Workshop
Programmatic Representations for Agent Learning
Shao-Hua Sun · Levi Lelis · Xinyun Chen · Shreyas Kapur · Jiayuan Mao · Ching-An Cheng · Anqi Li · Kuang-Huei Lee · Leslie Kaelbling · Justin Howe
West Meeting Room 301-305
Fri 18 Jul, 8:20 a.m. PDT
This workshop explores the use of programmatic representations to enhance the interpretability, generalizability, efficiency, and scalability of agent learning frameworks. By leveraging structured representations—such as symbolic programs, code-based policies, and rule-based abstractions—agents can achieve greater interpretability, improved generalization, and enhanced efficiency. Programs can explicitly encode policies, reward functions, task structures, and environment dynamics, providing human-understandable reasoning while reducing the reliance on massive data-driven models. Furthermore, programmatic representations enable modularity and compositionality, allowing agents to efficiently reuse knowledge across tasks and adapt with minimal retraining. By bringing together the sequential decision-making community—including researchers in reinforcement learning, imitation learning, planning, search, and optimal control—with experts in program synthesis and code generation, this workshop aims to tackle the fundamental challenges of agent learning at scale and drive progress toward interpretable, generalizable, verifiable, robust and safe autonomous systems across domains ranging from virtual agents to robotics.
Schedule
Fri 8:20 a.m. - 8:30 a.m.
|
Opening Remarks
(
Intro
)
>
|
Shao-Hua Sun 🔗 |
Fri 8:30 a.m. - 9:00 a.m.
|
Invited Talk: Animesh Garg - Embodied planning as Program Synthesis
|
Animesh Garg 🔗 |
Fri 9:00 a.m. - 9:30 a.m.
|
Invited Talk: Amy Zhang - Leveraging Programmatic Structure in Reinforcement Learning
|
Amy Zhang 🔗 |
Fri 9:30 a.m. - 10:00 a.m.
|
Coffee Break
|
🔗 |
Fri 10:00 a.m. - 10:45 a.m.
|
Oral Presentations
|
🔗 |
Fri 10:45 a.m. - 11:00 a.m.
|
Sponsor Presentation - Basis
|
🔗 |
Fri 11:00 a.m. - 11:30 a.m.
|
Invited Talk: Dale Schuurmans - Large Language Models and Computation
|
Dale Schuurmans 🔗 |
Fri 11:30 a.m. - 12:00 p.m.
|
Invited Talk: Sheila McIlraith - Programmatic Reward Models: Exploiting Reward Function Structure to Help Agents Learn, Plan, and Remember
|
Sheila McIlraith 🔗 |
Fri 12:00 p.m. - 1:00 p.m.
|
Lunch
|
🔗 |
Fri 1:00 p.m. - 2:00 p.m.
|
Poster Session 1
|
🔗 |
Fri 2:00 p.m. - 2:30 p.m.
|
Invited Talk: Jason Ma - Foundation Reward Models for Robot Learning
|
Jason Ma 🔗 |
Fri 2:30 p.m. - 3:00 p.m.
|
Invited Talk: Wenhao Yu - What language does VLAs ponder in?
|
Wenhao Yu 🔗 |
Fri 3:00 p.m. - 4:00 p.m.
|
Poster Session 2
|
🔗 |
Fri 4:00 p.m. - 4:15 p.m.
|
Coffee Break
|
🔗 |
Fri 4:15 p.m. - 5:00 p.m.
|
Panel Discussion
|
🔗 |
-
|
Learning to Discover Abstractions for LLM Reasoning ( Poster ) > link | Yuxiao Qu · Anikait Singh · Yoonho Lee · Amrith Setlur · Russ Salakhutdinov · Chelsea Finn · Aviral Kumar 🔗 |
-
|
Weak-for-Strong: Training Weak Meta-Agent to Harness Strong Executors ( Poster ) > link | Fan Nie · Lan Feng · Haotian Ye · Weixin Liang · Pan Lu · Huaxiu Yao · Alexandre Alahi · James Zou 🔗 |
-
|
InstructFlow: Adaptive Symbolic Constraint-Guided Code Generation for Long-Horizon Planning ( Poster ) > link | Haotian Chi · Zeyu Feng · Yueming LYU · Chengqi Zheng · Linbo Luo · Yew Soon ONG · Ivor Tsang · Hechang Chen · Yi Chang · Haiyan Yin 🔗 |
-
|
Optimizing Agentic Architectures for Cybersecurity Tasks with Trace ( Poster ) > link | Anish Chaudhuri · Prerit Choudhary · Max Piasevoli · Shannon Xiao · Allen Nie 🔗 |
-
|
Large Language Models Can Think and Act Probabilistically ( Poster ) > link | Kou Misaki · Takuya Akiba 🔗 |
-
|
Learned Representations Enhance Multi Agent Path Planning ( Poster ) > link | Marius Captari · Herke van Hoof 🔗 |
-
|
EditLord: Learning Code Transformation Rules for Code Editing ( Poster ) > link | Weichen Li · Albert Jan · Baishakhi Ray · Junfeng Yang · Chengzhi Mao · Kexin Pei 🔗 |
-
|
Sketch-Plan-Generalize : Learning and Planning with Neuro-Symbolic Programmatic Representations for Inductive Spatial Concepts ( Poster ) > link | Namasivayam Kalithasan · Sachit Sachdeva · Himanshu Gaurav Singh · Vishal Bindal · Arnav Tuli · Gurarmaan Panjeta · Harsh Vora · Divyanshu Agarwal · Rohan Paul · Parag Singla 🔗 |
-
|
Making LLMs Program Interpreters via Execution Trace Chain of Thought ( Poster ) > link | Koshi Eguchi · Takuya Akiba 🔗 |
-
|
Leveraging Learned Programmatic Facts for Enhanced LLM Agent Planning and World Modeling ( Poster ) > link | Samuel Holt · Max Ruiz Luyten · Thomas Pouplin · Mihaela van der Schaar 🔗 |
-
|
Discovering Logic-Informed Intrinsic Rewards to Explain Human Policies ( Poster ) > link | Chengzhi Cao · Yinghao Fu · Chao Yang · Shuang Li 🔗 |
-
|
Leveraging LLM-based sentiment analysis for portfolio optimization with proximal policy optimization ( Poster ) > link | Kemal Kirtac · Guido Germano 🔗 |
-
|
ReasonRec: A Reasoning-Augmented Multimodal Agent for Unified Recommendation ( Poster ) > link |
14 presentersYihua Zhang · Xi Liu · Xihuan Zeng · Mingfu Liang · Jiyan Yang · Rong Jin · Wen-Yen Chen · Yiping Han · Bo Long · Huayu Li · Buyun Zhang · Liang Luo · Sijia Liu · Tianlong Chen |
-
|
Inefficiencies of Meta Agents for Agent Design ( Poster ) > link | Batu El · Mert Yuksekgonul · James Zou 🔗 |
-
|
PDL: Declarative Representation of Agentic Prompting Patterns ( Poster ) > link | Mandana Vaziri · Louis Mandel · Martin Hirzel · Anca Sailer · Yuji Watanabe · Hirokuni Kitahara 🔗 |
-
|
Scalable Gameplay AI through Composition of LLM-Generated Heuristics ( Poster ) > link | Danrui Li · Sen Zhang · Mubbasir Kapadia 🔗 |
-
|
Learning Game-Playing Agents with Generative Code Optimization ( Poster ) > link | Zhiyi Kuang · Ryan Rong · YuCheng Yuan · Allen Nie 🔗 |
-
|
Zero-Shot Instruction Following in RL via Structured LTL Representations ( Poster ) > link | Mattia Giuri · Mathias Jackermeier · Alessandro Abate 🔗 |
-
|
Searching Latent Program Spaces ( Poster ) > link | Matthew Macfarlane · Clément Bonnet 🔗 |
-
|
Interpretable Reward Modeling with Active Concept Bottlenecks ( Poster ) > link | Sonia Laguna · Katarzyna Kobalczyk · Julia Vogt · Mihaela van der Schaar 🔗 |
-
|
Time to Impeach LLM-as-a-Judge: Programs are the Future of Evaluation ( Poster ) > link | Tzu-Heng Huang · Harit Vishwakarma · Frederic Sala 🔗 |
-
|
Afterburner: Reinforcement Learning Facilitates Self-Improving Code Efficiency Optimization ( Poster ) > link | Mingzhe Du · Anh Tuan Luu · Yue Liu · Yuhao QING · Dong HUANG · Xinyi He · Qian Liu · Zejun MA · See-Kiong Ng 🔗 |
-
|
How Robust Reinforcement Learning Enables Courier-Friendly Route Planning for Last-Mile Delivery? ( Poster ) > link | Ziying Jia · Zeyu Dong · Miao Yin · Sihong He 🔗 |
-
|
DyPO: Dynamic Policy Optimization for Multi-Turn Interactive Reasoning ( Poster ) > link | Xiao Feng · Bo Han · Zhanke Zhou · Jiaqi Fan · Jiangchao Yao · Ka Li · Dahai Yu · Michael Ng 🔗 |
-
|
Improving Parallel Program Performance with LLM Optimizers via Agent-System Interfaces ( Poster ) > link | Anjiang Wei · Allen Nie · Thiago Teixeira · Rohan Yadav · Wonchan Lee · Ke Wang · Alex Aiken 🔗 |
-
|
FormulaCode: Evaluating Agentic Superoptimization on Large Codebases ( Poster ) > link | Atharva Sehgal · James Hou · Swarat Chaudhuri · Jennifer Sun · Yisong Yue 🔗 |
-
|
Lifelong Experience Abstraction and Planning ( Poster ) > link | Peiqi Liu · Jiayuan Mao · Leslie Kaelbling · Josh Tenenbaum 🔗 |