson Fletcher

At the heart of machine learning lies the question of generalizability of learned rules over previously unseen data.
While over-parameterized models based on neural networks are now ubiquitous in machine learning applications, our understanding of their generalization capabilities is incomplete and this task is made harder by the non-convexity of the underlying learning problems.
We provide a general framework to characterize the asymptotic generalization error for single-layer neural networks (i.e., generalized linear models) with arbitrary non-linearities, making it applicable to regression as well as classification problems. This framework enables analyzing the effect of (i) over-parameterization and non-linearity during modeling; (ii) choices of loss function, initialization, and regularizer during learning; and (iii) mismatch between training and test distributions. As examples, we analyze a few special cases, namely linear regression and logistic regression. We are also able to rigorously and analytically explain the \emph{double descent} phenomenon in generalized linear models.

Mao Ye · Chengyue Gong · Lizhen Nie · Denny Zhou · Adam Klivans · Qiang Liu

Recent empirical works show that large deep neural networks are often highly redundant and one can find much smaller subnetworks without a significant drop of accuracy. However, most existing methods of network pruning are empirical and heuristic, leaving it open whether good subnetworks provably exist, how to find them efficiently, and if network pruning can be provably better than direct training using gradient descent. We answer these problems positively by proposing a simple greedy selection approach for finding good subnetworks, which starts from an empty network and greedily adds important neurons from the large network. This differs from the existing methods based on backward elimination, which remove redundant neurons from the large network. Theoretically, applying the greedy selection strategy on sufficiently large {pre-trained} networks guarantees to find small subnetworks with lower loss than networks directly trained with gradient descent. Our results also apply to pruning randomly weighted networks. Practically, we improve prior arts of network pruning on learning compact neural architectures on ImageNet, including ResNet, MobilenetV2/V3, and ProxylessNet. Our theory and empirical results on MobileNet suggest that we should fine-tune the pruned subnetworks to leverage the information from the large model, instead of re-training from new random initialization as suggested …

Florian Schäfer · Hongkai Zheng · Anima Anandkumar

The success of GANs is usually attributed to properties of the divergence obtained by an optimal discriminator. In this work we show that this approach has a fundamental flaw:\ If we do not impose regularity of the discriminator, it can exploit visually imperceptible errors of the generator to always achieve the maximal generator loss. In practice, gradient penalties are used to regularize the discriminator. However, this needs a metric on the space of images that captures visual similarity. Such a metric is not known, which explains the limited success of gradient penalties in stabilizing GANs.\ Instead, we argue that the implicit competitive regularization (ICR) arising from the simultaneous optimization of generator and discriminator enables GANs performance. We show that opponent-aware modelling of generator and discriminator, as present in competitive gradient descent (CGD), can significantly strengthen ICR and thus stabilize GAN training without explicit regularization. In our experiments, we use an existing implementation of WGAN-GP and show that by training it with CGD without any explicit regularization, we can improve the inception score (IS) on CIFAR10, without any hyperparameter tuning.

Louis Faury · Marc Abeille · Clément Calauzènes · Olivier Fercoq
The generalized linear bandit framework has attracted a lot of attention in recent years by extending the well-understood linear setting and allowing to model richer reward structures. It notably covers the logistic model, widely used when rewards are binary. For logistic bandits, the frequentist regret guarantees of existing algorithms are $\tilde{\mathcal{O}}(\kappa \sqrt{T})$, where $\kappa$ is a problem-dependent constant. Unfortunately, $\kappa$ can be arbitrarily large as it scales exponentially with the size of the decision set. This may lead to significantly loose regret bounds and poor empirical performance. In this work, we study the logistic bandit with a focus on the prohibitive dependencies introduced by $\kappa$. We propose a new optimistic algorithm based on a finer examination of the non-linearities of the reward function. We show that it enjoys a $\tilde{\mathcal{O}}(\sqrt{T})$ regret with no dependency in $\kappa$, but for a second order term. Our analysis is based on a new tail-inequality for self-normalized martingales, of independent interest.
Haoran Sun · Songtao Lu · Mingyi Hong
Many modern large-scale machine learning problems benefit from decentralized and stochastic optimization. Recent works have shown that utilizing both decentralized computing and local stochastic gradient estimates can outperform state-of-the-art centralized algorithms, in applications involving highly non-convex problems, such as training deep neural networks. In this work, we propose a decentralized stochastic algorithm to deal with certain smooth non-convex problems where there are $m$ nodes in the system, and each node has a large number of samples (denoted as $n$). Differently from the majority of the existing decentralized learning algorithms for either stochastic or finite-sum problems, our focus is given to {\it both} reducing the total communication rounds among the nodes, while accessing the minimum number of local data samples. In particular, we propose an algorithm named D-GET (decentralized gradient estimation and tracking), which jointly performs decentralized gradient estimation (which estimates the local gradient using a subset of local samples) {\it and} gradient tracking (which tracks the global full gradient using local estimates). We show that to achieve certain $\epsilon$ stationary solution of the deterministic finite sum problem, the proposed algorithm achieves an $\mathcal{O}(mn^{1/2}\epsilon^{-1})$ sample complexity and an $\mathcal{O}(\epsilon^{-1})$ communication complexity. These bounds significantly improve upon the best existing bounds of …
Andrey Sakryukin · Chedy Raissi · Mohan Kankanhalli

Despite recent advancements in the field of Deep Reinforcement Learning, Deep Q-network (DQN) models still show lackluster performance on problems with high-dimensional action spaces. The problem is even more pronounced for cases with high-dimensional continuous action spaces due to a combinatorial increase in the number of the outputs. Recent works approach the problem by dividing the network into multiple parallel or sequential (action) modules responsible for different discretized actions. However, there are drawbacks to both the parallel and the sequential approaches. Parallel module architectures lack coordination between action modules, leading to extra complexity in the task, while a sequential structure can result in the vanishing gradients problem and exploding parameter space. In this work, we show that the compositional structure of the action modules has a significant impact on model performance. We propose a novel approach to infer the network structure for DQN models operating with high-dimensional continuous actions. Our method is based on the uncertainty estimation techniques introduced in the paper. Our approach achieves state-of-the-art performance on MuJoCo environments with high-dimensional continuous action spaces. Furthermore, we demonstrate the improvement of the introduced approach on a realistic AAA sailing simulator game.

Sai Krishna Gottipati · Boris Sattarov · Sufeng Niu · Yashaswi Pathak · Haoran Wei · Shengchao Liu · Shengchao Liu · Simon Blackburn · Karam Thomas · Connor Coley · Jian Tang · Sarath Chandar · Yoshua Bengio

Over the last decade, there has been significant progress in the field of machine learning for de novo drug design, particularly in generative modeling of novel chemical structures. However, current generative approaches exhibit a significant challenge: they do not ensure that the proposed molecular structures can be feasibly synthesized nor do they provide the synthesis routes of the proposed small molecules, thereby seriously limiting their practical applicability. In this work, we propose a novel reinforcement learning (RL) setup for de novo drug design: Policy Gradient for Forward Synthesis (PGFS), that addresses this challenge by embedding the concept of synthetic accessibility directly into the de novo drug design system. In this setup, the agent learns to navigate through the immense synthetically accessible chemical space by subjecting initial commercially available molecules to valid chemical reactions at every time step of the iterative virtual synthesis process. The proposed environment for drug discovery provides a highly challenging test-bed for RL algorithms owing to the large state space and high-dimensional continuous action space with hierarchical actions. PGFS achieves state-of-the-art performance in generating structures with high QED and logP. Moreover, we put to test PGFS in an in-silico proof-of-concept associated with three HIV targets, and the …

Andrey Voynov · Artem Babenko

The latent spaces of GAN models often have semantically meaningful directions. Moving in these directions corresponds to human-interpretable image transformations, such as zooming or recoloring, enabling a more controllable generation process. However, the discovery of such directions is currently performed in a supervised manner, requiring human labels, pretrained models, or some form of self-supervision. These requirements severely restrict a range of directions existing approaches can discover. In this paper, we introduce an unsupervised method to identify interpretable directions in the latent space of a pretrained GAN model. By a simple model-agnostic procedure, we find directions corresponding to sensible semantic manipulations without any form of (self-)supervision. Furthermore, we reveal several non-trivial findings, which would be difficult to obtain by existing methods, e.g., a direction corresponding to background removal. As an immediate practical benefit of our work, we show how to exploit this finding to achieve competitive performance for weakly-supervised saliency detection. The implementation of our method is available online.

Jingwei Xu · Harry (Huazhe) Xu · Bingbing Ni · Xiaokang Yang · Trevor Darrell

In video prediction tasks, one major challenge is to capture the multi-modal nature of future contents and dynamics. In this work, we propose a simple yet effective framework that can efficiently predict plausible future states. The key insight is that the potential distribution of a sequence could be approximated with analogous ones in a repertoire of training pool, namely, expert examples. By further incorporating a novel optimization scheme into the training procedure, plausible predictions can be sampled efficiently from distribution constructed from the retrieved examples. Meanwhile, our method could be seamlessly integrated with existing stochastic predictive models; significant enhancement is observed with comprehensive experiments in both quantitative and qualitative aspects. We also demonstrate the generalization ability to predict the motion of unseen class, i.e., without access to corresponding data during training phase.

Wei Ping · Kainan Peng · Kexin Zhao · Zhao Song

In this work, we propose WaveFlow, a small-footprint generative flow for raw audio, which is directly trained with maximum likelihood. It handles the long-range structure of 1-D waveform with a dilated 2-D convolutional architecture, while modeling the local variations using expressive autoregressive functions. WaveFlow provides a unified view of likelihood-based models for 1-D data, including WaveNet and WaveGlow as special cases. It generates high-fidelity speech as WaveNet, while synthesizing several orders of magnitude faster as it only requires a few sequential steps to generate very long waveforms with hundreds of thousands of time-steps. Furthermore, it can significantly reduce the likelihood gap that has existed between autoregressive models and flow-based models for efficient synthesis. Finally, our small-footprint WaveFlow has only 5.91M parameters, which is 15× smaller than WaveGlow. It can generate 22.05 kHz high-fidelity audio 42.6× faster than real-time (at a rate of 939.3 kHz) on a V100 GPU without engineered inference kernels.

Yuning You · Tianlong Chen · Zhangyang “Atlas” Wang · Yang Shen

Self-supervision as an emerging technique has been employed to train convolutional neural networks (CNNs) for more transferrable, generalizable, and robust representation learning of images. Its introduction to graph convolutional networks (GCNs) operating on graph data is however rarely explored. In this study, we report the first systematic exploration and assessment of incorporating self-supervision into GCNs. We first elaborate three mechanisms to incorporate self-supervision into GCNs, analyze the limitations of pretraining & finetuning and self-training, and proceed to focus on multi-task learning. Moreover, we propose to investigate three novel self-supervised learning tasks for GCNs with theoretical rationales and numerical comparisons. Lastly, we further integrate multi-task self-supervision into graph adversarial training. Our results show that, with properly designed task forms and incorporation mechanisms, self-supervision benefits GCNs in gaining more generalizability and robustness. Our codes are available at https://github.com/Shen-Lab/SS-GCNs.


Invited Talk: Iordanis Kerenidis

Quantum Machine Learning : Prospects and Challenges

Photo of Iordanis Kerenidis

Iordanis Kerenidis

We will review recent work on Quantum Machine Learning and discuss the prospects and challenges of applying this new exciting computing paradigm to machine learning applications.

Panelists

           Julia Kempe
Photo of Julia Kempe
   Krysta Svore
Photo of Krysta Svore
Ronald de Wolf
   Photo of Ronald de Wolf

Speaker Bio

Iordanis Kerenidis (CNRS and QC Ware) received his Ph.D. from the Computer Science Department at the University of California, Berkeley, in 2004. After a two-year postdoctoral position at the Massachusetts Institute of Technology, he joined the Centre National de Recherche Scientifique in Paris as a permanent researcher. He has been the coordinator of a number of EU-funded projects including an ERC Grant, and he is the founder and director of the Paris Centre for Quantum Computing. His research is focused on quantum algorithms for machine learning and optimization, including work on recommendation systems, classification and clustering. He is currently working as the Head of Quantum Algorithms Int. at QC Ware Corp.

Iordanis Kerenidis

 

Iordanis Kerenidis (CNRS and QC Ware) received his Ph.D. from the Computer Science Department at the University of California, Berkeley, in 2004. After a two-year postdoctoral position at the Massachusetts Institute of Technology, he joined the Centre National de Recherche Scientifique in Paris as a permanent researcher. He has been the coordinator of a number of EU-funded projects including an ERC Grant, and he is the founder and director of the Paris Centre for Quantum Computing. His research is focused on quantum algorithms for machine learning and optimization, including work on recommendation systems, classification and clustering. He is currently working as the Head of Quantum Algorithms Int. at QC Ware Corp.



Poster Session 45 Thu 16 Jul 09:00 p.m.  

Liudmila Prokhorenkova · Aleksandr Shekhovtsov

[ Virtual ]

Graph-based approaches are empirically shown to be very successful for the nearest neighbor search (NNS). However, there has been very little research on their theoretical guarantees. We fill this gap and rigorously analyze the performance of graph-based NNS algorithms, specifically focusing on the low-dimensional ($d \ll \log n$) regime. In addition to the basic greedy algorithm on nearest neighbor graphs, we also analyze the most successful heuristics commonly used in practice: speeding up via adding shortcut edges and improving accuracy via maintaining a dynamic list of candidates. We believe that our theoretical insights supported by experimental analysis are an important step towards understanding the limits and benefits of graph-based NNS algorithms.
Johannes Fischer · Ömer Sahin Tas

[ Virtual ]

Planning in Partially Observable Markov Decision Processes (POMDPs) inherently gathers the information necessary to act optimally under uncertainties. The framework can be extended to model pure information gathering tasks by considering belief-based rewards. This allows us to use reward shaping to guide POMDP planning to informative beliefs by using a weighted combination of the original reward and the expected information gain as the objective. In this work we propose a novel online algorithm, Information Particle Filter Tree (IPFT), to solve problems with belief-dependent rewards on continuous domains. It simulates particle-based belief trajectories in a Monte Carlo Tree Search (MCTS) approach to construct a search tree in the belief space. The evaluation shows that the consideration of information gain greatly improves the performance in problems where information gathering is an essential part of the optimal policy.

Tim G. J. Rudner · Dino Sejdinovic · Yarin Gal

[ Virtual ]

Inter-domain Gaussian processes (GPs) allow for high flexibility and low computational cost when performing approximate inference in GP models. They are particularly suitable for modeling data exhibiting global structure but are limited to stationary covariance functions and thus fail to model non-stationary data effectively. We propose Inter-domain Deep Gaussian Processes, an extension of inter-domain shallow GPs that combines the advantages of inter-domain and deep Gaussian processes (DGPs), and demonstrate how to leverage existing approximate inference methods to perform simple and scalable approximate inference using inter-domain features in DGPs. We assess the performance of our method on a range of regression tasks and demonstrate that it outperforms inter-domain shallow GPs and conventional DGPs on challenging large-scale real-world datasets exhibiting both global structure as well as a high-degree of non-stationarity.

Alexander Shevchenko · Marco Mondelli

[ Virtual ]

The optimization of multilayer neural networks typically leads to a solution with zero training error, yet the landscape can exhibit spurious local minima and the minima can be disconnected. In this paper, we shed light on this phenomenon: we show that the combination of stochastic gradient descent (SGD) and over-parameterization makes the landscape of multilayer neural networks approximately connected and thus more favorable to optimization. More specifically, we prove that SGD solutions are connected via a piecewise linear path, and the increase in loss along this path vanishes as the number of neurons grows large. This result is a consequence of the fact that the parameters found by SGD are increasingly dropout stable as the network becomes wider. We show that, if we remove part of the neurons (and suitably rescale the remaining ones), the change in loss is independent of the total number of neurons, and it depends only on how many neurons are left. Our results exhibit a mild dependence on the input dimension: they are dimension-free for two-layer networks and require the number of neurons to scale linearly with the dimension for multilayer networks. We validate our theoretical findings with numerical experiments for different architectures and classification …

Nutan Chen · Alexej Klushyn · Francesco Ferroni · Justin Bayer · Patrick van der Smagt

[ Virtual ]

Measuring the similarity between data points often requires domain knowledge, which can in parts be compensated by relying on unsupervised methods such as latent-variable models, where similarity/distance is estimated in a more compact latent space. Prevalent is the use of the Euclidean metric, which has the drawback of ignoring information about similarity of data stored in the decoder, as captured by the framework of Riemannian geometry. We propose an extension to the framework of variational auto-encoders allows learning flat latent manifolds, where the Euclidean metric is a proxy for the similarity between data points. This is achieved by defining the latent space as a Riemannian manifold and by regularising the metric tensor to be a scaled identity matrix. Additionally, we replace the compact prior typically used in variational auto-encoders with a recently presented, more expressive hierarchical one---and formulate the learning problem as a constrained optimisation problem. We evaluate our method on a range of data-sets, including a video-tracking benchmark, where the performance of our unsupervised approach nears that of state-of-the-art supervised approaches, while retaining the computational efficiency of straight-line-based approaches.

Boris Muzellec · Julie Josse · Claire Boyer · Marco Cuturi

[ Virtual ]

Missing data is a crucial issue when applying machine learning algorithms to real-world datasets. Starting from the simple assumption that two batches extracted randomly from the same dataset should share the same distribution, we leverage optimal transport distances to quantify that criterion and turn it into a loss function to impute missing data values. We propose practical methods to minimize these losses using end-to-end learning, that can exploit or not parametric assumptions on the underlying distributions of values. We evaluate our methods on datasets from the UCI repository, in MCAR, MAR and MNAR settings. These experiments show that OT-based methods match or out-perform state-of-the-art imputation methods, even for high percentages of missing values.

Prabhu Teja Sivaprasad · Florian Mai · Thijs Vogels · Martin Jaggi · François Fleuret

[ Virtual ]

The performance of optimizers, particularly in deep learning, depends considerably on their chosen hyperparameter configuration. The efficacy of optimizers is often studied under near-optimal problem-specific hyperparameters, and finding these settings may be prohibitively costly for practitioners. In this work, we argue that a fair assessment of optimizers' performance must take the computational cost of hyperparameter tuning into account, i.e., how easy it is to find good hyperparameter configurations using an automatic hyperparameter search. Evaluating a variety of optimizers on an extensive set of standard datasets and architectures, our results indicate that Adam is the most practical solution, particularly in low-budget scenarios.

Aditya Kusupati · Vivek Ramanujan · Raghav Somani · Mitchell Wortsman · Prateek Jain · Sham Kakade · Ali Farhadi

[ Virtual ]

Sparsity in Deep Neural Networks (DNNs) is studied extensively with the focus of maximizing prediction accuracy given an overall parameter budget. Existing methods rely on uniform or heuristic non-uniform sparsity budgets which have sub-optimal layer-wise parameter allocation resulting in a) lower prediction accuracy or b) higher inference cost (FLOPs). This work proposes Soft Threshold Reparameterization (STR), a novel use of the soft-threshold operator on DNN weights. STR smoothly induces sparsity while learning pruning thresholds thereby obtaining a non-uniform sparsity budget. Our method achieves state-of-the-art accuracy for unstructured sparsity in CNNs (ResNet50 and MobileNetV1 on ImageNet-1K), and, additionally, learns non-uniform budgets that empirically reduce the FLOPs by up to 50%. Notably, STR boosts the accuracy over existing results by up to 10% in the ultra sparse (99%) regime and can also be used to induce low-rank (structured sparsity) in RNNs. In short, STR is a simple mechanism which learns effective sparsity budgets that contrast with popular heuristics. Code, pretrained models and sparsity budgets are at https://github.com/RAIVNLab/STR.

Xuefei Zhang · Songkai Xue · Ji Zhu

Entities often interact with each other through multiple types of relations, which are often represented as multilayer networks. Multilayer networks among the same set of nodes usually share common structures, while each layer can possess its distinct node connecting behaviors. This paper proposes a flexible latent space model for multilayer networks for the purpose of capturing such characteristics. Specifically, the proposed model embeds each node with a latent vector shared among layers and a layer-specific effect for each layer; both elements together with a layer-specific connectivity matrix determine edge formations. To fit the model, we develop a projected gradient descent algorithm for efficient parameter estimation. We also establish theoretical properties of the maximum likelihood estimators and show that the upper bound of the common latent structure's estimation error is inversely proportional to the number of layers under mild conditions. The superior performance of the proposed model is demonstrated through simulation studies and applications to two real-world data examples.

Tuan-Binh Nguyen · Jerome-Alexis Chevalier · Thirion Bertrand · Sylvain Arlot

We develop an extension of the knockoff inference procedure, introduced by Barber & Candes (2015). This new method, called Aggregation of Multiple Knockoffs (AKO), addresses the instability inherent to the random nature of knockoff-based inference. Specifically, AKO improves both the stability and power compared with the original knockoff algorithm while still maintaining guarantees for false discovery rate control. We provide a new inference procedure, prove its core properties, and demonstrate its benefits in a set of experiments on synthetic and real datasets.

Anton Zhiyanov · Alexey Drutsa
We are interested in learning algorithms that optimize revenue in repeated contextual posted-price auctions where a single seller faces a single strategic buyer. In our setting, the buyer maximizes his expected cumulative discounted surplus, and his valuation of a good is assumed to be a fixed function of a $d$-dimensional context (feature) vector. We introduce a novel deterministic learning algorithm that is based on ideas of the Bisection method and has strategic regret upper bound of $O(\log^2 T)$. Unlike previous works, our algorithm does not require any assumption on the distribution of context information, and the regret guarantee holds for any realization of feature vectors (adversarial upper bound). To construct our algorithm we non-trivially adopted techniques of integral geometry to act against buyer strategicness and improved the penalization trick to work in contextual auctions.
Edith Cohen · Ofir Geri · Rasmus Pagh
Recently there has been increased interest in using machine learning techniques to improve classical algorithms. In this paper we study when it is possible to construct compact, composable sketches for weighted sampling and statistics estimation according to functions of data frequencies. Such structures are now central components of large-scale data analytics and machine learning pipelines. However, many common functions, such as thresholds and $p$th frequency moments with $p>2$, are known to require polynomial size sketches in the worst case. We explore performance beyond the worst case under two different types of assumptions. The first is having access to noisy \emph{advice} on item frequencies. This continues the line of work of Hsu et al. (ICLR 2019), who assume predictions are provided by a machine learning model. The second is providing guaranteed performance on a restricted class of input frequency distributions that are better aligned with what is observed in practice. This extends the work on heavy hitters under Zipfian distributions in a seminal paper of Charikar et al. (ICALP 2002). Surprisingly, we show analytically and empirically that "in practice" small polylogarithmic-size sketches provide accuracy for "hard" functions.
Maria-Luiza Vladarean · Ahmet Alacaoglu · Ya-Ping Hsieh · Volkan Cevher

We propose two novel conditional gradient-based methods for solving structured stochastic convex optimization problems with a large number of linear constraints. Instances of this template naturally arise from SDP-relaxations of combinatorial problems, which involve a number of constraints that is polynomial in the problem dimension. The most important feature of our framework is that only a subset of the constraints is processed at each iteration, thus gaining a computational advantage over prior works that require full passes. Our algorithms rely on variance reduction and smoothing used in conjunction with conditional gradient steps, and are accompanied by rigorous convergence guarantees. Preliminary numerical experiments are provided for illustrating the practical performance of the methods.

Olivier Henaff

Human observers can learn to recognize new categories of images from a handful of examples, yet doing so with artificial ones remains an open challenge. We hypothesize that data-efficient recognition is enabled by representations which make the variability in natural signals more predictable. We therefore revisit and improve Contrastive Predictive Coding, an unsupervised objective for learning such representations. This new implementation produces features which support state-of-the-art linear classification accuracy on the ImageNet dataset. When used as input for non-linear classification with deep neural networks, this representation allows us to use 2-5x less labels than classifiers trained directly on image pixels. Finally, this unsupervised representation substantially improves transfer learning to object detection on the PASCAL VOC dataset, surpassing fully supervised pre-trained ImageNet classifiers.

Ahmed Alaa · Mihaela van der Schaar

Deep learning models achieve high predictive accuracy across a broad spectrum of tasks, but rigorously quantifying their predictive uncertainty remains challenging. Usable estimates of predictive uncertainty should (1) cover the true prediction targets with high probability, and (2) discriminate between high- and low confidence prediction instances. Existing methods for uncertainty quantification are based predominantly on Bayesian neural networks; these may fall short of (1) and (2) — i.e., Bayesian credible intervals do not guarantee frequentist coverage, and approximate posterior inference undermines discriminative accuracy. In this paper, we develop the discriminative jackknife (DJ), a frequentist procedure that utilizes influence functions of a model’s loss functional to construct a jackknife (or leave one-out) estimator of predictive confidence intervals. The DJ satisfies (1) and (2), is applicable to a wide range of deep learning models, is easy to implement, and can be applied in a post-hoc fashion without interfering with model training or compromising its accuracy. Experiments demonstrate that DJ performs competitively compared to existing Bayesian and non-Bayesian regression baselines.

Paul Rolland · Armin Eftekhari · Ali Kavis · Volkan Cevher
A well-known first-order method for sampling from log-concave probability distributions is the Unadjusted Langevin Algorithm (ULA). This work proposes a new annealing step-size schedule for ULA, which allows to prove new convergence guarantees for sampling from a smooth log-concave distribution, which are not covered by existing state-of-the-art convergence guarantees. To establish this result, we derive a new theoretical bound that relates the Wasserstein distance to total variation distance between any two log-concave distributions that complements the reach of Talagrand $T_2$ inequality. Moreover, applying this new step size schedule to an existing constrained sampling algorithm, we show state-of-the-art convergence rates for sampling from a constrained log-concave distribution, as well as improved dimension dependence.
Aleksandar Bojchevski · Johannes Gasteiger · Stephan Günnemann

Existing techniques for certifying the robustness of models for discrete data either work only for a small class of models or are general at the expense of efficiency or tightness. Moreover, they do not account for sparsity in the input which, as our findings show, is often essential for obtaining non-trivial guarantees. We propose a model-agnostic certificate based on the randomized smoothing framework which subsumes earlier work and is tight, efficient, and sparsity-aware. Its computational complexity does not depend on the number of discrete categories or the dimension of the input (e.g. the graph size), making it highly scalable. We show the effectiveness of our approach on a wide variety of models, datasets, and tasks -- specifically highlighting its use for Graph Neural Networks. So far, obtaining provable guarantees for GNNs has been difficult due to the discrete and non-i.i.d. nature of graph data. Our method can certify any GNN and handles perturbations to both the graph structure and the node attributes.

Samy Jelassi · Carles Domingo-Enrich · Damien Scieur · Arthur Mensch · Joan Bruna

Data-driven modeling increasingly requires to find a Nash equilibrium in multi-player games, e.g. when training GANs. In this paper, we analyse a new extra-gradient method for Nash equilibrium finding, that performs gradient extrapolations and updates on a random subset of players at each iteration. This approach provably exhibits a better rate of convergence than full extra-gradient for non-smooth convex games with noisy gradient oracle. We propose an additional variance reduction mechanism to obtain speed-ups in smooth convex games. Our approach makes extrapolation amenable to massive multiplayer settings, and brings empirical speed-ups, in particular when using a heuristic cyclic sampling scheme. Most importantly, it allows to train faster and better GANs and mixtures of GANs.

Ronen Basri · Meirav Galun · Amnon Geifman · David Jacobs · Yoni Kasten · Shira Kritchman
Recent works have partly attributed the generalization ability of over-parameterized neural networks to frequency bias -- networks trained with gradient descent on data drawn from a uniform distribution find a low frequency fit before high frequency ones. As realistic training sets are not drawn from a uniform distribution, we here use the Neural Tangent Kernel (NTK) model to explore the effect of variable density on training dynamics. Our results, which combine analytic and empirical observations, show that when learning a pure harmonic function of frequency $\kappa$, convergence at a point $x \in \S^{d-1}$ occurs in time $O(\kappa^d/p(x))$ where $p(x)$ denotes the local density at $x$. Specifically, for data in $\S^1$ we analytically derive the eigenfunctions of the kernel associated with the NTK for two-layer networks. We further prove convergence results for deep, fully connected networks with respect to the spectral decomposition of the NTK. Our empirical study highlights similarities and differences between deep and shallow networks in this model.
Amélie Héliou · Panayotis Mertikopoulos · Zhengyuan Zhou

Motivated by applications to online advertising and recommender systems, we consider a game-theoretic model with delayed rewards and asynchronous, payoff-based feedback. In contrast to previous work on delayed multi-armed bandits, we focus on games with continuous action spaces, and we examine the long-run behavior of strategic agents that follow a no-regret learning policy (but are otherwise oblivious to the game being played, the objectives of their opponents, etc.). To account for the lack of a consistent stream of information (for instance, rewards can arrive out of order and with an a priori unbounded delay), we introduce a gradient-free learning policy where payoff information is placed in a priority queue as it arrives. Somewhat surprisingly, we find that under a standard diagonal concavity assumption, the induced sequence of play converges to Nash Equilibrium (NE) with probability 1, even if the delay between choosing an action and receiving the corresponding reward is unbounded.

Sarthak Mittal · Alex Lamb · Anirudh Goyal · Vikram Voleti · Murray Shanahan · Guillaume Lajoie · Michael Mozer · Yoshua Bengio

Robust perception relies on both bottom-up and top-down signals. Bottom-up signals consist of what's directly observed through sensation. Top-down signals consist of beliefs and expectations based on past experience and the current reportable short-term memory, such as how the phrase `peanut butter and ...' will be completed. The optimal combination of bottom-up and top-down information remains an open question, but the manner of combination must be dynamic and both context and task dependent. To effectively utilize the wealth of potential top-down information available, and to prevent the cacophony of intermixed signals in a bidirectional architecture, mechanisms are needed to restrict information flow. We explore deep recurrent neural net architectures in which bottom-up and top-down signals are dynamically combined using attention. Modularity of the architecture further restricts the sharing and communication of information. Together, attention and modularity direct information flow, which leads to reliable performance improvements in perceptual and language tasks, and in particular improves robustness to distractions and noisy data. We demonstrate on a variety of benchmarks in language modeling, sequential image classification, video prediction and reinforcement learning that the \emph{bidirectional} information flow can improve results over strong baselines.

Martin Wistuba · Tejaswini Pedapati

Many automated machine learning methods, such as those for hyperparameter and neural architecture optimization, are computationally expensive because they involve training many different model configurations. In this work, we present a new method that saves computational budget by terminating poor configurations early on in the training. In contrast to existing methods, we consider this task as a ranking and transfer learning problem. We qualitatively show that by optimizing a pairwise ranking loss and leveraging learning curves from other data sets, our model is able to effectively rank learning curves without having to observe many or very long learning curves. We further demonstrate that our method can be used to accelerate a neural architecture search by a factor of up to 100 without a significant performance degradation of the discovered architecture. In further experiments we analyze the quality of ranking, the influence of different model components as well as the predictive behavior of the model.

Adeel Pervez · Taco Cohen · Efstratios Gavves

Stochastic neural networks with discrete random variables are an important class of models for their expressiveness and interpretability. Since direct differentiation and backpropagation is not possible, Monte Carlo gradient estimation techniques are a popular alternative. Efficient stochastic gradient estimators, such Straight-Through and Gumbel-Softmax, work well for shallow stochastic models. Their performance, however, suffers with hierarchical, more complex models.

We focus on hierarchical stochastic networks with multiple layers of Boolean latent variables. To analyze such networks, we introduce the framework of harmonic analysis for Boolean functions to derive an analytic formulation for the bias and variance in the Straight-Through estimator. Exploiting these formulations, we propose \emph{FouST}, a low-bias and low-variance gradient estimation algorithm that is just as efficient. Extensive experiments show that FouST performs favorably compared to state-of-the-art biased estimators and is much faster than unbiased ones.

Francesco Croce · Matthias Hein
The evaluation of robustness against adversarial manipulation of neural networks-based classifiers is mainly tested with empirical attacks as methods for the exact computation, even when available, do not scale to large networks. We propose in this paper a new white-box adversarial attack wrt the $l_p$-norms for $p \in \{1,2,\infty\}$ aiming at finding the minimal perturbation necessary to change the class of a given input. It has an intuitive geometric meaning, yields quickly high quality results, minimizes the size of the perturbation (so that it returns the robust accuracy at every threshold with a single run). It performs better or similar to state-of-the-art attacks which are partially specialized to one $l_p$-norm, and is robust to the phenomenon of gradient obfuscation.
Jean-Bastien Grill · Florent Altché · Yunhao Tang · Thomas Hubert · Michal Valko · Ioannis Antonoglou · Remi Munos

The combination of Monte-Carlo tree search (MCTS) with deep reinforcement learning has led to groundbreaking results in artificial intelligence. However, AlphaZero, the current state-of-the-art MCTS algorithm still relies on handcrafted heuristics that are only partially understood. In this paper, we show that AlphaZero's search heuristic, along with other common ones, can be interpreted as an approximation to the solution of a specific regularized policy optimization problem. With this insight, we propose a variant of AlphaZero which uses the exact solution to this policy optimization problem, and show experimentally that it reliably outperforms the original algorithm in multiple domains.

Max Simchowitz · Dylan Foster
We consider the problem of online adaptive control of the linear quadratic regulator, where the true system parameters are unknown. We prove new upper and lower bounds demonstrating that the optimal regret scales as $\tilde{\Theta ({\sqrt{d_{\mathbf{u}}^2 d_{\mathbf{x}} T}})$, where $T$ is the number of time steps, $d_{\mathbf{u}}$ is the dimension of the input space, and $d_{\mathbf{x}}$ is the dimension of the system state. Notably, our lower bounds rule out the possibility of a $\mathrm{poly}(\log{}T)$-regret algorithm, which had been conjectured due to the apparent strong convexity of the problem. Our upper bound is attained by a simple variant of certainty equivalent control, where the learner selects control inputs according to the optimal controller for their estimate of the system while injecting exploratory random noise. While this approach was shown to achieve $\sqrt{T}$ regret by Mania et al. (2019), we show that if the learner continually refines their estimates of the system matrices, the method attains optimal dimension dependence as well. Central to our upper and lower bounds is a new approach for controlling perturbations of Riccati equations called the self-bounding ODE method, which we use to derive suboptimality bounds for the certainty equivalent controller synthesized from estimated system dynamics. This in …
Aviv Rosenberg · Alon Cohen · Yishay Mansour · Haim Kaplan
Stochastic shortest path (SSP) is a well-known problem in planning and control, in which an agent has to reach a goal state in minimum total expected cost. In the learning formulation of the problem, the agent is unaware of the environment dynamics (i.e., the transition function) and has to repeatedly play for a given number of episodes, while learning the problem's optimal solution. Unlike other well-studied models in reinforcement learning (RL), the length of an episode is not predetermined (or bounded) and is influenced by the agent's actions. Recently, \cite{tarbouriech2019noregret} studied this problem in the context of regret minimization, and provided an algorithm whose regret bound is inversely proportional to the square root of the minimum instantaneous cost. In this work we remove this dependence on the minimum cost---we give an algorithm that guarantees a regret bound of $\widetilde{O}(B^{3/2} S \sqrt{A K})$, where $B$ is an upper bound on the expected cost of the optimal policy, $S$ is the number of states, $A$ is the number of actions and $K$ is the total number of episodes. We additionally show that any learning algorithm must have at least $\Omega(B \sqrt{S A K})$ regret in the worst case.
Vaishaal Shankar · Alex Fang · Wenshuo Guo · Sara Fridovich-Keil · Jonathan Ragan-Kelley · Ludwig Schmidt · Benjamin Recht

We investigate the connections between neural networks and simple building blocks in kernel space. In particular, using well established feature space tools such as direct sum, averaging, and moment lifting, we present an algebra for creating “compositional” kernels from bags of features. We show that these operations correspond to many of the building blocks of “neural tangent kernels (NTK)”. Experimentally, we show that there is a correlation in test error between neural network architectures and the associated kernels. We construct a simple neural network architecture using only 3x3 convolutions, 2x2 average pooling, ReLU, and optimized with SGD and MSE loss that achieves 96% accuracy on CIFAR10, and whose corresponding compositional kernel achieves 90% accuracy. We also use our constructions to investigate the relative performance of neural networks, NTKs, and compositional kernels in the small dataset regime. In particular, we find that compositional kernels outperform NTKs and neural networks outperform both kernel methods.

Aristotelis Chrysakis · Marie-Francine Moens

A well-documented weakness of neural networks is the fact that they suffer from catastrophic forgetting when trained on data provided by a non-stationary distribution. Recent work in the field of continual learning attempts to understand and overcome this issue. Unfortunately, the majority of relevant work embraces the implicit assumption that the distribution of observed data is perfectly balanced, despite the fact that, in the real world, humans and animals learn from observations that are temporally correlated and severely imbalanced. Motivated by this remark, we aim to evaluate memory population methods that are used in online continual learning, when dealing with highly imbalanced and temporally correlated streams of data. More importantly, we introduce a new memory population approach, which we call class-balancing reservoir sampling (CBRS). We demonstrate that CBRS outperforms the state-of-the-art memory population algorithms in a considerably challenging learning setting, over a range of different datasets, and for multiple architectures.

Pouya M Ghari · Yanning Shen

Multi-kernel learning (MKL) exhibits reliable performance in nonlinear function approximation tasks. Instead of using one kernel, it learns the optimal kernel from a pre-selected dictionary of kernels. The selection of the dictionary has crucial impact on both the performance and complexity of MKL. Specifically, inclusion of a large number of irrelevant kernels may impair the accuracy, and increase the complexity of MKL algorithms. To enhance the accuracy, and alleviate the computational burden, the present paper develops a novel scheme which actively chooses relevant kernels. The proposed framework models the pruned kernel combination as feedback collected from a graph, that is refined 'on the fly.' Leveraging the random feature approximation, we propose an online scalable multi-kernel learning approach with graph feedback, and prove that the proposed algorithm enjoys sublinear regret. Numerical tests on real datasets demonstrate the effectiveness of the novel approach.

Eric Mazumdar · Aldo Pacchiano · Yian Ma · Michael Jordan · Peter Bartlett

Thompson sampling for multi-armed bandit problems is known to enjoy favorable performance in both theory and practice, though it suffers from a significant limitation computationally arising from the need for samples from posterior distributions at every iteration. To address this issue, we propose two Markov Chain Monte Carlo (MCMC) methods tailored to Thompson sampling. We construct quickly converging Langevin algorithms to generate approximate samples that have accuracy guarantees, and leverage novel posterior concentration rates to analyze the regret of the resulting approximate Thompson sampling algorithm. Further, we specify the necessary hyperparameters for the MCMC procedure to guarantee optimal instance-dependent frequentist regret while having low computational complexity. In particular, our algorithms take advantage of both posterior concentration and a sample reuse mechanism to ensure that only a constant number of iterations and a constant amount of data is needed in each round. The resulting approximate Thompson sampling algorithm has logarithmic regret and its computational complexity does not scale with the time horizon of the algorithm.

Henry Reeve · Ata Kaban

We investigate the challenge of multi-output learning, where the goal is to learn a vector-valued function based on a supervised data set. This includes a range of important problems in Machine Learning including multi-target regression, multi-class classification and multi-label classification. We begin our analysis by introducing the self-bounding Lipschitz condition for multi-output loss functions, which interpolates continuously between a classical Lipschitz condition and a multi-dimensional analogue of a smoothness condition. We then show that the self-bounding Lipschitz condition gives rise to optimistic bounds for multi-output learning, which attain the minimax optimal rate up to logarithmic factors. The proof exploits local Rademacher complexity combined with a powerful minoration inequality due to Srebro, Sridharan and Tewari. As an application we derive a state-of-the-art generalisation bound for multi-class gradient boosting.

Jingqing Zhang · Yao Zhao · Mohammad Saleh · Peter Liu

Recent work pre-training Transformers with self-supervised objectives on large text corpora has shown great success when fine-tuned on downstream NLP tasks including text summarization. However, pre-training objectives tailored for abstractive text summarization have not been explored. Furthermore there is a lack of systematic evaluation across diverse domains. In this work, we propose pre-training large Transformer-based encoder-decoder models on massive text corpora with a new self-supervised objective. In PEGASUS, important sentences are removed/masked from an input document and are generated together as one output sequence from the remaining sentences, similar to an extractive summary. We evaluated our best PEGASUS model on 12 downstream summarization tasks spanning news, science, stories, instructions, emails, patents, and legislative bills. Experiments demonstrate it achieves state-of-the-art performance on all 12 downstream datasets measured by ROUGE scores. Our model also shows surprising performance on low-resource summarization, surpassing previous state-of-the-art results on 6 datasets with only 1000 examples. Finally we validated our results using human evaluation and show that our model summaries achieve human performance on multiple datasets.

Sheng Shen · Zhewei Yao · Amir Gholaminejad · Michael Mahoney · Kurt Keutzer

The standard normalization method for neural network (NN) models used in Natural Language Processing (NLP) is layer normalization (LN).This is different than batch normalization (BN), which is widely-adopted in Computer Vision. The preferred use of LN in NLP is principally due to the empirical observation that a (naive/vanilla) use of BN leads to significant performance degradation for NLP tasks; however, a thorough understanding of the underlying reasons for this is not always evident. In this paper, we perform a systematic study of NLP transformer models to understand why BN has a poor performance, as compared to LN. We find that the statistics of NLP data across the batch dimension exhibit large fluctuations throughout training. This results in instability, if BN is naively implemented. To address this, we propose Power Normalization (PN), a novel normalization scheme that resolves this issue by (i) relaxing zero-mean normalization in BN, (ii) incorporating a running quadratic mean instead of per batch statistics to stabilize fluctuations, and (iii) using an approximate backpropagation for incorporating the running statistics in the forward pass. We show theoretically, under mild assumptions, that PN leads to a smaller Lipschitz constant for the loss, compared with BN. Furthermore, we prove that the …

Rui Shu · Tung Nguyen · Yinlam Chow · Tuan Pham · Khoat Than · Mohammad Ghavamzadeh · Stefano Ermon · Hung Bui

High-dimensional observations and unknown dynamics are major challenges when applying optimal control to many real-world decision making tasks. The Learning Controllable Embedding (LCE) framework addresses these challenges by embedding the observations into a lower dimensional latent space, estimating the latent dynamics, and then performing control directly in the latent space. To ensure the learned latent dynamics are predictive of next-observations, all existing LCE approaches decode back into the observation space and explicitly perform next-observation prediction---a challenging high-dimensional task that furthermore introduces a large number of nuisance parameters (i.e., the decoder) which are discarded during control. In this paper, we propose a novel information-theoretic LCE approach and show theoretically that explicit next-observation prediction can be replaced with predictive coding. We then use predictive coding to develop a decoder-free LCE model whose latent dynamics are amenable to locally-linear control. Extensive experiments on benchmark tasks show that our model reliably learns a controllable latent space that leads to superior performance when compared with state-of-the-art LCE baselines.

Ahmet Alacaoglu · Olivier Fercoq · Volkan Cevher

We introduce a randomly extrapolated primal-dual coordinate descent method that adapts to sparsity of the data matrix and the favorable structures of the objective function. Our method updates only a subset of primal and dual variables with sparse data, and it uses large step sizes with dense data, retaining the benefits of the specific methods designed for each case. In addition to adapting to sparsity, our method attains fast convergence guarantees in favorable cases \textit{without any modifications}. In particular, we prove linear convergence under metric subregularity, which applies to strongly convex-strongly concave problems, linear programs and piecewise linear quadratic functions. We show almost sure convergence of the sequence and optimal sublinear convergence rates for the primal-dual gap and objective values, in the general convex-concave case. Numerical evidence demonstrates the state-of-the-art empirical performance of our method in sparse and dense settings, matching and improving the existing methods.

Celestine Mendler-Dünner · Aurelien Lucchi

We study preconditioned gradient-based optimization methods where the preconditioning matrix has block-diagonal form. Such a structural constraint comes with the advantage that the update computation can be parallelized across multiple independent tasks. Our main contribution is to demonstrate that the convergence of these methods can significantly be improved by a randomization technique which corresponds to repartitioning coordinates across tasks during the optimization procedure. We provide a theoretical analysis that accurately characterizes the expected convergence gains of repartitioning and validate our findings empirically on various traditional machine learning tasks. From an implementation perspective, block-separable models are well suited for parallelization and, when shared memory is available, randomization can be implemented on top of existing methods very efficiently to improve convergence.

Lorenzo Croissant · Marc Abeille · Clément Calauzènes

In display advertising, a small group of sellers and bidders face each other in up to 10^{12} auctions a day. In this context, revenue maximisation via monopoly price learning is a high-value problem for sellers. By nature, these auctions are online and produce a very high frequency stream of data. This results in a computational strain that requires algorithms be real-time. Unfortunately, existing methods, inherited from the batch setting, suffer O(\sqrt(t)) time/memory complexity at each update, prohibiting their use. In this paper, we provide the first algorithm for online learning of monopoly prices in online auctions whose update is constant in time and memory.

Karsten Roth · Timo Milbich · Samrath Sinha · Prateek Gupta · Bjorn Ommer · Joseph Paul Cohen

Deep Metric Learning (DML) is arguably one of the most influential lines of research for learning visual similarities with many proposed approaches every year. Although the field benefits from the rapid progress, the divergence in training protocols, architectures, and parameter choices make an unbiased comparison difficult. To provide a consistent reference point, we revisit the most widely used DML objective functions and conduct a study of the crucial parameter choices as well as the commonly neglected mini-batch sampling process. Under consistent comparison, DML objectives show much higher saturation than indicated by literature. Further based on our analysis, we uncover a correlation between the embedding space density and compression to the generalization performance of DML models. Exploiting these insights, we propose a simple, yet effective, training regularization to reliably boost the performance of ranking-based DML models on various standard benchmark datasets; code and a publicly accessible WandB-repo are available at https://github.com/Confusezius/RevisitingDeepMetricLearningPyTorch.

Marco Cuturi · Olivier Teboul · Jonathan Niles-Weed · Jean-Philippe Vert
Low rank matrix factorization is a fundamental building block in machine learning, used for instance to summarize gene expression profile data or word-document counts. To be robust to outliers and differences in scale across features, a matrix factorization step is usually preceded by ad-hoc feature normalization steps, such as tf-idf scaling or data whitening. We propose in this work to learn these normalization operators jointly with the factorization itself. More precisely, given a $d\times n$ matrix $X$ of $d$ features measured on $n$ individuals, we propose to learn the parameters of quantile normalization operators that can operate row-wise on the values of $X$ and/or of its factorization $UV$ to improve the quality of the low-rank representation of $X$ itself. This optimization is facilitated by the introduction of differentiable quantile normalization operators derived using regularized optimal transport algorithms.
Yoel Drori · Ohad Shamir
We study the iteration complexity of stochastic gradient descent (SGD) for minimizing the gradient norm of smooth, possibly nonconvex functions. We provide several results, implying that the classical $\mathcal{O}(\epsilon^{-4})$ upper bound (for making the average gradient norm less than $\epsilon$) cannot be improved upon, unless a combination of additional assumptions is made. Notably, this holds even if we limit ourselves to convex quadratic functions. We also show that for nonconvex functions, the feasibility of minimizing gradients with SGD is surprisingly sensitive to the choice of optimality criteria.
Jakub Swiatkowski · Kevin Roth · Bastiaan Veeling · Linh Tran · Joshua V Dillon · Jasper Snoek · Stephan Mandt · Tim Salimans · Rodolphe Jenatton · Sebastian Nowozin

Variational Bayesian Inference is a popular methodology for approximating posterior distributions over Bayesian neural network weights. Recent work developing this class of methods has explored ever richer parameterizations of the approximate posterior in the hope of improving performance. In contrast, here we share a curious experimental finding that suggests instead restricting the variational distribution to a more compact parameterization. For a variety of deep Bayesian neural networks trained using Gaussian mean-field variational inference, we find that the posterior standard deviations consistently exhibit strong low-rank structure after convergence. This means that by decomposing these variational parameters into a low-rank factorization, we can make our variational approximation more compact without decreasing the models' performance. Furthermore, we find that such factorized parameterizations improve the signal-to-noise ratio of stochastic gradient estimates of the variational lower bound, resulting in faster convergence.

Christoph Hofer · Florian Graf · Marc Niethammer · Roland Kwitt

We study regularization in the context of small sample-size learning with over-parametrized neural networks. Specifically, we shift focus from architectural properties, such as norms on the network weights, to properties of the internal representations before a linear classifier. Specifically, we impose a topological constraint on samples drawn from the probability measure induced in that space. This provably leads to mass concentration effects around the representations of training instances, i.e., a property beneficial for generalization. By leveraging previous work to impose topological constrains in a neural network setting, we provide empirical evidence (across various vision benchmarks) to support our claim for better generalization.


Poster Session 46 Thu 16 Jul 10:00 p.m.  

Li Kevin Wenliang · Theodore Moskovitz · Heishiro Kanagawa · Maneesh Sahani

[ Virtual ]

Models that employ latent variables to capture structure in observed data lie at the heart of many current unsupervised learning algorithms, but exact maximum-likelihood learning for powerful and flexible latent-variable models is almost always intractable. Thus, state-of-the-art approaches either abandon the maximum-likelihood framework entirely, or else rely on a variety of variational approximations to the posterior distribution over the latents. Here, we propose an alternative approach that we call amortised learning. Rather than computing an approximation to the posterior over latents, we use a wake-sleep Monte-Carlo strategy to learn a function that directly estimates the maximum-likelihood parameter updates. Amortised learning is possible whenever samples of latents and observations can be simulated from the generative model, treating the model as a ``black box''. We demonstrate its effectiveness on a wide range of complex models, including those with latents that are discrete or supported on non-Euclidean spaces.

Dexiong Chen · Laurent Jacob · Julien Mairal

[ Virtual ]

We introduce a family of multilayer graph kernels and establish new links between graph convolutional neural networks and kernel methods. Our approach generalizes convolutional kernel networks to graph-structured data, by representing graphs as a sequence of kernel feature maps, where each node carries information about local graph substructures. On the one hand, the kernel point of view offers an unsupervised, expressive, and easy-to-regularize data representation, which is useful when limited samples are available. On the other hand, our model can also be trained end-to-end on large-scale data, leading to new types of graph convolutional neural networks. We show that our method achieves state-of-the-art performance on several graph classification benchmarks, while offering simple model interpretation. Our code is freely available at https://github.com/claying/GCKN.

Jiri Fajtl · Vasileios Argyriou · Dorothy Monekosso · Paolo Remagnino

[ Virtual ]

In this work, we pose the question whether it is possible to design and train an autoencoder model in an end-to-end fashion to learn representations in the multivariate Bernoulli latent space, and achieve performance comparable with the state-of-the-art variational methods. Moreover, we investigate how to generate novel samples and perform smooth interpolation and attributes modification in the binary latent space. To meet our objective, we propose a simplified, deterministic model with a straight-through gradient estimator to learn the binary latents and show its competitiveness with the latest VAE methods. Furthermore, we propose a novel method based on a random hyperplane rounding for sampling and smooth interpolation in the latent space. Our method performs on a par or better than the current state-of-the-art methods on common CelebA, CIFAR-10 and MNIST datasets.

Vincent Cohen-Addad · Karthik C. S. · Guillaume Lagarde

[ Virtual ]

A classic problem in unsupervised learning and data analysis is to find simpler and easy-to-visualize representations of the data that preserve its essential properties. A widely-used method to preserve the underlying hierarchical structure of the data while reducing its complexity is to find an embedding of the data into a tree or an ultrametric, but computing such an embedding on a data set of $n$ points in $\Omega(\log n)$ dimensions incurs a quite prohibitive running time of $\Theta(n^2)$. In this paper, we provide a new algorithm which takes as input a set of points $P$ in $\R^d$, and for every $c\ge 1$, runs in time $n^{1+\frac{\rho}{c^2}}$ (for some universal constant $\rho>1$) to output an ultrametric $\Delta$ such that for any two points $u,v$ in $P$, we have $\Delta(u,v)$ is within a multiplicative factor of $5c$ to the distance between $u$ and $v$ in the best ultrametric representation of $P$. Here, the best ultrametric is the ultrametric $\tilde\Delta$ that minimizes the maximum distance distortion with respect to the $\ell_2$ distance, namely that minimizes $\underset{u,v \in P}{\max}\ \nicefrac{\tilde\Delta(u,v)}{\|u-v\|_2}$. We complement the above result by showing that under popular complexity theoretic assumptions, for every constant $\varepsilon>0$, no algorithm with running time …
Viktor Bengs · Eyke Hüllermeier

[ Virtual ]

In this paper, we introduce the Preselection Bandit problem, in which the learner preselects a subset of arms (choice alternatives) for a user, which then chooses the final arm from this subset. The learner is not aware of the user's preferences, but can learn them from observed choices. In our concrete setting, we allow these choices to be stochastic and model the user's actions by means of the Plackett-Luce model. The learner's main task is to preselect subsets that eventually lead to highly preferred choices. To formalize this goal, we introduce a reasonable notion of regret and derive lower bounds on the expected regret. Moreover, we propose algorithms for which the upper bound on expected regret matches the lower bound up to a logarithmic term of the time horizon.

Jean-Yves Franceschi · Edouard Delasalles · Mickael Chen · Sylvain Lamprier · Patrick Gallinari

[ Virtual ]

Designing video prediction models that account for the inherent uncertainty of the future is challenging. Most works in the literature are based on stochastic image-autoregressive recurrent networks, which raises several performance and applicability issues. An alternative is to use fully latent temporal models which untie frame synthesis and temporal dynamics. However, no such model for stochastic video prediction has been proposed in the literature yet, due to design and training difficulties. In this paper, we overcome these difficulties by introducing a novel stochastic temporal model whose dynamics are governed in a latent space by a residual update rule. This first-order scheme is motivated by discretization schemes of differential equations. It naturally models video dynamics as it allows our simpler, more interpretable, latent model to outperform prior state-of-the-art methods on challenging datasets.

Gregor Simm · Jose Miguel Hernandez-Lobato

Computing equilibrium states for many-body systems, such as molecules, is a long-standing challenge. In the absence of methods for generating statistically independent samples, great computational effort is invested in simulating these systems using, for example, Markov chain Monte Carlo. We present a probabilistic model that generates such samples for molecules from their graph representations. Our model learns a low-dimensional manifold that preserves the geometry of local atomic neighborhoods through a principled learning representation that is based on Euclidean distance geometry. In a new benchmark for molecular conformation generation, we show experimentally that our generative model achieves state-of-the-art accuracy. Finally, we show how to use our model as a proposal distribution in an importance sampling scheme to compute molecular properties.

David Salinas · Huibin Shen · Valerio Perrone

Bayesian optimization (BO) is a popular methodology to tune the hyperparameters of expensive black-box functions. Traditionally, BO focuses on a single task at a time and is not designed to leverage information from related functions, such as tuning performance objectives of the same algorithm across multiple datasets. In this work, we introduce a novel approach to achieve transfer learning across different datasets as well as different objectives. The main idea is to regress the mapping from hyperparameter to objective quantiles with a semi-parametric Gaussian Copula distribution, which provides robustness against different scales or outliers that can occur in different tasks. We introduce two methods to leverage this estimation: a Thompson sampling strategy as well as a Gaussian Copula process using such quantile estimate as a prior. We show that these strategies can combine the estimation of multiple objectives such as latency and accuracy, steering the optimization toward faster predictions for the same level of accuracy. Experiments on an extensive set of hyperparameter tuning tasks demonstrate significant improvements over state-of-the-art methods for both hyperparameter optimization and neural architecture search.

Fabian Latorre · Paul Rolland · Shaul Nadav Hallak · Volkan Cevher

We demonstrate two new important properties of the 1-path-norm of shallow neural networks. First, despite its non-smoothness and non-convexity it allows a closed form proximal operator which can be efficiently computed, allowing the use of stochastic proximal-gradient-type methods for regularized empirical risk minimization. Second, when the activation functions is differentiable, it provides an upper bound on the Lipschitz constant of the network. Such bound is tighter than the trivial layer-wise product of Lipschitz constants, motivating its use for training networks robust to adversarial perturbations. In practical experiments we illustrate the advantages of using the proximal mapping and we compare the robustness-accuracy trade-off induced by the 1-path-norm, L1-norm and layer-wise constraints on the Lipschitz constant (Parseval networks).

Christoph Hofer · Florian Graf · Bastian Rieck · Marc Niethammer · Roland Kwitt

We propose an approach to learning with graph-structured data in the problem domain of graph classification. In particular, we present a novel type of readout operation to aggregate node features into a graph-level representation. To this end, we leverage persistent homology computed via a real-valued, learnable, filter function. We establish the theoretical foundation for differentiating through the persistent homology computation. Empirically, we show that this type of readout operation compares favorably to previous techniques, especially when the graph connectivity structure is informative for the learning problem.

Christoph Zimmer · Reza Yaesoubi

The seasonal epidemic of influenza costs thousands of lives each year in the US. While influenza epidemics occur every year, timing and size of the epidemic vary strongly from season to season. This complicates the public health efforts to adequately respond to such epidemics. Forecasting techniques to predict the development of seasonal epidemics such as influenza, are of great help to public health decision making. Therefore, the US Center for Disease Control and Prevention (CDC) has initiated a yearly challenge to forecast influenza-like illness. Here, we propose a new framework based on Gaussian process (GP) for seasonal epidemics forecasting and demonstrate its capability on the CDC reference data on influenza like illness: our framework leads to accurate forecasts with small but reliable uncertainty estimation. We compare our framework to several state of the art benchmarks and show competitive performance. We, therefore, believe that our GP based framework for seasonal epidemics forecasting will play a key role for future influenza forecasting and, lead to further research in the area.

Ayoub Belhadji · Rémi Bardenet · Pierre Chainais

A fundamental task in kernel methods is to pick nodes and weights, so as to approximate a given function from an RKHS by the weighted sum of kernel translates located at the nodes. This is the crux of kernel density estimation, kernel quadrature, or interpolation from discrete samples. Furthermore, RKHSs offer a convenient mathematical and computational framework. We introduce and analyse continuous volume sampling (VS), the continuous counterpart -for choosing node locations- of a discrete distribution introduced in (Deshpande & Vempala, 2006). Our contribution is theoretical: we prove almost optimal bounds for interpolation and quadrature under VS. While similar bounds already exist for some specific RKHSs using ad-hoc node constructions, VS offers bounds that apply to any Mercer kernel and depend on the spectrum of the associated integration operator. We emphasize that, unlike previous randomized approaches that rely on regularized leverage scores or determinantal point processes, evaluating the pdf of VS only requires pointwise evaluations of the kernel. VS is thus naturally amenable to MCMC samplers.

Pengsheng Guo · Chen-Yu Lee · Daniel Ulbricht

Training multiple tasks jointly in one deep network yields reduced latency during inference and better performance over the single-task counterpart by sharing certain layers of a network. However, over-sharing a network could erroneously enforce over-generalization, causing negative knowledge transfer across tasks. Prior works rely on human intuition or pre-computed task relatedness scores for ad hoc branching structures. They provide sub-optimal end results and often require huge efforts for the trial-and-error process.

In this work, we present an automated multi-task learning algorithm that learns where to share or branch within a network, designing an effective network topology that is directly optimized for multiple objectives across tasks. Specifically, we propose a novel tree-structured design space that casts a tree branching operation as a gumbel-softmax sampling procedure. This enables differentiable network splitting that is end-to-end trainable. We validate the proposed method on controlled synthetic data, CelebA, and Taskonomy.

Erik Bodin · Markus Kaiser · Ieva Kazlauskaite · Zhenwen Dai · Neill Campbell · Carl Henrik Ek

Bayesian optimization (BO) methods often rely on the assumption that the objective function is well-behaved, but in practice, this is seldom true for real-world objectives even if noise-free observations can be collected. Common approaches, which try to model the objective as precisely as possible, often fail to make progress by spending too many evaluations modeling irrelevant details. We address this issue by proposing surrogate models that focus on the well-behaved structure in the objective function, which is informative for search, while ignoring detrimental structure that is challenging to model from few observations. First, we demonstrate that surrogate models with appropriate noise distributions can absorb challenging structures in the objective function by treating them as irreducible uncertainty. Secondly, we show that a latent Gaussian process is an excellent surrogate for this purpose, comparing with Gaussian processes with standard noise distributions. We perform numerous experiments on a range of BO benchmarks and find that our approach improves reliability and performance when faced with challenging objective functions.

Pankaj Gupta · Yatin Chaudhary · Thomas Runkler · Hinrich Schuetze

Lifelong learning has recently attracted attention in building machine learning systems that continually accumulate and transfer knowledge to help future learning. Unsupervised topic modeling has been popularly used to discover topics from document collections. However, the application of topic modeling is challenging due to data sparsity, e.g., in a small collection of (short) documents and thus, generate incoherent topics and sub-optimal document representations. To address the problem, we propose a lifelong learning framework for neural topic modeling that can continuously process streams of document collections, accumulate topics and guide future topic modeling tasks by knowledge transfer from several sources to better deal with the sparse data. In the lifelong process, we particularly investigate jointly: (1) sharing generative homologies (latent topics) over lifetime to transfer prior knowledge, and (2) minimizing catastrophic forgetting to retain the past learning via novel selective data augmentation, co-training and topic regularization approaches. Given a stream of document collections, we apply the proposed Lifelong Neural Topic Modeling (LNTM) framework in modeling three sparse document collections as future tasks and demonstrate improved performance quantified by perplexity, topic coherence and information retrieval task. Code: https://github.com/pgcool/Lifelong-Neural-Topic-Modeling

Nir Rosenfeld · Kojin Oshiba · Yaron Singer

Providing users with alternatives to choose from is an essential component of many online platforms, making the accurate prediction of choice vital to their success. A renewed interest in learning choice models has led to improved modeling power, but most current methods are either limited in the type of choice behavior they capture, cannot be applied to large-scale data, or both.

Here we propose a learning framework for predicting choice that is accurate, versatile, and theoretically grounded. Our key modeling point is that to account for how humans choose, predictive models must be expressive enough to accommodate complex choice patterns but structured enough to retain statistical efficiency. Building on recent results in economics, we derive a class of models that achieves this balance, and propose a neural implementation that allows for scalable end-to-end training. Experiments on three large choice datasets demonstrate the utility of our approach.

Petrus Mikkola · Milica Todorović · Jari Järvi · Patrick Rinke · Samuel Kaski

Bayesian optimization is an effective method for finding extrema of a black-box function. We propose a new type of Bayesian optimization for learning user preferences in high-dimensional spaces. The central assumption is that the underlying objective function cannot be evaluated directly, but instead a minimizer along a projection can be queried, which we call a projective preferential query. The form of the query allows for feedback that is natural for a human to give, and which enables interaction. This is demonstrated in a user experiment in which the user feedback comes in the form of optimal position and orientation of a molecule adsorbing to a surface. We demonstrate that our framework is able to find a global minimum of a high-dimensional black-box function, which is an infeasible task for existing preferential Bayesian optimization frameworks that are based on pairwise comparisons.

Daniel Greenfeld · Uri Shalit
We investigate the use of a non-parametric independence measure, the Hilbert-Schmidt Independence Criterion (HSIC), as a loss-function for learning robust regression and classification models. This loss-function encourages learning models where the distribution of the residuals between the label and the model prediction is statistically independent of the distribution of the instances themselves. This loss-function was first proposed by \citet{mooij2009regression} in the context of learning causal graphs. We adapt it to the task of learning for unsupervised covariate shift: learning on a source domain without access to any instances or labels from the unknown target domain, but with the assumption that $p(y|x)$ (the conditional probability of labels given instances) remains the same in the target domain. We show that the proposed loss is expected to give rise to models that generalize well on a class of target domains characterised by the complexity of their description within a reproducing kernel Hilbert space. Experiments on unsupervised covariate shift tasks demonstrate that models learned with the proposed loss-function outperform models learned with standard loss functions, achieving state-of-the-art results on a challenging cell-microscopy unsupervised covariate shift task.
Filippo Maria Bianchi · Daniele Grattarola · Cesare Alippi

Spectral clustering (SC) is a popular clustering technique to find strongly connected communities on a graph. SC can be used in Graph Neural Networks (GNNs) to implement pooling operations that aggregate nodes belonging to the same cluster. However, the eigendecomposition of the Laplacian is expensive and, since clustering results are graph-specific, pooling methods based on SC must perform a new optimization for each new sample. In this paper, we propose a graph clustering approach that addresses these limitations of SC. We formulate a continuous relaxation of the normalized minCUT problem and train a GNN to compute cluster assignments that minimize this objective. Our GNN-based implementation is differentiable, does not require to compute the spectral decomposition, and learns a clustering function that can be quickly evaluated on out-of-sample graphs. From the proposed clustering method, we design a graph pooling operator that overcomes some important limitations of state-of-the-art graph pooling techniques and achieves the best performance in several supervised and unsupervised tasks.

Martin Jørgensen · Marc Deisenroth · Hugh Salimbeni

We present a Bayesian non-parametric way of inferring stochastic differential equations for both regression tasks and continuous-time dynamical modelling. The work has high emphasis on the stochastic part of the differential equation, also known as the diffusion, and modelling it by means of Wishart processes. Further, we present a semiparametric approach that allows the framework to scale to high dimensions. This successfully leads us onto how to model both latent and autoregressive temporal systems with conditional heteroskedastic noise. We provide experimental evidence that modelling diffusion often improves performance and that this randomness in the differential equation can be essential to avoid overfitting.

Filip Hanzely · Nikita Doikov · Yurii Nesterov · Peter Richtarik
In this paper, we propose a new randomized second-order optimization algorithm---Stochastic Subspace Cubic Newton (SSCN)---for minimizing a high dimensional convex function $f$. Our method can be seen both as a {\em stochastic} extension of the cubically-regularized Newton method of Nesterov and Polyak (2006), and a {\em second-order} enhancement of stochastic subspace descent of Kozak et al. (2019). We prove that as we vary the minibatch size, the global convergence rate of SSCN interpolates between the rate of stochastic coordinate descent (CD) and the rate of cubic regularized Newton, thus giving new insights into the connection between first and second-order methods. Remarkably, the local convergence rate of SSCN matches the rate of stochastic subspace descent applied to the problem of minimizing the quadratic function $\frac12 (x-x^*)^\top \nabla^2f(x^*)(x-x^*)$, where $x^*$ is the minimizer of $f$, and hence depends on the properties of $f$ at the optimum only. Our numerical experiments show that SSCN outperforms non-accelerated first-order CD algorithms while being competitive to their accelerated variants.
Ferdinando Cicalese · Francisco Sergio de Freitas Filho · Eduardo Laber · Marco Molinaro
Machine Teaching studies how efficiently a Teacher can guide a Learner to a target hypothesis. We focus on the model of Machine Teaching with a black box learner introduced in [Dasgupta et al., ICML 2019], where the teaching is done interactively without having any knowledge of the Learner's algorithm and class of hypotheses, apart from the fact that it contains the target hypothesis $h^*$. We first refine some existing results for this model and, then, we study new variants of it. Motivated by the realistic possibility that $h^*$ is not available to the learner, we consider the case where the teacher can only aim at having the learner converge to a best available approximation of $h^*$. We also consider weaker black box learners, where, in each round, the choice of the consistent hypothesis returned to the Teacher is not adversarial, and in particular, we show that better provable bounds can be obtained for a type of Learner that moves to the next hypothesis smoothly, preferring hypotheses that are close to the current one; and for another type of Learner that can provide to the Teacher hypotheses chosen at random among those consistent with the examples received so far. Finally, we …
Joris Bierkens · Sebastiano Grazzi · Kengo Kamatani · Gareth Roberts
This paper introduces the boomerang sampler as a novel class of continuous-time non-reversible Markov chain Monte Carlo algorithms. The methodology begins by representing the target density as a density, $e^{-U}$, with respect to a prescribed (usually) Gaussian measure and constructs a continuous trajectory consisting of a piecewise circular path. The method moves from one circular orbit to another according to a rate function which can be written in terms of $U$. We demonstrate that the method is easy to implement and demonstrate empirically that it can out-perform existing benchmark piecewise deterministic Markov processes such as the bouncy particle sampler and the Zig-Zag. In the Bayesian statistics context, these competitor algorithms are of substantial interest in the large data context due to the fact that they can adopt data subsampling techniques which are exact (ie induce no error in the stationary distribution). We demonstrate theoretically and empirically that we can also construct a control-variate subsampling boomerang sampler which is also exact, and which possesses remarkable scaling properties in the large data limit. We furthermore illustrate a factorised version on the simulation of diffusion bridges.
Adam Breuer · Eric Balkanski · Yaron Singer

In this paper we describe a new parallel algorithm called Fast Adaptive Sequencing Technique (FAST) for maximizing a monotone submodular function under a cardinality constraint k. This algorithm achieves the optimal 1-1/e approximation guarantee and is orders of magnitude faster than the state-of-the-art on a variety of experiments over real-world data sets. Following recent work by Balkanski and Singer (2018), there has been a great deal of research on algorithms whose theoretical parallel runtime is exponentially faster than algorithms used for submodular maximization over the past 40 years. However, while these new algorithms are fast in terms of asymptotic worst-case guarantees, it is computationally infeasible to use them in practice even on small data sets because the number of rounds and queries they require depend on large constants and high-degree polynomials in terms of precision and confidence. The design principles behind the FAST algorithm we present here are a significant departure from those of recent theoretically fast algorithms. Rather than optimize for asymptotic theoretical guarantees, the design of FAST introduces several new techniques that achieve remarkable practical and theoretical parallel runtimes. The approximation guarantee obtained by FAST is arbitrarily close to 1 - 1/e, and its asymptotic parallel runtime (adaptivity) …

Dan Fisher · Mark Kozdoba · Shie Mannor

In this paper we introduce a new approach to topic modelling that scales to large datasets by using a compact representation of the data and by leveraging the GPU architecture.
In this approach, topics are learned directly from the
co-occurrence data of the corpus. In particular, we introduce a novel mixture model which we term the Full Dependence Mixture (FDM) model. FDMs model second moment under general generative assumptions on the data. While there is previous work on topic modeling using second moments, we develop a direct stochastic optimization procedure for fitting an FDM with a single Kullback Leibler objective. Moment methods in general have the benefit that an iteration no longer needs to scale with the size of the corpus. Our approach allows us to leverage standard optimizers and GPUs for the problem of topic modeling. In particular, we evaluate the approach on two large datasets, NeurIPS papers and a Twitter corpus, with a large number of topics, and show that the approach performs comparably or better than the standard benchmarks.

Chengyu Dong · Liyuan Liu · Zichao Li · Jingbo Shang

In pursuit of resource-economical machine learning, attempts have been made to dynamically adjust computation workloads in different training stages, i.e., starting with a shallow network and gradually increasing the model depth (and computation workloads) during training. However, there is neither guarantee nor guidance on designing such network grow, due to the lack of its theoretical underpinnings. In this work, to explore the theory behind, we conduct theoretical analyses from an ordinary differential equation perspective. Specifically, we illustrate the dynamics of network growth and propose a novel performance measure specific to the depth increase. Illuminated by our analyses, we move towards theoretically sound growing operations and schedulers, giving rise to an adaptive training algorithm for residual networks, LipGrow, which automatically increases network depth thus accelerates training. In our experiments, it achieves comparable performance while reducing ∼ 50% of training time.

Fabian Hinder · André Artelt · CITEC Barbara Hammer

The notion of concept drift refers to the phenomenon that the distribution, which is underlying the observed data, changes over time; as a consequence machine learning models may become inaccurate and need adjustment. Many online learning schemes include drift detection to actively detect and react to observed changes. Yet, reliable drift detection constitutes a challenging problem in particular in the context of high dimensional data, varying drift characteristics, and the absence of a parametric model such as a classification scheme which reflects the drift. In this paper we present a novel concept drift detection method, Dynamic Adapting Window Independence Drift Detection (DAWIDD), which aims for non-parametric drift detection of diverse drift characteristics. For this purpose, we establish a mathematical equivalence of the presence of drift to the dependency of specific random variables in an according drift process. This allows us to rely on independence tests rather than parametric models or the classification loss, resulting in a fairly robust scheme to universally detect different types of drift, as it is also confirmed in experiments.


Poster Session 47 Thu 16 Jul 11:00 p.m.  

Abhishek Das · Federico Carnevale · Hamza Merzic · Laura Rimell · Rosalia Schneider · Josh Abramson · Alden Hung · Arun Ahuja · Stephen Clark · Greg Wayne · Feilx Hill

[ Virtual ]

Recent work has shown how predictive modeling can endow agents with rich knowledge of their surroundings, improving their ability to act in complex environments. We propose question-answering as a general paradigm to decode and understand the representations that such agents develop, applying our method to two recent approaches to predictive modelling - action-conditional CPC (Guo et al., 2018) and SimCore (Gregor et al., 2019). After training agents with these predictive objectives in a visually-rich, 3D environment with an assortment of objects, colors, shapes, and spatial configurations, we probe their internal state representations with a host of synthetic (English) questions, without backpropagating gradients from the question-answering decoder into the agent. The performance of different agents when probed in this way reveals that they learn to encode factual, and seemingly compositional, information about objects, properties and spatial relations from their physical environment. Our approach is intuitive, i.e. humans can easily interpret the responses of the model as opposed to inspecting continuous vectors, and model-agnostic, i.e. applicable to any modeling approach. By revealing the implicit knowledge of objects, quantities, properties and relations acquired by agents as they learn, question-conditional agent probing can stimulate the design and development of stronger predictive learning objectives.

Elliott Gordon-Rodriguez · Gabriel Loaiza-Ganem · John Cunningham

[ Virtual ]

Simplex-valued data appear throughout statistics and machine learning, for example in the context of transfer learning and compression of deep networks. Existing models for this class of data rely on the Dirichlet distribution or other related loss functions; here we show these standard choices suffer systematically from a number of limitations, including bias and numerical issues that frustrate the use of flexible network models upstream of these distributions. We resolve these limitations by introducing a novel exponential family of distributions for modeling simplex-valued data – the continuous categorical, which arises as a nontrivial multivariate generalization of the recently discovered continuous Bernoulli. Unlike the Dirichlet and other typical choices, the continuous categorical results in a well-behaved probabilistic loss function that produces unbiased estimators, while preserving the mathematical simplicity of the Dirichlet. As well as exploring its theoretical properties, we introduce sampling methods for this distribution that are amenable to the reparameterization trick, and evaluate their performance. Lastly, we demonstrate that the continuous categorical outperforms standard choices empirically, across a simulation study, an applied example on multi-party elections, and a neural network compression task.

Xiangming Meng · Roman Bachmann · Mohammad Emtiyaz Khan

[ Virtual ]

Neural networks with binary weights are computation-efficient and hardware-friendly, but their training is challenging because it involves a discrete optimization problem. Surprisingly, ignoring the discrete nature of the problem and using gradient-based methods, such as Straight-Through Estimator, still works well in practice. This raises the question: are there principled approaches which justify such methods? In this paper, we propose such an approach using the Bayesian learning rule. The rule, when applied to estimate a Bernoulli distribution over the binary weights, results in an algorithm which justifies some of the algorithmic choices made by the previous approaches. The algorithm not only obtains state-of-the-art performance, but also enables uncertainty estimation and continual learning to avoid catastrophic forgetting. Our work provides a principled approach for training binary neural networks which also justifies and extends existing approaches.

Vien Mai · Mikael Johansson

Anderson acceleration is a well-established and simple technique for speeding up fixed-point computations with countless applications. This work introduces novel methods for adapting Anderson acceleration to proximal gradient algorithms. Under some technical conditions, we extend existing local convergence results of Anderson acceleration for smooth fixed-point mappings to the proposed non-smooth setting. We also prove analytically that it is in general, impossible to guarantee global convergence of native Anderson acceleration. We therefore propose a simple scheme for stabilization that combines the global worst-case guarantees of proximal gradient methods with the local adaptation and practical speed-up of Anderson acceleration. Finally, we provide the first applications of Anderson acceleration to non-Euclidean geometry.

James Wilson · Viacheslav Borovitskiy · Alexander Terenin · Peter Mostowsky · Marc Deisenroth

Gaussian processes are the gold standard for many real-world modeling problems, especially in cases where a model's success hinges upon its ability to faithfully represent predictive uncertainty. These problems typically exist as parts of larger frameworks, wherein quantities of interest are ultimately defined by integrating over posterior distributions. These quantities are frequently intractable, motivating the use of Monte Carlo methods. Despite substantial progress in scaling up Gaussian processes to large training sets, methods for accurately generating draws from their posterior distributions still scale cubically in the number of test locations. We identify a decomposition of Gaussian processes that naturally lends itself to scalable sampling by separating out the prior from the data. Building off of this factorization, we propose an easy-to-use and general-purpose approach for fast posterior sampling, which seamlessly pairs with sparse approximations to afford scalability both during training and at test time. In a series of experiments designed to test competing sampling schemes' statistical properties and practical ramifications, we demonstrate how decoupled sample paths accurately represent Gaussian process posteriors at a fraction of the usual cost.

Tao Lin · Lingjing Kong · Sebastian Stich · Martin Jaggi

Deep learning networks are typically trained by Stochastic Gradient Descent (SGD) methods that iteratively improve the model parameters by estimating a gradient on a very small fraction of the training data. A major roadblock faced when increasing the batch size to a substantial fraction of the training data for reducing training time is the persistent degradation in performance (generalization gap). To address this issue, recent work propose to add small perturbations to the model parameters when computing the stochastic gradients and report improved generalization performance due to smoothing effects. However, this approach is poorly understood; it requires often model-specific noise and fine-tuning. To alleviate these drawbacks, we propose to use instead computationally efficient extrapolation (extragradient) to stabilize the optimization trajectory while still benefiting from smoothing to avoid sharp minima. This principled approach is well grounded from an optimization perspective and we show that a host of variations can be covered in a unified framework that we propose. We prove the convergence of this novel scheme and rigorously evaluate its empirical performance on ResNet, LSTM, and Transformer. We demonstrate that in a variety of experiments the scheme allows scaling to much larger batch sizes than before whilst reaching or surpassing SOTA …

Omri Azencot · N. Benjamin Erichson · Vanessa Lin · Michael Mahoney

Recurrent neural networks are widely used on time series data, yet such models often ignore the underlying physical structures in such sequences. A new class of physics-based methods related to Koopman theory has been introduced, offering an alternative for processing nonlinear dynamical systems. In this work, we propose a novel Consistent Koopman Autoencoder model which, unlike the majority of existing work, leverages the forward and backward dynamics. Key to our approach is a new analysis which explores the interplay between consistent dynamics and their associated Koopman operators. Our network is directly related to the derived analysis, and its computational requirements are comparable to other baselines. We evaluate our method on a wide range of high-dimensional and short-term dependent problems, and it achieves accurate estimates for significant prediction horizons, while also being robust to noise.

Aytunc Sahin · Yatao Bian · Joachim Buhmann · Andreas Krause

Submodular functions have been studied extensively in machine learning and data mining. In particular, the optimization of submodular functions over the integer lattice (integer submodular functions) has recently attracted much interest, because this domain relates naturally to many practical problem settings, such as multilabel graph cut, budget allocation and revenue maximization with discrete assignments. In contrast, the use of these functions for probabilistic modeling has received surprisingly little attention so far. In this work, we firstly propose the Generalized Multilinear Extension, a continuous DR-submodular extension for integer submodular functions. We study central properties of this extension and formulate a new probabilistic model which is defined through integer submodular functions. Then, we introduce a block-coordinate ascent algorithm to perform approximate inference for this class of models and finally, we demonstrate its effectiveness and viability on several real-world social connection graph datasets with integer submodular objectives.

Mark Kurtz · Justin Kopinsky · Rati Gelashvili · Alexander Matveev · John Carr · Michael Goin · William Leiserson · Sage Moore · Nir Shavit · Dan Alistarh

Optimizing convolutional neural networks for fast inference has recently become an extremely active area of research. One of the go-to solutions in this context is weight pruning, which aims to reduce computational and memory footprint by removing large subsets of the connections in a neural network. Surprisingly, much less attention has been given to exploiting sparsity in the activation maps, which tend to be naturally sparse in many settings thanks to the structure of rectified linear (ReLU) activation functions. In this paper, we present an in-depth analysis of methods for maximizing the sparsity of the activations in a trained neural network, and show that, when coupled with an efficient sparse-input convolution algorithm, we can leverage this sparsity for significant performance gains. To induce highly sparse activation maps without accuracy loss, we introduce a new regularization technique, coupled with a new threshold-based sparsification method based on a parameterized activation function called Forced-Activation-Threshold Rectified Linear Unit (FATReLU). We examine the impact of our methods on popular image classification models, showing that most architectures can adapt to significantly sparser activation maps without any accuracy loss. Our second contribution is showing that these these compression gains can be translated into inference speedups: we provide …

Claire Vernade · Alexandra Carpentier · Tor Lattimore · Giovanni Zappella · Beyza Ermis · Michael Brueckner

Stochastic linear bandits are a natural and well-studied model for structured exploration/exploitation problems and are widely used in applications such as on-line marketing and recommendation. One of the main challenges faced by practitioners hoping to apply existing algorithms is that usually the feedback is randomly delayed and delays are only partially observable. For example, while a purchase is usually observable some time after the display, the decision of not buying is never explicitly sent to the system. In other words, the learner only observes delayed positive events. We formalize this problem as a novel stochastic delayed linear bandit and propose OTFLinUCB and OTFLinTS, two computationally efficient algorithms able to integrate new information as it becomes available and to deal with the permanently censored feedback. We prove optimal O(d\sqrt{T}) bounds on the regret of the first algorithm and study the dependency on delay-dependent parameters. Our model, assumptions and results are validated by experiments on simulated and real data.

Yaodong Yang · Ying Wen · Jun Wang · Liheng Chen · Kun Shao · David Mguni · Weinan Zhang

Centralized training with decentralized execution has become an important paradigm in multi-agent learning. Though practical, current methods rely on restrictive assumptions to decompose the centralized value function across agents for execution. In this paper, we eliminate this restriction by proposing multi-agent determinantal Q-learning. Our method is established on Q-DPP, a novel extension of determinantal point process (DPP) to multi-agent setting. Q-DPP promotes agents to acquire diverse behavioral models; this allows a natural factorization of the joint Q-functions with no need for \emph{a priori} structural constraints on the value function or special network architectures. We demonstrate that Q-DPP generalizes major solutions including VDN, QMIX, and QTRAN on decentralizable cooperative tasks. To efficiently draw samples from Q-DPP, we develop a linear-time sampler with theoretical approximation guarantee. Our sampler also benefits exploration by coordinating agents to cover orthogonal directions in the state space during training. We evaluate our algorithm on multiple cooperative benchmarks; its effectiveness has been demonstrated when compared with the state-of-the-art.

Lior Shani · Yonathan Efroni · Aviv Rosenberg · Shie Mannor
Policy optimization methods are one of the most widely used classes of Reinforcement Learning (RL) algorithms. Yet, so far, such methods have been mostly analyzed from an optimization perspective, without addressing the problem of exploration, or by making strong assumptions on the interaction with the environment. In this paper we consider model-based RL in the tabular finite-horizon MDP setting with unknown transitions and bandit feedback. For this setting, we propose an optimistic trust region policy optimization (TRPO) algorithm for which we establish $\tilde O(\sqrt{S^2 A H^4 K})$ regret for stochastic rewards. Furthermore, we prove $\tilde O( \sqrt{ S^2 A H^4 } K^{2/3} ) $ regret for adversarial rewards. Interestingly, this result matches previous bounds derived for the bandit feedback case, yet with known transitions. To the best of our knowledge, the two results are the first sub-linear regret bounds obtained for policy optimization algorithms with unknown transitions and bandit feedback.
Alina Ene · Huy Nguyen
In this work, we give a new parallel algorithm for the problem of maximizing a non-monotone diminishing returns submodular function subject to a cardinality constraint. For any desired accuracy $\epsilon$, our algorithm achieves a $1/e - \epsilon$ approximation using $O(\log{n} \log(1/\epsilon) / \epsilon^3)$ parallel rounds of function evaluations. The approximation guarantee nearly matches the best approximation guarantee known for the problem in the sequential setting and the number of parallel rounds is nearly-optimal for any constant $\epsilon$. Previous algorithms achieve worse approximation guarantees using $\Omega(\log^2{n})$ parallel rounds. Our experimental evaluation suggests that our algorithm obtains solutions whose objective value nearly matches the value obtained by the state of the art sequential algorithms, and it outperforms previous parallel algorithms in number of parallel rounds, iterations, and solution quality.
François-Pierre Paty · Marco Cuturi

Regularizing Wasserstein distances has proved to be the key in the recent advances of optimal transport (OT) in machine learning. Most prominent is the entropic regularization of OT, which not only allows for fast computations and differentiation using Sinkhorn algorithm, but also improves stability with respect to data and accuracy in many numerical experiments. Theoretical understanding of these benefits remains unclear, although recent statistical works have shown that entropy-regularized OT mitigates classical OT's curse of dimensionality. In this paper, we adopt a more geometrical point of view, and show using Fenchel duality that any convex regularization of OT can be interpreted as ground cost adversarial. This incidentally gives access to a robust dissimilarity measure on the ground space, which can in turn be used in other applications. We propose algorithms to compute this robust cost, and illustrate the interest of this approach empirically.

Gregor Simm · Robert Pinsler · Jose Miguel Hernandez-Lobato

Automating molecular design using deep reinforcement learning (RL) holds the promise of accelerating the discovery of new chemical compounds. Existing approaches work with molecular graphs and thus ignore the location of atoms in space, which restricts them to 1) generating single organic molecules and 2) heuristic reward functions. To address this, we present a novel RL formulation for molecular design in Cartesian coordinates, thereby extending the class of molecules that can be built. Our reward function is directly based on fundamental physical properties such as the energy, which we approximate via fast quantum-chemical methods. To enable progress towards de-novo molecular design, we introduce MolGym, an RL environment comprising several challenging molecular design tasks along with baselines. In our experiments, we show that our agent can efficiently learn to solve these tasks from scratch by working in a translation and rotation invariant state-action space.

Jan Graßhoff · Alexandra Jankowski · Philipp Rostalski

The application of Gaussian processes (GPs) to large data sets is limited due to heavy memory and computational requirements. A variety of methods has been proposed to enable scalability, one of which is to exploit structure in the kernel matrix. Previous methods, however, cannot easily deal with mixtures of non-stationary processes. This paper investigates an efficient GP framework, that extends structured kernel interpolation methods to GPs with a non-stationary phase. We particularly treat the separation of nonstationary sources, which is a problem that commonly arises e.g. in spatio-temporal biomedical datasets. Our approach employs multiple sets of non-equidistant inducing points to account for the non-stationarity and retrieve Toeplitz and Kronecker structure in the kernel matrix allowing for efficient inference and kernel learning. Our approach is demonstrated on numerical examples and large spatio-temporal biomedical problems.

Alexander Chan · Ahmed Alaa · Zhaozhi Qian · Mihaela van der Schaar

Modern neural networks have proven to be powerful function approximators, providing state-of-the-art performance in a multitude of applications. They however fall short in their ability to quantify confidence in their predictions --- this is crucial in high-stakes applications that involve critical decision-making. Bayesian neural networks (BNNs) aim at solving this problem by placing a prior distribution over the network's parameters, thereby inducing a posterior distribution that encapsulates predictive uncertainty. While existing variants of BNNs based on Monte Carlo dropout produce reliable (albeit approximate) uncertainty estimates over in-distribution data, they tend to exhibit over-confidence in predictions made on target data whose feature distribution differs from the training data, i.e., the covariate shift setup. In this paper, we develop an approximate Bayesian inference scheme based on posterior regularisation, wherein unlabelled target data are used as ``pseudo-labels'' of model confidence that are used to regularise the model's loss on labelled source data. We show that this approach significantly improves the accuracy of uncertainty quantification on covariate-shifted data sets, with minimal modification to the underlying model architecture. We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.

Dimitris Kalatzis · David Eklund · Georgios Arvanitidis · Søren Hauberg

Variational Autoencoders (VAEs) represent the given data in a low-dimensional latent space, which is generally assumed to be Euclidean. This assumption naturally leads to the common choice of a standard Gaussian prior over continuous latent variables. Recent work has, however, shown that this prior has a detrimental effect on model capacity, leading to subpar performance. We propose that the Euclidean assumption lies at the heart of this failure mode. To counter this, we assume a Riemannian structure over the latent space, which constitutes a more principled geometric view of the latent codes, and replace the standard Gaussian prior with a Riemannian Brownian motion prior. We propose an efficient inference scheme that does not rely on the unknown normalizing factor of this prior. Finally, we demonstrate that this prior significantly increases model capacity using only one additional scalar parameter.