Skip to yearly menu bar Skip to main content


Session

Poster Session 40

Abstract:
Chat is not available.

Wed 15 July 15:00 - 15:45 PDT

DINO: Distributed Newton-Type Optimization Method

Rixon Crane · Fred Roosta

We present a novel communication-efficient Newton-type algorithm for finite-sum optimization over a distributed computing environment. Our method, named DINO, overcomes both theoretical and practical shortcomings of similar existing methods. Under minimal assumptions, we guarantee global sub-linear convergence of DINO to a first-order stationary point for general non-convex functions and arbitrary data distribution over the network. Furthermore, for functions satisfying Polyak-Lojasiewicz (PL) inequality, we show that DINO enjoys a linear convergence rate. Our proposed algorithm is practically parameter free, in that it will converge regardless of the selected hyper-parameters, which are easy to tune. Additionally, its sub-problems are simple linear least-squares, for which efficient solvers exist, and numerical simulations demonstrate the efficiency of DINO as compared with similar alternatives.

Wed 15 July 15:00 - 15:45 PDT

Statistically Efficient Off-Policy Policy Gradients

Nathan Kallus · Masatoshi Uehara

Policy gradient methods in reinforcement learning update policy parameters by taking steps in the direction of an estimated gradient of policy value. In this paper, we consider the efficient estimation of policy gradients from off-policy data, where the estimation is particularly non-trivial. We derive the asymptotic lower bound on the feasible mean-squared error in both Markov and non-Markov decision processes and show that existing estimators fail to achieve it in general settings. We propose a meta-algorithm that achieves the lower bound without any parametric assumptions and exhibits a unique 4-way double robustness property. We discuss how to estimate nuisances that the algorithm relies on. Finally, we establish guarantees at the rate at which we approach a stationary point when we take steps in the direction of our new estimated policy gradient.

Wed 15 July 16:00 - 16:45 PDT

Adversarial Robustness via Runtime Masking and Cleansing

Yi-Hsuan Wu · Chia-Hung Yuan · Shan-Hung (Brandon) Wu

Deep neural networks are shown to be vulnerable to adversarial attacks. This motivates robust learning techniques, such as the adversarial training, whose goal is to learn a network that is robust against adversarial attacks. However, the sample complexity of robust learning can be significantly larger than that of “standard” learning. In this paper, we propose improving the adversarial robustness of a network by leveraging the potentially large test data seen at runtime. We devise a new defense method, called runtime masking and cleansing (RMC), that adapts the network at runtime before making a prediction to dynamically mask network gradients and cleanse the model of the non-robust features inevitably learned during the training process due to the size limit of the training set. We conduct experiments on real-world datasets and the results demonstrate the effectiveness of RMC empirically.

Wed 15 July 16:00 - 16:45 PDT

From Chaos to Order: Symmetry and Conservation Laws in Game Dynamics

Sai Ganesh Nagarajan · David Balduzzi · Georgios Piliouras

Games are an increasingly useful tool for training and testing learning algorithms. Recent examples include GANs, AlphaZero and the AlphaStar league. However, multi-agent learning can be extremely difficult to predict and control. Learning dynamics even in simple games can yield chaotic behavior. In this paper, we present basic \emph{mechanism design} tools for constructing games with predictable and controllable dynamics. We show that arbitrarily large and complex network games, encoding both cooperation (team play) and competition (zero-sum interaction), exhibit conservation laws when agents use the standard regret-minimizing dynamics known as Follow-the-Regularized-Leader. These laws persist when different agents use different dynamics and encode long-range correlations between agents' behavior, even though the agents may not interact directly. Moreover, we provide sufficient conditions under which the dynamics have multiple, linearly independent, conservation laws. Increasing the number of conservation laws results in more predictable dynamics, eventually making chaotic behavior formally impossible in some cases.

Wed 15 July 16:00 - 16:45 PDT

Graph-based, Self-Supervised Program Repair from Diagnostic Feedback

Michihiro Yasunaga · Percy Liang

We consider the problem of learning to repair programs from diagnostic feedback (e.g., compiler error messages). Program repair is challenging for two reasons: First, it requires reasoning and tracking symbols across source code and diagnostic feedback. Second, labeled datasets available for program repair are relatively small. In this work, we propose novel solutions to these two challenges. First, we introduce a program-feedback graph, which connects symbols relevant to program repair in source code and diagnostic feedback, and then apply a graph neural network on top to model the reasoning process. Second, we present a self-supervised learning paradigm for program repair that leverages unlabeled programs available online to create a large amount of extra program repair examples, which we use to pre-train our models. We evaluate our proposed approach on two applications: correcting introductory programming assignments (DeepFix dataset) and correcting the outputs of program synthesis (SPoC dataset). Our final system, DrRepair, significantly outperforms prior work, achieving 68.2\% full repair rate on DeepFix (+22.9\% over the prior best), and 48.4\% synthesis success rate on SPoC (+3.7\% over the prior best).

Wed 15 July 16:00 - 16:45 PDT

Safe Reinforcement Learning in Constrained Markov Decision Processes

Akifumi Wachi · Yanan Sui

Safe reinforcement learning has been a promising approach for optimizing the policy of an agent that operates in safety-critical applications. In this paper, we propose an algorithm, SNO-MDP, that explores and optimizes Markov decision processes under unknown safety constraints. Specifically, we take a step-wise approach for optimizing safety and cumulative reward. In our method, the agent first learns safety constraints by expanding the safe region, and then optimizes the cumulative reward in the certified safe region. We provide theoretical guarantees on both the satisfaction of the safety constraint and the near-optimality of the cumulative reward under proper regularity assumptions. In our experiments, we demonstrate the effectiveness of SNO-MDP through two experiments: one uses a synthetic data in a new, openly-available environment named GP-Safety-Gym, and the other simulates Mars surface exploration by using real observation data.

Wed 15 July 16:00 - 16:45 PDT

Automated Synthetic-to-Real Generalization

Wuyang Chen · Zhiding Yu · Zhangyang “Atlas” Wang · Anima Anandkumar

Models trained on synthetic images often face degraded generalization to real data. As a convention, these models are often initialized with ImageNet pretrained representation. Yet the role of ImageNet knowledge is seldom discussed despite common practices that leverage this knowledge to maintain the generalization ability. An example is the careful hand-tuning of early stopping and layer-wise learning rates, which is shown to improve synthetic-to-real generalization but is also laborious and heuristic. In this work, we explicitly encourage the synthetically trained model to maintain similar representations with the ImageNet pretrained model, and propose a \textit{learning-to-optimize (L2O)} strategy to automate the selection of layer-wise learning rates. We demonstrate that the proposed framework can significantly improve the synthetic-to-real generalization performance without seeing and training on real data, while also benefiting downstream tasks such as domain adaptation. Code is available at: https://github.com/NVlabs/ASG.

Wed 15 July 16:00 - 16:45 PDT

Feature-map-level Online Adversarial Knowledge Distillation

Inseop Chung · SeongUk Park · Jangho Kim · NOJUN KWAK

Feature maps contain rich information about image intensity and spatial correlation. However, previous online knowledge distillation methods only utilize the class probabilities. Thus in this paper, we propose an online knowledge distillation method that transfers not only the knowledge of the class probabilities but also that of the feature map using the adversarial training framework. We train multiple networks simultaneously by employing discriminators to distinguish the feature map distributions of different networks. Each network has its corresponding discriminator which discriminates the feature map from its own as fake while classifying that of the other network as real. By training a network to fool the corresponding discriminator, it can learn the other network's feature map distribution. We show that our method performs better than the conventional direct alignment method such as L1 and is more suitable for online distillation. Also, we propose a novel cyclic learning scheme for training more than two networks together. We have applied our method to various network architectures on the classification task and discovered a significant improvement of performance especially in the case of training a pair of a small network and a large one.

Wed 15 July 16:00 - 16:45 PDT

Online Dense Subgraph Discovery via Blurred-Graph Feedback

Yuko Kuroki · Atsushi Miyauchi · Junya Honda · Masashi Sugiyama

\emph{Dense subgraph discovery} aims to find a dense component in edge-weighted graphs. This is a fundamental graph-mining task with a variety of applications and thus has received much attention recently. Although most existing methods assume that each individual edge weight is easily obtained, such an assumption is not necessarily valid in practice. In this paper, we introduce a novel learning problem for dense subgraph discovery in which a learner queries edge subsets rather than only single edges and observes a noisy sum of edge weights in a queried subset. For this problem, we first propose a polynomial-time algorithm that obtains a nearly-optimal solution with high probability. Moreover, to deal with large-sized graphs, we design a more scalable algorithm with a theoretical guarantee. Computational experiments using real-world graphs demonstrate the effectiveness of our algorithms.

Wed 15 July 16:00 - 16:45 PDT

Unsupervised Transfer Learning for Spatiotemporal Predictive Networks

Zhiyu Yao · Yunbo Wang · Mingsheng Long · Jianmin Wang

This paper explores a new research problem of unsupervised transfer learning across multiple spatiotemporal prediction tasks. Unlike most existing transfer learning methods that focus on fixing the discrepancy between supervised tasks, we study how to transfer knowledge from a zoo of unsupervisedly learned models towards another predictive network. Our motivation is that models from different sources are expected to understand the complex spatiotemporal dynamics from different perspectives, thereby effectively supplementing the new task, even if the task has sufficient training samples. Technically, we propose a differentiable framework named transferable memory. It adaptively distills knowledge from a bank of memory states of multiple pretrained RNNs, and applies it to the target network via a novel recurrent structure called the Transferable Memory Unit (TMU). Compared with finetuning, our approach yields significant improvements on three benchmarks for spatiotemporal prediction, and benefits the target task even from less relevant pretext ones.