Workshop
Exploration in AI Today (EXAIT)
Parnian Kassraie · Andrew Wagenmaker · Bhavya · Carmelo Sferrazza · Lenart Treven · Amy X. Lu
West Meeting Room 205-207
Sat 19 Jul, 8:30 a.m. PDT
How can we efficiently collect observations for optimization, control, and generalization? This is a key challenge in AI and is known as the exploration problem. Effective exploration has driven progress in areas such as robotics, recommender systems, and scheduled medical trials. However, as we address larger, more complex applications—such as drug discovery or language modeling—the exceptionally large search spaces render traditional exploration algorithms ineffective. As a result, recent breakthroughs in AI have come not from traditional exploration algorithms, but largely from training large foundation models on diverse corpora of pre-existing, curated datasets. Despite this, we have witnessed sparks showing that exploration, when done right, can compensate for data and computation—for example, in the training of DeepSeek-R1—suggesting that exploration can still play a key role in AI today.
The Exploration in AI Today (EXAIT) Workshop at ICML 2025 will focus on addressing the evolving role of exploration in AI. We will dwell on the question: what is the place of exploration in today’s AI landscape and in which settings can exploration algorithms address current open challenges? In particular, we consider the potentially pivotal role that exploration might play in navigating complex and high-dimensional search spaces across real-world applications such as robotics, large language model alignment, and AI for science.
Schedule
Sat 8:30 a.m. - 8:45 a.m.
|
Opening remarks and announcement of the best papers
|
Andreas Krause 🔗 |
Sat 8:45 a.m. - 8:55 a.m.
|
Best Paper Award Language Modeling Track
(
Invited Talk
)
>
|
Amrith Setlur 🔗 |
Sat 8:55 a.m. - 9:05 a.m.
|
Best Paper Award AI for Science Track
(
Invited Talk
)
>
|
Ethan Baron 🔗 |
Sat 9:05 a.m. - 9:15 a.m.
|
Best Paper Award Theory Track
(
Invited Talk
)
>
|
Wanqiao Xu 🔗 |
Sat 9:15 a.m. - 9:25 a.m.
|
Best Paper Award Robotics Track
(
Invited Talk
)
>
|
Ev Zisselman Vanshtein 🔗 |
Sat 9:30 a.m. - 10:00 a.m.
|
Invited Talk by Prof. Alison Gopnik
|
Alison Gopnik 🔗 |
Sat 10:00 a.m. - 10:30 a.m.
|
Invited Talk by Prof. Sergey Levine on Exploration with prior knowledge
|
Sergey Levine 🔗 |
Sat 10:30 a.m. - 11:00 a.m.
|
Invited Talk by Prof. Jeff Clune on Open-Ended and AI-Generating Algorithms in the Era of Foundation Models
|
Jeff Clune 🔗 |
Sat 11:00 a.m. - 11:45 a.m.
|
Panel Discussion
|
🔗 |
Sat 11:45 a.m. - 2:15 p.m.
|
Poster Session
|
🔗 |
Sat 2:15 p.m. - 2:45 p.m.
|
Invited Talk by Prof. Natasha Jaques on Exploration in Human-AI Cooperation
|
Natasha Jaques 🔗 |
Sat 2:45 p.m. - 3:15 p.m.
|
Invited Talk by Dr. Dylan Foster on Theoretical Foundations for Exploration with Language Models
|
Dylan Foster 🔗 |
Sat 3:15 p.m. - 3:45 p.m.
|
Invited Talk by Dr. Wenhao Yu on Gemini Robotics and Gemini-ER
|
Wenhao Yu 🔗 |
Sat 3:45 p.m. - 4:00 p.m.
|
Coffee Break
|
🔗 |
Sat 4:00 p.m. - 4:30 p.m.
|
Invited Talk by Dr. Masatoshi Uehara on Reward-Guided Generation in Diffusion Models: Toward Programmable Protein Design
|
Masatoshi Uehara 🔗 |
Sat 4:30 p.m. - 5:00 p.m.
|
Invited Talk by Dr. Ji Won Park on Targeting the Multivariate Tails in AI-driven Molecular Optimization
|
Ji Won Park 🔗 |
Sat 5:00 p.m. - 5:15 p.m.
|
Closing Remarks
|
Kevin Jamieson 🔗 |
-
|
Blindfolded Experts Generalize Better: Insights from Robotic Manipulation and Videogames ( Poster ) > link | Ev Zisselman Vanshtein · Mirco Mutti · Shelly Francis-Meretzki · Elisei Shafer · Aviv Tamar 🔗 |
-
|
Blindfolded Experts Generalize Better: Insights from Robotic Manipulation and Videogames ( Oral ) > link | Ev Zisselman Vanshtein · Mirco Mutti · Shelly Francis-Meretzki · Elisei Shafer · Aviv Tamar 🔗 |
-
|
SOAPIA: Siamese-Guided Generation of Off Target-Avoiding Protein Interactions with High Target Affinity ( Poster ) > link | Sophia Vincoff · Oscar Davis · Yinuo Zhang · Ismail Ceylan · Alexander Tong · Joey Bose · Pranam Chatterjee, PhD 🔗 |
-
|
Flow Density Control: Generative Optimization Beyond Entropy-Regularized Fine-Tuning ( Poster ) > link | Riccardo De Santi · Marin Vlastelica · Ya-Ping Hsieh · Zebang Shen · Niao He · Andreas Krause 🔗 |
-
|
Branched Schrödinger Bridge Matching ( Poster ) > link | Sophia Tang · Yinuo Zhang · Alexander Tong · Pranam Chatterjee, PhD 🔗 |
-
|
Fleet of Agents: Coordinated Problem Solving with Large Language Models ( Poster ) > link | Lars Klein · Nearchos Potamitis · Roland Aydin · Robert West · Caglar Gulcehre · Akhil Arora 🔗 |
-
|
Rethinking Exploration In Asynchronous Bayesian Optimization: Standard Acquisition Is All You Need ( Poster ) > link | Ben Riegler · James Odgers · Vincent Fortuin 🔗 |
-
|
Stabilizing protein fitness predictors via the PCS framework ( Poster ) > link | Omer Ronen · Alex Zhao · Ron Boger · Chengzhong Ye · Bin Yu 🔗 |
-
|
G1: Teaching LLMs to Reason on Graphs with Reinforcement Learning ( Poster ) > link | Xiaojun Guo · Ang Li · Yifei Wang · Stefanie Jegelka · Yisen Wang 🔗 |
-
|
Intent Factored Generation: Unleashing the Diversity in Your Language Model ( Poster ) > link | Eltayeb Ahmed · Uljad Berdica · Martha Elliott · Danijela Horak · Jakob Foerster 🔗 |
-
|
The Effective Horizon Challenge ( Poster ) > link | Cassidy Laidlaw · Daniel Khalil · Michelle Li · Laker Newhouse · Stuart Russell · Anca Dragan 🔗 |
-
|
No-Regret Safety: Balancing Tests and Misclassification in Logistic Bandits ( Poster ) > link | Tavor Baharav · Spyros Dragazis · Aldo Pacchiano 🔗 |
-
|
Retrospective and Structurally Informed Exploration via Cross-task Successor Feature Similarity ( Poster ) > link | Arya Ebrahimi · Jun Jin 🔗 |
-
|
Exploration by Exploitation: Curriculum Learning for Reinforcement Learning Agents through Competence-Based Curriculum Policy Search ( Poster ) > link | Tabitha Edith Lee · Rosemary Nan Ke · Sarvesh Patil · Annya Dahmani · Eunice Yiu · Esra'a Saleh · Alison Gopnik · Oliver Kroemer · Glen Berseth 🔗 |
-
|
From Words to Rewards: Leveraging Natural Language for Reinforcement Learning ( Poster ) > link | Belen Martin Urcelay · Andreas Krause · Giorgia Ramponi 🔗 |
-
|
Think or Not? Selective Reasoning via Reinforcement Learning for Vision-Language Models ( Poster ) > link | Jiaqi WANG · Kevin Qinghong Lin · James Cheng · Mike Zheng Shou 🔗 |
-
|
Improving the Data-efficiency of Reinforcement Learning by Warm-starting with LLM ( Poster ) > link | Thang Duong · Minglai Yang · Chicheng Zhang 🔗 |
-
|
Llama-Nemotron: Efficient Reasoning Models ( Poster ) > link |
27 presentersSoumye Singhal · Jiaqi Zeng · Alexander Bukharin · Yian Zhang · Gerald Shen · Ameya Mahabaleshwarkar · Bilal Kartal · Yoshi Suhara · Akhiad Bercovich · Itay Levy · Izik Golan · Mohammed Dabbah · Ran El-Yaniv · Somshubra Majumdar · Igor Gitman · Evelina Bakhturina · Jimmy Zhang · Bor-Yiing Su · Guyue Huang · Izzy Putterman · Mostofa Patwary · Oluwatobi Olabiyi · Olivier Delalleau · Bryan Catanzaro · Boris Ginsburg · Oleksii Kuchaiev · Tugrul Konuk |
-
|
Provably Learning from Language Feedback ( Poster ) > link | Wanqiao Xu · Allen Nie · Ruijie Zheng · Aditya Modi · Adith Swaminathan · Ching-An Cheng 🔗 |
-
|
Provably Learning from Language Feedback ( Oral ) > link | Wanqiao Xu · Allen Nie · Ruijie Zheng · Aditya Modi · Adith Swaminathan · Ching-An Cheng 🔗 |
-
|
Greed is Good: A Unifying Perspective on Guided Generation ( Poster ) > link | Zander W. Blasingame · Chen Liu 🔗 |
-
|
StemCell-GPT: A Specialized AI Agent For Human Stem Cell Engineering ( Poster ) > link | Jingwen (Steven) Hui · Freja Ekman · Hana Ghanim · Sridhar Selvaraj · Yuanhao Qu · Matthew Porteus · Le Cong 🔗 |
-
|
e3: Learning to Explore Enables Extrapolation of Test-Time Compute for LLMs ( Poster ) > link | Amrith Setlur · Matthew Yang · Charlie Snell · Jeremiah Greer · Ian Wu · Virginia Smith · Max Simchowitz · Aviral Kumar 🔗 |
-
|
e3: Learning to Explore Enables Extrapolation of Test-Time Compute for LLMs ( Oral ) > link | Amrith Setlur · Matthew Yang · Charlie Snell · Jeremiah Greer · Ian Wu · Virginia Smith · Max Simchowitz · Aviral Kumar 🔗 |
-
|
Intrinsic Benefits of Categorical Distributional Loss: Uncertainty-aware Exploration in Reinforcement Learning towards Higher Moment Regularisations ( Poster ) > link | Ke Sun · Yingnan Zhao · Enze Shi · Yafei Wang · Xiaodong Yan · Bei Jiang · Linglong Kong 🔗 |
-
|
LLMs are Greedy Agents: Effects of RL Fine-tuning on Decision-Making Abilities ( Poster ) > link | Thomas Schmied · Jorg Bornschein · Jordi Grau-Moya · Markus Wulfmeier · Razvan Pascanu 🔗 |
-
|
A Diffusion Model to Shrink Proteins While Maintaining their Function ( Poster ) > link | Ethan Baron · Alan Amin · Ruben Weitzman · Debora Marks · Andrew Wilson 🔗 |
-
|
A Diffusion Model to Shrink Proteins While Maintaining their Function ( Oral ) > link | Ethan Baron · Alan Amin · Ruben Weitzman · Debora Marks · Andrew Wilson 🔗 |
-
|
Active Advantage-Aligned Online Reinforcement Learning with Offline Data ( Poster ) > link | Xuefeng Liu · Hung Le · Siyu Chen · Rick Stevens · Zhuoran Yang · Matthew Walter · Yuxin Chen 🔗 |
-
|
Diffusion-Based Maximum Entropy Reinforcement Learning ( Poster ) > link | Onur Celik · Zechu Li · Denis Blessing · Ge Li · Daniel Palenicek · Jan Peters · Georgia Chalvatzaki · Gerhard Neumann 🔗 |
-
|
Direct Regret Optimization in Bayesian Optimization ( Poster ) > link | Fengxue Zhang · Yuxin Chen 🔗 |
-
|
Sparse Optimistic Information Directed Sampling ( Poster ) > link | Ludovic Schwartz · Hamish Flynn · Gergely Neu 🔗 |
-
|
In-Context Learning for Pure Exploration ( Poster ) > link | Alessio Russo · Ryan Welch · Aldo Pacchiano 🔗 |
-
|
Strategic Vantage Selection for Learning Viewpoint-Agnostic Manipulation Policies ( Poster ) > link | Sreevishakh Vasudevan · Som Sagar · Ransalu Senanayake 🔗 |
-
|
Bayesian Hypothesis Testing Policy Regularization ( Poster ) > link | Sarah Rathnam · Susan Murphy · Finale Doshi-Velez 🔗 |
-
|
Distances for Markov chains from sample streams ( Poster ) > link | Sergio Calo · Anders Jonsson · Gergely Neu · Ludovic Schwartz · Javier Segovia-Aguas 🔗 |
-
|
Gathering Context that Supports Decisions via Entropy Search with Language Models ( Poster ) > link | Sang Truong · Sicong Huang · Pranava Singhal · Tai Dang · Yukang Wen · Duc Nguyen · Violet Xiang · Sanmi Koyejo · Nick Haber 🔗 |
-
|
Oracle-Efficient Adversarial Reinforcement Learning via Max-Following ( Poster ) > link | Sikata Sengupta · Zakaria Mhammedi · Teodor Vanislavov Marinov 🔗 |
-
|
See it to Place it: Evolving Macro Placements with Vision Language Models ( Poster ) > link | Ikechukwu Uchendu · Vincent Zhuang · Wenjie Jiang · Kuang-Huei Lee · Ebrahim M. Songhori · Swati Goel · Karly Hou · Vijay Janapa Reddi 🔗 |
-
|
Kevin: Multi-Turn RL for Generating CUDA Kernels ( Poster ) > link | Carlo Baronio · Pietro Marsella · Ben Pan · Simon Guo · Silas Alberti 🔗 |
-
|
Automated Data Selection for Efficient Cost Model Training to Optimize Sparse Matrix Kernels on Emerging Hardware Accelerators ( Poster ) > link | Chamika Sudusinghe · Gerasimos Gerogiannis · Damitha Lenadora · Charles Block · Josep Torrellas · Charith Mendis 🔗 |
-
|
Prompts Generalize with Low Data: Non-vacuous Generalization Bounds for Optimizing Prompts with More Informative Priors ( Poster ) > link | Richard Zhang · David Madras · Joshua Safyan 🔗 |
-
|
Scalable and Efficient Exploration via Intrinsic Rewards in Continuous-time Dynamical Systems ( Poster ) > link | Klemens Iten · Andreas Krause 🔗 |
-
|
Improved Exploration in GFlownets via Enhanced Epistemic Neural Networks ( Poster ) > link | Sajan Muhammad · Salem Lahlou 🔗 |
-
|
Towards Unsupervised Multi-Agent Reinforcement Learning via Task-Agnostic Exploration ( Poster ) > link | Riccardo Zamboni · Mirco Mutti · Marcello Restelli 🔗 |
-
|
Diversity By Design: Leveraging Distribution Matching for Offline Model-Based Optimization ( Poster ) > link | Michael S Yao · James Gee · Osbert Bastani 🔗 |
-
|
Sample-Efficient Reinforcement Learning with Action Chunking ( Poster ) > link | Qiyang Li · Zhiyuan Zhou · Sergey Levine 🔗 |
-
|
Toward Efficient Exploration by Large Language Model Agents ( Poster ) > link | Dilip Arumugam · Thomas Griffiths 🔗 |
-
|
Reimagining Parameter Space Exploration with Diffusion Models ( Poster ) > link | Lijun Zhang · Xiao Liu · Hui Guan 🔗 |
-
|
Testing LLM Understanding of Scientific Literature through Expert-Driven Question Answering: Insights from High-Temperature Superconductivity ( Poster ) > link |
22 presentersHaoyu Guo · Maria Tikhanovskaya · Paul Raccuglia · Alexey Vlaskin · Christopher Co · Daniel Liebling · Scott Ellsworth · Matthew Abraham · Elizabeth Dorfman · N.P. Armitage · John Tranquada · Senthil Todadri · Antoine Georges · Subir Sachdev · Steven Kivelson · B. Ramshaw · Chunhan Feng · Olivier Gingras · Vadim Oganesyan · Michael Brenner · Subhashini Venugopalan · Eun-Ah Kim |
-
|
EVOLvE: Evaluating and Optimizing LLMs ForIn-Context Exploration ( Poster ) > link | Allen Nie · Yi Su · Bo Chang · Jonathan Lee · Ed Chi · Quoc Le · Minmin Chen 🔗 |
-
|
Central Path Proximal Policy Optimization ( Poster ) > link | Nikola Milosevic · Johannes Müller · Nico Scherf 🔗 |
-
|
The Road Not Taken: Hindsight Exploration for LLMs in Multi-Turn RL ( Poster ) > link | Yuki (Huaxiaoyue) Wang · Sanjiban Choudhury 🔗 |
-
|
Instance-Dependent Fixed-Budget Pure Exploration in Reinforcement Learning ( Poster ) > link | Yeongjong Kim · Yeoneung Kim · Kwang-Sung Jun 🔗 |
-
|
DISCOVER: Automated Curricula for Sparse-Reward Reinforcement Learning ( Poster ) > link | Leander Diaz-Bone · Marco Bagatella · Jonas Hübotter · Andreas Krause 🔗 |
-
|
Align While Search: Belief-Guided Exploratory Inference for Test-Time World Alignment ( Poster ) > link | Seohui Bae · Jeonghye Kim · Youngchul Sung · Woohyung Lim 🔗 |
-
|
Reinforcement Learning with Thompson Sampling: No-Regret Performance over Finite Horizons ( Poster ) > link | Jasmine Bayrooti · Sattar Vakili · Amanda Prorok · Carl Henrik Ek 🔗 |