Skip to yearly menu bar Skip to main content


Session

Poster Session 45

Abstract:
Chat is not available.


Graph-based Nearest Neighbor Search: From Practice to Theory

Liudmila Prokhorenkova · Aleksandr Shekhovtsov

Graph-based approaches are empirically shown to be very successful for the nearest neighbor search (NNS). However, there has been very little research on their theoretical guarantees. We fill this gap and rigorously analyze the performance of graph-based NNS algorithms, specifically focusing on the low-dimensional ($d \ll \log n$) regime. In addition to the basic greedy algorithm on nearest neighbor graphs, we also analyze the most successful heuristics commonly used in practice: speeding up via adding shortcut edges and improving accuracy via maintaining a dynamic list of candidates. We believe that our theoretical insights supported by experimental analysis are an important step towards understanding the limits and benefits of graph-based NNS algorithms.


Information Particle Filter Tree: An Online Algorithm for POMDPs with Belief-Based Rewards on Continuous Domains

Johannes Fischer · Ömer Sahin Tas

Planning in Partially Observable Markov Decision Processes (POMDPs) inherently gathers the information necessary to act optimally under uncertainties. The framework can be extended to model pure information gathering tasks by considering belief-based rewards. This allows us to use reward shaping to guide POMDP planning to informative beliefs by using a weighted combination of the original reward and the expected information gain as the objective. In this work we propose a novel online algorithm, Information Particle Filter Tree (IPFT), to solve problems with belief-dependent rewards on continuous domains. It simulates particle-based belief trajectories in a Monte Carlo Tree Search (MCTS) approach to construct a search tree in the belief space. The evaluation shows that the consideration of information gain greatly improves the performance in problems where information gathering is an essential part of the optimal policy.


Inter-domain Deep Gaussian Processes

Tim G. J. Rudner · Dino Sejdinovic · Yarin Gal

Inter-domain Gaussian processes (GPs) allow for high flexibility and low computational cost when performing approximate inference in GP models. They are particularly suitable for modeling data exhibiting global structure but are limited to stationary covariance functions and thus fail to model non-stationary data effectively. We propose Inter-domain Deep Gaussian Processes, an extension of inter-domain shallow GPs that combines the advantages of inter-domain and deep Gaussian processes (DGPs), and demonstrate how to leverage existing approximate inference methods to perform simple and scalable approximate inference using inter-domain features in DGPs. We assess the performance of our method on a range of regression tasks and demonstrate that it outperforms inter-domain shallow GPs and conventional DGPs on challenging large-scale real-world datasets exhibiting both global structure as well as a high-degree of non-stationarity.


Landscape Connectivity and Dropout Stability of SGD Solutions for Over-parameterized Neural Networks

Alexander Shevchenko · Marco Mondelli

The optimization of multilayer neural networks typically leads to a solution with zero training error, yet the landscape can exhibit spurious local minima and the minima can be disconnected. In this paper, we shed light on this phenomenon: we show that the combination of stochastic gradient descent (SGD) and over-parameterization makes the landscape of multilayer neural networks approximately connected and thus more favorable to optimization. More specifically, we prove that SGD solutions are connected via a piecewise linear path, and the increase in loss along this path vanishes as the number of neurons grows large. This result is a consequence of the fact that the parameters found by SGD are increasingly dropout stable as the network becomes wider. We show that, if we remove part of the neurons (and suitably rescale the remaining ones), the change in loss is independent of the total number of neurons, and it depends only on how many neurons are left. Our results exhibit a mild dependence on the input dimension: they are dimension-free for two-layer networks and require the number of neurons to scale linearly with the dimension for multilayer networks. We validate our theoretical findings with numerical experiments for different architectures and classification tasks.


Learning Flat Latent Manifolds with VAEs

Nutan Chen · Alexej Klushyn · Francesco Ferroni · Justin Bayer · Patrick van der Smagt

Measuring the similarity between data points often requires domain knowledge, which can in parts be compensated by relying on unsupervised methods such as latent-variable models, where similarity/distance is estimated in a more compact latent space. Prevalent is the use of the Euclidean metric, which has the drawback of ignoring information about similarity of data stored in the decoder, as captured by the framework of Riemannian geometry. We propose an extension to the framework of variational auto-encoders allows learning flat latent manifolds, where the Euclidean metric is a proxy for the similarity between data points. This is achieved by defining the latent space as a Riemannian manifold and by regularising the metric tensor to be a scaled identity matrix. Additionally, we replace the compact prior typically used in variational auto-encoders with a recently presented, more expressive hierarchical one---and formulate the learning problem as a constrained optimisation problem. We evaluate our method on a range of data-sets, including a video-tracking benchmark, where the performance of our unsupervised approach nears that of state-of-the-art supervised approaches, while retaining the computational efficiency of straight-line-based approaches.


Missing Data Imputation using Optimal Transport

Boris Muzellec · Julie Josse · Claire Boyer · Marco Cuturi

Missing data is a crucial issue when applying machine learning algorithms to real-world datasets. Starting from the simple assumption that two batches extracted randomly from the same dataset should share the same distribution, we leverage optimal transport distances to quantify that criterion and turn it into a loss function to impute missing data values. We propose practical methods to minimize these losses using end-to-end learning, that can exploit or not parametric assumptions on the underlying distributions of values. We evaluate our methods on datasets from the UCI repository, in MCAR, MAR and MNAR settings. These experiments show that OT-based methods match or out-perform state-of-the-art imputation methods, even for high percentages of missing values.


Optimizer Benchmarking Needs to Account for Hyperparameter Tuning

Prabhu Teja Sivaprasad · Florian Mai · Thijs Vogels · Martin Jaggi · François Fleuret

The performance of optimizers, particularly in deep learning, depends considerably on their chosen hyperparameter configuration. The efficacy of optimizers is often studied under near-optimal problem-specific hyperparameters, and finding these settings may be prohibitively costly for practitioners. In this work, we argue that a fair assessment of optimizers' performance must take the computational cost of hyperparameter tuning into account, i.e., how easy it is to find good hyperparameter configurations using an automatic hyperparameter search. Evaluating a variety of optimizers on an extensive set of standard datasets and architectures, our results indicate that Adam is the most practical solution, particularly in low-budget scenarios.


Soft Threshold Weight Reparameterization for Learnable Sparsity

Aditya Kusupati · Vivek Ramanujan · Raghav Somani · Mitchell Wortsman · Prateek Jain · Sham Kakade · Ali Farhadi

Sparsity in Deep Neural Networks (DNNs) is studied extensively with the focus of maximizing prediction accuracy given an overall parameter budget. Existing methods rely on uniform or heuristic non-uniform sparsity budgets which have sub-optimal layer-wise parameter allocation resulting in a) lower prediction accuracy or b) higher inference cost (FLOPs). This work proposes Soft Threshold Reparameterization (STR), a novel use of the soft-threshold operator on DNN weights. STR smoothly induces sparsity while learning pruning thresholds thereby obtaining a non-uniform sparsity budget. Our method achieves state-of-the-art accuracy for unstructured sparsity in CNNs (ResNet50 and MobileNetV1 on ImageNet-1K), and, additionally, learns non-uniform budgets that empirically reduce the FLOPs by up to 50%. Notably, STR boosts the accuracy over existing results by up to 10% in the ultra sparse (99%) regime and can also be used to induce low-rank (structured sparsity) in RNNs. In short, STR is a simple mechanism which learns effective sparsity budgets that contrast with popular heuristics. Code, pretrained models and sparsity budgets are at https://github.com/RAIVNLab/STR.


A Flexible Latent Space Model for Multilayer Networks

Xuefei Zhang · Songkai Xue · Ji Zhu

Entities often interact with each other through multiple types of relations, which are often represented as multilayer networks. Multilayer networks among the same set of nodes usually share common structures, while each layer can possess its distinct node connecting behaviors. This paper proposes a flexible latent space model for multilayer networks for the purpose of capturing such characteristics. Specifically, the proposed model embeds each node with a latent vector shared among layers and a layer-specific effect for each layer; both elements together with a layer-specific connectivity matrix determine edge formations. To fit the model, we develop a projected gradient descent algorithm for efficient parameter estimation. We also establish theoretical properties of the maximum likelihood estimators and show that the upper bound of the common latent structure's estimation error is inversely proportional to the number of layers under mild conditions. The superior performance of the proposed model is demonstrated through simulation studies and applications to two real-world data examples.


Aggregation of Multiple Knockoffs

Tuan-Binh Nguyen · Jerome-Alexis Chevalier · Thirion Bertrand · Sylvain Arlot

We develop an extension of the knockoff inference procedure, introduced by Barber & Candes (2015). This new method, called Aggregation of Multiple Knockoffs (AKO), addresses the instability inherent to the random nature of knockoff-based inference. Specifically, AKO improves both the stability and power compared with the original knockoff algorithm while still maintaining guarantees for false discovery rate control. We provide a new inference procedure, prove its core properties, and demonstrate its benefits in a set of experiments on synthetic and real datasets.


Bisection-Based Pricing for Repeated Contextual Auctions against Strategic Buyer

Anton Zhiyanov · Alexey Drutsa

We are interested in learning algorithms that optimize revenue in repeated contextual posted-price auctions where a single seller faces a single strategic buyer. In our setting, the buyer maximizes his expected cumulative discounted surplus, and his valuation of a good is assumed to be a fixed function of a $d$-dimensional context (feature) vector. We introduce a novel deterministic learning algorithm that is based on ideas of the Bisection method and has strategic regret upper bound of $O(\log^2 T)$. Unlike previous works, our algorithm does not require any assumption on the distribution of context information, and the regret guarantee holds for any realization of feature vectors (adversarial upper bound). To construct our algorithm we non-trivially adopted techniques of integral geometry to act against buyer strategicness and improved the penalization trick to work in contextual auctions.


Composable Sketches for Functions of Frequencies: Beyond the Worst Case

Edith Cohen · Ofir Geri · Rasmus Pagh

Recently there has been increased interest in using machine learning techniques to improve classical algorithms. In this paper we study when it is possible to construct compact, composable sketches for weighted sampling and statistics estimation according to functions of data frequencies. Such structures are now central components of large-scale data analytics and machine learning pipelines. However, many common functions, such as thresholds and $p$th frequency moments with $p>2$, are known to require polynomial size sketches in the worst case. We explore performance beyond the worst case under two different types of assumptions. The first is having access to noisy \emph{advice} on item frequencies. This continues the line of work of Hsu et al. (ICLR 2019), who assume predictions are provided by a machine learning model. The second is providing guaranteed performance on a restricted class of input frequency distributions that are better aligned with what is observed in practice. This extends the work on heavy hitters under Zipfian distributions in a seminal paper of Charikar et al. (ICALP 2002). Surprisingly, we show analytically and empirically that "in practice" small polylogarithmic-size sketches provide accuracy for "hard" functions.


Conditional gradient methods for stochastically constrained convex minimization

Maria-Luiza Vladarean · Ahmet Alacaoglu · Ya-Ping Hsieh · Volkan Cevher

We propose two novel conditional gradient-based methods for solving structured stochastic convex optimization problems with a large number of linear constraints. Instances of this template naturally arise from SDP-relaxations of combinatorial problems, which involve a number of constraints that is polynomial in the problem dimension. The most important feature of our framework is that only a subset of the constraints is processed at each iteration, thus gaining a computational advantage over prior works that require full passes. Our algorithms rely on variance reduction and smoothing used in conjunction with conditional gradient steps, and are accompanied by rigorous convergence guarantees. Preliminary numerical experiments are provided for illustrating the practical performance of the methods.


Data-Efficient Image Recognition with Contrastive Predictive Coding

Olivier Henaff

Human observers can learn to recognize new categories of images from a handful of examples, yet doing so with artificial ones remains an open challenge. We hypothesize that data-efficient recognition is enabled by representations which make the variability in natural signals more predictable. We therefore revisit and improve Contrastive Predictive Coding, an unsupervised objective for learning such representations. This new implementation produces features which support state-of-the-art linear classification accuracy on the ImageNet dataset. When used as input for non-linear classification with deep neural networks, this representation allows us to use 2-5x less labels than classifiers trained directly on image pixels. Finally, this unsupervised representation substantially improves transfer learning to object detection on the PASCAL VOC dataset, surpassing fully supervised pre-trained ImageNet classifiers.


Discriminative Jackknife: Quantifying Uncertainty in Deep Learning via Higher-Order Influence Functions

Ahmed Alaa · Mihaela van der Schaar

Deep learning models achieve high predictive accuracy across a broad spectrum of tasks, but rigorously quantifying their predictive uncertainty remains challenging. Usable estimates of predictive uncertainty should (1) cover the true prediction targets with high probability, and (2) discriminate between high- and low confidence prediction instances. Existing methods for uncertainty quantification are based predominantly on Bayesian neural networks; these may fall short of (1) and (2) — i.e., Bayesian credible intervals do not guarantee frequentist coverage, and approximate posterior inference undermines discriminative accuracy. In this paper, we develop the discriminative jackknife (DJ), a frequentist procedure that utilizes influence functions of a model’s loss functional to construct a jackknife (or leave one-out) estimator of predictive confidence intervals. The DJ satisfies (1) and (2), is applicable to a wide range of deep learning models, is easy to implement, and can be applied in a post-hoc fashion without interfering with model training or compromising its accuracy. Experiments demonstrate that DJ performs competitively compared to existing Bayesian and non-Bayesian regression baselines.


Double-Loop Unadjusted Langevin Algorithm

Paul Rolland · Armin Eftekhari · Ali Kavis · Volkan Cevher

A well-known first-order method for sampling from log-concave probability distributions is the Unadjusted Langevin Algorithm (ULA). This work proposes a new annealing step-size schedule for ULA, which allows to prove new convergence guarantees for sampling from a smooth log-concave distribution, which are not covered by existing state-of-the-art convergence guarantees. To establish this result, we derive a new theoretical bound that relates the Wasserstein distance to total variation distance between any two log-concave distributions that complements the reach of Talagrand $T_2$ inequality. Moreover, applying this new step size schedule to an existing constrained sampling algorithm, we show state-of-the-art convergence rates for sampling from a constrained log-concave distribution, as well as improved dimension dependence.


Efficient Robustness Certificates for Discrete Data: Sparsity-Aware Randomized Smoothing for Graphs, Images and More

Aleksandar Bojchevski · Johannes Gasteiger · Stephan Günnemann

Existing techniques for certifying the robustness of models for discrete data either work only for a small class of models or are general at the expense of efficiency or tightness. Moreover, they do not account for sparsity in the input which, as our findings show, is often essential for obtaining non-trivial guarantees. We propose a model-agnostic certificate based on the randomized smoothing framework which subsumes earlier work and is tight, efficient, and sparsity-aware. Its computational complexity does not depend on the number of discrete categories or the dimension of the input (e.g. the graph size), making it highly scalable. We show the effectiveness of our approach on a wide variety of models, datasets, and tasks -- specifically highlighting its use for Graph Neural Networks. So far, obtaining provable guarantees for GNNs has been difficult due to the discrete and non-i.i.d. nature of graph data. Our method can certify any GNN and handles perturbations to both the graph structure and the node attributes.


Extra-gradient with player sampling for faster convergence in n-player games

Samy Jelassi · Carles Domingo-Enrich · Damien Scieur · Arthur Mensch · Joan Bruna

Data-driven modeling increasingly requires to find a Nash equilibrium in multi-player games, e.g. when training GANs. In this paper, we analyse a new extra-gradient method for Nash equilibrium finding, that performs gradient extrapolations and updates on a random subset of players at each iteration. This approach provably exhibits a better rate of convergence than full extra-gradient for non-smooth convex games with noisy gradient oracle. We propose an additional variance reduction mechanism to obtain speed-ups in smooth convex games. Our approach makes extrapolation amenable to massive multiplayer settings, and brings empirical speed-ups, in particular when using a heuristic cyclic sampling scheme. Most importantly, it allows to train faster and better GANs and mixtures of GANs.


Frequency Bias in Neural Networks for Input of Non-Uniform Density

Ronen Basri · Meirav Galun · Amnon Geifman · David Jacobs · Yoni Kasten · Shira Kritchman

Recent works have partly attributed the generalization ability of over-parameterized neural networks to frequency bias -- networks trained with gradient descent on data drawn from a uniform distribution find a low frequency fit before high frequency ones. As realistic training sets are not drawn from a uniform distribution, we here use the Neural Tangent Kernel (NTK) model to explore the effect of variable density on training dynamics. Our results, which combine analytic and empirical observations, show that when learning a pure harmonic function of frequency $\kappa$, convergence at a point $x \in \S^{d-1}$ occurs in time $O(\kappa^d/p(x))$ where $p(x)$ denotes the local density at $x$. Specifically, for data in $\S^1$ we analytically derive the eigenfunctions of the kernel associated with the NTK for two-layer networks. We further prove convergence results for deep, fully connected networks with respect to the spectral decomposition of the NTK. Our empirical study highlights similarities and differences between deep and shallow networks in this model.


Gradient-free Online Learning in Continuous Games with Delayed Rewards

Amélie Héliou · Panayotis Mertikopoulos · Zhengyuan Zhou

Motivated by applications to online advertising and recommender systems, we consider a game-theoretic model with delayed rewards and asynchronous, payoff-based feedback. In contrast to previous work on delayed multi-armed bandits, we focus on games with continuous action spaces, and we examine the long-run behavior of strategic agents that follow a no-regret learning policy (but are otherwise oblivious to the game being played, the objectives of their opponents, etc.). To account for the lack of a consistent stream of information (for instance, rewards can arrive out of order and with an a priori unbounded delay), we introduce a gradient-free learning policy where payoff information is placed in a priority queue as it arrives. Somewhat surprisingly, we find that under a standard diagonal concavity assumption, the induced sequence of play converges to Nash Equilibrium (NE) with probability 1, even if the delay between choosing an action and receiving the corresponding reward is unbounded.


Learning to Combine Top-Down and Bottom-Up Signals in Recurrent Neural Networks with Attention over Modules

Sarthak Mittal · Alex Lamb · Anirudh Goyal · Vikram Voleti · Murray Shanahan · Guillaume Lajoie · Michael Mozer · Yoshua Bengio

Robust perception relies on both bottom-up and top-down signals. Bottom-up signals consist of what's directly observed through sensation. Top-down signals consist of beliefs and expectations based on past experience and the current reportable short-term memory, such as how the phrase `peanut butter and ...' will be completed. The optimal combination of bottom-up and top-down information remains an open question, but the manner of combination must be dynamic and both context and task dependent. To effectively utilize the wealth of potential top-down information available, and to prevent the cacophony of intermixed signals in a bidirectional architecture, mechanisms are needed to restrict information flow. We explore deep recurrent neural net architectures in which bottom-up and top-down signals are dynamically combined using attention. Modularity of the architecture further restricts the sharing and communication of information. Together, attention and modularity direct information flow, which leads to reliable performance improvements in perceptual and language tasks, and in particular improves robustness to distractions and noisy data. We demonstrate on a variety of benchmarks in language modeling, sequential image classification, video prediction and reinforcement learning that the \emph{bidirectional} information flow can improve results over strong baselines.


Learning to Rank Learning Curves

Martin Wistuba · Tejaswini Pedapati

Many automated machine learning methods, such as those for hyperparameter and neural architecture optimization, are computationally expensive because they involve training many different model configurations. In this work, we present a new method that saves computational budget by terminating poor configurations early on in the training. In contrast to existing methods, we consider this task as a ranking and transfer learning problem. We qualitatively show that by optimizing a pairwise ranking loss and leveraging learning curves from other data sets, our model is able to effectively rank learning curves without having to observe many or very long learning curves. We further demonstrate that our method can be used to accelerate a neural architecture search by a factor of up to 100 without a significant performance degradation of the discovered architecture. In further experiments we analyze the quality of ranking, the influence of different model components as well as the predictive behavior of the model.


Low Bias Low Variance Gradient Estimates for Hierarchical Boolean Stochastic Networks

Adeel Pervez · Taco Cohen · Efstratios Gavves

Stochastic neural networks with discrete random variables are an important class of models for their expressiveness and interpretability. Since direct differentiation and backpropagation is not possible, Monte Carlo gradient estimation techniques are a popular alternative. Efficient stochastic gradient estimators, such Straight-Through and Gumbel-Softmax, work well for shallow stochastic models. Their performance, however, suffers with hierarchical, more complex models.

We focus on hierarchical stochastic networks with multiple layers of Boolean latent variables. To analyze such networks, we introduce the framework of harmonic analysis for Boolean functions to derive an analytic formulation for the bias and variance in the Straight-Through estimator. Exploiting these formulations, we propose \emph{FouST}, a low-bias and low-variance gradient estimation algorithm that is just as efficient. Extensive experiments show that FouST performs favorably compared to state-of-the-art biased estimators and is much faster than unbiased ones.


Minimally distorted Adversarial Examples with a Fast Adaptive Boundary Attack

Francesco Croce · Matthias Hein

The evaluation of robustness against adversarial manipulation of neural networks-based classifiers is mainly tested with empirical attacks as methods for the exact computation, even when available, do not scale to large networks. We propose in this paper a new white-box adversarial attack wrt the $l_p$-norms for $p \in \{1,2,\infty\}$ aiming at finding the minimal perturbation necessary to change the class of a given input. It has an intuitive geometric meaning, yields quickly high quality results, minimizes the size of the perturbation (so that it returns the robust accuracy at every threshold with a single run). It performs better or similar to state-of-the-art attacks which are partially specialized to one $l_p$-norm, and is robust to the phenomenon of gradient obfuscation.


Monte-Carlo Tree Search as Regularized Policy Optimization

Jean-Bastien Grill · Florent Altché · Yunhao Tang · Thomas Hubert · Michal Valko · Ioannis Antonoglou · Remi Munos

The combination of Monte-Carlo tree search (MCTS) with deep reinforcement learning has led to groundbreaking results in artificial intelligence. However, AlphaZero, the current state-of-the-art MCTS algorithm still relies on handcrafted heuristics that are only partially understood. In this paper, we show that AlphaZero's search heuristic, along with other common ones, can be interpreted as an approximation to the solution of a specific regularized policy optimization problem. With this insight, we propose a variant of AlphaZero which uses the exact solution to this policy optimization problem, and show experimentally that it reliably outperforms the original algorithm in multiple domains.


Naive Exploration is Optimal for Online LQR

Max Simchowitz · Dylan Foster

We consider the problem of online adaptive control of the linear quadratic regulator, where the true system parameters are unknown. We prove new upper and lower bounds demonstrating that the optimal regret scales as $\tilde{\Theta ({\sqrt{d_{\mathbf{u}}^2 d_{\mathbf{x}} T}})$, where $T$ is the number of time steps, $d_{\mathbf{u}}$ is the dimension of the input space, and $d_{\mathbf{x}}$ is the dimension of the system state. Notably, our lower bounds rule out the possibility of a $\mathrm{poly}(\log{}T)$-regret algorithm, which had been conjectured due to the apparent strong convexity of the problem. Our upper bound is attained by a simple variant of certainty equivalent control, where the learner selects control inputs according to the optimal controller for their estimate of the system while injecting exploratory random noise. While this approach was shown to achieve $\sqrt{T}$ regret by Mania et al. (2019), we show that if the learner continually refines their estimates of the system matrices, the method attains optimal dimension dependence as well. Central to our upper and lower bounds is a new approach for controlling perturbations of Riccati equations called the self-bounding ODE method, which we use to derive suboptimality bounds for the certainty equivalent controller synthesized from estimated system dynamics. This in turn enables regret upper bounds which hold for any stabilizable instance and scale with natural control-theoretic quantities.


Near-optimal Regret Bounds for Stochastic Shortest Path

Aviv Rosenberg · Alon Cohen · Yishay Mansour · Haim Kaplan

Stochastic shortest path (SSP) is a well-known problem in planning and control, in which an agent has to reach a goal state in minimum total expected cost. In the learning formulation of the problem, the agent is unaware of the environment dynamics (i.e., the transition function) and has to repeatedly play for a given number of episodes, while learning the problem's optimal solution. Unlike other well-studied models in reinforcement learning (RL), the length of an episode is not predetermined (or bounded) and is influenced by the agent's actions. Recently, \cite{tarbouriech2019noregret} studied this problem in the context of regret minimization, and provided an algorithm whose regret bound is inversely proportional to the square root of the minimum instantaneous cost. In this work we remove this dependence on the minimum cost---we give an algorithm that guarantees a regret bound of $\widetilde{O}(B^{3/2} S \sqrt{A K})$, where $B$ is an upper bound on the expected cost of the optimal policy, $S$ is the number of states, $A$ is the number of actions and $K$ is the total number of episodes. We additionally show that any learning algorithm must have at least $\Omega(B \sqrt{S A K})$ regret in the worst case.


Neural Kernels Without Tangents

Vaishaal Shankar · Alex Fang · Wenshuo Guo · Sara Fridovich-Keil · Jonathan Ragan-Kelley · Ludwig Schmidt · Benjamin Recht

We investigate the connections between neural networks and simple building blocks in kernel space. In particular, using well established feature space tools such as direct sum, averaging, and moment lifting, we present an algebra for creating “compositional” kernels from bags of features. We show that these operations correspond to many of the building blocks of “neural tangent kernels (NTK)”. Experimentally, we show that there is a correlation in test error between neural network architectures and the associated kernels. We construct a simple neural network architecture using only 3x3 convolutions, 2x2 average pooling, ReLU, and optimized with SGD and MSE loss that achieves 96% accuracy on CIFAR10, and whose corresponding compositional kernel achieves 90% accuracy. We also use our constructions to investigate the relative performance of neural networks, NTKs, and compositional kernels in the small dataset regime. In particular, we find that compositional kernels outperform NTKs and neural networks outperform both kernel methods.


Online Continual Learning from Imbalanced Data

Aristotelis Chrysakis · Marie-Francine Moens

A well-documented weakness of neural networks is the fact that they suffer from catastrophic forgetting when trained on data provided by a non-stationary distribution. Recent work in the field of continual learning attempts to understand and overcome this issue. Unfortunately, the majority of relevant work embraces the implicit assumption that the distribution of observed data is perfectly balanced, despite the fact that, in the real world, humans and animals learn from observations that are temporally correlated and severely imbalanced. Motivated by this remark, we aim to evaluate memory population methods that are used in online continual learning, when dealing with highly imbalanced and temporally correlated streams of data. More importantly, we introduce a new memory population approach, which we call class-balancing reservoir sampling (CBRS). We demonstrate that CBRS outperforms the state-of-the-art memory population algorithms in a considerably challenging learning setting, over a range of different datasets, and for multiple architectures.


Online Multi-Kernel Learning with Graph-Structured Feedback

Pouya M Ghari · Yanning Shen

Multi-kernel learning (MKL) exhibits reliable performance in nonlinear function approximation tasks. Instead of using one kernel, it learns the optimal kernel from a pre-selected dictionary of kernels. The selection of the dictionary has crucial impact on both the performance and complexity of MKL. Specifically, inclusion of a large number of irrelevant kernels may impair the accuracy, and increase the complexity of MKL algorithms. To enhance the accuracy, and alleviate the computational burden, the present paper develops a novel scheme which actively chooses relevant kernels. The proposed framework models the pruned kernel combination as feedback collected from a graph, that is refined 'on the fly.' Leveraging the random feature approximation, we propose an online scalable multi-kernel learning approach with graph feedback, and prove that the proposed algorithm enjoys sublinear regret. Numerical tests on real datasets demonstrate the effectiveness of the novel approach.


On Thompson Sampling with Langevin Algorithms

Eric Mazumdar · Aldo Pacchiano · Yian Ma · Michael Jordan · Peter Bartlett

Thompson sampling for multi-armed bandit problems is known to enjoy favorable performance in both theory and practice, though it suffers from a significant limitation computationally arising from the need for samples from posterior distributions at every iteration. To address this issue, we propose two Markov Chain Monte Carlo (MCMC) methods tailored to Thompson sampling. We construct quickly converging Langevin algorithms to generate approximate samples that have accuracy guarantees, and leverage novel posterior concentration rates to analyze the regret of the resulting approximate Thompson sampling algorithm. Further, we specify the necessary hyperparameters for the MCMC procedure to guarantee optimal instance-dependent frequentist regret while having low computational complexity. In particular, our algorithms take advantage of both posterior concentration and a sample reuse mechanism to ensure that only a constant number of iterations and a constant amount of data is needed in each round. The resulting approximate Thompson sampling algorithm has logarithmic regret and its computational complexity does not scale with the time horizon of the algorithm.


Optimistic Bounds for Multi-output Learning

Henry Reeve · Ata Kaban

We investigate the challenge of multi-output learning, where the goal is to learn a vector-valued function based on a supervised data set. This includes a range of important problems in Machine Learning including multi-target regression, multi-class classification and multi-label classification. We begin our analysis by introducing the self-bounding Lipschitz condition for multi-output loss functions, which interpolates continuously between a classical Lipschitz condition and a multi-dimensional analogue of a smoothness condition. We then show that the self-bounding Lipschitz condition gives rise to optimistic bounds for multi-output learning, which attain the minimax optimal rate up to logarithmic factors. The proof exploits local Rademacher complexity combined with a powerful minoration inequality due to Srebro, Sridharan and Tewari. As an application we derive a state-of-the-art generalisation bound for multi-class gradient boosting.


PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization

Jingqing Zhang · Yao Zhao · Mohammad Saleh · Peter Liu

Recent work pre-training Transformers with self-supervised objectives on large text corpora has shown great success when fine-tuned on downstream NLP tasks including text summarization. However, pre-training objectives tailored for abstractive text summarization have not been explored. Furthermore there is a lack of systematic evaluation across diverse domains. In this work, we propose pre-training large Transformer-based encoder-decoder models on massive text corpora with a new self-supervised objective. In PEGASUS, important sentences are removed/masked from an input document and are generated together as one output sequence from the remaining sentences, similar to an extractive summary. We evaluated our best PEGASUS model on 12 downstream summarization tasks spanning news, science, stories, instructions, emails, patents, and legislative bills. Experiments demonstrate it achieves state-of-the-art performance on all 12 downstream datasets measured by ROUGE scores. Our model also shows surprising performance on low-resource summarization, surpassing previous state-of-the-art results on 6 datasets with only 1000 examples. Finally we validated our results using human evaluation and show that our model summaries achieve human performance on multiple datasets.


PowerNorm: Rethinking Batch Normalization in Transformers

Sheng Shen · Zhewei Yao · Amir Gholaminejad · Michael Mahoney · Kurt Keutzer

The standard normalization method for neural network (NN) models used in Natural Language Processing (NLP) is layer normalization (LN).This is different than batch normalization (BN), which is widely-adopted in Computer Vision. The preferred use of LN in NLP is principally due to the empirical observation that a (naive/vanilla) use of BN leads to significant performance degradation for NLP tasks; however, a thorough understanding of the underlying reasons for this is not always evident. In this paper, we perform a systematic study of NLP transformer models to understand why BN has a poor performance, as compared to LN. We find that the statistics of NLP data across the batch dimension exhibit large fluctuations throughout training. This results in instability, if BN is naively implemented. To address this, we propose Power Normalization (PN), a novel normalization scheme that resolves this issue by (i) relaxing zero-mean normalization in BN, (ii) incorporating a running quadratic mean instead of per batch statistics to stabilize fluctuations, and (iii) using an approximate backpropagation for incorporating the running statistics in the forward pass. We show theoretically, under mild assumptions, that PN leads to a smaller Lipschitz constant for the loss, compared with BN. Furthermore, we prove that the approximate backpropagation scheme leads to bounded gradients. We extensively test PN for transformers on a range of NLP tasks, and we show that it significantly outperforms both LN and BN. In particular, PN outperforms LN by 0.4/0.6 BLEU on IWSLT14/WMT14 and 5.6/3.0 PPL on PTB/WikiText-103. We make our code publicly available at https://github.com/sIncerass/powernorm.


Predictive Coding for Locally-Linear Control

Rui Shu · Tung Nguyen · Yinlam Chow · Tuan Pham · Khoat Than · Mohammad Ghavamzadeh · Stefano Ermon · Hung Bui

High-dimensional observations and unknown dynamics are major challenges when applying optimal control to many real-world decision making tasks. The Learning Controllable Embedding (LCE) framework addresses these challenges by embedding the observations into a lower dimensional latent space, estimating the latent dynamics, and then performing control directly in the latent space. To ensure the learned latent dynamics are predictive of next-observations, all existing LCE approaches decode back into the observation space and explicitly perform next-observation prediction---a challenging high-dimensional task that furthermore introduces a large number of nuisance parameters (i.e., the decoder) which are discarded during control. In this paper, we propose a novel information-theoretic LCE approach and show theoretically that explicit next-observation prediction can be replaced with predictive coding. We then use predictive coding to develop a decoder-free LCE model whose latent dynamics are amenable to locally-linear control. Extensive experiments on benchmark tasks show that our model reliably learns a controllable latent space that leads to superior performance when compared with state-of-the-art LCE baselines.


Random extrapolation for primal-dual coordinate descent

Ahmet Alacaoglu · Olivier Fercoq · Volkan Cevher

We introduce a randomly extrapolated primal-dual coordinate descent method that adapts to sparsity of the data matrix and the favorable structures of the objective function. Our method updates only a subset of primal and dual variables with sparse data, and it uses large step sizes with dense data, retaining the benefits of the specific methods designed for each case. In addition to adapting to sparsity, our method attains fast convergence guarantees in favorable cases \textit{without any modifications}. In particular, we prove linear convergence under metric subregularity, which applies to strongly convex-strongly concave problems, linear programs and piecewise linear quadratic functions. We show almost sure convergence of the sequence and optimal sublinear convergence rates for the primal-dual gap and objective values, in the general convex-concave case. Numerical evidence demonstrates the state-of-the-art empirical performance of our method in sparse and dense settings, matching and improving the existing methods.


Randomized Block-Diagonal Preconditioning for Parallel Learning

Celestine Mendler-Dünner · Aurelien Lucchi

We study preconditioned gradient-based optimization methods where the preconditioning matrix has block-diagonal form. Such a structural constraint comes with the advantage that the update computation can be parallelized across multiple independent tasks. Our main contribution is to demonstrate that the convergence of these methods can significantly be improved by a randomization technique which corresponds to repartitioning coordinates across tasks during the optimization procedure. We provide a theoretical analysis that accurately characterizes the expected convergence gains of repartitioning and validate our findings empirically on various traditional machine learning tasks. From an implementation perspective, block-separable models are well suited for parallelization and, when shared memory is available, randomization can be implemented on top of existing methods very efficiently to improve convergence.


Real-Time Optimisation for Online Learning in Auctions

Lorenzo Croissant · Marc Abeille · Clément Calauzènes

In display advertising, a small group of sellers and bidders face each other in up to 10^{12} auctions a day. In this context, revenue maximisation via monopoly price learning is a high-value problem for sellers. By nature, these auctions are online and produce a very high frequency stream of data. This results in a computational strain that requires algorithms be real-time. Unfortunately, existing methods, inherited from the batch setting, suffer O(\sqrt(t)) time/memory complexity at each update, prohibiting their use. In this paper, we provide the first algorithm for online learning of monopoly prices in online auctions whose update is constant in time and memory.


Revisiting Training Strategies and Generalization Performance in Deep Metric Learning

Karsten Roth · Timo Milbich · Samrath Sinha · Prateek Gupta · Bjorn Ommer · Joseph Paul Cohen

Deep Metric Learning (DML) is arguably one of the most influential lines of research for learning visual similarities with many proposed approaches every year. Although the field benefits from the rapid progress, the divergence in training protocols, architectures, and parameter choices make an unbiased comparison difficult. To provide a consistent reference point, we revisit the most widely used DML objective functions and conduct a study of the crucial parameter choices as well as the commonly neglected mini-batch sampling process. Under consistent comparison, DML objectives show much higher saturation than indicated by literature. Further based on our analysis, we uncover a correlation between the embedding space density and compression to the generalization performance of DML models. Exploiting these insights, we propose a simple, yet effective, training regularization to reliably boost the performance of ranking-based DML models on various standard benchmark datasets; code and a publicly accessible WandB-repo are available at https://github.com/Confusezius/RevisitingDeepMetricLearningPyTorch.


Supervised Quantile Normalization for Low Rank Matrix Factorization

Marco Cuturi · Olivier Teboul · Jonathan Niles-Weed · Jean-Philippe Vert

Low rank matrix factorization is a fundamental building block in machine learning, used for instance to summarize gene expression profile data or word-document counts. To be robust to outliers and differences in scale across features, a matrix factorization step is usually preceded by ad-hoc feature normalization steps, such as tf-idf scaling or data whitening. We propose in this work to learn these normalization operators jointly with the factorization itself. More precisely, given a $d\times n$ matrix $X$ of $d$ features measured on $n$ individuals, we propose to learn the parameters of quantile normalization operators that can operate row-wise on the values of $X$ and/or of its factorization $UV$ to improve the quality of the low-rank representation of $X$ itself. This optimization is facilitated by the introduction of differentiable quantile normalization operators derived using regularized optimal transport algorithms.


The Complexity of Finding Stationary Points with Stochastic Gradient Descent

Yoel Drori · Ohad Shamir

We study the iteration complexity of stochastic gradient descent (SGD) for minimizing the gradient norm of smooth, possibly nonconvex functions. We provide several results, implying that the classical $\mathcal{O}(\epsilon^{-4})$ upper bound (for making the average gradient norm less than $\epsilon$) cannot be improved upon, unless a combination of additional assumptions is made. Notably, this holds even if we limit ourselves to convex quadratic functions. We also show that for nonconvex functions, the feasibility of minimizing gradients with SGD is surprisingly sensitive to the choice of optimality criteria.


The k-tied Normal Distribution: A Compact Parameterization of Gaussian Mean Field Posteriors in Bayesian Neural Networks

Jakub Swiatkowski · Kevin Roth · Bastiaan Veeling · Linh Tran · Joshua V Dillon · Jasper Snoek · Stephan Mandt · Tim Salimans · Rodolphe Jenatton · Sebastian Nowozin

Variational Bayesian Inference is a popular methodology for approximating posterior distributions over Bayesian neural network weights. Recent work developing this class of methods has explored ever richer parameterizations of the approximate posterior in the hope of improving performance. In contrast, here we share a curious experimental finding that suggests instead restricting the variational distribution to a more compact parameterization. For a variety of deep Bayesian neural networks trained using Gaussian mean-field variational inference, we find that the posterior standard deviations consistently exhibit strong low-rank structure after convergence. This means that by decomposing these variational parameters into a low-rank factorization, we can make our variational approximation more compact without decreasing the models' performance. Furthermore, we find that such factorized parameterizations improve the signal-to-noise ratio of stochastic gradient estimates of the variational lower bound, resulting in faster convergence.


Topologically Densified Distributions

Christoph Hofer · Florian Graf · Marc Niethammer · Roland Kwitt

We study regularization in the context of small sample-size learning with over-parametrized neural networks. Specifically, we shift focus from architectural properties, such as norms on the network weights, to properties of the internal representations before a linear classifier. Specifically, we impose a topological constraint on samples drawn from the probability measure induced in that space. This provably leads to mass concentration effects around the representations of training instances, i.e., a property beneficial for generalization. By leveraging previous work to impose topological constrains in a neural network setting, we provide empirical evidence (across various vision benchmarks) to support our claim for better generalization.