Oral Sessions
Oral 1B Positions: Better Ways to Do Machine Learning
West Ballroom A
Moderator: Kiri Wagstaff
Position: The AI Conference Peer Review Crisis Demands Author Feedback and Reviewer Rewards
Jaeho Kim · Yunseok Lee · Seulki Lee
The peer review process in major artificial intelligence (AI) conferences faces unprecedented challenges with the surge of paper submissions (exceeding 10,000 submissions per venue), accompanied by growing concerns over review quality and reviewer responsibility. This position paper argues for the need to transform the traditional one-way review system into a bi-directional feedback loop where authors evaluate review quality and reviewers earn formal accreditation, creating an accountability framework that promotes a sustainable, high-quality peer review system. The current review system can be viewed as an interaction between three parties: the authors, reviewers, and system (i.e., conference), where we posit that all three parties share responsibility for the current problems. However, issues with authors can only be addressed through policy enforcement and detection tools, and ethical concerns can only be corrected through self-reflection. As such, this paper focuses on reforming reviewer accountability with systematic rewards through two key mechanisms: (1) a two-stage bi-directional review system that allows authors to evaluate reviews while minimizing retaliatory behavior, (2) a systematic reviewer reward system that incentivizes quality reviewing. We ask for the community's strong interest in these problems and the reforms that are needed to enhance the peer review process.
Position: Not All Explanations for Deep Learning Phenomena Are Equally Valuable
Alan Jeffares · Mihaela van der Schaar
Developing a better understanding of surprising or counterintuitive phenomena has constituted a significant portion of deep learning research in recent years. These include double descent, grokking, and the lottery ticket hypothesis -- among many others. Works in this area often develop ad hoc hypotheses attempting to explain these observed phenomena on an isolated, case-by-case basis. This position paper asserts that, in many prominent cases, there is little evidence to suggest that these phenomena appear in real-world applications and these efforts may be inefficient in driving progress in the broader field. Consequently, we argue against viewing them as isolated puzzles that require bespoke resolutions or explanations. However, despite this, we suggest that deep learning phenomena do still offer research value by providing unique settings in which we can refine our broad explanatory theories of more general deep learning principles. This position is reinforced by analyzing the research outcomes of several prominent examples of these phenomena from the recent literature. We revisit the current norms in the research community in approaching these problems and propose practical recommendations for future research, aiming to ensure that progress on deep learning phenomena is well aligned with the ultimate pragmatic goal of progress in the broader field of deep learning.
Position: Certified Robustness Does Not (Yet) Imply Model Security
Andrew C. Cullen · Paul MONTAGUE · Sarah Erfani · Benjamin Rubinstein
While certified robustness is widely promoted as a solution to adversarial examples in Artificial Intelligence systems, significant challenges remain before these techniques can be meaningfully deployed in real-world applications. We identify critical gaps in current research, including the paradox of detection without distinction, the lack of clear criteria for practitioners to evaluate certification schemes, and the potential security risks arising from users' expectations surrounding ``guaranteed" robustness claims. This position paper is a call to arms for the certification research community, proposing concrete steps to address these fundamental challenges and advance the field toward practical applicability.
Position: Probabilistic Modelling is Sufficient for Causal Inference
Bruno Mlodozeniec · David Krueger · Richard E Turner
Causal inference is a key research area in machine learning, yet confusion reigns over the tools needed to tackle it. There are prevalent claims in the machine learning literature that you need a bespoke causal framework or notation to answer causal questions. In this paper, we make it clear that you can answer any causal inference question within the realm of probabilistic modelling and inference, without causal-specific tools or notation. Through concrete examples, we demonstrate how causal questions can be tackled by writing down the probability of everything. We argue for the advantages of the generality of the probabilistic modelling lens, when compared to bespoke causal frameworks. Lastly, we reinterpret causal tools as emerging from standard probabilistic modelling and inference, elucidating their necessity and utility.