Skip to yearly menu bar Skip to main content


Timezone: Pacific/Honolulu

Registration Desk: Registration Tue 25 Jul 08:00 a.m.  


Opening Remarks Tue 25 Jul 09:00 a.m.  


Invited Talk: Marzyeh Ghassemi

Taking the Pulse Of Ethical ML in Health

Machine learning in health has made impressive progress in recent years, powered by an increasing availability of health-related data and high-capacity models. While many models in health now perform at, or above, humans in a range of tasks across the human lifespan, models also learn societal biases and may replicate or expand them. In this talk, Dr. Marzyeh Ghassemi will focus on the need for machine learning researchers and model developers to create robust models that can be ethically deployed in health settings, and beyond. Dr. Ghassemi's talk will span issues in data collection, outcome definition, algorithm development, and deployment considerations.

Marzyeh Ghassemi

 

Dr. Marzyeh Ghassemi is an Assistant Professor at MIT in Electrical Engineering and Computer Science (EECS) and Institute for Medical Engineering & Science (IMES), and a Vector Institute faculty member holding a Canadian CIFAR AI Chair and Canada Research Chair. She holds MIT affiliations with the Jameel Clinic and CSAIL. Professor Ghassemi holds a Herman L. F. von Helmholtz Career Development Professorship, and was named a CIFAR Azrieli Global Scholar and one of MIT Tech Review’s 35 Innovators Under 35. Previously, she was a Visiting Researcher with Alphabet’s Verily. She is currently on leave from the University of Toronto Departments of Computer Science and Medicine. Prior to her PhD in Computer Science at MIT, she received an MSc. degree in biomedical engineering from Oxford University as a Marshall Scholar, and B.S. degrees in computer science and electrical engineering as a Goldwater Scholar at New Mexico State University.



Poster Session 1 Tue 25 Jul 11:00 a.m.  

Poster
Korawat Tanwisuth · Shujian Zhang · Huangjie Zheng · Pengcheng He · Mingyuan Zhou

[ Exhibit Hall 1 ]

Through prompting, large-scale pre-trained models have become more expressive and powerful, gaining significant attention in recent years. Though these big models have zero-shot capabilities, in general, labeled data are still required to adapt them to downstream tasks. To overcome this critical limitation, we propose an unsupervised fine-tuning framework to directly fine-tune the model or prompt on the unlabeled target data. We demonstrate how to apply our method to both language-augmented vision and masked-language models, by aligning the discrete distributions extracted from the prompts and target data. To verify our approach's applicability, we conduct extensive experiments on image classification, sentiment analysis, and natural language inference tasks. Across 13 image-related tasks and 15 language-related ones, the proposed approach achieves consistent improvements over the baselines. PyTorch code is available at https://github.com/korawat-tanwisuth/POUF.

Poster
Che-Ping Tsai · Chih-Kuan Yeh · Pradeep Ravikumar

[ Exhibit Hall 1 ]

Shapley values, which were originally designed to assign attributions to individual players in coalition games, have become a commonly used approach in explainable machine learning to provide attributions to input features for black-box machine learning models. A key attraction of Shapley values is that they uniquely satisfy a very natural set of axiomatic properties. However, extending the Shapley value to assigning attributions to interactions rather than individual players, an interaction index, is non-trivial: as the natural set of axioms for the original Shapley values, extended to the context of interactions, no longer specify a unique interaction index. Many proposals thus introduce additional possibly stringent axioms, while sacrificing the key axiom of efficiency, in order to obtain unique interaction indices. In this work, rather than introduce additional conflicting axioms, we adopt the viewpoint of Shapley values as coefficients of the most faithful linear approximation to the pseudo-Boolean coalition game value function. By extending linear to higher order polynomial approximations, we can then define the general family of faithful interaction indices. We show that by additionally requiring the faithful interaction indices to satisfy interaction-extensions of the standard individual Shapley axioms (dummy, symmetry, linearity, and efficiency), we obtain a unique Faithful Shapley Interaction …

Poster
Zixuan Hu · Li Shen · Zhenyi Wang · Baoyuan Wu · Chun Yuan · Dacheng Tao

[ Exhibit Hall 1 ]

Data-free meta-learning (DFML) aims to enable efficient learning of new tasks by meta-learning from a collection of pre-trained models without access to the training data. Existing DFML work can only meta-learn from (i) white-box and (ii) small-scale pre-trained models (iii) with the same architecture, neglecting the more practical setting where the users only have inference access to the APIs with arbitrary model architectures and model scale inside. To solve this issue, we propose a Bi-level Data-free Meta Knowledge Distillation (BiDf-MKD) framework to transfer more general meta knowledge from a collection of black-box APIs to one single meta model. Specifically, by just querying APIs, we inverse each API to recover its training data via a zero-order gradient estimator and then perform meta-learning via a novel bi-level meta knowledge distillation structure, in which we design a boundary query set recovery technique to recover a more informative query set near the decision boundary. In addition, to encourage better generalization within the setting of limited API budgets, we propose task memory replay to diversify the underlying task distribution by covering more interpolated tasks. Extensive experiments in various real-world scenarios show the superior performance of our BiDf-MKD framework.

Poster
Jiwoo Son · Minsu Kim · Hyeonah Kim · Jinkyoo Park

[ Exhibit Hall 1 ]

This paper proposes Meta-SAGE, a novel approach for improving the scalability of deep reinforcement learning models for combinatorial optimization (CO) tasks. Our method adapts pre-trained models to larger-scale problems in test time by suggesting two components: a scale meta-learner (SML) and scheduled adaptation with guided exploration (SAGE). First, SML transforms the context embedding for subsequent adaptation of SAGE based on scale information. Then, SAGE adjusts the model parameters dedicated to the context embedding for a specific instance. SAGE introduces locality bias, which encourages selecting nearby locations to determine the next location. The locality bias gradually decays as the model is adapted to the target instance. Results show that Meta-SAGE outperforms previous adaptation methods and significantly improves scalability in representative CO tasks. Our source code is available at https://github.com/kaist-silab/meta-sage.

Poster
Youwei Liang · Kevin Stone · Ali Shameli · Chris Cummins · Mostafa Elhoushi · Jiadong Guo · Benoit Steiner · Xiaomeng Yang · Pengtao Xie · Hugh Leather · Yuandong Tian

[ Exhibit Hall 1 ]

Finding the optimal pass sequence of compilation can lead to a significant reduction in program size. Prior works on compilation pass ordering have two major drawbacks. They either require an excessive budget (in terms of the number of compilation passes) at compile time or fail to generalize to unseen programs. In this work, instead of predicting passes sequentially, we directly learn a policy on the pass sequence space, which outperforms the default -Oz flag by an average of 4.5% over a large collection (4683) of unseen code repositories from diverse domains across 14 datasets. To achieve this, we first identify a small set (termed coreset) of pass sequences that generally optimize the size of most programs. Then, a policy is learned to pick the optimal sequences by predicting the normalized values of the pass sequences in the coreset. Our results demonstrate that existing human-designed compiler passes can be improved with a simple yet effective technique that leverages pass sequence space which contains dense rewards, while approaches operating on the individual pass space may suffer from issues of sparse reward, and do not generalize well to held-out programs from different domains. Website: https://rlcompopt.github.io.

Poster
Mark Vero · Mislav Balunovic · Dimitar I. Dimitrov · Martin Vechev

[ Exhibit Hall 1 ]

While federated learning (FL) promises to preserve privacy, recent works in the image and text domains have shown that training updates leak private client data. However, most high-stakes applications of FL (e.g., in healthcare and finance) use tabular data, where the risk of data leakage has not yet been explored. A successful attack for tabular data must address two key challenges unique to the domain: (i) obtaining a solution to a high-variance mixed discrete-continuous optimization problem, and (ii) enabling human assessment of the reconstruction as unlike for image and text data, direct human inspection is not possible. In this work we address these challenges and propose TabLeak, the first comprehensive reconstruction attack on tabular data. TabLeak is based on two key contributions: (i) a method which leverages a softmax relaxation and pooled ensembling to solve the optimization problem, and (ii) an entropy-based uncertainty quantification scheme to enable human assessment. We evaluate TabLeak on four tabular datasets for both FedSGD and FedAvg training protocols, and show that it successfully breaks several settings previously deemed safe. For instance, we extract large subsets of private data at >90% accuracy even at the large batch size of 128. Our findings demonstrate that current high-stakes …

Poster
Qinqing Zheng · Mikael Henaff · Brandon Amos · Aditya Grover

[ Exhibit Hall 1 ]

Natural agents can effectively learn from multiple data sources that differ in size, quality, and types of measurements. We study this heterogeneity in the context of offline reinforcement learning (RL) by introducing a new, practically motivated semi-supervised setting. Here, an agent has access to two sets of trajectories: labelled trajectories containing state, action and reward triplets at every timestep, along with unlabelled trajectories that contain only state and reward information. For this setting, we develop and study a simple meta-algorithmic pipeline that learns an inverse dynamics model on the labelled data to obtain proxy-labels for the unlabelled data, followed by the use of any offline RL algorithm on the true and proxy-labelled trajectories. Empirically, we find this simple pipeline to be highly successful --- on several D4RL benchmarks (Fu et al., 2020), certain offline RL algorithms can match the performance of variants trained on a fully labelled dataset even when we label only 10% of trajectories which are highly suboptimal. To strengthen our understanding, we perform a large-scale controlled empirical study investigating the interplay of data-centric properties of the labelled and unlabelled datasets, with algorithmic design choices (e.g., choice of inverse dynamics, offline RL algorithm) to identify general trends and …

Poster
Philipp Seidl · Andreu Vall · Sepp Hochreiter · Günter Klambauer

[ Exhibit Hall 1 ]

Activity and property prediction models are the central workhorses in drug discovery and materials sciences, but currently, they have to be trained or fine-tuned for new tasks. Without training or fine-tuning, scientific language models could be used for such low-data tasks through their announced zero- and few-shot capabilities. However, their predictive quality at activity prediction is lacking. In this work, we envision a novel type of activity prediction model that is able to adapt to new prediction tasks at inference time, via understanding textual information describing the task. To this end, we propose a new architecture with separate modules for chemical and natural language inputs, and a contrastive pretraining objective on data from large biochemical databases. In extensive experiments, we show that our method CLAMP yields improved predictive performance on few-shot learning benchmarks and zero-shot problems in drug discovery. We attribute the advances of our method to the modularized architecture and to our pre-training objective.

Poster
XiaoHui Zhang · Jiangyan Yi · Jianhua Tao · Chenglong Wang · Chu Yuan Zhang

[ Exhibit Hall 1 ]

Current fake audio detection algorithms have achieved promising performances on most datasets. However, their performance may be significantly degraded when dealing with audio of a different dataset. The orthogonal weight modification to overcome catastrophic forgetting does not consider the similarity of genuine audio across different datasets. To overcome this limitation, we propose a continual learning algorithm for fake audio detection to overcome catastrophic forgetting, called Regularized Adaptive Weight Modification (RAWM). When fine-tuning a detection network, our approach adaptively computes the direction of weight modification according to the ratio of genuine utterances and fake utterances. The adaptive modification direction ensures the network can effectively detect fake audio on the new dataset while preserving its knowledge of old model, thus mitigating catastrophic forgetting. In addition, genuine audio collected from quite different acoustic conditions may skew their feature distribution, so we introduce a regularization constraint to force the network to remember the old distribution in this regard. Our method can easily be generalized to related fields, like speech emotion recognition. We also evaluate our approach across multiple datasets and obtain a significant performance improvement on cross-dataset experiments.

Poster
Yuji Roh · Kangwook Lee · Steven Whang · Changho Suh

[ Exhibit Hall 1 ]

Model fairness is an essential element for Trustworthy AI. While many techniques for model fairness have been proposed, most of them assume that the training and deployment data distributions are identical, which is often not true in practice. In particular, when the bias between labels and sensitive groups changes, the fairness of the trained model is directly influenced and can worsen. We make two contributions for solving this problem. First, we analytically show that existing in-processing fair algorithms have fundamental limits in accuracy and group fairness. We utilize the notion of correlation shifts between labels and groups, which can explicitly capture the change of the above bias. Second, we propose a novel pre-processing step that samples the input data to reduce correlation shifts and thus enables the in-processing approaches to overcome their limitations. We formulate an optimization problem for adjusting the data ratio among labels and sensitive groups to reflect the shifted correlation. A key benefit of our approach lies in decoupling the roles of pre- and in-processing approaches: correlation adjustment via pre-processing and unfairness mitigation on the processed data via in-processing. Experiments show that our framework effectively improves existing in-processing fair algorithms w.r.t. accuracy and fairness, both on synthetic …

Poster
Dawei Zhou · Nannan Wang · Heng Yang · Xinbo Gao · Tongliang Liu

[ Exhibit Hall 1 ]

Deep neural networks have been found to be vulnerable to adversarial noise. Recent works show that exploring the impact of adversarial noise on intrinsic components of data can help improve adversarial robustness. However, the pattern closely related to human perception has not been deeply studied. In this paper, inspired by the cognitive science, we investigate the interference of adversarial noise from the perspective of image phase, and find ordinarily-trained models lack enough robustness against phase-level perturbations. Motivated by this, we propose a joint adversarial defense method: a phase-level adversarial training mechanism to enhance the adversarial robustness on the phase pattern; an amplitude-based pre-processing operation to mitigate the adversarial perturbation in the amplitude pattern. Experimental results show that the proposed method can significantly improve the robust accuracy against multiple attacks and even adaptive attacks. In addition, ablation studies demonstrate the effectiveness of our defense strategy.

Poster
Shayan Shirahmad Gale Bagi · Zahra Gharaee · Oliver Schulte · Mark Crowley

[ Exhibit Hall 1 ]

Conventional supervised learning methods typically assume i.i.d samples and are found to be sensitive to out-of-distribution (OOD) data. We propose Generative Causal Representation Learning (GCRL) which leverages causality to facilitate knowledge transfer under distribution shifts. While we evaluate the effectiveness of our proposed method in human trajectory prediction models, GCRL can be applied to other domains as well. First, we propose a novel causal model that explains the generative factors in motion forecasting datasets using features that are common across all environments and with features that are specific to each environment. Selection variables are used to determine which parts of the model can be directly transferred to a new environment without fine-tuning. Second, we propose an end-to-end variational learning paradigm to learn the causal mechanisms that generate observations from features. GCRL is supported by strong theoretical results that imply identifiability of the causal model under certain assumptions. Experimental results on synthetic and real-world motion forecasting datasets show the robustness and effectiveness of our proposed method for knowledge transfer under zero-shot and low-shot settings by substantially outperforming the prior motion forecasting models on out-of-distribution prediction.

Poster
Yan Zhang · David Zhang · Simon Lacoste-Julien · Gertjan Burghouts · Cees Snoek

[ Exhibit Hall 1 ]

Slot attention is a powerful method for object-centric modeling in images and videos. However, its set-equivariance limits its ability to handle videos with a dynamic number of objects because it cannot break ties. To overcome this limitation, we first establish a connection between slot attention and optimal transport. Based on this new perspective we propose MESH (Minimize Entropy of Sinkhorn): a cross-attention module that combines the tiebreaking properties of unregularized optimal transport with the speed of regularized optimal transport. We evaluate slot attention using MESH on multiple object-centric learning benchmarks and find significant improvements over slot attention in every setting.

Poster
David Salinas · Jacek Golebiowski · Aaron Klein · Matthias Seeger · Cedric Archambeau

[ Exhibit Hall 1 ]

Many state-of-the-art hyperparameter optimization (HPO) algorithms rely on model-based optimizers that learn surrogate models of the target function to guide the search. Gaussian processes are the de facto surrogate model due to their ability to capture uncertainty. However, they make strong assumptions about the observation noise, which might not be warranted in practice. In this work, we propose to leverage conformalized quantile regression which makes minimal assumptions about the observation noise and, as a result, models the target function in a more realistic and robust fashion which translates to quicker HPO convergence on empirical benchmarks. To apply our method in a multi-fidelity setting, we propose a simple, yet effective, technique that aggregates observed results across different resource levels and outperforms conventional methods across many empirical tasks.

Poster
Ilan Naiman · Nimrod Berman · Omri Azencot

[ Exhibit Hall 1 ]

Unsupervised disentanglement is a long-standing challenge in representation learning. Recently, self-supervised techniques achieved impressive results in the sequential setting, where data is time-dependent. However, the latter methods employ modality-based data augmentations and random sampling or solve auxiliary tasks. In this work, we propose to avoid that by generating, sampling, and comparing empirical distributions from the underlying variational model. Unlike existing work, we introduce a self-supervised sequential disentanglement framework based on contrastive estimation with no external signals, while using common batch sizes and samples from the latent space itself. In practice, we propose a unified, efficient, and easy-to-code sampling strategy for semantically similar and dissimilar views of the data. We evaluate our approach on video, audio, and time series benchmarks. Our method presents state-of-the-art results in comparison to existing techniques. The code is available at https://github.com/azencot-group/SPYL.

Poster
Mihir Prabhudesai · Anirudh Goyal · Sujoy Paul · Sjoerd van Steenkiste · Mehdi S. M. Sajjadi · Gaurav Aggarwal · Thomas Kipf · Deepak Pathak · Katerina Fragkiadaki

[ Exhibit Hall 1 ]

Current visual detectors, though impressive within their training distribution, often fail to parse out-of-distribution scenes into their constituent entities. Recent test-time adaptation methods use auxiliary self-supervised losses to adapt the network parameters to each test example independently and have shown promising results towards generalization outside the training distribution for the task of image classification. In our work, we find evidence that these losses are insufficient for the task of scene decomposition, without also considering architectural inductive biases. Recent slot-centric generative models attempt to decompose scenes into entities in a self-supervised manner by reconstructing pixels. Drawing upon these two lines of work, we propose Slot-TTA, a semi-supervised slot-centric scene decomposition model that at test time is adapted per scene through gradient descent on reconstruction or cross-view synthesis objectives. We evaluate Slot-TTA across multiple input modalities, images or 3D point clouds, and show substantial out-of-distribution performance improvements against state-of-the-art supervised feed-forward detectors, and alternative test-time adaptation methods. Project Webpage: http://slot-tta.github.io/

Poster
Min-Kook Suh · Seung-Woo Seo

[ Exhibit Hall 1 ]

Although contrastive learning methods have shown prevailing performance on a variety of representation learning tasks, they encounter difficulty when the training dataset is long-tailed. Many researchers have combined contrastive learning and a logit adjustment technique to address this problem, but the combinations are done ad-hoc and a theoretical background has not yet been provided. The goal of this paper is to provide the background and further improve the performance. First, we show that the fundamental reason contrastive learning methods struggle with long-tailed tasks is that they try to maximize the mutual information between latent features and input data. As ground-truth labels are not considered in the maximization, they are not able to address imbalances between classes. Rather, we interpret the long-tailed recognition task as a mutual information maximization between latent features and ground-truth labels. This approach integrates contrastive learning and logit adjustment seamlessly to derive a loss function that shows state-of-the-art performance on long-tailed recognition benchmarks. It also demonstrates its efficacy in image segmentation tasks, verifying its versatility beyond image classification. Code is available at https://github.com/bluecdm/Long-tailed-recognition.

Poster
Yang Li · Shao Zhang · Jichen Sun · Yali Du · Ying Wen · Xinbing Wang · Wei Pan

[ Exhibit Hall 1 ]

Zero-shot coordination in cooperative artificial intelligence (AI) remains a significant challenge, which means effectively coordinating with a wide range of unseen partners. Previous algorithms have attempted to address this challenge by optimizing fixed objectives within a population to improve strategy or behaviour diversity. However, these approaches can result in a loss of learning and an inability to cooperate with certain strategies within the population, known as cooperative incompatibility. To address this issue, we propose the Cooperative Open-ended LEarning (COLE) framework, which constructs open-ended objectives in cooperative games with two players from the perspective of graph theory to assess and identify the cooperative ability of each strategy. We further specify the framework and propose a practical algorithm that leverages knowledge from game theory and graph theory. Furthermore, an analysis of the learning process of the algorithm shows that it can efficiently overcome cooperative incompatibility. The experimental results in the Overcooked game environment demonstrate that our method outperforms current state-of-the-art methods when coordinating with different-level partners. Our demo is available at https://sites.google.com/view/cole-2023.

Poster
Yihao Sun · Jiaji Zhang · Chengxing Jia · Haoxin Lin · Junyin Ye · Yang Yu

[ Exhibit Hall 1 ]

For offline reinforcement learning (RL), model-based methods are expected to be data-efficient as they incorporate dynamics models to generate more data. However, due to inevitable model errors, straightforwardly learning a policy in the model typically fails in the offline setting. Previous studies have incorporated conservatism to prevent out-of-distribution exploration. For example, MOPO penalizes rewards through uncertainty measures from predicting the next states, which we have discovered are loose bounds of the ideal uncertainty, i.e., the Bellman error. In this work, we propose MOdel-Bellman Inconsistency penalized offLinE Policy Optimization (MOBILE), a novel uncertainty-driven offline RL algorithm. MOBILE conducts uncertainty quantification through the inconsistency of Bellman estimations under an ensemble of learned dynamics models, which can be a better approximator to the true Bellman error, and penalizes the Bellman estimation based on this uncertainty. Empirically we have verified that our proposed uncertainty quantification can be significantly closer to the true Bellman error than the compared methods. Consequently, MOBILE outperforms prior offline RL approaches on most tasks of D4RL and NeoRL benchmarks.

Poster
Cameron Voloshin · Abhinav Verma · Yisong Yue

[ Exhibit Hall 1 ]

Linear temporal logic (LTL) offers a simplified way of specifying tasks for policy optimization that may otherwise be difficult to describe with scalar reward functions. However, the standard RL framework can be too myopic to find maximally LTL satisfying policies. This paper makes two contributions. First, we develop a new value-function based proxy, using a technique we call eventual discounting, under which one can find policies that satisfy the LTL specification with highest achievable probability. Second, we develop a new experience replay method for generating off-policy data from on-policy rollouts via counterfactual reasoning on different ways of satisfying the LTL specification. Our experiments, conducted in both discrete and continuous state-action spaces, confirm the effectiveness of our counterfactual experience replay approach.

Poster
Advait Parulekar · Karthikeyan Shanmugam · Sanjay Shakkottai

[ Exhibit Hall 1 ]

Invariant representations are transformations of the covariates such that the best model on top of the representation is invariant across training environments. In the context of linear Structural Equation Models (SEMs), invariant representations might allow us to learn models with out-of-distribution guarantees, i.e., models that are robust to interventions in the SEM. To address the invariant representation problem in a *finite sample* setting, we consider the notion of $\epsilon$-approximate invariance. We study the following question: If a representation is approximately invariant with respect to a given number of training interventions, will it continue to be approximately invariant on a larger collection of unseen intervened SEMs? Inspired by PAC learning, we obtain finite-sample out-of-distribution generalization guarantees for approximate invariance that holds *probabilistically* over a family of linear SEMs without faithfulness assumptions.
Poster
Chao Du · Tianbo Li · Tianyu Pang · Shuicheng YAN · Min Lin

[ Exhibit Hall 1 ]

Sliced-Wasserstein Flow (SWF) is a promising approach to nonparametric generative modeling but has not been widely adopted due to its suboptimal generative quality and lack of conditional modeling capabilities. In this work, we make two major contributions to bridging this gap. First, based on a pleasant observation that (under certain conditions) the SWF of joint distributions coincides with those of conditional distributions, we propose Conditional Sliced-Wasserstein Flow (CSWF), a simple yet effective extension of SWF that enables nonparametric conditional modeling. Second, we introduce appropriate inductive biases of images into SWF with two techniques inspired by local connectivity and multiscale representation in vision research, which greatly improve the efficiency and quality of modeling images. With all the improvements, we achieve generative performance comparable with many deep parametric generative models on both conditional and unconditional tasks in a purely nonparametric fashion, demonstrating its great potential.

Poster
David Cohen · Tal Shnitzer · Yuval Kluger · Ronen Talmon

[ Exhibit Hall 1 ]

In this paper, we present a new method for few-sample supervised feature selection (FS). Our method first learns the manifold of the feature space of each class using kernels capturing multi-feature associations. Then, based on Riemannian geometry, a composite kernel is computed, extracting the differences between the learned feature associations. Finally, a FS score based on spectral analysis is proposed. Considering multi-feature associations makes our method multivariate by design. This in turn allows for the extraction of the hidden manifold underlying the features and avoids overfitting, facilitating few-sample FS. We showcase the efficacy of our method on illustrative examples and several benchmarks, where our method demonstrates higher accuracy in selecting the informative features compared to competing methods. In addition, we show that our FS leads to improved classification and better generalization when applied to test data.

Poster
Yu Chen · Wei Deng · Shikai Fang · Fengpei Li · Tianjiao N Yang · Yikai Zhang · Kashif Rasul · Shandian Zhe · Anderson Schneider · Yuriy Nevmyvaka

[ Exhibit Hall 1 ]

The Schrödinger bridge problem (SBP) is gaining increasing attention in generative modeling and showing promising potential even in comparison with the score-based generative models (SGMs). SBP can be interpreted as an entropy-regularized optimal transport problem, which conducts projections onto every other marginal alternatingly. However, in practice, only approximated projections are accessible and their convergence is not well understood. To fill this gap, we present a first convergence analysis of the Schrödinger bridge algorithm based on approximated projections. As for its practical applications, we apply SBP to probabilistic time series imputation by generating missing values conditioned on observed data. We show that optimizing the transport cost improves the performance and the proposed algorithm achieves the state-of-the-art result in healthcare and environmental data while exhibiting the advantage of exploring both temporal and feature patterns in probabilistic time series imputation.

Poster
Kamalika Chaudhuri · Kartik Ahuja · Martin Arjovsky · David Lopez-Paz

[ Exhibit Hall 1 ]

When facing data with imbalanced classes or groups, practitioners follow an intriguing strategy to achieve best results. They throw away examples until the classes or groups are balanced in size, and then perform empirical risk minimization on the reduced training set. This opposes common wisdom in learning theory, where the expected error is supposed to decrease as the dataset grows in size. In this work, we leverage extreme value theory to address this apparent contradiction. Our results show that the tails of the data distribution play an important role in determining the worst-group-accuracy of linear classifiers. When learning on data with heavy tails, throwing away data restores the geometric symmetry of the resulting classifier, and therefore improves its worst-group generalization.

Poster
Akim Kotelnikov · Dmitry Baranchuk · Ivan Rubachev · Artem Babenko

[ Exhibit Hall 1 ]

Denoising diffusion probabilistic models are becoming the leading generative modeling paradigm for many important data modalities. Being the most prevalent in the computer vision community, diffusion models have recently gained some attention in other domains, including speech, NLP, and graph-like data. In this work, we investigate if the framework of diffusion models can be advantageous for general tabular problems, where data points are typically represented by vectors of heterogeneous features. The inherent heterogeneity of tabular data makes it quite challenging for accurate modeling since the individual features can be of a completely different nature, i.e., some of them can be continuous and some can be discrete. To address such data types, we introduce TabDDPM --- a diffusion model that can be universally applied to any tabular dataset and handles any feature types. We extensively evaluate TabDDPM on a wide set of benchmarks and demonstrate its superiority over existing GAN/VAE alternatives, which is consistent with the advantage of diffusion models in other fields.

Poster
Sungbin Shin · Yohan Jo · Sungsoo Ahn · Namhoon Lee

[ Exhibit Hall 1 ]

Concept bottleneck models (CBMs) are a class of interpretable neural network models that predict the target response of a given input based on its high-level concepts. Unlike the standard end-to-end models, CBMs enable domain experts to intervene on the predicted concepts and rectify any mistakes at test time, so that more accurate task predictions can be made at the end. While such intervenability provides a powerful avenue of control, many aspects of the intervention procedure remain rather unexplored. In this work, we develop various ways of selecting intervening concepts to improve the intervention effectiveness and conduct an array of in-depth analyses as to how they evolve under different circumstances. Specifically, we find that an informed intervention strategy can reduce the task error more than ten times compared to the current baseline under the same amount of intervention counts in realistic settings, and yet, this can vary quite significantly when taking into account different intervention granularity. We verify our findings through comprehensive evaluations, not only on the standard real datasets, but also on synthetic datasets that we generate based on a set of different causal graphs. We further discover some major pitfalls of the current practices which, without a proper addressing, …

Poster
Chen-Hao Chao · Wei-Fang Sun · Bo-Wun Cheng · Chun-Yi Lee

[ Exhibit Hall 1 ]

Existing Score-Based Models (SBMs) can be categorized into constrained SBMs (CSBMs) or unconstrained SBMs (USBMs) according to their parameterization approaches. CSBMs model probability density functions as Boltzmann distributions, and assign their predictions as the negative gradients of some scalar-valued energy functions. On the other hand, USBMs employ flexible architectures capable of directly estimating scores without the need to explicitly model energy functions. In this paper, we demonstrate that the architectural constraints of CSBMs may limit their modeling ability. In addition, we show that USBMs' inability to preserve the property of conservativeness may lead to degraded performance in practice. To address the above issues, we propose Quasi-Conservative Score-Based Models (QCSBMs) for keeping the advantages of both CSBMs and USBMs. Our theoretical derivations demonstrate that the training objective of QCSBMs can be efficiently integrated into the training processes by leveraging the Hutchinson's trace estimator. In addition, our experimental results on the CIFAR-10, CIFAR-100, ImageNet, and SVHN datasets validate the effectiveness of QCSBMs. Finally, we justify the advantage of QCSBMs using an example of a one-layered autoencoder.

Poster
Ziyang Jiang · Zhuoran Hou · Yiling Liu · Yiman Ren · Keyu Li · David Carlson

[ Exhibit Hall 1 ]

A number of methods have been proposed for causal effect estimation, yet few have demonstrated efficacy in handling data with complex structures, such as images. To fill this gap, we propose Causal Multi-task Deep Ensemble (CMDE), a novel framework that learns both shared and group-specific information from the study population. We provide proofs demonstrating equivalency of CDME to a multi-task Gaussian process (GP) with a coregionalization kernel a priori. Compared to multi-task GP, CMDE efficiently handles high-dimensional and multi-modal covariates and provides pointwise uncertainty estimates of causal effects. We evaluate our method across various types of datasets and tasks and find that CMDE outperforms state-of-the-art methods on a majority of these tasks.

Poster
Jeroen Berrevoets · Nabeel Seedat · Fergus Imrie · Mihaela van der Schaar

[ Exhibit Hall 1 ]

Directed acyclic graphs (DAGs) encode a lot of information about a particular distribution in their structure. However, compute required to infer these structures is typically super-exponential in the number of variables, as inference requires a sweep of a combinatorially large space of potential structures. That is, until recent advances made it possible to search this space using a differentiable metric, drastically reducing search time. While this technique--- named NOTEARS ---is widely considered a seminal work in DAG-discovery, it concedes an important property in favour of differentiability: transportability. To be transportable, the structures discovered on one dataset must apply to another dataset from the same domain. We introduce D-Struct which recovers transportability in the discovered structures through a novel architecture and loss function while remaining fully differentiable. Because D-Struct remains differentiable, our method can be easily adopted in existing differentiable architectures, as was previously done with NOTEARS. In our experiments, we empirically validate D-Struct with respect to edge accuracy and structural Hamming distance in a variety of settings.

Poster
Jishnu Ray Chowdhury · Cornelia Caragea

[ Exhibit Hall 1 ]

Abstract
We explore different ways to utilize position-based cross-attention in seq2seq networks to enable length generalization in algorithmic tasks. We show that a simple approach of interpolating the original and reversed encoded representations combined with relative attention allows near-perfect length generalization for both forward and reverse lookup tasks or copy tasks that had been generally hard to tackle. We also devise harder diagnostic tasks where the relative distance of the ideal attention position varies with timestep. In such settings, the simple interpolation trick with relative attention is not sufficient. We introduce novel variants of location attention building on top of Dubois et al. (2020) to address the new diagnostic tasks. We also show the benefits of our approaches for length generalization in SCAN (Lake & Baroni, 2018) and CFQ (Keysers et al.,2020). Our code is available on GitHub.
Poster
Jonas Geiping · Tom Goldstein

[ Exhibit Hall 1 ]

Recent trends in language modeling have focused on increasing performance through scaling, and have resulted in an environment where training language models is out of reach for most researchers and practitioners. While most in the community are asking how to push the limits of extreme computation, we ask the opposite question: How far can we get with a single GPU in just one day? We investigate the downstream performance achievable with a transformer-based language model trained completely from scratch with masked language modeling for a single day on a single consumer GPU. Aside from re-analyzing nearly all components of the pretraining pipeline for this scenario and providing a modified pipeline with performance close to BERT, we investigate why scaling down is hard, and which modifications actually improve performance in this scenario. We provide evidence that even in this constrained setting, performance closely follows scaling laws observed in large-compute settings. Through the lens of scaling laws, we categorize a range of recent improvements to training and architecture and discuss their merit and practical applicability (or lack thereof) for the limited compute setting. We provide code to reproduce all experiments at github.com/JonasGeiping/cramming .

Poster
Charles Lu · Yaodong Yu · Sai Praneeth Karimireddy · Michael Jordan · Ramesh Raskar

[ Exhibit Hall 1 ]

Conformal prediction is emerging as a popular paradigm for providing rigorous uncertainty quantification in machine learning since it can be easily applied as a post-processing step to already trained models. In this paper, we extend conformal prediction to the federated learning setting. The main challenge we face is data heterogeneity across the clients --- this violates the fundamental tenet of exchangeability required for conformal prediction. We propose a weaker notion of partial exchangeability, better suited to the FL setting, and use it to develop the Federated Conformal Prediction (FCP) framework. We show FCP enjoys rigorous theoretical guarantees and excellent empirical performance on several computer vision and medical imaging datasets. Our results demonstrate a practical approach to incorporating meaningful uncertainty quantification in distributed and heterogeneous environments. We provide code used in our experiments https://github.com/clu5/federated-conformal.

Poster
Edwige Cyffers · Aurélien Bellet · Debabrota Basu

[ Exhibit Hall 1 ]

We study differentially private (DP) machine learning algorithms as instances of noisy fixed-point iterations, in order to derive privacy and utility results from this well-studied framework. We show that this new perspective recovers popular private gradient-based methods like DP-SGD and provides a principled way to design and analyze new private optimization algorithms in a flexible manner. Focusing on the widely-used Alternating Directions Method of Multipliers (ADMM) method, we use our general framework derive novel private ADMM algorithms for centralized, federated and fully decentralized learning. We establish strong privacy guarantees for these algorithms, leveraging privacy amplification by iteration and by subsampling. Finally, we provide utility guarantees for the three algorithms using a unified analysis that exploits a recent linear convergence result for noisy fixed-point iterations.

Poster
Dohyun Kwon · Hanbaek Lyu

[ Exhibit Hall 1 ]

We consider the block coordinate descent methods of Gauss-Seidel type with proximal regularization (BCD-PR), which is a classical method of minimizing general nonconvex objectives under constraints that has a wide range of practical applications. We theoretically establish the worst-case complexity bound for this algorithm. Namely, we show that for general nonconvex smooth objectives with block-wise constraints, the classical BCD-PR algorithm converges to an epsilon-stationary point within O(1/epsilon) iterations. Under a mild condition, this result still holds even if the algorithm is executed inexactly in each step. As an application, we propose a provable and efficient algorithm for `Wasserstein CP-dictionary learning', which seeks a set of elementary probability distributions that can well-approximate a given set of d-dimensional joint probability distributions. Our algorithm is a version of BCD-PR that operates in the dual space, where the primal problem is regularized both entropically and proximally.

Poster
Si Yi Meng · Robert Gower

[ Exhibit Hall 1 ]

We develop a variant of the stochastic prox-linear method for minimizing the Conditional Value-at-Risk (CVaR) objective. CVaR is a risk measure focused on minimizing worst-case performance, defined as the average of the top quantile of the losses. In machine learning, such a risk measure is useful to train more robust models. Although the stochastic subgradient method (SGM) is a natural choice for minimizing the CVaR objective, we show that our stochastic prox-linear (SPL+) algorithm can better exploit the structure of the objective, while still providing a convenient closed form update. Our SPL+ method also adapts to the scaling of the loss function, which allows for easier tuning. We then specialize a general convergence theorem for SPL+ to our setting, and show that it allows for a wider selection of step sizes compared to SGM. We support this theoretical finding experimentally.

Poster
Marc Harkonen · Markus Lange-Hegermann · Bogdan Raita

[ Exhibit Hall 1 ]

Partial differential equations (PDEs) are important tools to model physical systems and including them into machine learning models is an important way of incorporating physical knowledge. Given any system of linear PDEs with constant coefficients, we propose a family of Gaussian process (GP) priors, which we call EPGP, such that all realizations are exact solutions of this system. We apply the Ehrenpreis-Palamodov fundamental principle, which works as a non-linear Fourier transform, to construct GP kernels mirroring standard spectral methods for GPs. Our approach can infer probable solutions of linear PDE systems from any data such as noisy measurements, or pointwise defined initial and boundary conditions. Constructing EPGP-priors is algorithmic, generally applicable, and comes with a sparse version (S-EPGP) that learns the relevant spectral frequencies and works better for big data sets. We demonstrate our approach on three families of systems of PDEs, the heat equation, wave equation, and Maxwell's equations, where we improve upon the state of the art in computation time and precision, in some experiments by several orders of magnitude.

Poster
Sehyun Kwon · Joo Young Choi · Ernest Ryu

[ Exhibit Hall 1 ]

In many computer vision applications, images are acquired with arbitrary or random rotations and translations, and in such setups, it is desirable to obtain semantic representations disentangled from the image orientation. Examples of such applications include semiconductor wafer defect inspection, plankton microscope images, and inference on single-particle cryo-electron microscopy (cryo-EM) micro-graphs. In this work, we propose Invariant Representation Learning with Implicit Neural Representation (IRL-INR), which uses an implicit neural representation (INR) with a hypernetwork to obtain semantic representations disentangled from the orientation of the image. We show that IRL-INR can effectively learn disentangled semantic representations on more complex images compared to those considered in prior works and show that these semantic representations synergize well with SCAN to produce state-of-the-art unsupervised clustering results.

Poster
Matthew Muckley · Alaaeldin El-Nouby · Karen Ullrich · Herve Jegou · Jakob Verbeek

[ Exhibit Hall 1 ]

Lossy image compression aims to represent images in as few bits as possible while maintaining fidelity to the original. Theoretical results indicate that optimizing distortion metrics such as PSNR or MS-SSIM necessarily leads to a discrepancy in the statistics of original images from those of reconstructions, in particular at low bitrates, often manifested by the blurring of the compressed images. Previous work has leveraged adversarial discriminators to improve statistical fidelity. Yet these binary discriminators adopted from generative modeling tasks may not be ideal for image compression. In this paper, we introduce a non-binary discriminator that is conditioned on quantized local image representations obtained via VQ-VAE autoencoders. Our evaluations on the CLIC2020, DIV2K and Kodak datasets show that our discriminator is more effective for jointly optimizing distortion (e.g., PSNR) and statistical fidelity (e.g., FID) than the PatchGAN of the state-of-the-art HiFiC model. On CLIC2020, we obtain the same FID as HiFiC with 30-40% fewer bits.

Poster
Kenton Lee · Mandar Joshi · Iulia Turc · Hexiang Hu · Fangyu Liu · Julian M Eisenschlos · Urvashi Khandelwal · Peter Shaw · Ming-Wei Chang · Kristina Toutanova

[ Exhibit Hall 1 ]

Visually-situated language is ubiquitous---sources range from textbooks with diagrams to web pages with images and tables, to mobile apps with buttons and forms. Perhaps due to this diversity, previous work has typically relied on domain-specific recipes with limited sharing of the underlying data, model architectures, and objectives. We present Pix2Struct, a pretrained image-to-text model for purely visual language understanding, which can be finetuned on tasks containing visually-situated language. Pix2Struct is pretrained by learning to parse masked screenshots of web pages into simplified HTML. The web, with its richness of visual elements cleanly reflected in the HTML structure, provides a large source of pretraining data well suited to the diversity of downstream tasks. Intuitively, this objective subsumes common pretraining signals such as OCR, language modeling, and image captioning. In addition to the novel pretraining strategy, we introduce a variable-resolution input representation and a more flexible integration of language and vision inputs, where language prompts such as questions are rendered directly on top of the input image. For the first time, we show that a single pretrained model can achieve state-of-the-art results in six out of nine tasks across four domains: documents, illustrations, user interfaces, and natural images.

Poster
Andrew Szot · Unnat Jain · Dhruv Batra · Zsolt Kira · Ruta Desai · Akshara Rai

[ Exhibit Hall 1 ]

We present the task of "Social Rearrangement", consisting of cooperative everyday tasks like setting up the dinner table, tidying a house or unpacking groceries in a simulated multi-agent environment. In Social Rearrangement, two robots coordinate to complete a long-horizon task, using onboard sensing and egocentric observations, and no privileged information about the environment. We study zero-shot coordination (ZSC) in this task, where an agent collaborates with a new partner, emulating a scenario where a robot collaborates with a new human partner. Prior ZSC approaches struggle to generalize in our complex and visually rich setting, and on further analysis, we find that they fail to generate diverse coordination behaviors at training time. To counter this, we propose Behavior Diversity Play (BDP), a novel ZSC approach that encourages diversity through a discriminability objective. Our results demonstrate that BDP learns adaptive agents that can tackle visual coordination, and zero-shot generalize to new partners in unseen environments, achieving 35% higher success and 32% higher efficiency compared to baselines.

Poster
Xuefeng Liu · Takuma Yoneda · Chaoqi Wang · Matthew Walter · Yuxin Chen

[ Exhibit Hall 1 ]

Reinforcement learning (RL) has made significant strides in various complex domains. However, identifying an effective policy via RL often necessitates extensive exploration. Imitation learning aims to mitigate this issue by using expert demonstrations to guide exploration. In real-world scenarios, one often has access to multiple suboptimal black-box experts, rather than a single optimal oracle. These experts do not universally outperform each other across all states, presenting a challenge in actively deciding which oracle to use and in which state. We introduce MAPS and MAPS-SE, a class of policy improvement algorithms that perform imitation learning from multiple suboptimal oracles. In particular, MAPS actively selects which of the oracles to imitate and improve their value function estimates, and MAPS-SE additionally leverages an active state exploration criterion to determine which states one should explore. We provide a comprehensive theoretical analysis and demonstrate that MAPS and MAPS-SE enjoy sample efficiency advantage over the state-of-the-art policy improvement algorithms. Empirical results show that MAPS-SE significantly accelerates policy optimization via state-wise imitation learning from multiple oracles across a broad spectrum of control tasks in the DeepMind Control Suite.

Poster
Yan Xu · Deqian Kong · Dehong Xu · Ziwei Ji · Bo Pang · Pascale FUNG · Ying Nian Wu

[ Exhibit Hall 1 ]

The capability to generate responses with diversity and faithfulness using factual knowledge is paramount for creating a human-like, trustworthy dialogue system. Common strategies either adopt a two-step paradigm, which optimizes knowledge selection and response generation separately, and may overlook the inherent correlation between these two tasks, or leverage conditional variational method to jointly optimize knowledge selection and response generation by employing an inference network. In this paper, we present an end-to-end learning framework, termed Sequential Posterior Inference (SPI), capable of selecting knowledge and generating dialogues by approximately sampling from the posterior distribution. Unlike other methods, SPI does not require the inference network or assume a simple geometry of the posterior distribution. This straightforward and intuitive inference procedure of SPI directly queries the response generation model, allowing for accurate knowledge selection and generation of faithful responses. In addition to modeling contributions, our experimental results on two common dialogue datasets (Wizard of Wikipedia and Holl-E) demonstrate that SPI outperforms previous strong baselines according to both automatic and human evaluation metrics.

Poster
Sadegh Farhadkhani · Rachid Guerraoui · Nirupam Gupta · Lê-Nguyên Hoang · Rafael Pinot · John Stephan

[ Exhibit Hall 1 ]

Collaborative learning algorithms, such as distributed SGD (or D-SGD), are prone to faulty machines that may deviate from their prescribed algorithm because of software or hardware bugs, poisoned data or malicious behaviors. While many solutions have been proposed to enhance the robustness of D-SGD to such machines, previous works either resort to strong assumptions (trusted server, homogeneous data, specific noise model) or impose a gradient computational cost that is several orders of magnitude higher than that of D-SGD. We present MoNNA, a new algorithm that (a) is provably robust under standard assumptions and (b) has a gradient computation overhead that is linear in the fraction of faulty machines, which is conjectured to be tight. Essentially, MoNNA uses Polyak's momentum of local gradients for local updates and nearest-neighbor averaging (NNA) for global mixing, respectively. While MoNNA is rather simple to implement, its analysis has been more challenging and relies on two key elements that may be of independent interest. Specifically, we introduce the mixing criterion of $(\alpha, \lambda)$-reduction to analyze the non-linear mixing of non-faulty machines, and present a way to control the tension between the momentum and the model drifts. We validate our theory by experiments on image classification and …
Poster
Hien Dang · Tho Tran Huu · Stanley Osher · Hung Tran-The · Nhat Ho · TAN NGUYEN

[ Exhibit Hall 1 ]

Modern deep neural networks have achieved impressive performance on tasks from image classification to natural language processing. Surprisingly, these complex systems with massive amounts of parameters exhibit the same structural properties in their last-layer features and classifiers across canonical datasets when training until convergence. In particular, it has been observed that the last-layer features collapse to their class-means, and those class-means are the vertices of a simplex Equiangular Tight Frame (ETF). This phenomenon is known as Neural Collapse (NC). Recent papers have theoretically shown that NC emerges in the global minimizers of training problems with the simplified ``unconstrained feature model''. In this context, we take a step further and prove the NC occurrences in deep linear networks for the popular mean squared error (MSE) and cross entropy (CE) losses, showing that global solutions exhibit NC properties across the linear layers. Furthermore, we extend our study to imbalanced data for MSE loss and present the first geometric analysis of NC under bias-free setting. Our results demonstrate the convergence of the last-layer features and classifiers to a geometry consisting of orthogonal vectors, whose lengths depend on the amount of data in their corresponding classes. Finally, we empirically validate our theoretical analyses on …

Poster
Maohao Shen · Yuheng Bu · Gregory Wornell

[ Exhibit Hall 1 ]

Due to privacy, storage, and other constraints, there is a growing need for unsupervised domain adaptation techniques in machine learning that do not require access to the data used to train a collection of source models. Existing methods for multi-source-free domain adaptation (MSFDA) typically train a target model using pseudo-labeled data produced by the source models, which focus on improving the pseudo-labeling techniques or proposing new training objectives. Instead, we aim to analyze the fundamental limits of MSFDA. In particular, we develop an information-theoretic bound on the generalization error of the resulting target model, which illustrates an inherent bias-variance trade-off. We then provide insights on how to balance this trade-off from three perspectives, including domain aggregation, selective pseudo-labeling, and joint feature alignment, which leads to the design of novel algorithms. Experiments on multiple datasets validate our theoretical analysis and demonstrate the state-of-art performance of the proposed algorithm, especially on some of the most challenging datasets, including Office-Home and DomainNet.

Poster
Igor Melnyk · Vijil Chenthamarakshan · Pin-Yu Chen · Payel Das · Amit Dhurandhar · Inkit Padhi · Devleena Das

[ Exhibit Hall 1 ]

Antibodies comprise the most versatile class of binding molecules, with numerous applications in biomedicine. Computational design of antibodies involves generating novel and diverse sequences, while maintaining structural consistency. Unique to antibodies, designing the complementarity-determining region (CDR), which determines the antigen binding affinity and specificity, creates its own unique challenges. Recent deep learning models have shown impressive results, however the limited number of known antibody sequence/structure pairs frequently leads to degraded performance, particularly lacking diversity in the generated sequences. In our work we address this challenge by leveraging Model Reprogramming (MR), which repurposes pretrained models on a source language to adapt to the tasks that are in a different language and have scarce data - where it may be difficult to train a high-performing model from scratch or effectively fine-tune an existing pre-trained model on the specific task. Specifically, we introduce ReprogBert in which a pretrained English language model is repurposed for protein sequence infilling - thus considers cross-language adaptation using less data. Results on antibody design benchmarks show that our model on low-resourced antibody sequence dataset provides highly diverse CDR sequences, up to more than a two-fold increase of diversity over the baselines, without losing structural integrity and naturalness. The …

Poster
Jung Hyun Lee · Jeonghoon Kim · Se Jung Kwon · Dongsoo Lee

[ Exhibit Hall 1 ]

Post-training quantization (PTQ) has been gaining popularity for the deployment of deep neural networks on resource-limited devices since unlike quantization-aware training, neither a full training dataset nor end-to-end training is required at all. As PTQ schemes based on reconstructing each layer or block output turn out to be effective to enhance quantized model performance, recent works have developed algorithms to devise and learn a new weight-rounding scheme so as to better reconstruct each layer or block output. In this work, we propose a simple yet effective new weight-rounding mechanism for PTQ, coined FlexRound, based on element-wise division instead of typical element-wise addition such that FlexRound enables jointly learning a common quantization grid size as well as a different scale for each pre-trained weight. Thanks to the reciprocal rule of derivatives induced by element-wise division, FlexRound is inherently able to exploit pre-trained weights when updating their corresponding scales, and thus, flexibly quantize pre-trained weights depending on their magnitudes. We empirically validate the efficacy of FlexRound on a wide range of models and tasks. To the best of our knowledge, our work is the first to carry out comprehensive experiments on not only image classification and natural language understanding but also natural …

Poster
Tianjun Zhang · Fangchen Liu · Justin Wong · Pieter Abbeel · Joseph E Gonzalez

[ Exhibit Hall 1 ]

Reinforcement learning has seen wide success in finetuning large language models to better align with instructions via human feedback. The so-called algorithm, Reinforcement Learning with Human Feedback (RLHF) demonstrates impressive performance on the GPT series models. However, the underlying reinforcement learning algorithm is complex and requires additional training for reward and value networks. In this paper, we consider an alternative approach: converting feedback to instruction by relabeling the original one and training the model for better alignment in a supervised manner. Such an algorithm doesn't require any additional parameters except for the original language model and maximally reuses the pretraining pipeline. To achieve this, we formulate instruction alignment problem for language models as a goal-reaching problem in decision making. We propose Hindsight Instruction Relabeling (HIR), a novel algorithm for aligning language models with instructions. The resulting two-stage algorithm shed light to a family of reward-free approaches that utilize the hindsightly relabeled instructions based on feedback. We evaluate the performance of HIR extensively on 12 challenging BigBench reasoning tasks and show that HIR outperforms the baseline algorithms and is comparable to or even surpasses supervised fine-tuning. The implementation of HIR is available at https://github.com/tianjunz/HIR.

Poster
Ayush Tarun · Vikram Chundawat · Murari Mandal · Mohan Kankanhalli

[ Exhibit Hall 1 ]

With the introduction of data protection and privacy regulations, it has become crucial to remove the lineage of data on demand from a machine learning (ML) model. In the last few years, there have been notable developments in machine unlearning to remove the information of certain training data efficiently and effectively from ML models. In this work, we explore unlearning for the regression problem, particularly in deep learning models. Unlearning in classification and simple linear regression has been considerably investigated. However, unlearning in deep regression models largely remains an untouched problem till now. In this work, we introduce deep regression unlearning methods that generalize well and are robust to privacy attacks. We propose the Blindspot unlearning method which uses a novel weight optimization process. A randomly initialized model, partially exposed to the retain samples and a copy of the original model are used together to selectively imprint knowledge about the data that we wish to keep and scrub off the information of the data we wish to forget. We also propose a Gaussian fine tuning method for regression unlearning. The existing unlearning metrics for classification are not directly applicable to regression unlearning. Therefore, we adapt these metrics for the regression …

Poster
Tongda Xu · Han Gao · Chenjian Gao · Yuanyuan Wang · Dailan He · Jinyong Pi · Jixiang Luo · Ziyu Zhu · Mao Ye · Hongwei Qin · Yan Wang · Jingjing Liu · Ya-Qin Zhang

[ Exhibit Hall 1 ]

In this paper, we consider the problem of bit allocation in Neural Video Compression (NVC). First, we reveal a fundamental relationship between bit allocation in NVC and Semi-Amortized Variational Inference (SAVI). Specifically, we show that SAVI with GoP (Group-of-Picture)-level likelihood is equivalent to pixel-level bit allocation with precise rate & quality dependency model. Based on this equivalence, we establish a new paradigm of bit allocation using SAVI. Different from previous bit allocation methods, our approach requires no empirical model and is thus optimal. Moreover, as the original SAVI using gradient ascent only applies to single-level latent, we extend the SAVI to multi-level such as NVC by recursively applying back-propagating through gradient ascent. Finally, we propose a tractable approximation for practical implementation. Our method can be applied to scenarios where performance outweights encoding speed, and serves as an empirical bound on the R-D performance of bit allocation. Experimental results show that current state-of-the-art bit allocation algorithms still have a room of $\approx 0.5$ dB PSNR to improve compared with ours. Code is available at https://github.com/tongdaxu/Bit-Allocation-Using-Optimization.
Poster
Wenjie Wu · Ge Yan · Xudong Lu · Kaisen Pan · Junchi Yan

[ Exhibit Hall 1 ]

With the arrival of the Noisy Intermediate-Scale Quantum (NISQ) era and the fast development of machine learning, variational quantum algorithms (VQA) including Variational Quantum Eigensolver (VQE) and quantum neural network (QNN) have received increasing attention with wide potential applications in foreseeable near future. We study the problem of quantum architecture search (QAS) for VQA to automatically design parameterized quantum circuits (PQC). We devise a differentiable searching algorithm based on Gumbel-Softmax in contrast to peer methods that often require numerous circuit sampling and evaluation. Two versions of our algorithm are provided, namely macro search and micro search, where macro search directly searches for the whole circuit like other literature while the innovative micro search is able to infer the sub-circuit structure from a small-scale and then transfer that to a large-scale problem. We conduct intensive experiments on unweighted Max-Cut, ground state energy estimation, and image classification. The superior performance shows the efficiency and capability of macro search, which requires little prior knowledge. Moreover, the experiments on micro search show the potential of our algorithm for large-scale QAS problems.

Poster
Phillip Si · Zeyi Chen · Subham S Sahoo · Yair Schiff · Volodymyr Kuleshov

[ Exhibit Hall 1 ]

Training normalizing flow generative models can be challenging due to the need to calculate computationally expensive determinants of Jacobians. This paper studies the likelihood-free training of flows and proposes the energy objective, an alternative sample-based loss based on proper scoring rules. The energy objective is determinant-free and supports flexible model architectures that are not easily compatible with maximum likelihood training, including semi-autoregressive energy flows, a novel model family that interpolates between fully autoregressive and non-autoregressive models. Energy flows feature competitive sample quality, posterior inference, and generation speed relative to likelihood-based flows; this performance is decorrelated from the quality of log-likelihood estimates, which are generally very poor. Our findings question the use of maximum likelihood as an objective or a metric, and contribute to a scientific study of its role in generative modeling. Code is available at https://github.com/ps789/SAEF.

Poster
Benjamin Gutteridge · Xiaowen Dong · Michael Bronstein · Francesco Di Giovanni

[ Exhibit Hall 1 ]

Message passing neural networks (MPNNs) have been shown to suffer from the phenomenon of over-squashing that causes poor performance for tasks relying on long-range interactions. This can be largely attributed to message passing only occurring locally, over a node's immediate neighbours. Rewiring approaches attempting to make graphs 'more connected', and supposedly better suited to long-range tasks, often lose the inductive bias provided by distance on the graph since they make distant nodes communicate instantly at every layer. In this paper we propose a framework, applicable to any MPNN architecture, that performs a layer-dependent rewiring to ensure gradual densification of the graph. We also propose a delay mechanism that permits skip connections between nodes depending on the layer and their mutual distance. We validate our approach on several long-range tasks and show that it outperforms graph Transformers and multi-hop MPNNs.

Poster
Georgii Novikov · Daniel Bershatsky · Julia Gusak · Alex Shonenkov · Denis Dimitrov · Ivan Oseledets

[ Exhibit Hall 1 ]

Memory footprint is one of the main limiting factors for large neural network training. In backpropagation, one needs to store the input to each operation in the computational graph. Every modern neural network model has quite a few pointwise nonlinearities in its architecture, and such operations induce additional memory costs that, as we show, can be significantly reduced by quantization of the gradients. We propose a systematic approach to compute optimal quantization of the retained gradients of the pointwise nonlinear functions with only a few bits per each element. We show that such approximation can be achieved by computing an optimal piecewise-constant approximation of the derivative of the activation function, which can be done by dynamic programming. The drop-in replacements are implemented for all popular nonlinearities and can be used in any existing pipeline. We confirm the memory reduction and the same convergence on several open benchmarks.

Poster
Xiaoxia Wu · Cheng Li · Reza Yazdani Aminabadi · Zhewei Yao · Yuxiong He

[ Exhibit Hall 1 ]

Improving the deployment efficiency of transformer-based language models has been challenging given their high computation and memory cost. While INT8 quantization has recently been shown to be effective in reducing both the memory cost and latency while preserving model accuracy, it remains unclear whether we can leverage INT4 (which doubles peak hardware throughput) to achieve further latency improvement. In this study, we explore the feasibility of employing INT4 weight and activation (W4A4) quantization for language models. Our findings indicate that W4A4 quantization introduces no to negligible accuracy degradation for encoder-only and encoder-decoder models, but causes a significant accuracy drop for decoder-only models. To materialize the performance gain using W4A4, we develop a highly-optimized end-to-end W4A4 encoder inference pipeline supporting different quantization strategies. Our INT4 pipeline is $8.5\times$ faster for latency-oriented scenarios and up to $3\times$ for throughput-oriented scenarios compared to the inference of FP16, and improves the SOTA BERT INT8 performance from FasterTransformer by up to $1.7\times$. We provide insights into the failure cases when applying W4A4 to decoder-only models, and further explore the compatibility of INT4 quantization with other compression methods, like pruning and layer reduction.
Poster
Max Ryabinin · Tim Dettmers · Michael Diskin · Alexander Borzunov

[ Exhibit Hall 1 ]

Many deep learning applications benefit from using large models with billions of parameters. Training these models is notoriously expensive due to the need for specialized HPC clusters. In this work, we consider alternative setups for training large models: using cheap ``preemptible'' instances or pooling existing resources from multiple regions. We analyze the performance of existing model-parallel algorithms in these conditions and find configurations where training larger models becomes less communication-intensive. Based on these findings, we propose SWARM Parallelism (Stochastically Wired Adaptively Rebalanced Model Parallelism), a model-parallel training algorithm designed for poorly connected, heterogeneous and unreliable devices. SWARM creates temporary randomized pipelines between nodes that are rebalanced in case of failure. We empirically validate our findings and compare SWARM Parallelism with existing large-scale training approaches. Finally, we combine our insights with compression strategies to train a large Transformer language model with 1B shared parameters ($\approx$13B before sharing) on preemptible T4 GPUs with less than 200 Mb/s network.
Poster
Philip Ball · Laura Smith · Ilya Kostrikov · Sergey Levine

[ Exhibit Hall 1 ]

Sample efficiency and exploration remain major challenges in online reinforcement learning (RL). A powerful approach that can be applied to address these issues is the inclusion of offline data, such as prior trajectories from a human expert or a sub-optimal exploration policy. Previous methods have relied on extensive modifications and additional complexity to ensure the effective use of this data. Instead, we ask: *can we simply apply existing off-policy methods to leverage offline data when learning online?* In this work, we demonstrate that the answer is yes; however, a set of minimal but important changes to existing off-policy RL algorithms are required to achieve reliable performance. We extensively ablate these design choices, demonstrating the key factors that most affect performance, and arrive at a set of recommendations that practitioners can readily apply, whether their data comprise a small number of expert demonstrations or large volumes of sub-optimal trajectories. We see that correct application of these simple recommendations can provide a $\mathbf{2.5\times}$ improvement over existing approaches across a diverse set of competitive benchmarks, with no additional computational overhead.
Poster
Mattia Atzeni · Mrinmaya Sachan · Andreas Loukas

[ Exhibit Hall 1 ]

The Abstraction and Reasoning Corpus (ARC) (Chollet, 2019) and its most recent language-complete instantiation (LARC) has been postulated as an important step towards general AI. Yet, even state-of-the-art machine learning models struggle to achieve meaningful performance on these problems, falling behind non-learning based approaches. We argue that solving these tasks requires extreme generalization that can only be achieved by proper accounting for core knowledge priors. As a step towards this goal, we focus on geometry priors and introduce LatFormer, a model that incorporates lattice symmetry priors in attention masks. We show that, for any transformation of the hypercubic lattice, there exists a binary attention mask that implements that group action. Hence, our study motivates a modification to the standard attention mechanism, where attention weights are scaled using soft masks generated by a convolutional network. Experiments on synthetic geometric reasoning show that LatFormer requires 2 orders of magnitude fewer data than standard attention and transformers. Moreover, our results on ARC and LARC tasks that incorporate geometric priors provide preliminary evidence that these complex datasets do not lie out of the reach of deep learning models.

Poster
Avik Pal · Alan Edelman · Christopher Rackauckas

[ Exhibit Hall 1 ]

Neural Differential Equations have become an important modeling framework due to their ability to adapt to new problems automatically. Training a neural differential equation is effectively a search over a space of plausible dynamical systems. Controlling the computational cost for these models is difficult since it relies on the number of steps the adaptive solver takes. Most prior works have used higher-order methods to reduce prediction timings while greatly increasing training time or reducing both training and prediction timings by relying on specific training algorithms, which are harder to use as a drop-in replacement. In this manuscript, we use internal cost heuristics of adaptive differential equation solvers at stochastic time-points to guide the training towards learning a dynamical system that is easier to integrate. We ``close the blackbox'' and allow the use of our method with any sensitivity method. We perform experimental studies to compare our method to global regularization to show that we attain similar performance numbers without compromising on the flexibility of implementation. We develop two sampling strategies to trade-off between performance and training time. Our method reduces the number of function evaluations to 0.556x - 0.733x and accelerates predictions by 1.3x - 2x.

Poster
Pierre Richemond · Allison Tam · Yunhao Tang · Florian Strub · Bilal Piot · Feilx Hill

[ Exhibit Hall 1 ]

Self-predictive unsupervised learning methods such as BYOL or SimSIAM have shown impressive results, and counter-intuitively, do not collapse to trivial representations. In this work, we aim at exploring the simplest possible mathematical arguments towards explaining the underlying mechanisms behind self-predictive unsupervised learning. We start with the observation that those methods crucially rely on the presence of a predictor network (and stop-gradient). With simple linear algebra, we show that when using a linear predictor, the optimal predictor is close to an orthogonal projection, and propose a general framework based on orthonormalization that enables to interpret and give intuition on why BYOL works. In addition, this framework demonstrates the crucial role of the exponential moving average and stop-gradient operator in BYOL as an efficient orthonormalization mechanism. We use these insights to propose four new closed-form predictor variants of BYOL to support our analysis. Our closed-form predictors outperform standard linear trainable predictor BYOL at 100 and 300 epochs (top-1 linear accuracy on ImageNet).

Poster
Atish Agarwala · Fabian Pedregosa · Jeffrey Pennington

[ Exhibit Hall 1 ]

Recent studies of gradient descent with large step sizes have shown that there is often a regime with an initial increase in the largest eigenvalue of the loss Hessian (progressive sharpening), followed by a stabilization of the eigenvalue near the maximum value which allows convergence (edge of stability). These phenomena are intrinsically non-linear and do not happen for models in the constant Neural Tangent Kernel (NTK) regime, for which the predictive function is approximately linear in the parameters. As such, we consider the next simplest class of predictive models, namely those that are quadratic in the parameters, which we call second-order regression models. For quadratic objectives in two dimensions, we prove that this second-order regression model exhibits progressive sharpening of the NTK eigenvalue towards a value that differs slightly from the edge of stability, which we explicitly compute. In higher dimensions, the model generically shows similar behavior, even without the specific structure of a neural network, suggesting that progressive sharpening and edge-of-stability behavior aren't unique features of neural networks, and could be a more general property of discrete learning algorithms in high-dimensional non-linear models.

Poster
Yuhe Guo · Zhewei Wei

[ Exhibit Hall 1 ]

Polynomial filters, a kind of Graph Neural Networks, typically use a predetermined polynomial basis and learn the coefficients from the training data. It has been observed that the effectiveness of the model is highly dependent on the property of the polynomial basis. Consequently, two natural and fundamental questions arise: Can we learn a suitable polynomial basis from the training data? Can we determine the optimal polynomial basis for a given graph and node features? In this paper, we propose two spectral GNN models that provide positive answers to the questions posed above. First, inspired by Favard's Theorem, we propose the FavardGNN model, which learns a polynomial basis from the space of all possible orthonormal bases. Second, we examine the supposedly unsolvable definition of optimal polynomial basis from Wang et al. (2022) and propose a simple model, OptBasisGNN, which computes the optimal basis for a given graph structure and graph signal. Extensive experiments are conducted to demonstrate the effectiveness of our proposed models. Our code is available at https://github.com/yuziGuo/FarOptBasis.

Poster
Jason Yim · Brian Trippe · Valentin De Bortoli · Emile Mathieu · Arnaud Doucet · Regina Barzilay · Tommi Jaakkola

[ Exhibit Hall 1 ]

The design of novel protein structures remains a challenge in protein engineering for applications across biomedicine and chemistry. In this line of work, a diffusion model over rigid bodies in 3D (referred to as frames) has shown success in generating novel, functional protein backbones that have not been observed in nature. However, there exists no principled methodological framework for diffusion on SE(3), the space of orientation preserving rigid motions in R3, that operates on frames and confers the group invariance. We address these shortcomings by developing theoretical foundations of SE(3) invariant diffusion models on multiple frames followed by a novel framework, FrameDiff, for estimating the SE(3) equivariant score over multiple frames. We apply FrameDiff on monomer backbone generation and find it can generate designable monomers up to 500 amino acids without relying on a pretrained protein structure prediction network that has been integral to previous methods. We find our samples are capable of generalizing beyond any known protein structure.

Poster
Sören Becker · Michal Klein · Alexander Neitz · Giambattista Parascandolo · Niki Kilbertus

[ Exhibit Hall 1 ]

We develop a transformer-based sequence-to-sequence model that recovers scalar ordinary differential equations (ODEs) in symbolic form from irregularly sampled and noisy observations of a single solution trajectory. We demonstrate in extensive empirical evaluations that our model performs better or on par with existing methods in terms of accurate recovery across various settings. Moreover, our method is efficiently scalable: after one-time pretraining on a large set of ODEs, we can infer the governing law of a new observed solution in a few forward passes of the model.

Poster
Zheng Xiong · Jacob Beck · Shimon Whiteson

[ Exhibit Hall 1 ]

Learning a universal policy across different robot morphologies can significantly improve learning efficiency and generalization in continuous control. However, it poses a challenging multi-task reinforcement learning problem, as the optimal policy may be quite different across robots and critically depend on the morphology. Existing methods utilize graph neural networks or transformers to handle heterogeneous state and action spaces across different morphologies, but pay little attention to the dependency of a robot's control policy on its morphology context. In this paper, we propose a hierarchical architecture to better model this dependency via contextual modulation, which includes two key submodules: (1) Instead of enforcing hard parameter sharing across robots, we use hypernetworks to generate morphology-dependent control parameters; (2) We propose a fixed attention mechanism that solely depends on the morphology to modulate the interactions between different limbs in a robot. Experimental results show that our method not only improves learning performance on a diverse set of training robots, but also generalizes better to unseen morphologies in a zero-shot fashion. The code is publicly available at https://github.com/MasterXiong/ModuMorph.

Poster
Shengping Zhang · Quanling Meng · Qinglin Liu · Liqiang Nie · Bineng Zhong · Xiaopeng Fan · Rongrong Ji

[ Exhibit Hall 1 ]

Object placement aims to insert a foreground object into a background image with a suitable location and size to create a natural composition. To predict a diverse distribution of placements, existing methods usually establish a one-to-one mapping from random vectors to the placements. However, these random vectors are not interpretable, which prevents users from interacting with the object placement process. To address this problem, we propose an Interactive Object Placement method with Reinforcement Learning, dubbed IOPRE, to make sequential decisions for producing a reasonable placement given an initial location and size of the foreground. We first design a novel action space to flexibly and stably adjust the location and size of the foreground while preserving its aspect ratio. Then, we propose a multi-factor state representation learning method, which integrates composition image features and sinusoidal positional embeddings of the foreground to make decisions for selecting actions. Finally, we design a hybrid reward function that combines placement assessment and the number of steps to ensure that the agent learns to place objects in the most visually pleasing and semantically appropriate location. Experimental results on the OPA dataset demonstrate that the proposed method achieves state-of-the-art performance in terms of plausibility and diversity.

Poster
Zhongkai Hao · Zhengyi Wang · Hang Su · Chengyang Ying · Yinpeng Dong · LIU SONGMING · Ze Cheng · Jian Song · Jun Zhu

[ Exhibit Hall 1 ]

Abstract
Learning partial differential equations' (PDEs) solution operators is an essential problem in machine learning. However, there are several challenges for learning operators in practical applications like the irregular mesh, multiple input functions, and complexity of the PDEs' solution. To address these challenges, we propose a general neural operator transformer (GNOT), a scalable and effective transformer-based framework for learning operators. By designing a novel heterogeneous normalized attention layer, our model is highly flexible to handle multiple input functions and irregular meshes. Besides, we introduce a geometric gating mechanism which could be viewed as a soft domain decomposition to solve the multi-scale problems. The large model capacity of the transformer architecture grants our model the possibility to scale to large datasets and practical problems. We conduct extensive experiments on multiple challenging datasets from different domains and achieve a remarkable improvement compared with alternative methods. Our code and data are publicly available at https://github.com/thu-ml/GNOT.
Poster
Shouheng Li · Dongwoo Kim · Qing Wang

[ Exhibit Hall 1 ]

In recent years, there has been a significant amount of research focused on expanding the expressivity of Graph Neural Networks (GNNs) beyond the Weisfeiler-Lehman (1-WL) framework. While many of these studies have yielded advancements in expressivity, they have frequently come at the expense of decreased efficiency or have been restricted to specific types of graphs. In this study, we investigate the expressivity of GNNs from the perspective of graph search. Specifically, we propose a new vertex colouring scheme and demonstrate that classical search algorithms can efficiently compute graph representations that extend beyond the 1-WL. We show the colouring scheme inherits useful properties from graph search that can help solve problems like graph biconnectivity. Furthermore, we show that under certain conditions, the expressivity of GNNs increases hierarchically with the radius of the search neighbourhood. To further investigate the proposed scheme, we develop a new type of GNN based on two search strategies, breadth-first search and depth-first search, highlighting the graph properties they can capture on top of 1-WL. Our code is available at https://github.com/seanli3/lvc.

Poster
Simon Markus Geisler · Yujia Li · Daniel Mankowitz · Taylan Cemgil · Stephan Günnemann · Cosmin Paduraru

[ Exhibit Hall 1 ]

Transformers were originally proposed as a sequence-to-sequence model for text but have become vital for a wide range of modalities, including images, audio, video, and undirected graphs. However, transformers for directed graphs are a surprisingly underexplored topic, despite their applicability to ubiquitous domains, including source code and logic circuits. In this work, we propose two direction- and structure-aware positional encodings for directed graphs: (1) the eigenvectors of the Magnetic Laplacian — a direction-aware generalization of the combinatorial Laplacian; (2) directional random walk encodings. Empirically, we show that the extra directionality information is useful in various downstream tasks, including correctness testing of sorting networks and source code understanding. Together with a data-flow-centric graph construction, our model outperforms the prior state of the art on the Open Graph Benchmark Code2 relatively by 14.7%.

Poster
Jiatao Gu · Alex Trevithick · Kai-En Lin · Joshua M Susskind · Christian Theobalt · Lingjie Liu · Ravi Ramamoorthi

[ Exhibit Hall 1 ]

Novel view synthesis from a single image requires inferring occluded regions of objects and scenes whilst simultaneously maintaining semantic and physical consistency with the input. Existing approaches condition neural radiance fields (NeRF) on local image features, projecting points to the input image plane, and aggregating 2D features to perform volume rendering. However, under severe occlusion, this projection fails to resolve uncertainty, resulting in blurry renderings that lack details. In this work, we propose NerfDiff, which addresses this issue by distilling the knowledge of a 3D-aware conditional diffusion model (CDM) into NeRF through synthesizing and refining a set of virtual views at test-time. We further propose a novel NeRF-guided distillation algorithm that simultaneously generates 3D consistent virtual views from the CDM samples, and finetunes the NeRF based on the improved virtual views. Our approach significantly outperforms existing NeRF-based and geometry-free approaches on challenging datasets including ShapeNet, ABO, and Clevr3D.

Poster
Shahana Ibrahim · Xiao Fu · Rebecca Hutchinson · Eugene Seo

[ Exhibit Hall 1 ]

Systematic under-counting effects are observed in data collected across many disciplines, e.g., epidemiology and ecology. Under-counted tensor completion (UC-TC) is well-motivated for many data analytics tasks, e.g., inferring the case numbers of infectious diseases at unobserved locations from under-counted case numbers in neighboring regions. However, existing methods for similar problems often lack supports in theory, making it hard to understand the underlying principles and conditions beyond empirical successes. In this work, a low-rank Poisson tensor model with an expressive unknown nonlinear side information extractor is proposed for under-counted multi-aspect data. A joint low-rank tensor completion and neural network learning algorithm is designed to recover the model. Moreover, the UC-TC formulation is supported by theoretical analysis showing that the fully counted entries of the tensor and each entry's under-counting probability can be provably recovered from partial observations---under reasonable conditions. To our best knowledge, the result is the first to offer theoretical supports for under-counted multi-aspect data completion. Simulations and real-data experiments corroborate the theoretical claims.

Poster
Dingyang Chen · Qi Zhang

[ Exhibit Hall 1 ]

Executing actions in a correlated manner is a common strategy for human coordination that often leads to better cooperation, which is also potentially beneficial for cooperative multi-agent reinforcement learning (MARL). However, the recent success of MARL relies heavily on the convenient paradigm of purely decentralized execution, where there is no action correlation among agents for scalability considerations. In this work, we introduce a Bayesian network to inaugurate correlations between agents' action selections in their joint policy. Theoretically, we establish a theoretical justification for why action dependencies are beneficial by deriving the multi-agent policy gradient formula under such a Bayesian network joint policy and proving its global convergence to Nash equilibria under tabular softmax policy parameterization in cooperative Markov games. Further, by equipping existing MARL algorithms with a recent method of differentiable directed acyclic graphs (DAGs), we develop practical algorithms to learn the context-aware Bayesian network policies in scenarios with partial observability and various difficulty. We also dynamically decrease the sparsity of the learned DAG throughout the training process, which leads to weakly or even purely independent policies for decentralized execution. Empirical results on a range of MARL benchmarks show the benefits of our approach.

Poster
Pengfei Li · Jianyi Yang · Shaolei Ren

[ Exhibit Hall 1 ]

Many problems, such as online ad display, can be formulated as online bipartite matching. The crucial challenge lies in the nature of sequentially-revealed online item information, based on which we make irreversible matching decisions at each step. While numerous expert online algorithms have been proposed with bounded worst-case competitive ratios, they may not offer satisfactory performance in average cases. On the other hand, reinforcement learning (RL) has been applied to improve the average performance, but it lacks robustness and can perform arbitrarily poorly. In this paper, we propose a novel RL-based approach to edge-weighted online bipartite matching with robustness guarantees (LOMAR), achieving both good average-case and worst-case performance. The key novelty of LOMAR is a new online switching operation which, based on a judicious condition to hedge against future uncertainties, decides whether to follow the expert's decision or the RL decision for each online item. We prove that for any $\rho\in[0,1]$, LOMAR is $\rho$-competitive against any given expert online algorithm. To improve the average performance, we train the RL policy by explicitly considering the online switching operation. Finally, we run empirical experiments to demonstrate the advantages of LOMAR compared to existing baselines.
Poster
Zhenan Fan · Xinglu Wang · Oleksandr Yakovenko · Abdullah Ali Sivas · Owen Ren · Yong Zhang · Zirui Zhou

[ Exhibit Hall 1 ]

The simplex method, introduced by Dantzig more than half a century ago, is still to date one of the most efficient methods for solving large-scale linear programming (LP) problems. While the simplex method is known to have the finite termination property under mild assumptions, the number of iterations until optimality largely depends on the choice of initial basis. Existing strategies for selecting an advanced initial basis are mostly rule-based. These rules usually require extensive expert knowledge and empirical study to develop. Yet, many of them fail to exhibit consistent improvement, even for LP problems that arise in a single application scenario. In this paper, we propose a learning-based approach for initial basis selection. We employ graph neural networks as a building block and develop a model that attempts to capture the relationship between LP problems and their optimal bases. In addition, during the inference phase, we supplement the learning-based prediction with linear algebra tricks to ensure the validity of the generated initial basis. We validate the effectiveness of our proposed strategy by extensively testing it with state-of-the-art simplex solvers, including the open-source solver HiGHS and the commercial solver OptVerse. Through these rigorous experiments, we demonstrate that our strategy achieves substantial …

Poster
Namkyeong Lee · Dongmin Hyun · Gyoung S. Na · Sungwon Kim · Junseok Lee · Chanyoung Park

[ Exhibit Hall 1 ]

Molecular relational learning, whose goal is to learn the interaction behavior between molecular pairs, got a surge of interest in molecular sciences due to its wide range of applications. Recently, graph neural networks have recently shown great success in molecular relational learning by modeling a molecule as a graph structure, and considering atom-level interactions between two molecules. Despite their success, existing molecular relational learning methods tend to overlook the nature of chemistry, i.e., a chemical compound is composed of multiple substructures such as functional groups that cause distinctive chemical reactions. In this work, we propose a novel relational learning framework, called CGIB, that predicts the interaction behavior between a pair of graphs by detecting core subgraphs therein. The main idea is, given a pair of graphs, to find a subgraph from a graph that contains the minimal sufficient information regarding the task at hand conditioned on the paired graph based on the principle of conditional graph information bottleneck. We argue that our proposed method mimics the nature of chemical reactions, i.e., the core substructure of a molecule varies depending on which other molecule it interacts with. Extensive experiments on various tasks with real-world datasets demonstrate the superiority of CGIB over …

Poster
Shirley Wu · Mert Yuksekgonul · Linjun Zhang · James Zou

[ Exhibit Hall 1 ]

Deep neural networks often rely on spurious correlations to make predictions, which hinders generalization beyond training environments. For instance, models that associate cats with bed backgrounds can fail to predict the existence of cats in other environments without beds. Mitigating spurious correlations is crucial in building trustworthy models. However, the existing works lack transparency to offer insights into the mitigation process. In this work, we propose an interpretable framework, Discover and Cure (DISC), to tackle the issue. With human-interpretable concepts, DISC iteratively 1) discovers unstable concepts across different environments as spurious attributes, then 2) intervenes on the training data using the discovered concepts to reduce spurious correlation. Across systematic experiments, DISC provides superior generalization ability and interpretability than the existing approaches. Specifically, it outperforms the state-of-the-art methods on an object recognition task and a skin-lesion classification task by 7.5% and 9.6%, respectively. Additionally, we offer theoretical analysis and guarantees to understand the benefits of models trained by DISC. Code and data are available at https://github.com/Wuyxin/DISC.

Poster
Yige Li · XIXIANG LYU · Xingjun Ma · Nodens Koren · Lingjuan Lyu · Bo Li · Yu-Gang Jiang

[ Exhibit Hall 1 ]

Deep neural networks (DNNs) have been found to be vulnerable to backdoor attacks, raising security concerns about their deployment in mission-critical applications. While existing defense methods have demonstrated promising results, it is still not clear how to effectively remove backdoor-associated neurons in backdoored DNNs. In this paper, we propose a novel defense called Reconstructive Neuron Pruning (RNP) to expose and prune backdoor neurons via an unlearning and then recovering process. Specifically, RNP first unlearns the neurons by maximizing the model's error on a small subset of clean samples and then recovers the neurons by minimizing the model's error on the same data. In RNP, unlearning is operated at the neuron level while recovering is operated at the filter level, forming an asymmetric reconstructive learning procedure. We show that such an asymmetric process on only a few clean samples can effectively expose and prune the backdoor neurons implanted by a wide range of attacks, achieving a new state-of-the-art defense performance. Moreover, the unlearned model at the intermediate step of our RNP can be directly used to improve other backdoor defense tasks including backdoor removal, trigger recovery, backdoor label detection, and backdoor sample detection. Code is available at https://github.com/bboylyg/RNP.

Poster
Kaiwen Zhou · Kaizhi Zheng · Connor Pryor · Yilin Shen · Hongxia Jin · Lise Getoor · Xin Eric Wang

[ Exhibit Hall 1 ]

The ability to accurately locate and navigate to a specific object is a crucial capability for embodied agents that operate in the real world and interact with objects to complete tasks. Such object navigation tasks usually require large-scale training in visual environments with labeled objects, which generalizes poorly to novel objects in unknown environments. In this work, we present a novel zero-shot object navigation method, Exploration with Soft Commonsense constraints (ESC), that transfers commonsense knowledge in pre-trained models to open-world object navigation without any navigation experience nor any other training on the visual environments. First, ESC leverages a pre-trained vision and language model for open-world prompt-based grounding and a pre-trained commonsense language model for room and object reasoning. Then ESC converts commonsense knowledge into navigation actions by modeling it as soft logic predicates for efficient exploration. Extensive experiments on MP3D, HM3D, and RoboTHOR benchmarks show that our ESC method improves significantly over baselines, and achieves new state-of-the-art results for zero-shot object navigation (e.g., 288% relative Success Rate improvement than CoW on MP3D).

Poster
Frank Xu · Uri Alon · Graham Neubig

[ Exhibit Hall 1 ]

Language models (LMs) compute the probability of a text by sequentially computing a representation of an already-seen context and using this representation to predict the next word. Currently, most LMs calculate these representations through a neural network consuming the immediate previous context. However recently, retrieval-augmented LMs have shown to improve over standard neural LMs, by accessing information retrieved from a large datastore, in addition to their standard, parametric, next-word prediction. In this paper, we set out to understand why retrieval-augmented language models, and specifically why k-nearest neighbor language models (kNN-LMs) perform better than standard parametric LMs, even when the k-nearest neighbor component retrieves examples from the same training set that the LM was originally trained on. To this end, we perform analysis of various dimensions over which kNN-LM diverges from standard LMs, and investigate these dimensions one by one. Empirically, we identify three main reasons why kNN-LM performs better than standard LMs: using a different input representation for predicting the next tokens, approximate kNN search, and the importance of softmax temperature for the kNN distribution. Further, we incorporate some insights into the standard parametric LM, improving performance without the need for an explicit retrieval component. The code is available at …

Poster
Michihiro Yasunaga · Armen Aghajanyan · Weijia Shi · Richard James · Jure Leskovec · Percy Liang · Mike Lewis · Luke Zettlemoyer · Scott Yih

[ Exhibit Hall 1 ]

Recent multimodal models such as DALL-E and CM3 have achieved remarkable progress in text-to-image and image-to-text generation. However, these models store all their knowledge (e.g., the appearance of the Eiffel Tower) in the model parameters, requiring increasingly larger models and training data to capture more knowledge. To integrate knowledge in a more scalable and modular way, we propose a retrieval-augmented multimodal model, which enables a base multimodal model (generator) to refer to relevant text and images fetched by a retriever from external memory (e.g., documents on the web). Specifically, for the retriever, we use a pretrained CLIP, and for the generator, we train a CM3 Transformer on the LAION dataset. Our resulting model, named Retrieval-Augmented CM3 (RA-CM3), is the first multimodal model that can retrieve and generate both text and images. We show that RA-CM3 significantly outperforms baseline multimodal models such as DALL-E and CM3 on both image and caption generation tasks (12 FID and 17 CIDEr improvements on MS-COCO), while requiring much less compute for training (<30% of DALL-E). Moreover, we show that RA-CM3 exhibits novel capabilities such as faithful image generation and multimodal in-context learning (e.g., image generation from demonstrations).

Poster
Haitao Wen · haoyang cheng · Heqian Qiu · Lanxiao Wang · Lili Pan · Hongliang Li

[ Exhibit Hall 1 ]

Class incremental learning (CIL) is one of the most challenging scenarios in continual learning. Existing work mainly focuses on strategies like memory replay, regularization, or dynamic architecture but ignores a crucial aspect: mode connectivity. Recent studies have shown that different minima can be connected by a low-loss valley, and ensembling over the valley shows improved performance and robustness. Motivated by this, we try to investigate the connectivity in CIL and find that the high-loss ridge exists along the linear connection between two adjacent continual minima. To dodge the ridge, we propose parameter-saving OPtimizing Connectivity (OPC) based on Fourier series and gradient projection for finding the low-loss path between minima. The optimized path provides infinite low-loss solutions. We further propose EOPC to ensemble points within a local bent cylinder to improve performance on learned tasks. Our scheme can serve as a plug-in unit, extensive experiments on CIFAR-100, ImageNet-100, and ImageNet-1K show consistent improvements when adapting EOPC to existing representative CIL methods. Our code is available at https://github.com/HaitaoWen/EOPC.

Poster
Luke Vilnis · Yury Zemlyanskiy · Patrick Murray · Alexandre Passos · Sumit Sanghai

[ Exhibit Hall 1 ]

Decoding methods for large language models often trade-off between diversity of outputs and parallelism of computation. Methods such as beam search and Gumbel top-k sampling can guarantee a different output for each element of the beam, but are not easy to parallelize. Alternatively, methods such as temperature sampling and its modifications (top-k sampling, nucleus sampling, typical decoding, and others), are embarrassingly parallel, but have no guarantees about duplicate samples. We present a framework for sampling according to an arithmetic code book implicitly defined by a large language model, compatible with common sampling variations, with provable beam diversity under certain conditions, as well as being embarrassingly parallel and providing unbiased and consistent expectations from the original model. We demonstrate the effectiveness of our approach on WMT machine translation, more than halving the standard deviation when estimating expected BLEU score reward, and closing the BLEU score gap between independent sampling and beam search by up to 63%.

Poster
Jacob H. Seidman · Georgios Kissas · George J. Pappas · Paris Perdikaris

[ Exhibit Hall 1 ]

Unsupervised learning with functional data is an emerging paradigm of machine learning research with applications to computer vision, climate modeling and physical systems. A natural way of modeling functional data is by learning operators between infinite dimensional spaces, leading to discretization invariant representations that scale independently of the sample grid resolution. Here we present Variational Autoencoding Neural Operators (VANO), a general strategy for making a large class of operator learning architectures act as variational autoencoders. For this purpose, we provide a novel rigorous mathematical formulation of the variational objective in function spaces for training. VANO first maps an input function to a distribution over a latent space using a parametric encoder and then decodes a sample from the latent distribution to reconstruct the input, as in classic variational autoencoders. We test VANO with different model set-ups and architecture choices for a variety of benchmarks. We start from a simple Gaussian random field where we can analytically track what the model learns and progressively transition to more challenging benchmarks including modeling phase separation in Cahn-Hilliard systems and real world satellite data for measuring Earth surface deformation.

Poster
Tom Sander · Pierre Stock · Alexandre Sablayrolles

[ Exhibit Hall 1 ]

Differentially Private methods for training Deep Neural Networks (DNNs) have progressed recently, in particular with the use of massive batches and aggregated data augmentations for a large number of training steps. These techniques require much more computing resources than their non-private counterparts, shifting the traditional privacy-accuracy trade-off to a privacy-accuracy-compute trade-off and making hyper-parameter search virtually impossible for realistic scenarios. In this work, we decouple privacy analysis and experimental behavior of noisy training to explore the trade-off with minimal computational requirements. We first use the tools of Renyi Differential Privacy (RDP) to highlight that the privacy budget, when not overcharged, only depends on the total amount of noise (TAN) injected throughout training. We then derive scaling laws for training models with DP-SGD to optimize hyper-parameters with more than a $100\times$ reduction in computational budget. We apply the proposed method on CIFAR-10 and ImageNet and, in particular, strongly improve the state-of-the-art on ImageNet with a $+9$ points gain in top-1 accuracy for a privacy budget $\varepsilon=8$.
Poster
Gideon Freund · Elad Sarafian · Sarit Kraus

[ Exhibit Hall 1 ]

In reinforcement learning and imitation learning, an object of central importance is the state distribution induced by the policy. It plays a crucial role in the policy gradient theorem, and references to it--along with the related state-action distribution--can be found all across the literature. Despite its importance, the state distribution is mostly discussed indirectly and theoretically, rather than being modeled explicitly. The reason being an absence of appropriate density estimation tools. In this work, we investigate applications of a normalizing flow based model for the aforementioned distributions. In particular, we use a pair of flows coupled through the optimality point of the Donsker-Varadhan representation of the Kullback-Leibler (KL) divergence, for distribution matching based imitation learning. Our algorithm, Coupled Flow Imitation Learning (CFIL), achieves state-of-the-art performance on benchmark tasks with a single expert trajectory and extends naturally to a variety of other settings, including the subsampled and state-only regimes.

Poster
Neta Shaul · Ricky T. Q. Chen · Maximilian Nickel · Matthew Le · Yaron Lipman

[ Exhibit Hall 1 ]

Recent successful generative models are trained by fitting a neural network to an a-priori defined tractable probability density path taking noise to training examples. In this paper we investigate the space of Gaussian probability paths, which includes diffusion paths as an instance, and look for an optimal member in some useful sense. In particular, minimizing the Kinetic Energy (KE) of a path is known to make particles' trajectories simple, hence easier to sample, and empirically improve performance in terms of likelihood of unseen data and sample generation quality. We investigate Kinetic Optimal (KO) Gaussian paths and offer the following observations: (i) We show the KE takes a simplified form on the space of Gaussian paths, where the data is incorporated only through a single, one dimensional scalar function, called the *data separation function*. (ii) We characterize the KO solutions with a one dimensional ODE. (iii) We approximate data-dependent KO paths by approximating the data separation function and minimizing the KE. (iv) We prove that the data separation function converges to $1$ in the general case of arbitrary normalized dataset consisting of $n$ samples in $d$ dimension as $n/\sqrt{d}\rightarrow 0$. A consequence of this result is that the Conditional Optimal Transport …
Poster
Yunbei Xu · Assaf Zeevi

[ Exhibit Hall 1 ]

We develop a general theory to optimize the frequentist regret for sequential learning problems, where efficient bandit and reinforcement learning algorithms can be derived from unified Bayesian principles. We propose a novel optimization approach to create "algorithmic beliefs" at each round, and use Bayesian posteriors to make decisions. This is the first approach to make Bayesian-type algorithms prior-free and applicable to adversarial settings, in a generic and optimal manner. Moreover, the algorithms are simple and often efficient to implement. As a major application, we present a novel algorithm for multi-armed bandits that achieves the "best-of-all-worlds" empirical performance in the stochastic, adversarial, and non-stationary environments. And we illustrate how these principles can be used in linear bandits, convex bandits, and reinforcement learning.

Poster
Silvio Lattanzi · Ola Svensson · Sergei Vassilvitskii

[ Exhibit Hall 1 ]

The Bellman-Ford algorithm is a basic primitive for computing single source shortest paths in graphs with negative weight edges. Its running time is governed by the order the algorithm examines vertices for iterative updates on the value of their shortest path. In this work we study this problem through the lens of 'Algorithms with predictions,' and show how to leverage auxiliary information from similar instances to improve the running time. We do this by identifying the key problem of Minimum Violation Permutations, and give algorithms with strong approximation guarantees as well as formal lower bounds. We complement the theoretical analysis with an empirical evaluation, showing that this approach can lead to a significant speed up in practice.

Poster
Badih Ghazi · Pritish Kamath · Ravi Kumar · Pasin Manurangsi · Raghu Meka · Chiyuan Zhang

[ Exhibit Hall 1 ]

We introduce a new mechanism for stochastic convex optimization (SCO) with user-level differential privacy guarantees. The convergence rates of this mechanism are similar to those in the prior work of Levy et al. 2021 and Narayanan et al. 2022, but with two important improvements. Our mechanism does not require any smoothness assumptions on the loss. Furthermore, our bounds are also the first where the minimum number of users needed for user-level privacy has no dependence on the dimension and only a logarithmic dependence on the desired excess error. The main idea underlying the new mechanism is to show that the optimizers of strongly convex losses have low local deletion sensitivity, along with a new output perturbation method for functions with low local deletion sensitivity, which could be of independent interest.

Poster
Tal Lancewicki · Aviv Rosenberg · Dmitry Sotnikov

[ Exhibit Hall 1 ]

Policy Optimization (PO) is one of the most popular methods in Reinforcement Learning (RL). Thus, theoretical guarantees for PO algorithms have become especially important to the RL community. In this paper, we study PO in adversarial MDPs with a challenge that arises in almost every real-world application -- *delayed bandit feedback*. We give the first near-optimal regret bounds for PO in tabular MDPs, and may even surpass state-of-the-art (which uses less efficient methods). Our novel Delay-Adapted PO (DAPO) is easy to implement and to generalize, allowing us to extend our algorithm to: (i) infinite state space under the assumption of linear $Q$-function, proving the first regret bounds for delayed feedback with function approximation. (ii) deep RL, demonstrating its effectiveness in experiments on MuJoCo domains.
Poster
Bingqing Song · Prashant Khanduri · xinwei zhang · Jinfeng Yi · Mingyi Hong

[ Exhibit Hall 1 ]

Federated Learning (FL) is a distributed learning paradigm that allows multiple clients to learn a joint model by utilizing privately held data at each client. Significant research efforts have been devoted to develop advanced algorithms that deal with the situation where the data at individual clients have heterogeneous distributions. In this work, we show that data heterogeneity can be dealt from a different perspective. That is, by utilizing a certain overparameterized multi-layer neural network at each client, even the vanilla FedAvg (a.k.a. the Local SGD) algorithm can accurately optimize the training problem: When each client has a neural network with one wide layer of size $N$ (where $N$ is the number of total training samples), followed by layers of smaller widths, FedAvg converges linearly to a solution that achieves (almost) zero training loss, without requiring any assumptions on the clients' data distributions. To our knowledge, this is the first work that demonstrates such resilience to data heterogeneity for FedAvg when trained on multi-layer neural networks. Our experiments also confirm that, neural networks of large size can achieve better and more stable performance for FL problems.
Poster
Dongxiao He · JiTao Zhao · Rui Guo · Zhiyong Feng · Di Jin · Yuxiao Huang · Zhen Wang · Weixiong Zhang

[ Exhibit Hall 1 ]

Graph Contrastive Learning (GCL) has recently enjoyed great success as an efficient self-supervised representation learning approach. However, the existing methods have focused on designing of contrastive modes and used data augmentation with a rigid and inefficient one-to-one sampling strategy. We adopted node neighborhoods to extend positive samplings and made avoided resorting to data augmentation to create different views. We also considered the homophily problem in Graph Neural Networks (GNNs) between the inter-class node pairs. The key novelty of our method hinged upon analyzing this GNNs problem and integrating the GCL sampling strategy with homophily discrimination, where we solved these two significant problems using one approach. We introduced a new parameterized neighbor sampling component to replace the conventional sub-optimal samplings. By keeping and updating the neighbor sets, both the positive sampling of GCL and the message passing of GNNs can be optimized. Moreover, we theoretically proved that the new method provided a lower bound of mutual information for unsupervised semantic learning, and it can also keep the lower bound with downstream tasks. In essence, our method is a new self-supervised approach, which we refer to as group discrimination, and it can make the downstream fine-tuning efficient. Our extensive empirical results demonstrate …

Poster
Haiyang Xu · Qinghao Ye · Ming Yan · Yaya Shi · Jiabo Ye · yuanhong xu · Chenliang Li · Bin Bi · Qi Qian · Wei Wang · Guohai Xu · Ji Zhang · Songfang Huang · Fei Huang · Jingren Zhou

[ Exhibit Hall 1 ]

Recent years have witnessed a big convergence of language, vision, and multi-modal pretraining. In this work, we present mPLUG-2, a new unified paradigm with modularized design for multi-modal pretraining, which can benefit from modality collaboration while addressing the problem of modality entanglement. In contrast to predominant paradigms of solely relying on sequence-to-sequence generation or encoder-based instance discrimination, mPLUG-2 introduces a multi-module composition network by sharing common universal modules for modality collaboration and disentangling different modality modules to deal with modality entanglement. It is flexible to select different modules for different understanding and generation tasks across all modalities including text, image, and video. Empirical study shows that mPLUG-2 achieves state-of-the-art or competitive results on a broad range of over 30 downstream tasks, spanning multi-modal tasks of image-text and video-text understanding and generation, and uni-modal tasks of text-only, image-only, and video-only understanding. Notably, mPLUG-2 shows new state-of-the-art results of 48.0 top-1 accuracy and 80.3 CIDEr on the challenging MSRVTT video QA and video caption tasks with a far smaller model size and data scale. It also demonstrates strong zero-shot transferability on vision-language and video-language tasks. Code and models will be released in https://github.com/X-PLUG/mPLUG-2.

Poster
Zhi Zhou · Lan-Zhe Guo · Lin-Han Jia · Dingchu Zhang · Yu-Feng Li

[ Exhibit Hall 1 ]

Test-time adaptation (TTA) adapts a source model to the distribution shift in testing data without using any source data. There have been plenty of algorithms concentrated on covariate shift in the last decade, i.e., $\mathcal{D}_t(X)$, the distribution of the test data is different from the source data. Nonetheless, in real application scenarios, it is necessary to consider the influence of label distribution shift, i.e., both $\mathcal{D}_t(X)$ and $\mathcal{D}_t(Y)$ are shifted, which has not been sufficiently explored yet. To remedy this, we study a new problem setup, namely, TTA with Open-world Data Shift (AODS). The goal of AODS is simultaneously adapting a model to covariate and label distribution shifts in the test phase. In this paper, we first analyze the relationship between classification error and distribution shifts. Motivated by this, we hence propose a new framework, namely ODS, which decouples the mixed distribution shift and then addresses covariate and label distribution shifts accordingly. We conduct experiments on multiple benchmarks with different types of shifts, and the results demonstrate the superior performance of our method against the state of the arts. Moreover, ODS is suitable for many TTA algorithms.
Poster
Shikun Feng · Yuyan Ni · Yanyan Lan · Zhiming Ma · Wei-Ying Ma

[ Exhibit Hall 1 ]

Coordinate denoising is a promising 3D molecular pre-training method, which has achieved remarkable performance in various downstream drug discovery tasks. Theoretically, the objective is equivalent to learning the force field, which is revealed helpful for downstream tasks. Nevertheless, there are two challenges for coordinate denoising to learn an effective force field, i.e. low coverage samples and isotropic force field. The underlying reason is that molecular distributions assumed by existing denoising methods fail to capture the anisotropic characteristic of molecules. To tackle these challenges, we propose a novel hybrid noise strategy, including noises on both dihedral angel and coordinate. However, denoising such hybrid noise in a traditional way is no more equivalent to learning the force field. Through theoretical deductions, we find that the problem is caused by the dependency of the input conformation for covariance. To this end, we propose to decouple the two types of noise and design a novel fractional denoising method (Frad), which only denoises the latter coordinate part. In this way, Frad enjoys both the merits of sampling more low-energy structures and the force field equivalence. Extensive experiments show the effectiveness of Frad in molecule representation, with a new state-of-the-art on 9 out of 12 tasks …

Poster
Jingquan Yan · Hao Wang

[ Exhibit Hall 1 ]

Abstract
Interpretable time series prediction is crucial for safety-critical areas such as healthcare and autonomous driving. Most existing methods focus on interpreting predictions by assigning important scores to segments of time series. In this paper, we take a different and more challenging route and aim at developing a self-interpretable model, dubbed Counterfactual Time Series (CounTS), which generates counterfactual and actionable explanations for time series predictions. Specifically, we formalize the problem of time series counterfactual explanations, establish associated evaluation protocols, and propose a variational Bayesian deep learning model equipped with counterfactual inference capability of time series abduction, action, and prediction. Compared with state-of-the-art baselines, our self-interpretable model can generate better counterfactual explanations while maintaining comparable prediction accuracy.
Poster
Biao Zhang · Barry Haddow · Alexandra Birch

[ Exhibit Hall 1 ]

Research on prompting has shown excellent performance with little or even no supervised training across many tasks. However, prompting for machine translation is still under-explored in the literature. We fill this gap by offering a systematic study on prompting strategies for translation, examining various factors for prompt template and demonstration example selection. We further explore the use of monolingual data and the feasibility of cross-lingual, cross-domain, and sentence-to-document transfer learning in prompting. Extensive experiments with GLM-130B (Zeng et al., 2022) as the testbed show that 1) the number and the quality of prompt examples matter, where using suboptimal examples degenerates translation; 2) several features of prompt examples, such as semantic similarity, show significant Spearman correlation with their prompting performance; yet, none of the correlations are strong enough; 3) using pseudo parallel prompt examples constructed from monolingual data via zero-shot prompting could improve translation; and 4) improved performance is achievable by transferring knowledge from prompt examples selected in other settings. We finally provide an analysis on the model outputs and discuss several problems that prompting still suffers from.

Poster
Andreas Munk · Alexander Mead · Frank Wood

[ Exhibit Hall 1 ]

We consider the problem of performing Bayesian inference in probabilistic models where observations are accompanied by uncertainty, referred to as "uncertain evidence.'' We explore how to interpret uncertain evidence, and by extension the importance of proper interpretation as it pertains to inference about latent variables. We consider a recently-proposed method "distributional evidence'' as well as revisit two older methods: Jeffrey's rule and virtual evidence. We devise guidelines on how to account for uncertain evidence and we provide new insights, particularly regarding consistency. To showcase the impact of different interpretations of the same uncertain evidence, we carry out experiments in which one interpretation is defined as "correct.'' We then compare inference results from each different interpretation illustrating the importance of careful consideration of uncertain evidence.

Poster
Hilaf Hasson · Danielle Robinson · Yuyang Wang · Gaurav Gupta · Youngsuk Park

[ Exhibit Hall 1 ]

Ensembling is among the most popular tools in machine learning (ML) due to its effectiveness in minimizing variance and thus improving generalization. Most ensembling methods for black-box base learners fall under the umbrella of "stacked generalization," namely training an ML algorithm that takes the inferences from the base learners as input. While stacking has been widely applied in practice, its theoretical properties are poorly understood. In this paper, we prove a novel result, showing that choosing the best stacked generalization from a (finite or finite-dimensional) family of stacked generalizations based on cross-validated performance does not perform "much worse" than the oracle best. Our result strengthens and significantly extends the results in Van der Laan et al. (2007). Inspired by the theoretical analysis, we further propose a particular family of stacked generalizations in the context of probabilistic forecasting, each one with a different sensitivity for how much the ensemble weights are allowed to vary across items, timestamps in the forecast horizon, and quantiles. Experimental results demonstrate the performance gain of the proposed method.

Poster
David Simchi-Levi · Chonghuan Wang

[ Exhibit Hall 1 ]

When launching a new product, historical sales data is often not available, leaving price as a crucial experimental instrument for sellers to gauge market response. When designing pricing experiments, there are three fundamental objectives: estimating the causal effect of price (i.e., price elasticity), maximizing the expected revenue through the experiment, and controlling the tail risk suffering from a very huge loss. In this paper, we reveal the relationship among such three objectives. Under a linear structural model, we investigate the trade-offs between causal inference and expected revenue maximization, as well as between expected revenue maximization and tail risk control. Furthermore, we propose an optimal pricing experimental design, which can flexibly adapt to different desired levels of trade-offs. Through the optimal design, we also explore the relationship between causal inference and tail risk control.

Poster
Atsushi Suzuki · Atsushi Nitanda · Taiji Suzuki · Jing Wang · Feng Tian · Kenji Yamanishi

[ Exhibit Hall 1 ]

Recent studies have experimentally shown that we can achieve in non-Euclidean metric space effective and efficient graph embedding, which aims to obtain the vertices' representations reflecting the graph's structure in the metric space. Specifically, graph embedding in hyperbolic space has experimentally succeeded in embedding graphs with hierarchical-tree structure, e.g., data in natural languages, social networks, and knowledge bases. However, recent theoretical analyses have shown a much higher upper bound on non-Euclidean graph embedding's generalization error than Euclidean one's, where a high generalization error indicates that the incompleteness and noise in the data can significantly damage learning performance. It implies that the existing bound cannot guarantee the success of graph embedding in non-Euclidean metric space in a practical training data size, which can prevent non-Euclidean graph embedding's application in real problems. This paper provides a novel upper bound of graph embedding's generalization error by evaluating the local Rademacher complexity of the model as a function set of the distances of representation couples. Our bound clarifies that the performance of graph embedding in non-Euclidean metric space, including hyperbolic space, is better than the existing upper bounds suggest. Specifically, our new upper bound is polynomial in the metric space's geometric radius $R$ and …
Poster
Yuchao Cai · Yuheng Ma · Yiwei Dong · Hanfang Yang

[ Exhibit Hall 1 ]

In this paper, we propose a novel tree-based algorithm named *Extrapolated Random Tree for Regression* (ERTR) that adapts to arbitrary smoothness of the regression function while maintaining the interpretability of the tree. We first put forward the *homothetic random tree for regression* (HRTR) that converges to the target function as the homothetic ratio approaches zero. Then ERTR uses a linear regression model to extrapolate HRTR estimations with different ratios to the ratio zero. From the theoretical perspective, we for the first time establish the optimal convergence rates for ERTR when the target function resides in the general Hölder space $C^{k,\alpha}$ for $k\in \mathbb{N}$, whereas the lower bound of the convergence rate of the random tree for regression (RTR) is strictly slower than ERTR in the space $C^{k,\alpha}$ for $k\geq 1$. This shows that ERTR outperforms RTR for the target function with high-order smoothness due to the extrapolation. In the experiments, we compare ERTR with state-of-the-art tree algorithms on real datasets to show the superior performance of our model. Moreover, promising improvements are brought by using the extrapolated trees as base learners in the extension of ERTR to ensemble methods.
Poster
Runlong Zhou · Ruosong Wang · Simon Du

[ Exhibit Hall 1 ]

We study regret minimization for reinforcement learning (RL) in Latent Markov Decision Processes (LMDPs) with context in hindsight. We design a novel model-based algorithmic framework which can be instantiated with both a model-optimistic and a value-optimistic solver. We prove an $\tilde{O}(\sqrt{\mathsf{Var}^\star M \Gamma S A K})$ regret bound where $\tilde{O}$ hides logarithm factors, $M$ is the number of contexts, $S$ is the number of states, $A$ is the number of actions, $K$ is the number of episodes, $\Gamma \le S$ is the maximum transition degree of any state-action pair, and $\mathsf{Var}^\star$ is a variance quantity describing the determinism of the LMDP. The regret bound only scales logarithmically with the planning horizon, thus yielding the first (nearly) horizon-free regret bound for LMDP. This is also the first problem-dependent regret bound for LMDP. Key in our proof is an analysis of the total variance of alpha vectors (a generalization of value functions), which is handled with a truncation method. We complement our positive result with a novel $\Omega(\sqrt{\mathsf{Var}^\star M S A K})$ regret lower bound with $\Gamma = 2$, which shows our upper bound minimax optimal when $\Gamma$ is a constant for the class of variance-bounded LMDPs. Our lower bound relies on …
Poster
Chenlu Ye · Wei Xiong · Quanquan Gu · Tong Zhang

[ Exhibit Hall 1 ]

Despite the significant interest and progress in reinforcement learning (RL) problems with adversarial corruption, current works are either confined to the linear setting or lead to an undesired $\tilde{\mathcal O}(\sqrt{T}\zeta)$ regret bound, where $T$ is the number of rounds and $\zeta$ is the total amount of corruption. In this paper, we consider contextual bandits with general function approximation and propose a computationally efficient algorithm to achieve a regret of $\tilde{\mathcal O}(\sqrt{T}+\zeta)$. The proposed algorithm relies on the recently developed uncertainty-weighted least-squares regression from linear contextual bandits (He et al., 2022) and a new weighted estimator of uncertainty for the general function class. In contrast to the existing analysis for the sum of uncertainty that is heavily based on the linear structure, we develop a novel technique to control the sum of weighted uncertainty, thus establishing the final regret bound. We then generalize our algorithm to the episodic MDP and first achieve an additive dependence on the corruption level $\zeta$ in the scenario of general function approximation. Notably, our algorithms achieve regret bounds that either nearly match the lower bound or improve the performance of existing methods for all the corruption levels in both known and unknown $\zeta$ cases.
Poster
Davin Choo · Themis Gouleakis · Arnab Bhattacharyya

[ Exhibit Hall 1 ]

We introduce the problem of active causal structure learning with advice. In the typical well-studied setting, the learning algorithm is given the essential graph for the observational distribution and is asked to recover the underlying causal directed acyclic graph (DAG) $G^*$ while minimizing the number of interventions made. In our setting, we are additionally given side information about $G^*$ as advice, e.g. a DAG $G$ purported to be $G^*$. We ask whether the learning algorithm can benefit from the advice when it is close to being correct, while still having worst-case guarantees even when the advice is arbitrarily bad. Our work is in the same space as the growing body of research on _algorithms with predictions_. When the advice is a DAG $G$, we design an adaptive search algorithm to recover $G^*$ whose intervention cost is at most $\mathcal{O}(\max\{1, \log \psi\})$ times the cost for verifying $G^*$; here, $\psi$ is a distance measure between $G$ and $G^*$ that is upper bounded by the number of variables $n$, and is exactly 0 when $G=G^*$. Our approximation factor matches the state-of-the-art for the advice-less setting.
Poster
El Mehdi Saad · Nicolas Verzelen · Alexandra Carpentier

[ Exhibit Hall 1 ]

We consider the problem of ranking n experts based on their performances on d tasks. We make a monotonicity assumption stating that for each pair of experts, one outperforms the other on all tasks. We consider the sequential setting where in each round the learner has access to noisy evaluations of actively chosen pair of expert-task, given the information available up to the actual round. Given a confidence parameter $\delta \in (0, 1)$, we provide strategies allowing to recover the correct ranking of experts and develop a bound on the total number of queries made by our algorithm that hold with probability at least $1-\delta$. We show that our strategy is adaptive to the complexity of the problem (our bounds are instance dependent), and develop matching lower bounds up to a ploy-logarithmic factor. Finally, we adapt our strategy to the relaxed problem of best expert identification and provide numerical simulation consistent with our theoretical results
Poster
Shubhanshu Shekhar · Aaditya Ramdas

[ Exhibit Hall 1 ]

We present a simple reduction from sequential estimation to sequential changepoint detection (SCD). In short, suppose we are interested in detecting changepoints in some parameter or functional $\theta$ of the underlying distribution. We demonstrate that if we can construct a confidence sequence (CS) for $\theta$, then we can also successfully perform SCD for $\theta$. This is accomplished by checking if two CSs --- one forwards and the other backwards --- ever fail to intersect. Since the literature on CSs has been rapidly evolving recently, the reduction provided in this paper immediately solves several old and new change detection problems. Further, our ``backward CS'', constructed by reversing time, is new and potentially of independent interest. We provide strong nonasymptotic guarantees on the frequency of false alarms and detection delay, and demonstrate numerical effectiveness on several problems.
Poster
Chenyi Zhang · Tongyang Li

[ Exhibit Hall 1 ]

Quantum computing is an emerging technology that has been rapidly advancing in the past decades. In this paper, we conduct a systematic study of quantum lower bounds on finding $\epsilon$-approximate stationary points of nonconvex functions, and we consider the following two important settings: 1) having access to $p$-th order derivatives; or 2) having access to stochastic gradients. The classical query lower bounds are $\Omega\big(\epsilon^{-\frac{1+p}{p}}\big)$ regarding the first setting and $\Omega(\epsilon^{-4})$ regarding the second setting (or $\Omega(\epsilon^{-3})$ if the stochastic gradient function is mean-squared smooth). In this paper, we extend all these classical lower bounds to the quantum setting. They match the classical algorithmic results respectively, demonstrating that there is no quantum speedup for finding $\epsilon$-stationary points of nonconvex functions with $p$-th order derivative inputs or stochastic gradient inputs, whether with or without the mean-squared smoothness assumption. Technically, we prove our quantum lower bounds by showing that the sequential nature of classical hard instances in all these settings also applies to quantum queries, preventing any quantum speedup other than revealing information of the stationary points sequentially.
Poster
Théo Uscidda · Marco Cuturi

[ Exhibit Hall 1 ]

Optimal transport (OT) theory has been used in machine learning to study and characterize maps that can push-forward efficiently a probability measure onto another. Recent works have drawn inspiration from Brenier's theorem, which states that when the ground cost is the squared-Euclidean distance, the ``best'' map to morph a continuous measure in $\mathcal{P}(\mathbb{R}^d)$ into another must be the gradient of a convex function. To exploit that result, Makkuva et. al (2020); Korotin et. al (2020) consider maps $T=\nabla f_\theta$, where $f_\theta$ is an input convex neural network (ICNN), as defined by Amos et. al (2017), and fit $\theta$ with SGD using samples. Despite their mathematical elegance, fitting OT maps with ICNNs raises many challenges, due notably to the many constraints imposed on $\theta$; the need to approximate the conjugate of $f_\theta$; or the limitation that they only work for the squared-Euclidean cost. More generally, we question the relevance of using Brenier's result, which only applies to densities, to constrain the architecture of candidate maps fitted on samples. Motivated by these limitations, we propose a radically different approach to estimating OT maps: Given a cost $c$ and a reference measure $\rho$, we introduce a regularizer, the Monge gap $\mathcal{M}^c_{\rho}(T)$ of a …
Poster
Weiyuan Gong · Scott Aaronson

[ Exhibit Hall 1 ]

Shadow tomography for quantum states provides a sample efficient approach for predicting the measurement outcomes of quantum systems. However, these shadow tomography procedures yield poor bounds if there are more than two outcomes per measurement. In this paper, we consider a general problem of learning properties from quantum states: given an unknown $d$-dimensional quantum state $\rho$ and $M$ unknown quantum measurements $\mathcal{M}_1,...,\mathcal{M}_M$ with $K\geq 2$ outcomes, estimating the probability distribution for applying $\mathcal{M}_i$ on $\rho$ to within total variation distance $\epsilon$. Compared to the special case when $K=2$, we have to learn unknown distributions instead of values. Here, we propose an online shadow tomography procedure that solves this problem with high success probability requiring $\tilde{O}(K\log^2M\log d/\epsilon^4)$ copies of $\rho$. We further prove an information-theoretic lower bound showing that at least $\Omega(\min\{d^2,K+\log M\}/\epsilon^2)$ copies of $\rho$ are required to solve this problem with high success probability. Our shadow tomography procedure requires sample complexity with only logarithmic dependence on $M$ and $d$ and is sample-optimal concerning the dependence on $K$.
Poster
Sedjro Salomon Hotegni · Sepideh Mahabadi · Ali Vakilian

[ Exhibit Hall 1 ]

This paper studies the fair range clustering problem in which the data points are from different demographic groups and the goal is to pick $k$ centers with the minimum clustering cost such that each group is at least minimally represented in the centers set and no group dominates the centers set. More precisely, given a set of $n$ points in a metric space $(P, d)$ where each point belongs to one of the $\ell$ different demographics (i.e., $P = P_1 \uplus P_2 \uplus \cdots \uplus P_\ell$) and a set of $\ell$ intervals $[\alpha_1, \beta_1], \cdots, [\alpha_\ell, \beta_\ell]$ on desired number of centers from each group, the goal is to pick a set of $k$ centers $C$ with minimum $\ell_p$-clustering cost (i.e., $(\sum_{v\in P} d(v,C)^p)^{1/p}$) such that for each group $i\in \ell$, $|C\cap P_i| \in [\alpha_i, \beta_i]$. In particular, the fair range $\ell_p$-clustering captures fair range $k$-center, $k$-median and $k$-means as its special cases. In this work, we provide an efficient constant factor approximation algorithm for the fair range $\ell_p$-clustering for all values of $p\in [1,\infty)$.
Poster
Su Jia · Nishant Oli · Ian Anderson · Paul Duff · Andrew Li · R. Ravi

[ Exhibit Hall 1 ]

Modern platforms leverage randomized experiments to make informed decisions from a given set of alternatives. As a particularly challenging scenario, these alternatives can potentially have (i) high volume, with thousands of new items being released each hour, and (ii) short lifetime, either due to the contents' transient nature, or some underlying non-stationarity that impels the learner to treat the same item as non-identical copies across time. We consider a multiplay bandits model. In each round a set of $k=n^\rho$ actions that will be available for $w$ rounds arrives, each of whose mean reward is drawn from a fixed known distribution. The learner selects a multiset of $n$ actions at a time. We propose an $\ell$-Layered Sieve Policy that recursively refines the action space for $\ell\leq w$ times. We show that for any given $\rho>0$, with suitable $\ell$, the policy achieves $\tilde O (n^{-\min \{\rho, \frac 12 (1+\frac 1w)^{-1}\}})$ regret. We also complement this result with an $\Omega (n^{-\min \{\rho, \frac 12\}})$ lower bound. We further validate the effectiveness of our Sieve Policy via numerical simulations and a field experiment in a large content card serving platform.
Poster
Yasa Syed · Guanyang Wang

[ Exhibit Hall 1 ]

The estimation of repeatedly nested expectations is a challenging task that arises in many real-world systems. However, existing methods generally suffer from high computational costs when the number of nestings becomes large. Fix any non-negative integer $D$ for the total number of nestings. Standard Monte Carlo methods typically cost at least $\mathcal{O}(\varepsilon^{-(2+D)})$ and sometimes $\mathcal {O}(\varepsilon^{-2(1+D)})$ to obtain an estimator up to $\varepsilon$-error. More advanced methods, such as multilevel Monte Carlo, currently only exist for $D = 1$. In this paper, we propose a novel Monte Carlo estimator called $\mathsf{READ}$, which stands for ``Recursive Estimator for Arbitrary Depth.'' Our estimator has an optimal computational cost of $\mathcal{O}(\varepsilon^{-2})$ for every fixed $D$ under suitable assumptions, and a nearly optimal computational cost of $\mathcal{O}(\varepsilon^{-2(1 + \delta)})$ for any $0 < \delta < \frac12$ under much more general assumptions. Our estimator is also unbiased, which makes it easy to parallelize. The key ingredients in our construction are an observation of the problem's recursive structure and the recursive use of the randomized multilevel Monte Carlo method.
Poster
Aram-Alexandre Pooladian · Vincent Divol · Jonathan Niles-Weed

[ Exhibit Hall 1 ]

Abstract
We consider the problem of estimating the optimal transport map between two probability distributions, $P$ and $Q$ in $\mathbb{R}^d$, on the basis of i.i.d. samples. All existing statistical analyses of this problem require the assumption that the transport map is Lipschitz, a strong requirement that, in particular, excludes any examples where the transport map is discontinuous. As a first step towards developing estimation procedures for discontinuous maps, we consider the important special case where the data distribution $Q$ is a discrete measure supported on a finite number of points in $\mathbb{R}^d$. We study a computationally efficient estimator initially proposed by (Pooladian & Niles-Weed, 2021), based on entropic optimal transport, and show in the semi-discrete setting that it converges at the minimax-optimal rate $n^{-1/2}$, independent of dimension. Other standard map estimation techniques both lack finite-sample guarantees in this setting and provably suffer from the curse of dimensionality. We confirm these results in numerical experiments, and provide experiments for other settings, not covered by our theory, which indicate that the entropic estimator is a promising methodology for other discontinuous transport map estimation problems.
Poster
Elissa Mhanna · Mohamad Assaad

[ Exhibit Hall 1 ]

Zero-order (ZO) optimization is a powerful tool for dealing with realistic constraints. On the other hand, the gradient-tracking (GT) technique proved to be an efficient method for distributed optimization aiming to achieve consensus. However, it is a first-order (FO) method that requires knowledge of the gradient, which is not always possible in practice. In this work, we introduce a zero-order distributed optimization method based on a one-point estimate of the gradient tracking technique. We prove that this new technique converges with a single noisy function query at a time in the non-convex setting. We then establish a convergence rate of $O(\frac{1}{\sqrt[3]{K}})$ after a number of iterations K, which competes with that of $O(\frac{1}{\sqrt[4]{K}})$ of its centralized counterparts. Finally, a numerical example validates our theoretical results.
Poster
Vin Sachidananda · Ziyi Yang · Chenguang Zhu

[ Exhibit Hall 1 ]

Contrastive Learning has recently achieved state-of-the-art performance in a wide range of unimodal and multimodal tasks. Many contrastive learning approaches use mined hard negatives to make batches more informative during training but these approaches are inefficient as they increase epoch length proportional to the number of mined negatives and require frequent updates of nearest neighbor indices or mining from recent batches. In this work, we provide an alternative to hard negative mining, Global Contrastive Batch Sampling (GCBS), an efficient approximation to the batch assignment problem that upper bounds the gap between the global and training losses, $\mathcal{L}^{Global} - \mathcal{L}^{Train}$, in contrastive learning settings. Through experimentation we find GCBS improves state-of-the-art performance in sentence embedding and code-search tasks. Additionally, GCBS is easy to implement as it requires only a few additional lines of code, does not maintain external data structures such as nearest neighbor indices, is more computationally efficient than the most minimal hard negative mining approaches, and makes no changes to the model being trained. Code is available at https://github.com/vinayak1/GCBS.
Poster
Thomy Phan · Fabian Ritz · Philipp Altmann · Maximilian Zorn · Jonas Nüßlein · Michael Kölle · Thomas Gabor · Claudia Linnhoff-Popien

[ Exhibit Hall 1 ]

Stochastic partial observability poses a major challenge for decentralized coordination in multi-agent reinforcement learning but is largely neglected in state-of-the-art research due to a strong focus on state-based centralized training for decentralized execution (CTDE) and benchmarks that lack sufficient stochasticity like StarCraft Multi-Agent Challenge (SMAC). In this paper, we propose Attention-based Embeddings of Recurrence In multi-Agent Learning (AERIAL) to approximate value functions under stochastic partial observability. AERIAL replaces the true state with a learned representation of multi-agent recurrence, considering more accurate information about decentralized agent decisions than state-based CTDE. We then introduce MessySMAC, a modified version of SMAC with stochastic observations and higher variance in initial states, to provide a more general and configurable benchmark regarding stochastic partial observability. We evaluate AERIAL in Dec-Tiger as well as in a variety of SMAC and MessySMAC maps, and compare the results with state-based CTDE. Furthermore, we evaluate the robustness of AERIAL and state-based CTDE against various stochasticity configurations in MessySMAC.

Poster
Abdul Fatir Ansari · Alvin Heng · Andre Lim · Harold Soh

[ Exhibit Hall 1 ]

Learning accurate predictive models of real-world dynamic phenomena (e.g., climate, biological) remains a challenging task. One key issue is that the data generated by both natural and artificial processes often comprise time series that are irregularly sampled and/or contain missing observations. In this work, we propose the Neural Continuous-Discrete State Space Model (NCDSSM) for continuous-time modeling of time series through discrete-time observations. NCDSSM employs auxiliary variables to disentangle recognition from dynamics, thus requiring amortized inference only for the auxiliary variables. Leveraging techniques from continuous-discrete filtering theory, we demonstrate how to perform accurate Bayesian inference for the dynamic states. We propose three flexible parameterizations of the latent dynamics and an efficient training objective that marginalizes the dynamic states during inference. Empirical results on multiple benchmark datasets across various domains show improved imputation and forecasting performance of NCDSSM over existing models.

Poster
Nico Stucki · Johannes C. Paetzold · Suprosanna Shit · bjoern menze · Ulrich Bauer

[ Exhibit Hall 1 ]

Abstract
Segmentation models predominantly optimize pixel-overlap-based loss, an objective that is actually inadequate for many segmentation tasks. In recent years, their limitations fueled a growing interest in topology-aware methods, which aim to recover the topology of the segmented structures. However, so far, existing methods only consider global topological properties, ignoring the need to preserve topological features spatially, which is crucial for accurate segmentation. We introduce the concept of induced matchings from persistent homology to achieve a spatially correct matching between persistence barcodes in a segmentation setting. Based on this concept, we define the Betti matching error as an interpretable, topologically and feature-wise accurate metric for image segmentations, which resolves the limitations of the Betti number error. Our Betti matching error is differentiable and efficient to use as a loss function. We demonstrate that it improves the topological performance of segmentation networks significantly across six diverse datasets while preserving the performance with respect to traditional scores. Our code is publicly available (https://github.com/nstucki/Betti-matching/).
Poster
Wooseok Shin · Byung Hoon Lee · Jin Sob Kim · Hyun Joon Park · Sung Won Han

[ Exhibit Hall 1 ]

In speech enhancement, MetricGAN-based approaches reduce the discrepancy between the $L_p$ loss and evaluation metrics by utilizing a non-differentiable evaluation metric as the objective function. However, optimizing multiple metrics simultaneously remains challenging owing to the problem of confusing gradient directions. In this paper, we propose an effective multi-metric optimization method in MetricGAN via online knowledge distillation---MetricGAN-OKD. MetricGAN-OKD, which consists of multiple generators and target metrics, related by a one-to-one correspondence, enables generators to learn with respect to a single metric reliably while improving performance with respect to other metrics by mimicking other generators. Experimental results on speech enhancement and listening enhancement tasks reveal that the proposed method significantly improves performance in terms of multiple metrics compared to existing multi-metric optimization methods. Further, the good performance of MetricGAN-OKD is explained in terms of network generalizability and correlation between metrics.
Poster
Songze Li · Duanyi YAO · Jin Liu

[ Exhibit Hall 1 ]

In a vertical federated learning (VFL) system consisting of a central server and many distributed clients, the training data are vertically partitioned such that different features are privately stored on different clients. The problem of split VFL is to train a model split between the server and the clients. This paper aims to address two major challenges in split VFL: 1) performance degradation due to straggling clients during training; and 2) data and model privacy leakage from clients' uploaded data embeddings. We propose FedVS to simultaneously address these two challenges. The key idea of FedVS is to design secret sharing schemes for the local data and models, such that information-theoretical privacy against colluding clients and curious server is guaranteed, and the aggregation of all clients' embeddings is reconstructed losslessly, via decrypting computation shares from the non-straggling clients. Extensive experiments on various types of VFL datasets (including tabular, CV, and multi-view) demonstrate the universal advantages of FedVS in straggler mitigation and privacy protection over baseline protocols.

Poster
Yifan Chen · Rentian Yao · Yun Yang · Jie Chen

[ Exhibit Hall 1 ]

Graph coarsening is a technique for solving large-scale graph problems by working on a smaller version of the original graph, and possibly interpolating the results back to the original graph. It has a long history in scientific computing and has recently gained popularity in machine learning, particularly in methods that preserve the graph spectrum. This work studies graph coarsening from a different perspective, developing a theory for preserving graph distances and proposing a method to achieve this. The geometric approach is useful when working with a collection of graphs, such as in graph classification and regression. In this study, we consider a graph as an element on a metric space equipped with the Gromov--Wasserstein (GW) distance, and bound the difference between the distance of two graphs and their coarsened versions. Minimizing this difference can be done using the popular weighted kernel $K$-means method, which improves existing spectrum-preserving methods with the proper choice of the kernel. The study includes a set of experiments to support the theory and method, including approximating the GW distance, preserving the graph spectrum, classifying graphs using spectral information, and performing regression using graph convolutional networks. Code is available at https://github.com/ychen-stat-ml/GW-Graph-Coarsening.
Poster
Noel Loo · Ramin Hasani · Mathias Lechner · Daniela Rus

[ Exhibit Hall 1 ]

We propose a new dataset distillation algorithm using reparameterization and convexification of implicit gradients (RCIG), that substantially improves the state-of-the-art. To this end, we first formulate dataset distillation as a bi-level optimization problem. Then, we show how implicit gradients can be effectively used to compute meta-gradient updates. We further equip the algorithm with a convexified approximation that corresponds to learning on top of a frozen finite-width neural tangent kernel. Finally, we improve bias in implicit gradients by parameterizing the neural network to enable analytical computation of final-layer parameters given the body parameters. RCIG establishes the new state-of-the-art on a diverse series of dataset distillation tasks. Notably, with one image per class, on resized ImageNet, RCIG sees on average a 108% improvement over the previous state-of-the-art distillation algorithm. Similarly, we observed a 66% gain over SOTA on Tiny-ImageNet and 37% on CIFAR-100.

Poster
Tianshi Che · Yang Zhou · Zijie Zhang · Lingjuan Lyu · Ji Liu · Da Yan · Dejing Dou · Jun Huan

[ Exhibit Hall 1 ]

Federated machine unlearning (FMU) aims to remove the influence of a specified subset of training data upon request from a trained federated learning model. Despite achieving remarkable performance, existing FMU techniques suffer from inefficiency due to two sequential operations of training and retraining/unlearning on large-scale datasets. Our prior study, PCMU, was proposed to improve the efficiency of centralized machine unlearning (CMU) with certified guarantees, by simultaneously executing the training and unlearning operations. This paper proposes a fast FMU algorithm, FFMU, for improving the FMU efficiency while maintaining the unlearning quality. The PCMU method is leveraged to train a local machine learning (MU) model on each edge device. We propose to employ nonlinear functional analysis techniques to refine the local MU models as output functions of a Nemytskii operator. We conduct theoretical analysis to derive that the Nemytskii operator has a global Lipschitz constant, which allows us to bound the difference between two MU models regarding the distance between their gradients. Based on the Nemytskii operator and average smooth local gradients, the global MU model on the server is guaranteed to achieve close performance to each local MU model with the certified guarantees.

Poster
Nikolaos Dimitriadis · Pascal Frossard · François Fleuret

[ Exhibit Hall 1 ]

In Multi-Task Learning (MTL), tasks may compete and limit the performance achieved on each other, rather than guiding the optimization to a solution, superior to all its single-task trained counterparts. Since there is often not a unique solution optimal for all tasks, practitioners have to balance tradeoffs between tasks' performance, and resort to optimality in the Pareto sense. Most MTL methodologies either completely neglect this aspect, and instead of aiming at learning a Pareto Front, produce one solution predefined by their optimization schemes, or produce diverse but discrete solutions. Recent approaches parameterize the Pareto Front via neural networks, leading to complex mappings from tradeoff to objective space. In this paper, we conjecture that the Pareto Front admits a linear parameterization in parameter space, which leads us to propose Pareto Manifold Learning, an ensembling method in weight space. Our approach produces a continuous Pareto Front in a single training run, that allows to modulate the performance on each task during inference. Experiments on multi-task learning benchmarks, ranging from image classification to tabular datasets and scene understanding, show that Pareto Manifold Learning outperforms state-of-the-art single-point algorithms, while learning a better Pareto parameterization than multi-point baselines.

Poster
Qisen Yang · Shenzhi Wang · Matthieu Lin · Shiji Song · Gao Huang

[ Exhibit Hall 1 ]

Training practical agents usually involve offline and online reinforcement learning (RL) to balance the policy's performance and interaction costs. In particular, online fine-tuning has become a commonly used method to correct the erroneous estimates of out-of-distribution data learned in the offline training phase. However, even limited online interactions can be inaccessible or catastrophic for high-stake scenarios like healthcare and autonomous driving. In this work, we introduce an interaction-free training scheme dubbed Offline-with-Action-Preferences (OAP). The main insight is that, compared to online fine-tuning, querying the preferences between pre-collected and learned actions can be equally or even more helpful to the erroneous estimate problem. By adaptively encouraging or suppressing policy constraint according to action preferences, OAP could distinguish overestimation from beneficial policy improvement and thus attains a more accurate evaluation of unseen data. Theoretically, we prove a lower bound of the behavior policy's performance improvement brought by OAP. Moreover, comprehensive experiments on the D4RL benchmark and state-of-the-art algorithms demonstrate that OAP yields higher (29% on average) scores, especially on challenging AntMaze tasks (98% higher).

Poster
Pranjal Aggarwal · Ameet Deshpande · Karthik Narasimhan

[ Exhibit Hall 1 ]

Extreme classification (XC) involves predicting over large numbers of classes (thousands to millions), with real-world applications like news article classification and e-commerce product tagging. The zero-shot version of this task requires generalization to novel classes without additional supervision. In this paper, we develop SemSup-XC, a model that achieves state-of-the-art zero-shot and few-shot performance on three XC datasets derived from legal, e-commerce, and Wikipedia data. To develop SemSup-XC, we use automatically collected semantic class descriptions to represent classes and facilitate generalization through a novel hybrid matching module that matches input instances to class descriptions using a combination of semantic and lexical similarity. Trained with contrastive learning, SemSup-XC significantly outperforms baselines and establishes state-of-the-art performance on all three datasets considered, gaining up to 12 precision points on zero-shot and more than 10 precision points on one-shot tests, with similar gains for recall@10. Our ablation studies highlight the relative importance of our hybrid matching module and automatically collected class descriptions.

Poster
Tom Wollschläger · Nicholas Gao · Bertrand Charpentier · Mohamed Amine Ketata · Stephan Günnemann

[ Exhibit Hall 1 ]

Graph Neural Networks (GNNs) are promising surrogates for quantum mechanical calculations as they establish unprecedented low errors on collections of molecular dynamics (MD) trajectories. Thanks to their fast inference times they promise to accelerate computational chemistry applications. Unfortunately, despite low in-distribution (ID) errors, such GNNs might be horribly wrong for out-of-distribution (OOD) samples. Uncertainty estimation (UE) may aid in such situations by communicating the model's certainty about its prediction. Here, we take a closer look at the problem and identify six key desiderata for UE in molecular force fields, three 'physics-informed' and three 'application-focused' ones. To overview the field, we survey existing methods from the field of UE and analyze how they fit to the set desiderata. By our analysis, we conclude that none of the previous works satisfies all criteria. To fill this gap, we propose Localized Neural Kernel (LNK) a Gaussian Process (GP)-based extension to existing GNNs satisfying the desiderata. In our extensive experimental evaluation, we test four different UE with three different backbones across two datasets. In out-of-equilibrium detection, we find LNK yielding up to 2.5 and 2.1 times lower errors in terms of AUC-ROC score than dropout or evidential regression-based methods while maintaining high predictive performance.

Poster
Anna Marbut · Katy McKinney-Bock · Travis Wheeler

[ Exhibit Hall 1 ]

Understanding geometric properties of the latent spaces of natural language processing models allows the manipulation of these properties for improved performance on downstream tasks. One such property is the amount of data spread in a model's latent space, or how fully the available latent space is being used. We demonstrate that the commonly used measures of data spread, average cosine similarity and a partition function min/max ratio I(V), do not provide reliable metrics to compare the use of latent space across data distributions. We propose and examine six alternative measures of data spread, all of which improve over these current metrics when applied to seven synthetic data distributions. Of our proposed measures, we recommend one principal component-based measure and one entropy-based measure that provide reliable, relative measures of spread and can be used to compare models of different sizes and dimensionalities.

Poster
Guy Horowitz · Nir Rosenfeld

[ Exhibit Hall 1 ]

When users can benefit from certain predictive outcomes, they may be prone to act to achieve those outcome, e.g., by strategically modifying their features. The goal in strategic classification is therefore to train predictive models that are robust to such behavior. However, the conventional framework assumes that changing features does not change actual outcomes, which depicts users as "gaming" the system. Here we remove this assumption, and study learning in a causal strategic setting where true outcomes do change. Focusing on accuracy as our primary objective, we show how strategic behavior and causal effects underlie two complementing forms of distribution shift. We characterize these shifts, and propose a learning algorithm that balances between these two forces and over time, and permits end-to-end training. Experiments on synthetic and semi-synthetic data demonstrate the utility of our approach.

Poster
Yichen Li · Peter Yichen Chen · Tao Du · Wojciech Matusik

[ Exhibit Hall 1 ]

Efficient numerical solvers for partial differential equations empower science and engineering. One commonly employed numerical solver is the preconditioned conjugate gradient (PCG) algorithm, whose performance is largely affected by the preconditioner quality. However, designing high-performing preconditioner with traditional numerical methods is highly non-trivial, often requiring problem-specific knowledge and meticulous matrix operations. We present a new method that leverages learning-based approach to obtain an approximate matrix factorization to the system matrix to be used as a preconditioner in the context of PCG solvers. Our high-level intuition comes from the shared property between preconditioners and network-based PDE solvers that excels at obtaining approximate solutions at a low computational cost. Such observation motivates us to represent preconditioners as graph neural networks (GNNs). In addition, we propose a new loss function that rewrites traditional preconditioner metrics to incorporate inductive bias from PDE data distributions, enabling effective training of high-performing preconditioners. We conduct extensive experiments to demonstrate the efficacy and generalizability of our proposed approach on solving various 2D and 3D linear second-order PDEs.

Poster
Ezekiel Williams · Colin Bredenberg · Guillaume Lajoie

[ Exhibit Hall 1 ]

Many learning algorithms used as normative models in neuroscience or as candidate approaches for learning on neuromorphic chips learn by contrasting one set of network states with another. These Contrastive Learning (CL) algorithms are traditionally implemented with rigid, temporally non-local, and periodic learning dynamics, that could limit the range of physical systems capable of harnessing CL. In this study, we build on recent work exploring how CL might be implemented by biological or neurmorphic systems and show that this form of learning can be made temporally local, and can still function even if many of the dynamical requirements of standard training procedures are relaxed. Thanks to a set of general theorems corroborated by numerical experiments across several CL models, our results provide theoretical foundations for the study and development of CL methods for biological and neuromorphic neural networks.

Poster
Andrew Wang · Andrew C Li · Toryn Q Klassen · Rodrigo A Toro Icarte · Sheila McIlraith

[ Exhibit Hall 1 ]

Many important real-world Reinforcement Learning (RL) problems involve partial observability and require policies with memory. Unfortunately, standard deep RL algorithms for partially observable settings typically condition on the full history of interactions and are notoriously difficult to train. We propose a novel deep, partially observable RL algorithm based on modelling belief states — a technique typically used when solving tabular POMDPs, but that has traditionally been difficult to apply to more complex environments. Our approach simplifies policy learning by leveraging state information at training time, that may not be available at deployment time. We do so in two ways: first, we decouple belief state modelling (via unsupervised learning) from policy optimization (via RL); and second, we propose a representation learning approach to capture a compact set of reward-relevant features of the state. Experiments demonstrate the efficacy of our approach on partially observable domains requiring information seeking and long-term memory.

Poster
Zhiqing Sun · Yiming Yang · Shinjae Yoo

[ Exhibit Hall 1 ]

Numerical simulation of non-linear partial differential equations plays a crucial role in modeling physical science and engineering phenomena, such as weather, climate, and aerodynamics. Recent Machine Learning (ML) models trained on low-resolution spatio-temporal signals have shown new promises in capturing important dynamics in high-resolution signals, under the condition that the models can effectively recover the missing details. However, this study shows that significant information is often lost in the low-resolution down-sampled features. To address such issues, we propose a new approach, namely Temporal Stencil Modeling (TSM), which combines the strengths of advanced time-series sequence modeling (with the HiPPO features) and state-of-the-art neural PDE solvers (with learnable stencil modeling). TSM aims to recover the lost information from the PDE trajectories and can be regarded as a temporal generalization of classic finite volume methods such as WENO. Our experimental results show that TSM achieves the new state-of-the-art simulation accuracy for 2-D incompressible Navier-Stokes turbulent flows: it significantly outperforms the previously reported best results by 19.9% in terms of the highly-correlated duration time, and reduces the inference latency into 80%. We also show a strong generalization ability of the proposed method to various out-of-distribution turbulent flow settings, as well as lower resolution or …

Poster
Sejun Park · Kihun Hong · Ganguk Hwang

[ Exhibit Hall 1 ]

Federated Learning (FL) is a collaborative machine learning paradigm for data privacy preservation. Recently, a knowledge distillation (KD) based information sharing approach in FL, which conducts ensemble distillation on an unlabeled public dataset, has been proposed. However, despite its experimental success and usefulness, the theoretical analysis of the KD based approach has not been satisfactorily conducted. In this work, we build a theoretical foundation of the ensemble distillation framework in federated learning from the perspective of kernel ridge regression (KRR). In this end, we propose a KD based FL algorithm for KRR models which is related with some existing KD based FL algorithms, and analyze our algorithm theoretically. We show that our algorithm makes local prediction models as much powerful as the centralized KRR model (which is a KRR model trained by all of local datasets) in terms of the convergence rate of the generalization error if the unlabeled public dataset is sufficiently large. We also provide experimental results to verify our theoretical results on ensemble distillation in federated learning.

Poster
Yiping Wang · Yifang Chen · Kevin Jamieson · Simon Du

[ Exhibit Hall 1 ]

To leverage the copious amount of data from source tasks and overcome the scarcity of the target task samples, representation learning based on multi-task pretraining has become a standard approach in many applications. However, up until now, most existing works design a source task selection strategy from a purely empirical perspective. Recently, [Chen et al., 2022](https://proceedings.mlr.press/v162/chen22j.html) gave the first active multi-task representation learning (A-MTRL) algorithm which adaptively samples from source tasks and can provably reduce the total sample complexity using the L2-regularized-target-source-relevance parameter $\nu^2$. But their work is theoretically suboptimal in terms of total source sample complexity and is less practical in some real-world scenarios where sparse training source task selection is desired. In this paper, we address both issues. Specifically, we show the strict dominance of the L1-regularized-relevance-based ($\nu^1$-based) strategy by giving a lower bound for the $\nu^2$-based strategy. When $\nu^1$ is unknown, we propose a practical algorithm that uses the LASSO program to estimate $\nu^1$. Our algorithm successfully recovers the optimal result in the known case. In addition to our sample complexity results, we also characterize the potential of our $\nu^1$-based strategy in sample-cost-sensitive settings. Finally, we provide experiments on real-world computer vision datasets to illustrate the effectiveness …
Poster
Weichen Yu · Tianyu Pang · Qian Liu · Chao Du · Bingyi Kang · Yan Huang · Min Lin · Shuicheng YAN

[ Exhibit Hall 1 ]

With the advance of language models, privacy protection is receiving more attention. Training data extraction is therefore of great importance, as it can serve as a potential tool to assess privacy leakage. However, due to the difficulty of this task, most of the existing methods are proof-of-concept and still not effective enough. In this paper, we investigate and benchmark tricks for improving training data extraction using a publicly available dataset. Because most existing extraction methods use a pipeline of generating-then-ranking, i.e., generating text candidates as potential training data and then ranking them based on specific criteria, our research focuses on the tricks for both text generation (e.g., sampling strategy) and text ranking (e.g., token-level criteria). The experimental results show that several previously overlooked tricks can be crucial to the success of training data extraction. Based on the GPT-Neo 1.3B evaluation results, our proposed tricks outperform the baseline by a large margin in most cases, providing a much stronger baseline for future research. The code is available at https://github.com/weichen-yu/LM-Extraction.

Poster
Edward Hu · Nikolay Malkin · Moksh Jain · Katie Everett · Alexandros Graikos · Yoshua Bengio

[ Exhibit Hall 1 ]

Latent variable models (LVMs) with discrete compositional latents are an important but challenging setting due to a combinatorially large number of possible configurations of the latents. A key tradeoff in modeling the posteriors over latents is between expressivity and tractable optimization. For algorithms based on expectation-maximization (EM), the E-step is often intractable without restrictive approximations to the posterior. We propose the use of GFlowNets, algorithms for sampling from an unnormalized density by learning a stochastic policy for sequential construction of samples, for this intractable E-step. By training GFlowNets to sample from the posterior over latents, we take advantage of their strengths as amortized variational inference algorithms for complex distributions over discrete structures. Our approach, GFlowNet-EM, enables the training of expressive LVMs with discrete compositional latents, as shown by experiments on non-context-free grammar induction and on images using discrete variational autoencoders (VAEs) without conditional independence enforced in the encoder.

Poster
Ying Fan · Kangwook Lee

[ Exhibit Hall 1 ]

In this study, we propose Shortcut Fine-Tuning (SFT), a new approach for addressing the challenge of fast sampling of pretrained Denoising Diffusion Probabilistic Models (DDPMs). SFT advocates for the fine-tuning of DDPM samplers through the direct minimization of Integral Probability Metrics (IPM), instead of learning the backward diffusion process. This enables samplers to discover an alternative and more efficient sampling shortcut, deviating from the backward diffusion process. Inspired by a control perspective, we propose a new algorithm SFT-PG: Shortcut Fine-Tuning with Policy Gradient, and prove that under certain assumptions, gradient descent of diffusion models with respect to IPM is equivalent to performing policy gradient. To our best knowledge, this is the first attempt to utilize reinforcement learning (RL) methods to train diffusion models. Through empirical evaluation, we demonstrate that our fine-tuning method can further enhance existing fast DDPM samplers, resulting in sample quality comparable to or even surpassing that of the full-step model across various datasets.

Poster
Anirudh Vemula · Yuda Song · Aarti Singh · J. Bagnell · Sanjiban Choudhury

[ Exhibit Hall 1 ]

We propose a novel approach to addressing two fundamental challenges in Model-based Reinforcement Learning (MBRL): the computational expense of repeatedly finding a good policy in the learned model, and the objective mismatch between model fitting and policy computation. Our "lazy" method leverages a novel unified objective, Performance Difference via Advantage in Model, to capture the performance difference between the learned policy and expert policy under the true dynamics. This objective demonstrates that optimizing the expected policy advantage in the learned model under an exploration distribution is sufficient for policy computation, resulting in a significant boost in computational efficiency compared to traditional planning methods. Additionally, the unified objective uses a value moment matching term for model fitting, which is aligned with the model's usage during policy computation. We present two no-regret algorithms to optimize the proposed objective, and demonstrate their statistical and computational gains compared to existing MBRL methods through simulated benchmarks.

Poster
Lin Ge · Jitao Wang · Chengchun Shi · Zhenke Wu · Rui Song

[ Exhibit Hall 1 ]

Mediation analysis learns the causal effect transmitted via mediator variables between treatments and outcomes, and receives increasing attention in various scientific domains to elucidate causal relations. Most existing works focus on point-exposure studies where each subject only receives one treatment at a single time point. However, there are a number of applications (e.g., mobile health) where the treatments are sequentially assigned over time and the dynamic mediation effects are of primary interest. Proposing a reinforcement learning (RL) framework, we are the first to evaluate dynamic mediation effects in settings with infinite horizons. We decompose the average treatment effect into an immediate direct effect, an immediate mediation effect, a delayed direct effect, and a delayed mediation effect. Upon the identification of each effect component, we further develop robust and semi-parametrically efficient estimators under the RL framework to infer these causal effects. The superior performance of the proposed method is demonstrated through extensive numerical studies, theoretical results, and an analysis of a mobile health dataset. A Python implementation of the proposed procedure is available at https://github.com/linlinlin97/MediationRL.

Poster
Alan Malek · Virginia Aglietti · Silvia Chiappa

[ Exhibit Hall 1 ]

We explore algorithms to select actions in the causal bandit setting where the learner can choose to intervene on a set of random variables related by a causal graph, and the learner sequentially chooses interventions and observes a sample from the interventional distribution. The learner's goal is to quickly find the intervention, among all interventions on observable variables, that maximizes the expectation of an outcome variable. We depart from previous literature by assuming no knowledge of the causal graph except that latent confounders between the outcome and its ancestors are not present. We first show that the unknown graph problem can be exponentially hard in the parents of the outcome. To remedy this, we adopt an additional additive assumption on the outcome which allows us to solve the problem by casting it as an additive combinatorial linear bandit problem with full-bandit feedback. We propose a novel action-elimination algorithm for this setting, show how to apply this algorithm to the causal bandit problem, provide sample complexity bounds, and empirically validate our findings on a suite of randomly generated causal models, effectively showing that one does not need to explicitly learn the parents of the outcome to identify the best intervention.

Poster
Yunhao Tang · Remi Munos · Mark Rowland · Michal Valko

[ Exhibit Hall 1 ]

In reinforcement learning, the advantage function is critical for policy improvement, but is often extracted from a learned Q-function. A natural question is: Why not learn the advantage function directly? In this work, we introduce VA-learning, which directly learns advantage function and value function using bootstrapping, without explicit reference to Q-functions. VA-learning learns off-policy and enjoys similar theoretical guarantees as Q-learning. Thanks to the direct learning of advantage function and value function, VA-learning improves the sample efficiency over Q-learning both in tabular implementations and deep RL agents on Atari-57 games. We also identify a close connection between VA-learning and the dueling architecture, which partially explains why a simple architectural change to DQN agents tends to improve performance.

Poster
Xingang Peng · Jiaqi Guan · qiang liu · Jianzhu Ma

[ Exhibit Hall 1 ]

Deep generative models have recently achieved superior performance in 3D molecule generation. Most of them first generate atoms and then add chemical bonds based on the generated atoms in a post-processing manner. However, there might be no corresponding bond solution for the temporally generated atoms as their locations are generated without considering potential bonds. We define this problem as the atom-bond inconsistency problem and claim it is the main reason for current approaches to generating unrealistic 3D molecules. To overcome this problem, we propose a new diffusion model called MolDiff which can generate atoms and bonds simultaneously while still maintaining their consistency by explicitly modeling the dependence between their relationships. We evaluated the generation ability of our proposed model and the quality of the generated molecules using criteria related to both geometry and chemical properties. The empirical studies showed that our model outperforms previous approaches, achieving a three-fold improvement in success rate and generating molecules with significantly better quality.

Poster
Tianqi Chen · Mingyuan Zhou

[ Exhibit Hall 1 ]

Learning to denoise has emerged as a prominent paradigm to design state-of-the-art deep generative models for natural images. How to use it to model the distributions of both continuous real-valued data and categorical data has been well studied in recently proposed diffusion models. However, it is found in this paper to have limited ability in modeling some other types of data, such as count and non-negative continuous data, that are often highly sparse, skewed, heavy-tailed, and/or overdispersed. To this end, we propose learning to jump as a general recipe for generative modeling of various types of data. Using a forward count thinning process to construct learning objectives to train a deep neural network, it employs a reverse count thickening process to iteratively refine its generation through that network. We demonstrate when learning to jump is expected to perform comparably to learning to denoise, and when it is expected to perform better. For example, learning to jump is recommended when the training data is non-negative and exhibits strong sparsity, skewness, heavy-tailedness, and/or heterogeneity.

Poster
Trenton Bricken · Rylan Schaeffer · Bruno Olshausen · Gabriel Kreiman

[ Exhibit Hall 1 ]

A hallmark of biological neural networks, which distinguishes them from their artificial counterparts, is the high degree of sparsity in their activations. This discrepancy raises three questions our work helps to answer: (i) Why are biological networks so sparse? (ii) What are the benefits of this sparsity? (iii) How can these benefits be utilized by deep learning models? Our answers to all of these questions center around training networks to handle random noise. Surprisingly, we discover that noisy training introduces three implicit loss terms that result in sparsely firing neurons specializing to high variance features of the dataset. When trained to reconstruct noisy-CIFAR10, neurons learn biological receptive fields. More broadly, noisy training presents a new approach to potentially increase model interpretability with additional benefits to robustness and computational efficiency.

Poster
Kenny Young · Aditya Ramesh · Louis Kirsch · Jürgen Schmidhuber

[ Exhibit Hall 1 ]

Model-Based Reinforcement Learning (RL) is widely believed to have the potential to improve sample efficiency by allowing an agent to synthesize large amounts of imagined experience. Experience Replay (ER) can be considered a simple kind of model, which has proved effective at improving the stability and efficiency of deep RL. In principle, a learned parametric model could improve on ER by generalizing from real experience to augment the dataset with additional plausible experience. However, given that learned value functions can also generalize, it is not immediately obvious why model generalization should be better. Here, we provide theoretical and empirical insight into when, and how, we can expect data generated by a learned model to be useful. First, we provide a simple theorem motivating how learning a model as an intermediate step can narrow down the set of possible value functions more than learning a value function directly from data using the Bellman equation. Second, we provide an illustrative example showing empirically how a similar effect occurs in a more concrete setting with neural network function approximation. Finally, we provide extensive experiments showing the benefit of model-based learning for online RL in environments with combinatorial complexity, but factored structure that allows …

Poster
Andrea Coletta · Svitlana Vyetrenko · Tucker Balch

[ Exhibit Hall 1 ]

Learning agent behaviors from observational data has shown to improve our understanding of their decision-making processes, advancing our ability to explain their interactions with the environment and other agents. While multiple learning techniques have been proposed in the literature, there is one particular setting that has not been explored yet: multi agent systems where agent identities remain anonymous. For instance, in financial markets labeled data that identifies market participant strategies is typically proprietary, and only the anonymous state-action pairs that result from the interaction of multiple market participants are publicly available. As a result, sequences of agent actions are not observable, restricting the applicability of existing work. In this paper, we propose a Policy Clustering algorithm, called K-SHAP, that learns to group anonymous state-action pairs according to the agent policies. We frame the problem as an Imitation Learning (IL) task, and we learn a world-policy able to mimic all the agent behaviors upon different environmental states. We leverage the world-policy to explain each anonymous observation through an additive feature attribution method called SHAP (SHapley Additive exPlanations). Finally, by clustering the explanations we show that we are able to identify different agent policies and group observations accordingly. We evaluate our approach …

Poster
Mukund Sundararajan · Walid Krichene

[ Exhibit Hall 1 ]

Data is pooled across entities (individuals or enterprises) to create machine learning models, and sometimes, the entities that contribute the data also benefit from the models. Consider for instance a recommender system (e.g. Spotify, Instagram or YouTube), a health care app that predicts the risk for some disease, or a service built by pooling data across enterprises. In this work we propose a framework to study this value exchange, i.e., we model and measure contributions (outflows), benefits (inflows) and the balance between contributions and benefits (the degree of reciprocity). We show theoretically, and via experiments that under certain distributional assumptions, some classes of models are approximately reciprocal. These results only scratch the surface; we conclude with several open directions.

Poster
Mark Rucker · Yinglun Zhu · Paul Mineiro

[ Exhibit Hall 1 ]

For infinite action contextual bandits, smoothed regret and reduction to regression results in state-of-the-art online performance with computational cost independent of the action set: unfortunately, the resulting data exhaust does not have well-defined importance-weights. This frustrates the execution of downstream data science processes such as offline model selection. In this paper we describe an online algorithm with an equivalent smoothed regret guarantee, but which generates well-defined importance weights: in exchange, the online computational cost increases, but only to order smoothness (i.e., still independent of the action set). This removes a key obstacle to adoption of smoothed regret in production scenarios.

Poster
Dylan Foster · Noah Golowich · Sham Kakade

[ Exhibit Hall 1 ]

We consider the problem of decentralized multi-agent reinforcement learning in Markov games. A fundamental question is whether there exist algorithms that, when run independently by all agents, lead to no-regret for each player, analogous to celebrated convergence results for no-regret learning in normal-form games. While recent work has shown that such algorithms exist for restricted settings (notably, when regret is defined with respect to deviations to Markov policies), the question of whether independent no-regret learning can be achieved in the standard Markov game framework was open. We provide a decisive negative resolution to this problem, both from a computational and statistical perspective. We show that: • Under the complexity-theoretic assumption that PPAD $\neq$ P, there is no polynomial-time algorithm that attains no-regret in two-player general-sum Markov games when executed independently by all players, even when the game is known to the algorithm designer. • When the game is unknown, no algorithm, efficient or otherwise, can achieve no-regret without observing exponentially many episodes in the number of players. These results are proven via lower bounds for a simpler problem we refer to as SparseCCE, in which the goal is to compute a coarse correlated equilibrium that is ``sparse'' in the sense …
Poster
Zhe Feng · Christopher Liaw · Zixin Zhou

[ Exhibit Hall 1 ]

In this work, we investigate the online learning problem of revenue maximization in ad auctions, where the seller needs to learn the click-through rates (CTRs) of each ad candidate and charge the price of the winner through a pay-per-click manner. We focus on two models of the advertisers' strategic behaviors. First, we assume that the advertiser is completely myopic; i.e. in each round, they aim to maximize their utility only for the current round. In this setting, we develop an online mechanism based on upper-confidence bounds that achieves a tight $O(\sqrt{T})$ regret in the worst-case and negative regret when the values are static across all the auctions and there is a gap between the highest expected value (i.e. value multiplied by their CTR) and second highest expected value ad. Next, we assume that the advertiser is non-myopic and cares about their long term utility. This setting is much more complex since an advertiser is incentivized to influence the mechanism by bidding strategically in earlier rounds. In this setting, we provide an algorithm to achieve negative regret for the static valuation setting (with a positive gap), which is in sharp contrast with the prior work that shows $O(T^{2/3})$ regret when the …
Poster
Lixing Lyu · Wang Chi Cheung

[ Exhibit Hall 1 ]

We consider a non-stationary Bandits with Knapsack problem. The outcome distribution at each time is scaled by a non-stationary quantity that signifies changing demand volumes. Instead of studying settings with limited non-stationarity, we investigate how online predictions on the total demand volume $Q$ allows us to improve our performance guarantees. We show that, without any prediction, any online algorithm incurs a linear-in-$T$ regret. In contrast, with online predictions on $Q$, we propose an online algorithm that judiciously incorporates the predictions, and achieve regret bounds that depends on the accuracy of the predictions. These bounds are shown to be tight in settings when prediction accuracy improves across time. Our theoretical results are corroborated by our numerical findings.
Poster
Sadhika Malladi · Alexander Wettig · Dingli Yu · Danqi Chen · Sanjeev Arora

[ Exhibit Hall 1 ]

It has become standard to solve NLP tasks by fine-tuning pre-trained language models (LMs), especially in low-data settings. There is minimal theoretical understanding of empirical success, e.g., why fine-tuning a model with $10^8$ or more parameters on a couple dozen training points does not result in overfitting. We investigate whether the Neural Tangent Kernel (NTK)---which originated as a model to study the gradient descent dynamics of infinitely wide networks with suitable random initialization---describes fine-tuning of pre-trained LMs. This study was inspired by the decent performance of NTK for computer vision tasks (Wei et al., 2022). We extend the NTK formalism to Adam and use Tensor Programs (Yang, 2020) to characterize conditions under which the NTK lens may describe fine-tuning updates to pre-trained language models. Extensive experiments on 14 NLP tasks validate our theory and show that formulating the downstream task as a masked word prediction problem through prompting often induces kernel-based dynamics during fine-tuning. Finally, we use this kernel view to propose an explanation for the success of parameter-efficient subspace-based fine-tuning methods.
Poster
Hannah Pinson · Joeri Lenaerts · Vincent Ginis

[ Exhibit Hall 1 ]

We here present a stepping stone towards a deeper understanding of convolutional neural networks (CNNs) in the form of a theory of learning in linear CNNs. Through analyzing the gradient descent equations, we discover that the evolution of the network during training is determined by the interplay between the dataset structure and the convolutional network structure. We show that linear CNNs discover the statistical structure of the dataset with non-linear, ordered, stage-like transitions, and that the speed of discovery changes depending on the relationship between the dataset and the convolutional network structure. Moreover, we find that this interplay lies at the heart of what we call the "dominant frequency bias", where linear CNNs arrive at these discoveries using only the dominant frequencies of the different structural parts present in the dataset. We furthermore provide experiments that show how our theory relates to deep, non-linear CNNs used in practice. Our findings shed new light on the inner working of CNNs, and can help explain their shortcut learning and their tendency to rely on texture instead of shape.

Poster
Weixin Liang · Yining Mao · Yongchan Kwon · Xinyu Yang · James Zou

[ Exhibit Hall 1 ]

Understanding the performance of machine learning (ML) models across diverse data distributions is critically important for reliable applications. Despite recent empirical studies positing a near-perfect linear correlation between in-distribution (ID) and out-of-distribution (OOD) accuracies, we empirically demonstrate that this correlation is more nuanced under subpopulation shifts. Through rigorous experimentation and analysis across a variety of datasets, models, and training epochs, we demonstrate that OOD performance often has a nonlinear correlation with ID performance in subpopulation shifts. Our findings, which contrast previous studies that have posited a linear correlation in model performance during distribution shifts, reveal a "moon shape" correlation (parabolic uptrend curve) between the test performance on the majority subpopulation and the minority subpopulation. This non-trivial nonlinear correlation holds across model architectures, hyperparameters, training durations, and the imbalance between subpopulations. Furthermore, we found that the nonlinearity of this "moon shape" is causally influenced by the degree of spurious correlations in the training data. Our controlled experiments show that stronger spurious correlation in the training data creates more nonlinear performance correlation. We provide complementary experimental and theoretical analyses for this phenomenon, and discuss its implications for ML reliability and fairness. Our work highlights the importance of understanding the nonlinear effects of …

Poster
Xuchen You · Shouvanik Chakrabarti · Boyang Chen · Xiaodi Wu

[ Exhibit Hall 1 ]

A quantum neural network (QNN) is a parameterized mapping efficiently implementable on near-term Noisy Intermediate-Scale Quantum (NISQ) computers. It can be used for supervised learning when combined with classical gradient-based optimizers. Despite the existing empirical and theoretical investigations, the convergence of QNN training is not fully understood. Inspired by the success of the neural tangent kernels (NTKs) in probing into the dynamics of classical neural networks, a recent line of works proposes to study over-parameterized QNNs by examining a quantum version of tangent kernels. In this work, we study the dynamics of QNNs and show that contrary to popular belief it is qualitatively different from that of any kernel regression: due to the unitarity of quantum operations, there is a non-negligible deviation from the tangent kernel regression derived at the random initialization. As a result of the deviation, we prove the at-most sublinear convergence for QNNs with Pauli measurements, which is beyond the explanatory power of any kernel regression dynamics. We then present the actual dynamics of QNNs in the limit of over-parameterization. The new dynamics capture the change of convergence rate during training and implies that the range of measurements is crucial to the fast QNN convergence.

Poster
Yanbo Wang · Letao Liu · Justin Dauwels

[ Exhibit Hall 1 ]

Slot attention has shown remarkable object-centric representation learning performance in computer vision tasks without requiring any supervision. Despite its object-centric binding ability brought by compositional modelling, as a deterministic module, slot attention lacks the ability to generate novel scenes. In this paper, we propose the Slot-VAE, a generative model that integrates slot attention with the hierarchical VAE framework for object-centric structured scene generation. For each image, the model simultaneously infers a global scene representation to capture high-level scene structure and object-centric slot representations to embed individual object components. During generation, slot representations are generated from the global scene representation to ensure coherent scene structures. Our extensive evaluation of the scene generation ability indicates that Slot-VAE outperforms slot representation-based generative baselines in terms of sample quality and scene structure accuracy.

Poster
Nan Yin · Li Shen · Mengzhu Wang · Long Lan · Zeyu Ma · Chong Chen · Xian-Sheng Hua · Xiao Luo

[ Exhibit Hall 1 ]

Although graph neural networks (GNNs) have achieved impressive achievements in graph classification, they often need abundant task-specific labels, which could be extensively costly to acquire. A credible solution is to explore additional labeled graphs to enhance unsupervised learning on the target domain. However, how to apply GNNs to domain adaptation remains unsolved owing to the insufficient exploration of graph topology and the significant domain discrepancy. In this paper, we propose Coupled Contrastive Graph Representation Learning (CoCo), which extracts the topological information from coupled learning branches and reduces the domain discrepancy with coupled contrastive learning. CoCo contains a graph convolutional network branch and a hierarchical graph kernel network branch, which explore graph topology in implicit and explicit manners. Besides, we incorporate coupled branches into a holistic multi-view contrastive learning framework, which not only incorporates graph representations learned from complementary views for enhanced understanding, but also encourages the similarity between cross-domain example pairs with the same semantics for domain alignment. Extensive experiments on popular datasets show that our CoCo outperforms these competing baselines in different settings generally.

Poster
Sashank Jakkam Reddi · Sobhan Miryoosefi · Stefani Karp · Shankar Krishnan · Satyen Kale · Seungyeon Kim · Sanjiv Kumar

[ Exhibit Hall 1 ]

Large deep learning models have achieved state-of-the-art performance across various natural language processing (NLP) tasks and demonstrated remarkable few-shot learning performance. However, training them is often challenging and resource-intensive. In this paper, we study an efficient approach to train language models using few-shot learners. We show that, by leveraging the fast learning nature of few-shot learners, one can train language models efficiently in a stagewise manner. Our main insight is that stacking a good few-shot learner on a good small language model provides a good initializer for a larger language model. Using this insight and building upon progressive stacking approaches, we develop novel approaches for training such networks in a stagewise manner. Furthermore, we also provide a theoretical framework and accompanying empirical studies to support our insights, thereby creating a theoretical foundation for progressive stacking. Finally, we provide empirical results to demonstrate the effectiveness of our approach in reducing the training time of few-shot learners.

Poster
Lan-Zhe Guo · Zhi Zhou · Yu-Feng Li · Zhi-Hua Zhou

[ Exhibit Hall 1 ]

The learnware paradigm aims to build a learnware market containing numerous learnwares, each of which is a well-performing machine learning model with a corresponding specification to describe its functionality so that future users can identify useful models for reuse according to their own requirements. With the learnware paradigm, model developers can spontaneously submit models to the market without leaking data privacy, and users can leverage models in the market to accomplish different machine learning tasks without having to build models from scratch. Recent studies have attempted to realize the model specification through Reduced Kernel Mean Embedding (RKME). In this paper, we make an attempt to improve the effectiveness of RKME specification for heterogeneous label spaces, where the learnware market does not contain a model that has the same label space as the user's task, by considering a class-specific model specification explicitly, along with a class-wise learnware identification method. Both theoretical and empirical analyses show that our proposal can quickly and accurately find useful learnwares that satisfy users' requirements. Moreover, we find that for a specific task, reusing a small model identified via the specification performs better than directly reusing a pre-trained generic big model.

Poster
Bin Wu · Jinyuan Fang · xiangxiang Zeng · Shangsong Liang · Qiang Zhang

[ Exhibit Hall 1 ]

This paper focuses on continual meta-learning, where few-shot tasks are heterogeneous and sequentially available. Recent works use a mixture model for meta-knowledge to deal with the heterogeneity. However, these methods suffer from parameter inefficiency caused by two reasons: (1) the underlying assumption of mutual exclusiveness among mixture components hinders sharing meta-knowledge across heterogeneous tasks. (2) they only allow increasing mixture components and cannot adaptively filter out redundant components. In this paper, we propose an Adaptive Compositional Continual Meta-Learning (ACML) algorithm, which employs a compositional premise to associate a task with a subset of mixture components, allowing meta-knowledge sharing among heterogeneous tasks. Moreover, to adaptively adjust the number of mixture components, we propose a component sparsification method based on evidential theory to filter out redundant components. Experimental results show ACML outperforms strong baselines, showing the effectiveness of our compositional meta-knowledge, and confirming that ACML can adaptively learn meta-knowledge.

Poster
Xuanzhou Liu · Lin Zhang · Jiaqi Sun · Yujiu Yang · Haiqin Yang

[ Exhibit Hall 1 ]

Subgraph matching is a fundamental building block for graph-based applications and is challenging due to its high-order combinatorial nature. Existing studies usually tackle it by combinatorial optimization or learning-based methods. However, they suffer from exponential computational costs or searching the matching without theoretical guarantees. In this paper, we develop $D^2$Match by leveraging the efficiency of Deep learning and Degeneracy for subgraph matching. More specifically, we first prove that subgraph matching can degenerate to subtree matching, and subsequently is equivalent to finding a perfect matching on a bipartite graph. We can then yield an implementation of linear time complexity by the built-in tree-structured aggregation mechanism on graph neural networks. Moreover, circle structures and node attributes can be easily incorporated in $D^2$Match to boost the matching performance. Finally, we conduct extensive experiments to show the superior performance of our $D^2$Match and confirm that our $D^2$Match indeed exploits the subtrees and differs from existing GNNs-based subgraph matching methods that depend on memorizing the data distribution divergence.
Poster
Zequn Sun · Jiacheng Huang · Xiaozhou Xu · Qijin Chen · Weijun Ren · Wei Hu

[ Exhibit Hall 1 ]

Joint representation learning over multi-sourced knowledge graphs (KGs) yields transferable and expressive embeddings that improve downstream tasks. Entity alignment (EA) is a critical step in this process. Despite recent considerable research progress in embedding-based EA, how it works remains to be explored. In this paper, we provide a similarity flooding perspective to explain existing translation-based and aggregation-based EA models. We prove that the embedding learning process of these models actually seeks a fixpoint of pairwise similarities between entities. We also provide experimental evidence to support our theoretical analysis. We propose two simple but effective methods inspired by the fixpoint computation in similarity flooding, and demonstrate their effectiveness on benchmark datasets. Our work bridges the gap between recent embedding-based models and the conventional similarity flooding algorithm. It would improve our understanding of and increase our faith in embedding-based EA.

Poster
Zhen WANG · Weirui Kuang · Ce Zhang · Bolin Ding · Yaliang Li

[ Exhibit Hall 1 ]

Research in the field of hyperparameter optimization (HPO) has been greatly accelerated by existing HPO benchmarks. Nonetheless, existing efforts in benchmarking all focus on HPO for traditional learning paradigms while ignoring federated learning (FL), a promising paradigm for collaboratively learning models from dispersed data. In this paper, we first identify some uniqueness of federated hyperparameter optimization (FedHPO) from various aspects, showing that existing HPO benchmarks no longer satisfy the need to study FedHPO methods. To facilitate the research of FedHPO, we propose and implement a benchmark suite FedHPO-Bench that incorporates comprehensive FedHPO problems, enables flexible customization of the function evaluations, and eases continuing extensions. We conduct extensive experiments based on FedHPO-Bench to provide the community with more insights into FedHPO. We open-sourced FedHPO-Bench at https://github.com/alibaba/FederatedScope/tree/master/benchmark/FedHPOBench.

Poster
Salem Lahlou · Tristan Deleu · Pablo Lemos · Dinghuai Zhang · Alexandra Volokhova · Alex Hernandez-Garcia · Lena Nehale Ezzine · Yoshua Bengio · Nikolay Malkin

[ Exhibit Hall 1 ]

Generative flow networks (GFlowNets) are amortized variational inference algorithms that are trained to sample from unnormalized target distributions over compositional objects. A key limitation of GFlowNets until this time has been that they are restricted to discrete spaces. We present a theory for generalized GFlowNets, which encompasses both existing discrete GFlowNets and ones with continuous or hybrid state spaces, and perform experiments with two goals in mind. First, we illustrate critical points of the theory and the importance of various assumptions. Second, we empirically demonstrate how observations about discrete GFlowNets transfer to the continuous case and show strong results compared to non-GFlowNet baselines on several previously studied tasks. This work greatly widens the perspectives for the application of GFlowNets in probabilistic inference and various modeling settings.

Poster
Nicola Muca Cirone · Maud Lemercier · Cristopher Salvi

[ Exhibit Hall 1 ]

Motivated by the paradigm of reservoir computing, we consider randomly initialized controlled ResNets defined as Euler-discretizations of neural controlled differential equations (Neural CDEs), a unified architecture which enconpasses both RNNs and ResNets. We show that in the infinite-width-depth limit and under proper scaling, these architectures converge weakly to Gaussian processes indexed on some spaces of continuous paths and with kernels satisfying certain partial differential equations (PDEs) varying according to the choice of activation function $\varphi$, extending the results of Hayou (2022); Hayou & Yang (2023) to the controlled and homogeneous case. In the special, homogeneous, case where $\varphi$ is the identity, we show that the equation reduces to a linear PDE and the limiting kernel agrees with the signature kernel of Salvi et al. (2021a). We name this new family of limiting kernels neural signature kernels. Finally, we show that in the infinite-depth regime, finite-width controlled ResNets converge in distribution to Neural CDEs with random vector fields which, depending on whether the weights are shared across layers, are either time-independent and Gaussian or behave like a matrix-valued Brownian motion.
Poster
Kyurae Kim · Kaiwen Wu · Jisu Oh · Jacob Gardner

[ Exhibit Hall 1 ]

Understanding the gradient variance of black-box variational inference (BBVI) is a crucial step for establishing its convergence and developing algorithmic improvements. However, existing studies have yet to show that the gradient variance of BBVI satisfies the conditions used to study the convergence of stochastic gradient descent (SGD), the workhorse of BBVI. In this work, we show that BBVI satisfies a matching bound corresponding to the ABC condition used in the SGD literature when applied to smooth and quadratically-growing log-likelihoods. Our results generalize to nonlinear covariance parameterizations widely used in the practice of BBVI. Furthermore, we show that the variance of the mean-field parameterization has provably superior dimensional dependence.

Poster
Jitao Wang · Chengchun Shi · Zhenke Wu

[ Exhibit Hall 1 ]

Reinforcement learning (RL) is a powerful technique that allows an autonomous agent to learn an optimal policy to maximize the expected return. The optimality of various RL algorithms relies on the stationarity assumption, which requires time-invariant state transition and reward functions. However, deviations from stationarity over extended periods often occur in real-world applications like robotics control, health care and digital marketing, resulting in suboptimal policies learned under stationary assumptions. In this paper, we propose a model-based doubly robust procedure for testing the stationarity assumption and detecting change points in offline RL settings with certain degree of homogeneity. Our proposed testing procedure is robust to model misspecifications and can effectively control type-I error while achieving high statistical power, especially in high-dimensional settings. Extensive comparative simulations and a real-world interventional mobile health example illustrate the advantages of our method in detecting change points and optimizing long-term rewards in high-dimensional, non-stationary environments.

Poster
Hao Zhang · Chenglin Li · Wenrui Dai · Junni Zou · Hongkai Xiong

[ Exhibit Hall 1 ]

In personalized federated learning (PFL), multiple clients train customized models to fulfill their personal objectives, which, however, are prone to overfitting to local data due to the heterogeneity and scarcity of local data. To address this, we propose from the information-theoretic perspective a personalized federated learning framework based on the common representation learned across clients, named FedCR. Specifically, we introduce to the local client update a regularizer that aims at minimizing the discrepancy between local and global conditional mutual information (CMI), such that clients are encouraged to learn and exploit the common representation. Upon this, each client learns individually a customized predictor (head), while the extractor (body) remains to be aggregated by the server. Our CMI regularizer leads to a theoretically sound alignment between the local and global stochastic feature distributions in terms of their Kullback-Leibler (KL) divergence. More importantly, by modeling the global joint feature distribution as a product of multiple local feature distributions, clients can efficiently extract diverse information from the global data but without need of the raw data from other clients. We further show that noise injection via feature alignment and ensemble of local predictors in FedCR would help enhance its generalization capability. Experiments on benchmark …

Poster
Aviv Shamsian · Aviv Navon · Neta Glazer · Kenji Kawaguchi · Gal Chechik · Ethan Fetaya

[ Exhibit Hall 1 ]

Auxiliary learning is an effective method for enhancing the generalization capabilities of trained models, particularly when dealing with small datasets. However, this approach may present several difficulties: (i) optimizing multiple objectives can be more challenging, and (ii) how to balance the auxiliary tasks to best assist the main task is unclear. In this work, we propose a novel approach, named AuxiNash, for balancing tasks in auxiliary learning by formalizing the problem as generalized bargaining game with asymmetric task bargaining power. Furthermore, we describe an efficient procedure for learning the bargaining power of tasks based on their contribution to the performance of the main task and derive theoretical guarantees for its convergence. Finally, we evaluate AuxiNash on multiple multi-task benchmarks and find that it consistently outperforms competing methods.

Poster
Guoqing Liu · Di Xue · Shufang Xie · Yingce Xia · Austin Tripp · Krzysztof Maziarz · Marwin Segler · Tao Qin · Zongzhang Zhang · Tie-Yan Liu

[ Exhibit Hall 1 ]

Abstract
Retrosynthesis, which aims to find a route to synthesize a target molecule from commercially available starting materials, is a critical task in drug discovery and materials design. Recently, the combination of ML-based single-step reaction predictors with multi-step planners has led to promising results. However, the single-step predictors are mostly trained offline to optimize the single-step accuracy, without considering complete routes. Here, we leverage reinforcement learning (RL) to improve the single-step predictor, by using a tree-shaped MDP to optimize complete routes. Specifically, we propose a novel online training algorithm, called Planning with Dual Value Networks (PDVN), which alternates between the planning phase and updating phase. In PDVN, we construct two separate value networks to predict the synthesizability and cost of molecules, respectively. To maintain the single-step accuracy, we design a two-branch network structure for the single-step predictor. On the widely-used USPTO dataset, our PDVN algorithm improves the search success rate of existing multi-step planners (e.g., increasing the success rate from 85.79% to 98.95% for Retro$^{\ast}$, and reducing the number of model calls by half while solving 99.47% molecules for RetroGraph). Additionally, PDVN helps find shorter synthesis routes (e.g., reducing the average route length from 5.76 to 4.83 for Retro$^{\ast}$, and from …
Poster
Cheuk Yin Lin · Chaobing Song · Jelena Diakonikolas

[ Exhibit Hall 1 ]

Exploiting partial first-order information in a cyclic way is arguably the most natural strategy to obtain scalable first-order methods. However, despite their wide use in practice, cyclic schemes are far less understood from a theoretical perspective than their randomized counterparts. Motivated by a recent success in analyzing an extrapolated cyclic scheme for generalized variational inequalities, we propose an Accelerated Cyclic Coordinate Dual Averaging with Extrapolation (A-CODER) method for composite convex optimization, where the objective function can be expressed as the sum of a smooth convex function accessible via a gradient oracle and a convex, possibly nonsmooth, function accessible via a proximal oracle. We show that A-CODER attains the optimal convergence rate with improved dependence on the number of blocks compared to prior work. Furthermore, for the setting where the smooth component of the objective function is expressible in a finite sum form, we introduce a variance-reduced variant of A-CODER, VR-A-CODER, with state-of-the-art complexity guarantees. Finally, we demonstrate the effectiveness of our algorithms through numerical experiments.

Poster
Terrance Liu · Jingwu Tang · Giuseppe Vietri · Steven Wu

[ Exhibit Hall 1 ]

We study the problem of efficiently generating differentially private synthetic data that approximate the statistical properties of an underlying sensitive dataset. In recent years, there has been a growing line of work that approaches this problem using first-order optimization techniques. However, such techniques are restricted to optimizing differentiable objectives only, severely limiting the types of analyses that can be conducted. For example, first-order mechanisms have been primarily successful in approximating statistical queries only in the form of marginals for discrete data domains. In some cases, one can circumvent such issues by relaxing the task's objective to maintain differentiability. However, even when possible, these approaches impose a fundamental limitation in which modifications to the minimization problem become additional sources of error. Therefore, we propose Private-GSD, a private genetic algorithm based on zeroth-order optimization heuristics that do not require modifying the original objective; thus, it avoids the aforementioned limitations of first-order optimization. We demonstrate empirically that on data with both discrete and real-valued attributes, Private-GSD outperforms the state-of-the-art methods on non-differential queries while matching accuracy in approximating differentiable ones.

Poster
Mikael Møller Høgsgaard · Kasper Green Larsen · Martin Ritzert

[ Exhibit Hall 1 ]

AdaBoost is a classic boosting algorithm for combining multiple inaccurate classifiers produced by a weak learner, to produce a strong learner with arbitrarily high accuracy when given enough training data. Determining the optimal number of samples necessary to obtain a given accuracy of the strong learner, is a basic learning theoretic question. Larsen and Ritzert (NeurIPS'22) recently presented the first provably optimal weak-to-strong learner. However, their algorithm is somewhat complicated and it remains an intriguing question whether the prototypical boosting algorithm AdaBoost also makes optimal use of training samples. In this work, we answer this question in the negative. Concretely, we show that the sample complexity of AdaBoost, and other classic variations thereof, are sub-optimal by at least one logarithmic factor in the desired accuracy of the strong learner.

Poster
Weijian Deng · Yumin Suh · Stephen Gould · Liang Zheng

[ Exhibit Hall 1 ]

This work aims to assess how well a model performs under distribution shifts without using labels. While recent methods study prediction confidence, this work reports prediction dispersity is another informative cue. Confidence reflects whether the individual prediction is certain; dispersity indicates how the overall predictions are distributed across all categories. Our key insight is that a well-performing model should give predictions with high confidence and high dispersity. That is, we need to consider both properties so as to make more accurate estimates. To this end, we use nuclear norm that has been shown to be effective in characterizing both properties. Extensive experiments validate the effectiveness of nuclear norm for various models (e.g., ViT and ConvNeXt), different datasets (e.g., ImageNet and CUB-200), and diverse types of distribution shifts (e.g., style shift and reproduction shift). We show that nuclear norm is more accurate and robust in accuracy estimation than existing methods. Furthermore, we validate the feasibility of other measurements (e.g., mutual information maximization) for characterizing dispersity and confidence. Lastly, we investigate the limitation of the nuclear norm, study its improved variant under severe class imbalance, and discuss potential directions.

Poster
Sang-Hyun Lee · Seung-Woo Seo

[ Exhibit Hall 1 ]

Learning shared structures across changing environments enables an agent to efficiently retain obtained knowledge and transfer it between environments. A skill is a promising concept to represent shared structures. Several recent works proposed unsupervised skill discovery algorithms that can discover useful skills without a reward function. However, they focused on discovering skills in stationary environments or assumed that a skill being trained is fixed within an episode, which is insufficient to learn and represent shared structures. In this paper, we introduce a new unsupervised skill discovery algorithm that discovers a set of skills that can represent shared structures across changing environments. Our algorithm trains incremental skills and encourages a new skill to expand state coverage obtained with compositions of previously learned skills. We also introduce a skill evaluation process to prevent our skills from containing redundant skills, a common issue in previous work. Our experimental results show that our algorithm acquires skills that represent shared structures across changing maze navigation and locomotion environments. Furthermore, we demonstrate that our skills are more useful than baselines on downstream tasks.

Poster
Pingchuan Ma · Peter Yichen Chen · Bolei Deng · Josh Tenenbaum · Tao Du · Chuang Gan · Wojciech Matusik

[ Exhibit Hall 1 ]

We propose a hybrid neural network (NN) and PDE approach for learning generalizable PDE dynamics from motion observations. Many NN approaches learn an end-to-end model that implicitly models both the governing PDE and constitutive models (or material models). Without explicit PDE knowledge, these approaches cannot guarantee physical correctness and have limited generalizability. We argue that the governing PDEs are often well-known and should be explicitly enforced rather than learned. Instead, constitutive models are particularly suitable for learning due to their data-fitting nature. To this end, we introduce a new framework termed "Neural Constitutive Laws" (NCLaw), which utilizes a network architecture that strictly guarantees standard constitutive priors, including rotation equivariance and undeformed state equilibrium. We embed this network inside a differentiable simulation and train the model by minimizing a loss function based on the difference between the simulation and the motion observation. We validate NCLaw on various large-deformation dynamical systems, ranging from solids to fluids. After training on a single motion trajectory, our method generalizes to new geometries, initial/boundary conditions, temporal ranges, and even multi-physics systems. On these extremely out-of-distribution generalization tasks, NCLaw is orders-of-magnitude more accurate than previous NN approaches. Real-world experiments demonstrate our method's ability to learn constitutive laws …

Poster
Makoto Takamoto · Francesco Alesiani · Mathias Niepert

[ Exhibit Hall 1 ]

Scientific Machine Learning (SciML) is concerned with the development of learned emulators of physical systems governed by partial differential equations (PDE). In application domains such as weather forecasting, molecular dynamics, and inverse design, ML-based surrogate models are increasingly used to augment or replace inefficient and often non-differentiable numerical simulation algorithms. While a number of ML-based methods for approximating the solutions of PDEs have been proposed in recent years, they typically do not adapt to the parameters of the PDEs, making it difficult to generalize to PDE parameters not seen during training. We propose a Channel Attention guided by PDE Parameter Embeddings (CAPE) component for neural surrogate models and a simple yet effective curriculum learning strategy. The CAPE module can be combined with any neural PDE solvers allowing them to adapt to unseen PDE parameters. The curriculum learning strategy provides a seamless transition between teacher-forcing and fully auto-regressive training. We compare CAPE in conjunction with the curriculum learning strategy using a PDE benchmark and obtain consistent and significant improvements over the baseline models. The experiments also show several advantages of CAPE, such as its increased ability to generalize to unseen PDE parameters without large increases inference time and parameter count. An …

Poster
Hang Xu · Wenxuan Zhang · Jiawei Fei · Yuzhe Wu · TingWen Xie · Jun Huang · Yuchen Xie · Mohamed Elhoseiny · Panos Kalnis

[ Exhibit Hall 1 ]

Distributed training of large deep neural networks requires frequent exchange of massive data between machines, thus communication efficiency is a major concern. Existing compressed communication methods are either not compatible with large batch optimization algorithms, or do not provide sufficient speedup in large scale. In this paper, we combine sparsification-based gradient compression with the layer-wise adaptive moments optimizer for large batch training (LAMB). We propose SLAMB, a novel communication-efficient optimizer that supports large batch sizes and scales to thousands of GPUs. SLAMB employs momentum masking, local error compensation, and element-wise adaptive rescaling to achieve accurate layer-wise weight updates, which translates to fast convergence for very large batches. Our empirical results show that, compared to the state-of-the-art, SLAMB transmits half the amount of data in large-batch BERT pre-training, without sacrificing accuracy. Moreover, SLAMB achieves excellent scalability in large computing infrastructures. For instance, SLAMB with 128 GPUs reduces the training time of Swin Transformer pre-training on ImageNet to 5.35 hours, which is 2 hours faster than the state-of-the-art. At the extreme, we trained BERT-XL (2.8B parameters) on 1,024 NVIDIA A100 GPUs, where SLAMB achieved 90% scaling efficiency.

Poster
Hanxiao Chen · Meng Hao · Hongwei Li · Kangjie Chen · Guowen Xu · Tianwei Zhang · Xilin Zhang

[ Exhibit Hall 1 ]

Heterogeneous federated learning (HFL) enables clients with different computation and communication capabilities to collaboratively train their own customized models via a query-response paradigm on auxiliary datasets. However, such a paradigm raises serious privacy concerns due to the leakage of highly sensitive query samples and response predictions. We put forth GuardHFL, the first-of-its-kind efficient and privacy-preserving HFL framework. GuardHFL is equipped with a novel HFL-friendly secure querying scheme built on lightweight secret sharing and symmetric-key techniques. The core of GuardHFL is two customized multiplication and comparison protocols, which substantially boost the execution efficiency. Extensive evaluations demonstrate that GuardHFL significantly outperforms the alternative instantiations based on existing state-of-the-art techniques in both runtime and communication cost.

Poster
Xi Lin · Zhiyuan Yang · Xiaoyuan Zhang · Qingfu Zhang

[ Exhibit Hall 1 ]

Homotopy optimization is a traditional method to deal with a complicated optimization problem by solving a sequence of easy-to-hard surrogate subproblems. However, this method can be very sensitive to the continuation schedule design and might lead to a suboptimal solution to the original problem. In addition, the intermediate solutions, often ignored by classic homotopy optimization, could be useful for many real-world applications. In this work, we propose a novel model-based approach to learn the whole continuation path for homotopy optimization, which contains infinite intermediate solutions for any surrogate subproblems. Rather than the classic unidirectional easy-to-hard optimization, our method can simultaneously optimize the original problem and all surrogate subproblems in a collaborative manner. The proposed model also supports the real-time generation of any intermediate solution, which could be desirable for many applications. Experimental studies on different problems show that our proposed method can significantly improve the performance of homotopy optimization and provide extra helpful information to support better decision-making.

Poster
Chenbo Jiang · Jie Yang · Shwai He · Yu-Kun Lai · Lin Gao

[ Exhibit Hall 1 ]

Learning-based high-fidelity reconstruction of 3D shapes with varying topology is a fundamental problem in computer vision and computer graphics. Recent advances in learning 3D shapes using explicit and implicit representations have achieved impressive results in 3D modeling. However, the template-based explicit representation is limited by fixed topology, and the implicit representation, although flexible with arbitrary topology, requires a large number of sampled points to regress the surface, which is computationally expensive. In this work, we propose a novel 3D shape representation named NeuralSlice, which represents a 3D shape as the intersection of a 4D tetrahedral mesh and a 4D hyperplane. A novel network is designed to incorporate the proposed representation flexibly, which learns a deformable 4D template and a parameter for slicing 4D hyperplane to reconstruct the 3D object. To learn the local deformation of the 4D template, we further propose a spatial-aware network to locate the 4D points within the 3D feature volume of input shape via positional encoding, which leverages the local geometrical feature to guide the 4D deformation. By addressing the 3D problem in a higher 4D space, our method supports flexible topology changes while being highly efficient. Our method is guaranteed to produce manifold meshes. NeuralSlice …

Poster
Byungjoo Kim · Suyoung Lee · Seanie Lee · Son · Sung Ju Hwang

[ Exhibit Hall 1 ]

As Machine Learning as a Service (MLaaS) platforms become prevalent, deep neural network (DNN) watermarking techniques are gaining increasing attention, which enables one to verify the ownership of a target DNN model in a black-box scenario. Unfortunately, previous watermarking methods are vulnerable to functionality stealing attacks, thus allowing an adversary to falsely claim the ownership of a DNN model stolen from its original owner. In this work, we propose a novel margin-based DNN watermarking approach that is robust to the functionality stealing attacks based on model extraction and distillation. Specifically, during training, our method maximizes the margins of watermarked samples by using projected gradient ascent on them so that their predicted labels cannot change without compromising the accuracy of the model that the attacker tries to steal. We validate our method on multiple benchmarks and show that our watermarking method successfully defends against model extraction attacks, outperforming recent baselines.

Poster
Elisabeth Ailer · Jason Hartford · Niki Kilbertus

[ Exhibit Hall 1 ]

Instrumental variable (IV) methods are used to estimate causal effects in settings with unobserved confounding, where we cannot directly experiment on the treatment variable. Instruments are variables which only affect the outcome indirectly via the treatment variable(s). Most IV applications focus on low-dimensional treatments and crucially require at least as many instruments as treatments. This assumption is restrictive: in the natural sciences we often seek to infer causal effects of high-dimensional treatments (e.g., the effect of gene expressions or microbiota on health and disease), but can only run few experiments with a limited number of instruments (e.g., drugs or antibiotics). In such under-specified problems, the full treatment effect is not identifiable in a single experiment even in the linear case. We show that one can still reliably recover the projection of the treatment effect onto the instrumented subspace and develop techniques to consistently combine such partial estimates from different sets of instruments. We then leverage our combined estimators in an algorithm that iteratively proposes the most informative instruments at each round of experimentation to maximize the overall information about the full causal effect.

Poster
Drew Prinster · Suchi Saria · Anqi Liu

[ Exhibit Hall 1 ]

We study the efficient estimation of predictive confidence intervals for black-box predictors when the common data exchangeability (e.g., i.i.d.) assumption is violated due to potentially feedback-induced shifts in the input data distribution. That is, we focus on standard and feedback covariate shift (FCS), where the latter allows for feedback dependencies between train and test data that occur in many decision-making scenarios like experimental design. Whereas prior conformal prediction methods for this problem are in general either extremely computationally demanding or make inefficient use of labeled data, we propose a collection of methods based on the jackknife+ that achieve a practical balance of computational and statistical efficiency. Theoretically, our proposed JAW-FCS method extends the rigorous, finite-sample coverage guarantee of the jackknife+ to FCS. We moreover propose two tunable relaxations to JAW-FCS's computation that maintain finite-sample guarantees: one using only $K$ leave-one-out models (JAW-$K$LOO) and a second building on $K$-fold cross validation+ (WCV+). Practically, we demonstrate that JAW-FCS and its computational relaxations outperform state-of-the-art baselines on a variety of real-world datasets under standard and feedback covariate shift, including for biomolecular design and active learning tasks.
Poster
Martino Bernasconi · Matteo Castiglioni · Alberto Marchesi · Francesco Trovò · Nicola Gatti

[ Exhibit Hall 1 ]

Abstract
The computational study of equilibria involving constraints on players' strategies has been largely neglected. However, in real-world applications, players are usually subject to constraints ruling out the feasibility of some of their strategies, such as, e.g., safety requirements and budget caps. Computational studies on constrained versions of the Nash equilibrium have lead to some results under very stringent assumptions, while finding constrained versions of the correlated equilibrium (CE) is still unexplored. In this paper, we introduce and computationally characterize constrained Phi-equilibria---a more general notion than constrained CEs---in normal-form games. We show that computing such equilibria is in general computationally intractable, and also that the set of the equilibria may not be convex, providing a sharp divide with unconstrained CEs. Nevertheless, we provide a polynomial-time algorithm for computing a constrained (approximate) Phi-equilibrium maximizing a given linear function, when either the number of constraints or that of players' actions is fixed. Moreover, in the special case in which a player's constraints do not depend on other players' strategies, we show that an exact, function-maximizing equilibrium can be computed in polynomial time, while one (approximate) equilibrium can be found with an efficient decentralized no-regret learning algorithm.
Poster
Kazusato Oko · Shunta Akiyama · Taiji Suzuki

[ Exhibit Hall 1 ]

Abstract
While efficient distribution learning is no doubt behind the groundbreaking success of diffusion modeling, its theoretical guarantees are quite limited. In this paper, we provide the first rigorous analysis on approximation and generalization abilities of diffusion modeling for well-known function spaces. The highlight of this paper is that when the true density function belongs to the Besov space and the empirical score matching loss is properly minimized, the generated data distribution achieves the nearly minimax optimal estimation rates in the total variation distance and in the Wasserstein distance of order one. Furthermore, we extend our theory to demonstrate how diffusion models adapt to low-dimensional data distributions. We expect these results advance theoretical understandings of diffusion modeling and its ability to generate verisimilar outputs.
Poster
Alkis Kalavasis · Amin Karbasi · Shay Moran · Grigoris Velegkas

[ Exhibit Hall 1 ]

When two different parties use the same learning rule on their own data, how can we test whether the distributions of the two outcomes are similar? In this paper, we study the similarity of outcomes of learning rules through the lens of the Total Variation (TV) distance of distributions. We say that a learning rule is TV indistinguishable if the expected TV distance between the posterior distributions of its outputs, executed on two training data sets drawn independently from the same distribution, is small. We first investigate the learnability of hypothesis classes using TV indistinguishable learners. Our main results are information-theoretic equivalences between TV indistinguishability and existing algorithmic stability notions such as replicability and approximate differential privacy. Then, we provide statistical amplification and boosting algorithms for TV indistinguishable learners.

Poster
Connor Lawless · Oktay Gunluk

[ Exhibit Hall 1 ]

This paper focuses on the cluster description problem where, given a dataset and its partition into clusters, the task is to explain the clusters. We introduce a new approach to explain clusters by constructing a polyhedron around each cluster while minimizing either the complexity of the resulting polyhedra or the number of features used in the description. We formulate the cluster description problem as an integer program and present a column generation approach to search over an exponential number of candidate half-spaces that can be used to build the polyhedra. To deal with large datasets, we introduce a novel grouping scheme that first forms smaller groups of data points and then builds the polyhedra around the grouped data, a strategy which out-performs the common approach of sub-sampling data. Compared to state of the art cluster description algorithms, our approach is able to achieve competitive interpretability with improved description accuracy.

Poster
David Ruhe · Jayesh K. Gupta · Steven De Keninck · Max Welling · Johannes Brandstetter

[ Exhibit Hall 1 ]

We propose Geometric Clifford Algebra Networks (GCANs) for modeling dynamical systems. GCANs are based on symmetry group transformations using geometric (Clifford) algebras. We first review the quintessence of modern (plane-based) geometric algebra, which builds on isometries encoded as elements of the $\mathrm{Pin}(p,q,r)$ group. We then propose the concept of group action layers, which linearly combine object transformations using pre-specified group actions. Together with a new activation and normalization scheme, these layers serve as adjustable geometric templates that can be refined via gradient descent. Theoretical advantages are strongly reflected in the modeling of three-dimensional rigid body transformations as well as large-scale fluid dynamics simulations, showing significantly improved performance over traditional methods.
Poster
Aram-Alexandre Pooladian · Heli Ben-Hamu · Carles Domingo i Enrich · Brandon Amos · Yaron Lipman · Ricky T. Q. Chen

[ Exhibit Hall 1 ]

Simulation-free methods for training continuous-time generative models construct probability paths that go between noise distributions and individual data samples. Recent works, such as Flow Matching, derived paths that are optimal for each data sample. However, these algorithms rely on independent data and noise samples, and do not exploit underlying structure in the data distribution for constructing probability paths. We propose Multisample Flow Matching, a more general framework that uses non-trivial couplings between data and noise samples while satisfying the correct marginal constraints. At small overhead costs, this generalization allows us to (i) reduce gradient variance during training, (ii) obtain straighter flows for the learned vector field, which allows us to generate high-quality samples using fewer function evaluations, and (iii) obtain transport maps with low cost in high dimensions, which has applications beyond generative modeling. Importantly, we do so in a completely simulation-free manner with a simple minimization objective. We show that our proposed methods improve sample consistency on downsampled ImageNet data sets, and lead to better low-cost sample generation.

Poster
Paul Chang · Prakhar Verma · ST John · Arno Solin · Khan Emtiyaz

[ Exhibit Hall 1 ]

Sequential learning with Gaussian processes (GPs) is challenging when access to past data is limited, for example, in continual and active learning. In such cases, errors can accumulate over time due to inaccuracies in the posterior, hyperparameters, and inducing points, making accurate learning challenging. Here, we present a method to keep all such errors in check using the recently proposed dual sparse variational GP. Our method enables accurate inference for generic likelihoods and improves learning by actively building and updating a memory of past data. We demonstrate its effectiveness in several applications involving Bayesian optimization, active learning, and continual learning.

Poster
Apivich Hemachandra · Zhongxiang Dai · Jasraj Singh · See-Kiong Ng · Bryan Kian Hsiang Low

[ Exhibit Hall 1 ]

Existing neural active learning algorithms have aimed to optimize the predictive performance of neural networks (NNs) by selecting data for labelling. However, other than a good predictive performance, being robust against random parameter initializations is also a crucial requirement in safety-critical applications. To this end, we introduce our expected variance with Gaussian processes (EV-GP) criterion for neural active learning, which is theoretically guaranteed to select data points which lead to trained NNs with both (a) good predictive performances and (b) initialization robustness. Importantly, our EV-GP criterion is training-free, i.e., it does not require any training of the NN during data selection, which makes it computationally efficient. We empirically demonstrate that our EV-GP criterion is highly correlated with both initialization robustness and generalization performance, and show that it consistently outperforms baseline methods in terms of both desiderata, especially in situations with limited initial data or large batch sizes.

Poster
WENHAO XU · Xuefeng Gao · Xuedong He

[ Exhibit Hall 1 ]

The optimized certainty equivalent (OCE) is a family of risk measures that cover important examples such as entropic risk, conditional value-at-risk and mean-variance models. In this paper, we propose a new episodic risk-sensitive reinforcement learning formulation based on tabular Markov decision processes with recursive OCEs. We design an efficient learning algorithm for this problem based on value iteration and upper confidence bound. We derive an upper bound on the regret of the proposed algorithm, and also establish a minimax lower bound. Our bounds show that the regret rate achieved by our proposed algorithm has optimal dependence on the number of episodes and the number of actions.

Poster
Fengdi Che · Gautham Vasan · Rupam Mahmood

[ Exhibit Hall 1 ]

The policy gradient theorem gives a convenient form of the policy gradient in terms of three factors: an action value, a gradient of the action likelihood, and a state distribution involving discounting called the *discounted stationary distribution*. But commonly used on-policy methods based on the policy gradient theorem ignores the discount factor in the state distribution, which is technically incorrect and may even cause degenerate learning behavior in some environments. An existing solution corrects this discrepancy by using $\gamma^t$ as a factor in the gradient estimate. However, this solution is not widely adopted and does not work well in tasks where the later states are similar to earlier states. We introduce a novel distribution correction to account for the discounted stationary distribution that can be plugged into many existing gradient estimators. Our correction circumvents the performance degradation associated with the $\gamma^t$ correction with a lower variance. Importantly, compared to the uncorrected estimators, our algorithm provides improved state emphasis to evade suboptimal policies in certain environments and consistently matches or exceeds the original performance on several OpenAI gym and DeepMind suite benchmarks.
Poster
Michael Sedlmayer · Dang-Khoa Nguyen · Radu Ioan Bot

[ Exhibit Hall 1 ]

We study monotone variational inequalities that can arise as optimality conditions for constrained convex optimization or convex-concave minimax problems and propose a novel algorithm that uses only one gradient/operator evaluation and one projection onto the constraint set per iteration. The algorithm, which we call fOGDA-VI, achieves a $o(\frac{1}{k})$ rate of convergence in terms of the restricted gap function as well as the natural residual for the last iterate. Moreover, we provide a convergence guarantee for the sequence of iterates to a solution of the variational inequality. These are the best theoretical convergence results for numerical methods for (only) monotone variational inequalities reported in the literature. To empirically validate our algorithm we investigate a two-player matrix game with mixed strategies of the two players. Concluding, we show promising results regarding the application of fOGDA-VI to the training of generative adversarial nets.
Poster
Jialin Yi · Milan Vojnovic

[ Exhibit Hall 1 ]

We study a new non-stochastic federated multiarmed bandit problem with multiple agents collaborating via a communication network. The losses of the arms are assigned by an oblivious adversary that specifies the loss of each arm not only for each time step but also for each agent, which we call doubly adversarial. In this setting, different agents may choose the same arm in the same time step but observe different feedback. The goal of each agent is to find a globally best arm in hindsight that has the lowest cumulative loss averaged over all agents, which necessities the communication among agents. We provide regret lower bounds for any federated bandit algorithm under different settings, when agents have access to full-information feedback, or the bandit feedback. For the bandit feedback setting, we propose a near-optimal federated bandit algorithm called FEDEXP3. Our algorithm gives a positive answer to an open question proposed in (Cesa-Bianchi et al., 2016): FEDEXP3 can guarantee a sub-linear regret without exchanging sequences of selected arm identities or loss sequences among agents. We also provide numerical evaluations of our algorithm to validate our theoretical results and demonstrate its effectiveness on synthetic and real-world datasets.

Poster
Donghwan Lee · Behrad Moniri · Xinmeng Huang · Edgar Dobriban · Hamed Hassani

[ Exhibit Hall 1 ]

Evaluating the performance of machine learning models under distribution shifts is challenging, especially when we only have unlabeled data from the shifted (target) domain, along with labeled data from the original (source) domain. Recent work suggests that the notion of disagreement, the degree to which two models trained with different randomness differ on the same input, is a key to tackling this problem. Experimentally, disagreement and prediction error have been shown to be strongly connected, which has been used to estimate model performance. Experiments have led to the discovery of the disagreement-on-the-line phenomenon, whereby the classification error under the target domain is often a linear function of the classification error under the source domain; and whenever this property holds, disagreement under the source and target domain follow the same linear relation. In this work, we develop a theoretical foundation for analyzing disagreement in high-dimensional random features regression; and study under what conditions the disagreement-on-the-line phenomenon occurs in our setting. Experiments on CIFAR-10-C, Tiny ImageNet-C, and Camelyon17 are consistent with our theory and support the universality of the theoretical findings.

Poster
Kexun Zhang · Xianjun Yang · William Wang · Lei Li

[ Exhibit Hall 1 ]

Diffusion models show promising generation capability for a variety of data. Despite their high generation quality, the inference for diffusion models is still time-consuming due to the numerous sampling iterations required. To accelerate the inference, we propose ReDi, a simple yet learning-free Retrieval-based Diffusion sampling framework. From a precomputed knowledge base, ReDi retrieves a trajectory similar to the partially generated trajectory at an early stage of generation, skips a large portion of intermediate steps, and continues sampling from a later step in the retrieved trajectory. We theoretically prove that the generation performance of ReDi is guaranteed. Our experiments demonstrate that ReDi improves the model inference efficiency by 2$\times$ speedup. Furthermore, ReDi is able to generalize well in zero-shot cross-domain image generation such as image stylization. The code and demo for ReDi is available at https://github.com/zkx06111/ReDiffusion.
Poster
Dimitrios Christofidellis · Giorgio Giannone · Jannis Born · Ole Winther · Teodoro Laino · Matteo Manica

[ Exhibit Hall 1 ]

The recent advances in neural language models have also been successfully applied to the field of chemistry, offering generative solutions for classical problems in molecular design and synthesis planning. These new methods have the potential to fuel a new era of data-driven automation in scientific discovery. However, specialized models are still typically required for each task, leading to the need for problem-specific fine-tuning and neglecting task interrelations. The main obstacle in this field is the lack of a unified representation between natural language and chemical representations, complicating and limiting human-machine interaction. Here, we propose the first multi-domain, multi-task language model that can solve a wide range of tasks in both the chemical and natural language domains. Our model can handle chemical and natural language concurrently, without requiring expensive pre-training on single domains or task-specific models. Interestingly, sharing weights across domains remarkably improves our model when benchmarked against state-of-the-art baselines on single-domain and cross-domain tasks. In particular, sharing information across domains and tasks gives rise to large improvements in cross-domain tasks, the magnitude of which increase with scale, as measured by more than a dozen of relevant metrics. Our work suggests that such models can robustly and efficiently accelerate discovery in …

Poster
Ervine Zheng · Qi Yu

[ Exhibit Hall 1 ]

Medical image captioning alleviates the burden of physicians and possibly reduces medical errors by automatically generating text descriptions to describe image contents and convey findings. It is more challenging than conventional image captioning due to the complexity of medical images and the difficulty of aligning image regions with medical terms. In this paper, we propose an evidential interactive learning framework that leverages evidence-based uncertainty estimation and interactive machine learning to improve image captioning with limited labeled data. The interactive learning process involves three stages: keyword prediction, caption generation, and model retraining. First, the model predicts a list of keywords with evidence-based uncertainty and selects the most informative keywords to seek user feedback. Second, user-approved keywords are used as model input to guide the model to generate satisfactory captions. Third, the model is updated based on user-approved keywords and captions, where evidence-based uncertainty is used to allocate different weights to different data instances. Experiments on two medical image datasets illustrate that the proposed framework can effectively learn from human feedback and improve the model's performance in the future.

Poster
Antoine Dedieu · Guangyao Zhou · Dileep George · Miguel Lazaro-Gredilla

[ Exhibit Hall 1 ]

Noisy-OR Bayesian Networks (BNs) are a family of probabilistic graphical models which express rich statistical dependencies in binary data. Variational inference (VI) has been the main method proposed to learn noisy-OR BNs with complex latent structures (Jaakkola & Jordan, 1999; Ji et al., 2020; Buhai et al., 2020). However, the proposed VI approaches either (a) use a recognition network with standard amortized inference that cannot induce "explaining-away"; or (b) assume a simple mean-field (MF) posterior which is vulnerable to bad local optima. Existing MF VI methods also update the MF parameters sequentially which makes them inherently slow. In this paper, we propose parallel max-product as an alternative algorithm for learning noisy-OR BNs with complex latent structures and we derive a fast stochastic training scheme that scales to large datasets. We evaluate both approaches on several benchmarks where VI is the state-of-the-art and show that our method (a) achieves better test performance than Ji et al. (2020) for learning noisy-OR BNs with hierarchical latent structures on large sparse real datasets; (b) recovers a higher number of ground truth parameters than Buhai et al. (2020) from cluttered synthetic scenes; and (c) solves the 2D blind deconvolution problem from Lazaro-Gredilla et al. (2021) …

Poster
Sean R. Sinclair · Felipe Vieira Frujeri · Ching-An Cheng · Luke Marshall · Hugo Barbalho · Jingling Li · Jennifer Neville · Ishai Menache · Adith Swaminathan

[ Exhibit Hall 1 ]

Many resource management problems require sequential decision-making under uncertainty, where the only uncertainty affecting the decision outcomes are exogenous variables outside the control of the decision-maker. We model these problems as Exo-MDPs (Markov Decision Processes with Exogenous Inputs) and design a class of data-efficient algorithms for them termed Hindsight Learning (HL). Our HL algorithms achieve data efficiency by leveraging a key insight: having samples of the exogenous variables, past decisions can be revisited in hindsight to infer counterfactual consequences that can accelerate policy improvements. We compare HL against classic baselines in the multi-secretary and airline revenue management problems. We also scale our algorithms to a business-critical cloud resource management problem -- allocating Virtual Machines (VMs) to physical machines, and simulate their performance with real datasets from a large public cloud provider. We find that HL algorithms outperform domain-specific heuristics, as well as state-of-the-art reinforcement learning methods.

Poster
Dongyoon Yang · Insung Kong · Yongdai Kim

[ Exhibit Hall 1 ]

Adversarial training, which is to enhance robustness against adversarial attacks, has received much attention because it is easy to generate human-imperceptible perturbations of data to deceive a given deep neural network. In this paper, we propose a new adversarial training algorithm that is theoretically well motivated and empirically superior to other existing algorithms. A novel feature of the proposed algorithm is to apply more regularization to data vulnerable to adversarial attacks than other existing regularization algorithms do. Theoretically, we show that our algorithm can be understood as an algorithm of minimizing a newly derived upper bound of the robust risk. Numerical experiments illustrate that our proposed algorithm improves the generalization (accuracy on examples) and robustness (accuracy on adversarial attacks) simultaneously to achieve the state-of-the-art performance.

Poster
Idan Attias · Steve Hanneke

[ Exhibit Hall 1 ]

We study robustness to test-time adversarial attacks in the regression setting with $\ell_p$ losses and arbitrary perturbation sets. We address the question of which function classes are PAC learnable in this setting. We show that classes of finite fat-shattering dimension are learnable in both the realizable and agnostic settings. Moreover, for convex function classes, they are even properly learnable. In contrast, some non-convex function classes provably require improper learning algorithms. Our main technique is based on a construction of an adversarially robust sample compression scheme of a size determined by the fat-shattering dimension. Along the way, we introduce a novel agnostic sample compression scheme for real-valued functions, which may be of independent interest.
Poster
Qiwei Di · Jiafan He · Dongruo Zhou · Quanquan Gu

[ Exhibit Hall 1 ]

We study the Stochastic Shortest Path (SSP) problem with a linear mixture transition kernel, where an agent repeatedly interacts with a stochastic environment and seeks to reach certain goal state while minimizing the cumulative cost. Existing works often assume a strictly positive lower bound of the cost function or an upper bound of the expected length for the optimal policy. In this paper, we propose a new algorithm to eliminate these restrictive assumptions. Our algorithm is based on extended value iteration with a fine-grained variance-aware confidence set, where the variance is estimated recursively from high-order moments. Our algorithm achieves an $\tilde{\mathcal{O}}(dB_*\sqrt{K})$ regret bound, where $d$ is the dimension of the feature mapping in the linear transition kernel, $B_*$ is the upper bound of the total cumulative cost for the optimal policy, and $K$ is the number of episodes. Our regret upper bound matches the $\Omega(dB_*\sqrt{K})$ lower bound of linear mixture SSPs in Min et al. (2022), which suggests that our algorithm is nearly minimax optimal.
Poster
Anqi Li · Byron Boots · Ching-An Cheng

[ Exhibit Hall 1 ]

We study a new paradigm for sequential decision making, called offline policy learning from observations (PLfO). Offline PLfO aims to learn policies using datasets with substandard qualities: 1) only a subset of trajectories is labeled with rewards, 2) labeled trajectories may not contain actions, 3) labeled trajectories may not be of high quality, and 4) the data may not have full coverage. Such imperfection is common in real-world learning scenarios, and offline PLfO encompasses many existing offline learning setups, including offline imitation learning (IL), offline IL from observations (ILfO), and offline reinforcement learning (RL). In this work, we present a generic approach to offline PLfO, called Modality-agnostic Adversarial Hypothesis Adaptation for Learning from Observations (MAHALO). Built upon the pessimism concept in offline RL, MAHALO optimizes the policy using a performance lower bound that accounts for uncertainty due to the dataset's insufficient coverage. We implement this idea by adversarially training data-consistent critic and reward functions, which forces the learned policy to be robust to data deficiency. We show that MAHALO consistently outperforms or matches specialized algorithms across a variety of offline PLfO tasks in theory and experiments. Our code is available at https://github.com/AnqiLi/mahalo.

Poster
Riccardo Poiani · Alberto Maria Metelli · Marcello Restelli

[ Exhibit Hall 1 ]

In Reinforcement Learning (RL), an agent acts in an unknown environment to maximize the expected cumulative discounted sum of an external reward signal, i.e., the expected return. In practice, in many tasks of interest, such as policy optimization, the agent usually spends its interaction budget by collecting episodes of fixed length within a simulator (i.e., Monte Carlo simulation). However, given the discounted nature of the RL objective, this data collection strategy might not be the best option. Indeed, the rewards taken in early simulation steps weigh exponentially more than future rewards. Taking a cue from this intuition, in this paper, we design an a-priori budget allocation strategy that leads to the collection of trajectories of different lengths, i.e., truncated. The proposed approach provably minimizes the width of the confidence intervals around the empirical estimates of the expected return of a policy. After discussing the theoretical properties of our method, we make use of our trajectory truncation mechanism to extend Policy Optimization via Importance Sampling (POIS, Metelli et al., 2018) algorithm. Finally, we conduct a numerical comparison between our algorithm and POIS: the results are consistent with our theory and show that an appropriate truncation of the trajectories can succeed …

Poster
Mehrdad Ghadiri · Matthew Fahrbach · Thomas Fu · Vahab Mirrokni

[ Exhibit Hall 1 ]

This work studies the combinatorial optimization problem of finding an optimal core tensor shape, also called multilinear rank, for a size-constrained Tucker decomposition. We give an algorithm with provable approximation guarantees for its reconstruction error via connections to higher-order singular values. Specifically, we introduce a novel Tucker packing problem, which we prove is NP-hard, and give a polynomial-time approximation scheme based on a reduction to the 2-dimensional knapsack problem with a matroid constraint. We also generalize our techniques to tree tensor network decompositions. We implement our algorithm using an integer programming solver, and show that its solution quality is competitive with (and sometimes better than) the greedy algorithm that uses the true Tucker decomposition loss at each step, while also running up to 1000x faster.

Poster
Anders Aamand · Alexandr Andoni · Justin Chen · Piotr Indyk · Shyam Narayanan · Sandeep Silwal

[ Exhibit Hall 1 ]

We study statistical/computational tradeoffs for the following density estimation problem: given $k$ distributions $v_1, \ldots, v_k$ over a discrete domain of size $n$, and sampling access to a distribution $p$, identify $v_i$ that is "close" to $p$. Our main result is the first data structure that, given a sublinear (in $n$) number of samples from $p$, identifies $v_i$ in time sublinear in $k$. We also give an improved version of the algorithm of Acharya et al. (2018) that reports $v_i$ in time linear in $k$. The experimental evaluation of the latter algorithm shows that it achieves a significant reduction in the number of operations needed to achieve a given accuracy compared to prior work.
Poster
Alexander Li · Ellis Brown · Alexei Efros · Deepak Pathak

[ Exhibit Hall 1 ]

Vision models typically rely on fine-tuning general-purpose models pre-trained on large, static datasets. These general-purpose models only capture the knowledge within their pre-training datasets, which are tiny, out-of-date snapshots of the Internet---where billions of images are uploaded each day. We suggest an alternate approach: rather than hoping our static datasets transfer to our desired tasks after large-scale pre-training, we propose dynamically utilizing the Internet to quickly train a small-scale model that does extremely well on a target dataset. Our approach, called Internet Explorer, explores the web in a self-supervised manner to progressively find relevant examples that improve performance on a desired target dataset. It cycles between searching for images on the Internet with text queries, self-supervised training on downloaded images, determining which images were useful, and prioritizing what to search for next. We evaluate Internet Explorer across several datasets and show that it outperforms or matches CLIP oracle performance using just a single GPU desktop to actively query the Internet for 30-40 hours.

Poster
Sicheng Zhu · Bang An · Furong Huang · Sanghyun Hong

[ Exhibit Hall 1 ]

Current approaches for training robust models are typically tailored to scenarios where data variations are accessible in the training set. While shown effective in achieving robustness to these foreseen variations, these approaches are ineffective in learning unforeseen robustness, i.e., robustness to data variations without known characterization or training examples reflecting them. In this work, we learn unforeseen robustness by harnessing the variations in the abundant out-of-distribution data. To overcome the main challenge of using such data, the domain gap, we use a domain translator to bridge it and bound the unforeseen robustness on the target distribution. As implied by our analysis, we propose a two-step algorithm that first trains an equivariant domain translator to map out-of-distribution data to the target distribution while preserving the considered variation, and then regularizes a model's output consistency on the domain-translated data to improve its robustness. We empirically show the effectiveness of our approach in improving unforeseen and foreseen robustness compared to existing approaches. Additionally, we show that training the equivariant domain translator serves as an effective criterion for source data selection.

Poster
Francesco Quinzan · Ashkan Soleymani · Patrick Jaillet · Cristian R. Rojas · Stefan Bauer

[ Exhibit Hall 1 ]

Knowing the features of a complex system that are highly relevant to a particular target variable is of fundamental interest in many areas of science. Existing approaches are often limited to linear settings, sometimes lack guarantees, and in most cases, do not scale to the problem at hand, in particular to images. We propose DRCFS, a doubly robust feature selection method for identifying the causal features even in nonlinear and high dimensional settings. We provide theoretical guarantees, illustrate necessary conditions for our assumptions, and perform extensive experiments across a wide range of simulated and semi-synthetic datasets. DRCFS significantly outperforms existing state-of-the-art methods, selecting robust features even in challenging highly non-linear and high-dimensional problems.

Poster
Alice (Qingyang) Wang · Michael Powell · Eric Bridgeford · Ali Geisa · Joshua Vogelstein

[ Exhibit Hall 1 ]

Natural intelligences (NIs) thrive in a dynamic world - they learn quickly, sometimes with only a few samples. In contrast, artificial intelligences (AIs) typically learn with a prohibitive number of training samples and computational power. What design principle difference between NI and AI could contribute to such a discrepancy? Here, we investigate the role of weight polarity: development processes initialize NIs with advantageous polarity configurations; as NIs grow and learn, synapse magnitudes update, yet polarities are largely kept unchanged. We demonstrate with simulation and image classification tasks that if weight polarities are adequately set a priori, then networks learn with less time and data. We also explicitly illustrate situations in which a priori setting the weight polarities is disadvantageous for networks. Our work illustrates the value of weight polarities from the perspective of statistical and computational efficiency during learning.

Poster
Hamza Keurti · Hsiao-Ru Pan · Michel Besserve · Benjamin F. Grewe · Bernhard Schölkopf

[ Exhibit Hall 1 ]

How can agents learn internal models that veridically represent interactions with the real world is a largely open question. As machine learning is moving towards representations containing not just observational but also interventional knowledge, we study this problem using tools from representation learning and group theory. We propose methods enabling an agent acting upon the world to learn internal representations of sensory information that are consistent with actions that modify it. We use an autoencoder equipped with a group representation acting on its latent space, trained using an equivariance-derived loss in order to enforce a suitable homomorphism property on the group representation. In contrast to existing work, our approach does not require prior knowledge of the group and does not restrict the set of actions the agent can perform. We motivate our method theoretically, and show empirically that it can learn a group representation of the actions, thereby capturing the structure of the set of transformations applied to the environment. We further show that this allows agents to predict the effect of sequences of future actions with improved accuracy.

Poster
Rafael A Rodriguez-Sanchez · Benjamin Spiegel · Jennifer Wang · Roma Patel · Stefanie Tellex · George Konidaris

[ Exhibit Hall 1 ]

We introduce RLang, a domain-specific language (DSL) for communicating domain knowledge to an RL agent. Unlike existing RL DSLs that ground to $\textit{single}$ elements of a decision-making formalism (e.g., the reward function or policy), RLang can specify information about every element of a Markov decision process. We define precise syntax and grounding semantics for RLang, and provide a parser that grounds RLang programs to an algorithm-agnostic $\textit{partial}$ world model and policy that can be exploited by an RL agent. We provide a series of example RLang programs demonstrating how different RL methods can exploit the resulting knowledge, encompassing model-free and model-based tabular algorithms, policy gradient and value-based methods, hierarchical approaches, and deep methods.
Poster
Ronghao Dang · Lu Chen · Liuyi Wang · Zongtao He · Chengju Liu · Qijun Chen

[ Exhibit Hall 1 ]

We propose a meta-ability decoupling (MAD) paradigm, which brings together various object navigation methods in an architecture system, allowing them to mutually enhance each other and evolve together. Based on the MAD paradigm, we design a multiple thinking (MT) model that leverages distinct thinking to abstract various meta-abilities. Our method decouples meta-abilities from three aspects: input, encoding, and reward while employing the multiple thinking collaboration (MTC) module to promote mutual cooperation between thinking. MAD introduces a novel qualitative and quantitative interpretability system for object navigation. Through extensive experiments on AI2-Thor and RoboTHOR, we demonstrate that our method outperforms state-of-the-art (SOTA) methods on both typical and zero-shot object navigation tasks.

Poster
Arka Daw · Jie Bu · Sifan Wang · Paris Perdikaris · Anuj Karpatne

[ Exhibit Hall 1 ]

Despite the success of physics-informed neural networks (PINNs) in approximating partial differential equations (PDEs), PINNs can sometimes fail to converge to the correct solution in problems involving complicated PDEs. This is reflected in several recent studies on characterizing the "failure modes" of PINNs, although a thorough understanding of the connection between PINN failure modes and sampling strategies is missing. In this paper, we provide a novel perspective of failure modes of PINNs by hypothesizing that training PINNs relies on successful "propagation" of solution from initial and/or boundary condition points to interior points. We show that PINNs with poor sampling strategies can get stuck at trivial solutions if there are propagation failures, characterized by highly imbalanced PDE residual fields. To mitigate propagation failures, we propose a novel Retain-Resample-Release sampling (R3) algorithm that can incrementally accumulate collocation points in regions of high PDE residuals with little to no computational overhead. We provide an extension of R3 sampling to respect the principle of causality while solving time-dependent PDEs. We theoretically analyze the behavior of R3 sampling and empirically demonstrate its efficacy and efficiency in comparison with baselines on a variety of PDE problems.

Poster
David Boetius · Stefan Leue · Tobias Sutter

[ Exhibit Hall 1 ]

Counterexample-guided repair aims at creating neural networks with mathematical safety guarantees, facilitating the application of neural networks in safety-critical domains. However, whether counterexample-guided repair is guaranteed to terminate remains an open question. We approach this question by showing that counterexample-guided repair can be viewed as a robust optimisation algorithm. While termination guarantees for neural network repair itself remain beyond our reach, we prove termination for more restrained machine learning models and disprove termination in a general setting. We empirically study the practical implications of our theoretical results, demonstrating the suitability of common verifiers and falsifiers for repair despite a disadvantageous theoretical result. Additionally, we use our theoretical insights to devise a novel algorithm for repairing linear regression models based on quadratic programming, surpassing existing approaches.

Poster
Ajay Jaiswal · Shiwei Liu · Tianlong Chen · Ding · Zhangyang “Atlas” Wang

[ Exhibit Hall 1 ]

Large pre-trained transformers have been receiving explosive attention in the past few years, due to their acculturation for numerous downstream applications via fine-tuning, but their exponentially increasing parameter counts are becoming a primary hurdle to even just fine-tune them without industry-standard hardware. Recently, Lottery Ticket Hypothesis (LTH) and its variants, have been exploited to prune these large pre-trained models generating subnetworks which can achieve similar performance as their dense counterparts, but LTH pragmatism is enormously inhibited by repetitive full training and pruning routine of iterative magnitude pruning (IMP) which worsens with increasing model size. Motivated by the recent observations of model soups, which suggest that fine-tuned weights of multiple models can be merged to a better minima, we propose **Instant Soup Pruning (ISP)** to generate lottery ticket quality subnetworks, using a fraction of the original IMP cost by replacing the expensive intermediate pruning stages of IMP with computationally efficient weak mask generation and aggregation routine. More specifically, during the mask generation stage, ISP takes a small handful of iterations using varying training protocols and data subsets to generate many weak and noisy subnetworks, and superpose them to average out the noise creating a high-quality denoised subnetwork. Our extensive experiments and …
Poster
Sai Rajeswar · Pietro Mazzaglia · Tim Verbelen · Alex Piche · Bart Dhoedt · Aaron Courville · Alexandre Lacoste

[ Exhibit Hall 1 ]

Controlling artificial agents from visual sensory data is an arduous task. Reinforcement learning (RL) algorithms can succeed but require large amounts of interactions between the agent and the environment. To alleviate the issue, unsupervised RL proposes to employ self-supervised interaction and learning, for adapting faster to future tasks. Yet, as shown in the Unsupervised RL Benchmark (URLB; Laskin et al. 2021), whether current unsupervised strategies can improve generalization capabilities is still unclear, especially in visual control settings. In this work, we study the URLB and propose a new method to solve it, using unsupervised model-based RL, for pre-training the agent, and a task-aware fine-tuning strategy combined with a new proposed hybrid planner, Dyna-MPC, to adapt the agent for downstream tasks. On URLB, our method obtains 93.59% overall normalized performance, surpassing previous baselines by a staggering margin. The approach is empirically evaluated through a large-scale empirical study, which we use to validate our design choices and analyze our models. We also show robust performance on the Real-Word RL benchmark, hinting at resiliency to environment perturbations during adaptation. Project website: https://masteringurlb.github.io/

Poster
Aaditya Naik · Yinjun Wu · Mayur Naik · Eric Wong

[ Exhibit Hall 1 ]

Machine learning models can make critical errors that are easily hidden within vast amounts of data. Such errors often run counter to rules based on human intuition. However, rules based on human knowledge are challenging to scale or to even formalize. We thereby seek to infer statistical rules from the data and quantify the extent to which a model has learned them. We propose a framework SQRL that integrates logic-based methods with statistical inference to derive these rules from a model’s training data without supervision. We further show how to adapt models at test time to reduce rule violations and produce more coherent predictions. SQRL generates up to 300K rules over datasets from vision, tabular, and language settings. We uncover up to 158K violations of those rules by state-of-the-art models for classification, object detection, and data imputation. Test-time adaptation reduces these violations by up to 68.7% with relative performance improvement up to 32%. SQRL is available at https://github.com/DebugML/sqrl.

Poster
Wei Wei · Lijun Zhang · Lin Li · Huizhong Song · Jiye Liang

[ Exhibit Hall 1 ]

Reinforcement learning (RL) has made significant progress in areas such as Atari games and robotic control, where the agents have perfect sensing capabilities. However, in many real-world sequential decision-making tasks, the observation data could be noisy or incomplete due to the intrinsic low quality of the sensors or unexpected malfunctions; that is, the agent's perceptions are rarely perfect. The current POMDP RL methods, such as particle-based and Gaussian-based, can only provide a probability estimate of hidden states rather than certain belief regions, which may lead to inefficient and even wrong decision-making. This paper proposes a novel algorithm called Set-membership Belief state-based Reinforcement Learning (SBRL), which consists of two parts: a Set-membership Belief state learning Model (SBM) for learning bounded belief state sets and an RL controller for making decisions based on SBM. We prove that our belief estimation method can provide a series of belief state sets that always contain the true states under the unknown-but-bounded (UBB) noise. The effectiveness of the proposed method is verified on a collection of benchmark tasks, and the results show that our method outperforms the state-of-the-art methods.

Poster
Insung Kong · Dongyoon Yang · Jongjin Lee · Ilsang Ohn · GYUSEUNG BAEK · Yongdai Kim

[ Exhibit Hall 1 ]

Abstract
Bayesian approaches for learning deep neural networks (BNN) have been received much attention and successfully applied to various applications. Particularly, BNNs have the merit of having better generalization ability as well as better uncertainty quantification. For the success of BNN, search an appropriate architecture of the neural networks is an important task, and various algorithms to find good sparse neural networks have been proposed. In this paper, we propose a new node-sparse BNN model which has good theoretical properties and is computationally feasible. We prove that the posterior concentration rate to the true model is near minimax optimal and adaptive to the smoothness of the true model. In particular the adaptiveness is the first of its kind for node-sparse BNNs. In addition, we develop a novel MCMC algorithm which makes the Bayesian inference of the node-sparse BNN model feasible in practice.
Poster
Yulian Wu · Xingyu Zhou · Sayak Ray Chowdhury · Di Wang

[ Exhibit Hall 1 ]

In this paper we study the problem of (finite horizon tabular) Markov decision processes (MDPs) with heavy-tailed rewards under the constraint of differential privacy (DP). Compared with the previous studies for private reinforcement learning that typically assume rewards are sampled from some bounded or sub-Gaussian distributions to ensure DP, we consider the setting where reward distributions have only finite $(1+v)$-th moments with some $v \in (0,1]$. By resorting to robust mean estimators for rewards, we first propose two frameworks for heavy-tailed MDPs, i.e., one is for value iteration and another is for policy optimization. Under each framework, we consider both joint differential privacy (JDP) and local differential privacy (LDP) models. Based on our frameworks, we provide regret upper bounds for both JDP and LDP cases, and show that the moment of distributions and privacy budget have significant impact on regrets. Finally, we establish a lower bound of regret minimization for heavy-tailed MDPs in JDP model by reducing it to the instance-independent lower bound of heavy-tailed multi-armed bandits in DP model. We also show the lower bound for the problem in LDP by adopting some private minimax methods. Our results reveal that there are fundamental differences between the problem of private …
Poster
Tomáš Kocák · Alexandra Carpentier

[ Exhibit Hall 1 ]

Sequential learning with feedback graphs is a natural extension of the multi-armed bandit problem where the problem is equipped with an underlying graph structure that provides additional information - playing an action reveals the losses of all the neighbors of the action. This problem was introduced by Mannor & Shamir (2011) and received considerable attention in recent years. It is generally stated in the literature that the minimax regret rate for this problem is of order $\sqrt{\alpha T}$, where $\alpha$ is the independence number of the graph, and $T$ is the time horizon. However, this is proven only when the number of rounds $T$ is larger than $\alpha^3$, which poses a significant restriction for the usability of this result in large graphs. In this paper, we define a new quantity $R^*$, called the *problem complexity*, and prove that the minimax regret is proportional to $R^*$ for any graph and time horizon $T$. Introducing an intricate exploration strategy, we define the Exp3-EX algorithm that achieves the minimax optimal regret bound and becomes the first provably optimal algorithm for this setting, even if $T$ is smaller than $\alpha^3$.
Poster
Zijian Liu · Ta Duy Nguyen · Thien Nguyen · Alina Ene · Huy Nguyen

[ Exhibit Hall 1 ]

In this work, we describe a generic approach to show convergence with high probability for both stochastic convex and non-convex optimization with sub-Gaussian noise. In previous works for convex optimization, either the convergence is only in expectation or the bound depends on the diameter of the domain. Instead, we show high probability convergence with bounds depending on the initial distance to the optimal solution. The algorithms use step sizes analogous to the standard settings and are universal to Lipschitz functions, smooth functions, and their linear combinations. The method can be applied to the non-convex case. We demonstrate an $O((1+\sigma^{2}\log(1/\delta))/T+\sigma/\sqrt{T})$ convergence rate when the number of iterations $T$ is known and an $O((1+\sigma^{2}\log(T/\delta))/\sqrt{T})$ convergence rate when $T$ is unknown for SGD, where $1-\delta$ is the desired success probability. These bounds improve over existing bounds in the literature. We also revisit AdaGrad-Norm (Ward et al., 2019) and show a new analysis to obtain a high probability bound that does not require the bounded gradient assumption made in previous works. The full version of our paper contains results for the standard per-coordinate AdaGrad.
Poster
Weitong Zhang · Jiafan He · Zhiyuan Fan · Quanquan Gu

[ Exhibit Hall 1 ]

We study linear contextual bandits in the misspecified setting, where the expected reward function can be approximated by a linear function class up to a bounded misspecification level $\zeta>0$. We propose an algorithm based on a novel data selection scheme, which only selects the contextual vectors with large uncertainty for online regression. We show that, when the misspecification level $\zeta$ is dominated by $\tilde O(\Delta / \sqrt{d})$ with $\Delta$ being the minimal sub-optimality gap and $d$ being the dimension of the contextual vectors, our algorithm enjoys the same gap-dependent regret bound $\tilde O ({d^2} /{\Delta})$ as in the well-specified setting up to logarithmic factors. Given this result, we show that the existing SupLinUCB algorithm (Chu et al., 2011) can also achieve a gap-dependent constant regret bound without the knowledge of sub-optimality gap $\Delta$. Together with a lower bound adapted from Lattimore et al. (2020), our result suggests an interplay between the misspecification level and the sub-optimality gap: (1) the linear contextual bandit model is efficiently learnable when $\zeta \leq \tilde O({\Delta} / \sqrt{d})$; and (2) it is not efficiently learnable when $\zeta \geq \tilde \Omega({\Delta} / {\sqrt{d}})$. Experiments on both synthetic and real-world datasets corroborate our theoretical results.
Poster
Jiaxin Shi · Ke Alexander Wang · Emily Fox

[ Exhibit Hall 1 ]

Efficiently capturing the long-range patterns in sequential data sources salient to a given task---such as classification and generative modeling---poses a fundamental challenge. Popular approaches in the space tradeoff between the memory burden of brute-force enumeration and comparison, as in transformers, the computational burden of complicated sequential dependencies, as in recurrent neural networks, or the parameter burden of convolutional networks with many or large filters. We instead take inspiration from wavelet-based multiresolution analysis to define a new building block for sequence modeling, which we call a MultiresLayer. The key component of our model is the multiresolution convolution, capturing multiscale trends in the input sequence. Our MultiresConv can be implemented with shared filters across a dilated causal convolution tree. Thus it garners the computational advantages of convolutional networks and the principled theoretical motivation of wavelet decompositions. Our MultiresLayer is straightforward to implement, requires significantly fewer parameters, and maintains at most a $O(N \log N)$ memory footprint for a length $N$ sequence. Yet, by stacking such layers, our model yields state-of-the-art performance on a number of sequence classification and autoregressive density estimation tasks using CIFAR-10, ListOps, and PTB-XL datasets.
Poster
Zhuang Liu · Zhiqiu (Oscar) Xu · Joseph Jin · Zhiqiang Shen · Trevor Darrell

[ Exhibit Hall 1 ]

Introduced by Hinton et al. in 2012, dropout has stood the test of time as a regularizer for preventing overfitting in neural networks. In this study, we demonstrate that dropout can also mitigate underfitting when used at the start of training. During the early phase, we find dropout reduces the directional variance of gradients across mini-batches and helps align the mini-batch gradients with the entire dataset's gradient. This helps counteract the stochasticity of SGD and limit the influence of individual batches on model training. Our findings lead us to a solution for improving performance in underfitting models - early dropout: dropout is applied only during the initial phases of training, and turned off afterwards. Models equipped with early dropout achieve lower final training loss compared to their counterparts without dropout. Additionally, we explore a symmetric technique for regularizing overfitting models - late dropout, where dropout is not used in the early iterations and is only activated later in training. Experiments on ImageNet and various vision tasks demonstrate that our methods consistently improve generalization accuracy. Our results encourage more research on understanding regularization in deep learning and our methods can be useful tools for future neural network training, especially in the …

Poster
Sanjay Kariyappa · Chuan Guo · Kiwan Maeng · Wenjie Xiong · G. Edward Suh · Moinuddin Qureshi · Hsien-Hsin Sean Lee

[ Exhibit Hall 1 ]

Federated learning (FL) aims to perform privacy-preserving machine learning on distributed data held by multiple data owners. To this end, FL requires the data owners to perform training locally and share the gradients or weight updates (instead of the private inputs) with the central server, which are then securely aggregated over multiple data owners. Although aggregation by itself does not offer provable privacy protection, prior work suggested that if the batch size is sufficiently large the aggregation may be secure enough. In this paper, we propose the Cocktail Party Attack (CPA) that, contrary to prior belief, is able to recover the private inputs from gradients/weight updates aggregated over as many as 1024 samples. CPA leverages the crucial insight that aggregate gradients from a fully connected (FC) layer is a linear combination of its inputs, which allows us to frame gradient inversion as a blind source separation (BSS) problem. We adapt independent component analysis (ICA)---a classic solution to the BSS problem---to recover private inputs for FC and convolutional networks, and show that CPA significantly outperforms prior gradient inversion attacks, scales to ImageNet-sized inputs, and works on large batch sizes of up to 1024.

Poster
Tong Wu · Feiran Jia · Xiangyu Qi · Jiachen Wang · Vikash Sehwag · Saeed Mahloujifar · Prateek Mittal

[ Exhibit Hall 1 ]

Recently, test-time adaptation (TTA) has been proposed as a promising solution for addressing distribution shifts. It allows a base model to adapt to an unforeseen distribution during inference by leveraging the information from the batch of (unlabeled) test data. However, we uncover a novel security vulnerability of TTA based on the insight that predictions on benign samples can be impacted by malicious samples in the same batch. To exploit this vulnerability, we propose Distribution Invading Attack (DIA), which injects a small fraction of malicious data into the test batch. DIA causes models using TTA to misclassify benign and unperturbed test data, providing an entirely new capability for adversaries that is infeasible in canonical machine learning pipelines. Through comprehensive evaluations, we demonstrate the high effectiveness of our attack on multiple benchmarks across six TTA methods. In response, we investigate two countermeasures to robustify the existing insecure TTA implementations, following the principle of security by design. Together, we hope our findings can make the community aware of the utility-security tradeoffs in deploying TTA and provide valuable insights for developing robust TTA approaches.

Poster
Hanwen Liu · Zhenyu Weng · Yuesheng Zhu · Yadong Mu

[ Exhibit Hall 1 ]

This paper introduces a deep model watermark with an irreversible ownership verification scheme: Trapdoor Normalization (TdN), inspired by the trapdoor function in traditional cryptography. To protect intellectual property within deep models, the proposed method is able to embed ownership information into normalization layers during training. We argue and empirically validate that relevant methods are vulnerable to ambiguity attacks, where the forged watermarks can cast ambiguity over the ownership verification. The primary trait that distinguishes this work from previous ones, is its design of a bidirectional connection between watermarks and deep models. Thereby, TdN enables an irreversible ownership verification scheme that is difficult for the adversary to compromise. In this way, the proposed TdN can effectively defeat ambiguity attacks. Extensive experiments demonstrate that the proposed method is not only superior to previous state-of-the-art methods in robustness, but also has better efficiency.

Poster
Xue JIANG · Feng Liu · zhen fang · Hong Chen · Tongliang Liu · Feng Zheng · Bo Han

[ Exhibit Hall 1 ]

Given a pre-trained in-distribution (ID) model, the inference-time out-of-distribution (OOD) detection aims to recognize OOD data during the inference stage. However, some representative methods share an unproven assumption that the probability that OOD data belong to every ID class should be the same, i.e., these OOD-to-ID probabilities actually form a uniform distribution. In this paper, we show that this assumption makes the above methods incapable when the ID model is trained with class-imbalanced data.Fortunately, by analyzing the causal relations between ID/OOD classes and features, we identify several common scenarios where the OOD-to-ID probabilities should be the ID-class-prior distribution and propose two strategies to modify existing inference-time detection methods: 1) replace the uniform distribution with the ID-class-prior distribution if they explicitly use the uniform distribution; 2) otherwise, reweight their scores according to the similarity between the ID-class-prior distribution and the softmax outputs of the pre-trained model. Extensive experiments show that both strategies can improve the OOD detection performance when the ID model is pre-trained with imbalanced data, reflecting the importance of ID-class prior in OOD detection.

Poster
Mingqi Yuan · Bo Li · Xin Jin · Wenjun Zeng

[ Exhibit Hall 1 ]

We present AIRS: Automatic Intrinsic Reward Shaping that intelligently and adaptively provides high-quality intrinsic rewards to enhance exploration in reinforcement learning (RL). More specifically, AIRS selects shaping function from a predefined set based on the estimated task return in real-time, providing reliable exploration incentives and alleviating the biased objective problem. Moreover, we develop an intrinsic reward toolkit to provide efficient and reliable implementations of diverse intrinsic reward approaches. We test AIRS on various tasks of MiniGrid, Procgen, and DeepMind Control Suite. Extensive simulation demonstrates that AIRS can outperform the benchmarking schemes and achieve superior performance with simple architecture.

Poster
Omer Bar-Tal · Lior Yariv · Yaron Lipman · Tali Dekel

[ Exhibit Hall 1 ]

Recent advances in text-to-image generation with diffusion models present transformative capabilities in image quality. However, user controllability of the generated image, and fast adaptation to new tasks still remains an open challenge, currently mostly addressed by costly and long re-training and fine-tuning or ad-hoc adaptations to specific image generation tasks. In this work, we present MultiDiffusion, a unified framework that enables versatile and controllable image generation, using a pre-trained text-to-image diffusion model, without any further training or finetuning. At the center of our approach is a new generation process, based on an optimization task that binds together multiple diffusion generation processes with a shared set of parameters or constraints. We show that MultiDiffusion can be readily applied to generate high quality and diverse images that adhere to user-provided controls, such as desired aspect ratio (e.g., panorama), and spatial guiding signals, ranging from tight segmentation masks to bounding boxes.

Poster
Zhenzhen Liu · Jin Zhou · Yufan Wang · Kilian Weinberger

[ Exhibit Hall 1 ]

Unsupervised out-of-distribution detection (OOD) seeks to identify out-of-domain data by learning only from unlabeled in-domain data. We present a novel approach for this task -- Lift, Map, Detect (LMD) -- that leverages recent advancement in diffusion models. Diffusion models are one type of generative models. At their core, they learn an iterative denoising process that gradually maps a noisy image closer to their training manifolds. LMD leverages this intuition for OOD detection. Specifically, LMD lifts an image off its original manifold by corrupting it, and maps it towards the in-domain manifold with a diffusion model. For an OOD image, the mapped image would have a large distance away from its original manifold, and LMD would identify it as OOD accordingly. We show through extensive experiments that LMD achieves competitive performance across a broad variety of datasets. Code can be found at https://github.com/zhenzhel/liftmapdetect.

Poster
Harrison Zhu · Carles Balsells Rodas · Yingzhen Li

[ Exhibit Hall 1 ]

Sequential VAEs have been successfully considered for many high-dimensional time series modelling problems, with many variant models relying on discrete-time mechanisms such as recurrent neural networks (RNNs). On the other hand, continuous-time methods have recently gained attraction, especially in the context of irregularly-sampled time series, where they can better handle the data than discrete-time methods. One such class are Gaussian process variational autoencoders (GPVAEs), where the VAE prior is set as a Gaussian process (GP). However, a major limitation of GPVAEs is that it inherits the cubic computational cost as GPs, making it unattractive to practioners. In this work, we leverage the equivalent discrete state space representation of Markovian GPs to enable linear time GPVAE training via Kalman filtering and smoothing. For our model, Markovian GPVAE (MGPVAE), we show on a variety of high-dimensional temporal and spatiotemporal tasks that our method performs favourably compared to existing approaches whilst being computationally highly scalable.

Poster
Richard Watson · Hengrui Cai · Xinming An · Samuel McLean · Rui Song

[ Exhibit Hall 1 ]

Heterogeneity and comorbidity are two interwoven challenges associated with various healthcare problems that greatly hampered research on developing effective treatment and understanding of the underlying neurobiological mechanism. Very few studies have been conducted to investigate heterogeneous causal effects (HCEs) in graphical contexts due to the lack of statistical methods. To characterize this heterogeneity, we first conceptualize heterogeneous causal graphs (HCGs) by generalizing the causal graphical model with confounder-based interactions and multiple mediators. Such confounders with an interaction with the treatment are known as moderators. This allows us to flexibly produce HCGs given different moderators and explicitly characterize HCEs from the treatment or potential mediators on the outcome. We establish the theoretical forms of HCEs and derive their properties at the individual level in both linear and nonlinear models. An interactive structural learning is developed to estimate the complex HCGs and HCEs with confidence intervals provided. Our method is empirically justified by extensive simulations and its practical usefulness is illustrated by exploring causality among psychiatric disorders for trauma survivors. Code implementing the proposed algorithm is open-source and publicly available at: https://github.com/richard-watson/ISL.

Poster
Eduard Gorbunov · Adrien Taylor · Samuel Horváth · Gauthier Gidel

[ Exhibit Hall 1 ]

Algorithms for min-max optimization and variational inequalities are often studied under monotonicity assumptions. Motivated by non-monotone machine learning applications, we follow the line of works (Diakonikolas et al., 2021; Lee & Kim, 2021; Pethick et al., 2022; Bohm,2022) aiming at going beyond monotonicity by considering the weaker negative comonotonicity assumption. In this work, we provide tight complexity analyses for the Proximal Point (PP), Extragradient (EG), and Optimistic Gradient (OG) methods in this setup, closing several questions on their working guarantees beyond monotonicity. In particular, we derive the first non-asymptotic convergence rates for PP under negative comonotonicity and star-negative comonotonicity and show their tightness via constructing worst-case examples; we also relax the assumptions for the last-iterate convergence guarantees for EG and OG and prove the tightness of the existing best-iterate guarantees for EG and OG via constructing counter-examples.

Poster
Nikhil Kandpal · Haikang Deng · Adam Roberts · Eric Wallace · Colin Raffel

[ Exhibit Hall 1 ]

The Internet contains a wealth of knowledge---from the birthdays of historical figures to tutorials on how to code---all of which may be learned by language models. However, while certain pieces of information are ubiquitous on the web, others appear extremely rarely. In this paper, we study the relationship between the knowledge memorized by large language models and the information in pre-training datasets scraped from the web. In particular, we show that a language model's ability to answer a fact-based question relates to how many documents associated with that question were seen during pre-training. We identify these relevant documents by entity linking pre-training datasets and counting documents that contain the same entities as a given question-answer pair. Our results demonstrate strong correlational and causal relationships between accuracy and relevant document count for numerous question answering datasets (e.g., TriviaQA), pre-training corpora (e.g., ROOTS), and model sizes (e.g., 176B parameters). Moreover, while larger models are better at learning long-tail knowledge, we estimate that today's models must be scaled by many orders of magnitude to reach competitive QA performance on questions with little support in the pre-training data. Finally, we show that retrieval-augmentation can reduce the dependence on relevant pre-training information, presenting a promising …

Poster
Joar Skalse · Matthew Farrugia-Roberts · Stuart Russell · Alessandro Abate · Adam Gleave

[ Exhibit Hall 1 ]

It is often very challenging to manually design reward functions for complex, real-world tasks. To solve this, one can instead use reward learning to infer a reward function from data. However, there are often multiple reward functions that fit the data equally well, even in the infinite-data limit. This means that the reward function is only partially identifiable. In this work, we formally characterise the partial identifiability of the reward function given several popular reward learning data sources, including expert demonstrations and trajectory comparisons. We also analyse the impact of this partial identifiability for several downstream tasks, such as policy optimisation. We unify our results in a framework for comparing data sources and downstream tasks by their invariances, with implications for the design and selection of data sources for reward learning.

Poster
Melanie Weber · Suvrit Sra

[ Exhibit Hall 1 ]

We study geodesically convex (g-convex) problems that can be written as a difference of Euclidean convex functions. This structure arises in key applications such as matrix scaling, M- estimators of scatter matrices, and Brascamp-Lieb inequalities. In particular, we exploit this structure to make use of the Convex-Concave Procedure (CCCP), which helps us bypass potentially expensive Riemannian operations and leads to very competitive solvers. Importantly, unlike existing theory for CCCP that ensures convergence to stationary points, we exploit the overall g-convexity structure and provide iteration complexity results for global optimality. We illustrate our results by specializing them to a few concrete optimization problems that have been previously studied in the machine learning literature. We hope our work spurs the study of mixed Euclidean-Riemannian optimization algorithms.

Poster
Toshinori Kitamura · Tadashi Kozuno · Yunhao Tang · Nino Vieillard · Michal Valko · Wenhao Yang · Jincheng Mei · Pierre Menard · Mohammad Gheshlaghi Azar · Remi Munos · Olivier Pietquin · Matthieu Geist · Csaba Szepesvari · Wataru Kumagai · Yutaka Matsuo

[ Exhibit Hall 1 ]

Mirror descent value iteration (MDVI), an abstraction of Kullback-Leibler (KL) and entropy-regularized reinforcement learning (RL), has served as the basis for recent high-performing practical RL algorithms. However, despite the use of function approximation in practice, the theoretical understanding of MDVI has been limited to tabular Markov decision processes (MDPs). We study MDVI with linear function approximation through its sample complexity required to identify an $\varepsilon$-optimal policy with probability $1-\delta$ under the settings of an infinite-horizon linear MDP, generative model, and G-optimal design. We demonstrate that least-squares regression weighted by the variance of an estimated optimal value function of the next state is crucial to achieving minimax optimality. Based on this observation, we present Variance-Weighted Least-Squares MDVI (VWLS-MDVI), the first theoretical algorithm that achieves nearly minimax optimal sample complexity for infinite-horizon linear MDPs. Furthermore, we propose a practical VWLS algorithm for value-based deep RL, Deep Variance Weighting (DVW). Our experiments demonstrate that DVW improves the performance of popular value-based deep RL algorithms on a set of MinAtar benchmarks.
Poster
Romain Laroche · Remi Tachet des Combes

[ Exhibit Hall 1 ]

The state-action occupancy measure of a policy is the expected (discounted or undiscounted) number of times a state-action couple is visited in a trajectory. For decades, RL books have been reporting the occupancy equivalence between Markovian and non-Markovian policies in countable state-action spaces under mild conditions. This equivalence states that the occupancy of any non-Markovian policy can be equivalently obtained by a Markovian policy, i.e. a memoryless probability distribution, conditioned only on its current state. While expected, for technical reasons, the translation of this result to continuous state space has resisted until now. Our main contribution is to fill this gap and to provide a general measure-theoretic treatment of the problem, permitting, in particular, its extension to continuous MDPs. Furthermore, we show that when the occupancy is infinite, we may encounter some non-trivial cases where the result does not hold anymore.

Poster
Johannes Müller · Marius Zeinhofer

[ Exhibit Hall 1 ]

We propose energy natural gradient descent, a natural gradient method with respect to a Hessian-induced Riemannian metric as an optimization algorithm for physics-informed neural networks (PINNs) and the deep Ritz method. As a main motivation we show that the update direction in function space resulting from the energy natural gradient corresponds to the Newton direction modulo an orthogonal projection on the model's tangent space. We demonstrate experimentally that energy natural gradient descent yields highly accurate solutions with errors several orders of magnitude smaller than what is obtained when training PINNs with standard optimizers like gradient descent or Adam, even when those are allowed significantly more computation time.

Poster
Hao Liang · Zhi-Quan Luo

[ Exhibit Hall 1 ]

We present a distribution optimization framework that significantly improves confidence bounds for various risk measures compared to previous methods. Our framework encompasses popular risk measures such as the entropic risk measure, conditional value at risk (CVaR), spectral risk measure, distortion risk measure, equivalent certainty, and rank-dependent expected utility, which are well established in risk-sensitive decision-making literature. To achieve this, we introduce two estimation schemes based on concentration bounds derived from the empirical distribution, specifically using either the Wasserstein distance or the supremum distance. Unlike traditional approaches that add or subtract a confidence radius from the empirical risk measures, our proposed schemes evaluate a specific transformation of the empirical distribution based on the distance. Consequently, our confidence bounds consistently yield tighter results compared to previous methods. We further verify the efficacy of the proposed framework by providing tighter problem-dependent regret bound for the CVaR bandit.

Poster
Jerome Baum · Heishiro Kanagawa · Arthur Gretton

[ Exhibit Hall 1 ]

We propose a goodness-of-fit measure for probability densities modeling observations with varying dimensionality, such as text documents of differing lengths or variable-length sequences. The proposed measure is an instance of the kernel Stein discrepancy (KSD), which has been used to construct goodness-of-fit tests for unnormalized densities. The KSD is defined by its Stein operator: current operators used in testing apply to fixed-dimensional spaces. As our main contribution, we extend the KSD to the variable-dimension setting by identifying appropriate Stein operators, and propose a novel KSD goodness-of-fit test. As with the previous variants, the proposed KSD does not require the density to be normalized, allowing the evaluation of a large class of models. Our test is shown to perform well in practice on discrete sequential data benchmarks.

Poster
Malik TIOMOKO · Romain COUILLET · Frederic Pascal

[ Exhibit Hall 1 ]

The article proposes and theoretically analyses a computationally efficient multi-task learning (MTL) extension of popular principal component analysis (PCA)-based supervised learning schemes. The analysis reveals that (i) by default, learning may dramatically fail by suffering from negative transfer, but that (ii) simple counter-measures on data labels avert negative transfer and necessarily result in improved performances. Supporting experiments on synthetic and real data benchmarks show that the proposed method achieves comparable performance with state-of-the-art MTL methods but at a significantly reduced computational cost.

Poster
Lukas Faber · Roger Wattenhofer

[ Exhibit Hall 1 ]

We study the problem of learning comparisons between numbers with neural networks. Despite comparisons being a seemingly simple problem, we find that both general-purpose models such as multilayer perceptrons (MLPs) as well as arithmetic architectures such as the Neural Arithmetic Logic Unit (NALU) struggle with learning comparisons. Neither architecture can extrapolate to much larger numbers than those seen in the training set. We propose a novel differentiable architecture, the Neural Status Register (NSR) to solve this problem. We experimentally validate the NSR in various settings. We can combine the NSR with other neural models to solve interesting problems such as piecewise-defined arithmetic, comparison of digit images, recurrent problems, or finding shortest paths in graphs. The NSR outperforms all baseline architectures, especially when it comes to extrapolating to larger numbers.

Poster
Marie Guyomard · Susana Barbosa · Lionel Fillatre

[ Exhibit Hall 1 ]

This paper proposes an understandable neural network whose score function is modeled as an additive sum of univariate spline functions. It extends usual understandable models like generative additive models, spline-based models, and neural additive models. It is shown that this neural network can be approximated by a logistic regression whose inputs are obtained with a non-linear preprocessing of input data. This preprocessing depends on the neural network initialization but this paper establishes that it can be replaced by a non random kernel-based preprocessing that no longer depends on the initialization. Hence, the convergence of the training process is guaranteed and the solution is unique for a given training dataset.

Poster
Xuhui Fan · Edwin V. Bonilla · Terence O'kane · Scott SIsson

[ Exhibit Hall 1 ]

Gaussian process state-space models (GPSSMs) provide a principled and flexible approach to modeling the dynamics of a latent state, which is observed at discrete-time points via a likelihood model. However, inference in GPSSMs is computationally and statistically challenging due to the large number of latent variables in the model and the strong temporal dependencies between them. In this paper, we propose a new method for inference in Bayesian GPSSMs, which overcomes the drawbacks of previous approaches, namely over-simplified assumptions, and high computational requirements. Our method is based on free-form variational inference via stochastic gradient Hamiltonian Monte Carlo within the inducing-variable formalism. Furthermore, by exploiting our proposed variational distribution, we provide a collapsed extension of our method where the inducing variables are marginalized analytically. We also showcase results when combining our framework with particle MCMC methods. We show that, on six real-world datasets, our approach can learn transition dynamics and latent states more accurately than competing methods.

Poster
Boya Hou · Sina Sanjari · Nathan Dahlin · Subhonmesh Bose · Umesh Vaidya

[ Exhibit Hall 1 ]

Transfer operators provide a rich framework for representing the dynamics of very general, nonlinear dynamical systems. When interacting with reproducing kernel Hilbert spaces (RKHS), descriptions of dynamics often incur prohibitive data storage requirements, motivating dataset sparsification as a precursory step to computation. Further, in practice, data is available in the form of trajectories, introducing correlation between samples. In this work, we present a method for sparse learning of transfer operators from $\beta$-mixing stochastic processes, in both discrete and continuous time, and provide sample complexity analysis extending existing theoretical guarantees for learning from non-sparse, i.i.d. data. In addressing continuous-time settings, we develop precise descriptions using covariance-type operators for the infinitesimal generator that aids in the sample complexity analysis. We empirically illustrate the efficacy of our sparse embedding approach through deterministic and stochastic nonlinear system examples.
Poster
Alaa Khaddaj · Guillaume Leclerc · Aleksandar Makelov · Kristian Georgiev · Hadi Salman · Andrew Ilyas · Aleksander Madry

[ Exhibit Hall 1 ]

In a backdoor attack, an adversary inserts maliciously constructed backdoor examples into a training set to make the resulting model vulnerable to manipulation. Defending against such attacks involves viewing inserted examples as outliers in the training set and using techniques from robust statistics to detect and remove them. In this work, we present a different approach to the backdoor attack problem. Specifically, we show that without structural information about the training data distribution, backdoor attacks are indistinguishable from naturally-occuring features in the data---and thus impossible to "detect" in a general sense. Then, guided by this observation, we revisit existing defenses against backdoor attacks and characterize the (often latent) assumptions they make, and on which they depend. Finally, we explore an alternative perspective on backdoor attacks: one that assumes these attacks correspond to the strongest feature in the training data. Under this assumption (which we make formal) we develop a new primitive for detecting backdoor attacks. Our primitive naturally gives rise to a detection algorithm that comes with theoretical guarantees, and is effective in practice.

Poster
Roy Ganz · Bahjat Kawar · Michael Elad

[ Exhibit Hall 1 ]

Adversarially robust classifiers possess a trait that non-robust models do not - Perceptually Aligned Gradients (PAG). Their gradients with respect to the input align well with human perception. Several works have identified PAG as a byproduct of robust training, but none have considered it as a standalone phenomenon nor studied its own implications. In this work, we focus on this trait and test whether Perceptually Aligned Gradients imply Robustness. To this end, we develop a novel objective to directly promote PAG in training classifiers and examine whether models with such gradients are more robust to adversarial attacks. Extensive experiments on multiple datasets and architectures validate that models with aligned gradients exhibit significant robustness, exposing the surprising bidirectional connection between PAG and robustness. Lastly, we show that better gradient alignment leads to increased robustness and harness this observation to boost the robustness of existing adversarial training techniques.

Poster
Mitchell Black · Zhengchao Wan · Amir Nayyeri · Yusu Wang

[ Exhibit Hall 1 ]

Message passing graph neural networks (GNNs) are a popular learning architectures for graph-structured data. However, one problem GNNs experience is oversquashing, where a GNN has difficulty sending information between distant nodes. Understanding and mitigating oversquashing has recently received significant attention from the research community. In this paper, we continue this line of work by analyzing oversquashing through the lens of the effective resistance between nodes in the input graph. Effective resistance intuitively captures the ``strength'' of connection between two nodes by paths in the graph, and has a rich literature spanning many areas of graph theory. We propose to use total effective resistance as a bound of the total amount of oversquashing in a graph and provide theoretical justification for its use. We further develop an algorithm to identify edges to be added to an input graph to minimize the total effective resistance, thereby alleviating oversquashing. We provide empirical evidence of the effectiveness of our total effective resistance based rewiring strategies for improving the performance of GNNs.

Poster
Daniel Severo · James Townsend · Ashish Khisti · Alireza Makhzani

[ Exhibit Hall 1 ]

We present a one-shot method for compressing large labeled graphs called Random Edge Coding. When paired with a parameter-free model based on Pólya's Urn, the worst-case computational and memory complexities scale quasi-linearly and linearly with the number of observed edges, making it efficient on sparse graphs, and requires only integer arithmetic. Key to our method is bits-back coding, which is used to sample edges and vertices without replacement from the edge-list in a way that preserves the structure of the graph. Optimality is proven under a class of random graph models that are invariant to permutations of the edges and of vertices within an edge. Experiments indicate Random Edge Coding can achieve competitive compression performance on real-world network datasets and scales to graphs with millions of nodes and edges.

Poster
Haixu Wu · Tengge Hu · huakun luo · Jianmin Wang · Mingsheng Long

[ Exhibit Hall 1 ]

Deep models have achieved impressive progress in solving partial differential equations (PDEs). A burgeoning paradigm is learning neural operators to approximate the input-output mappings of PDEs. While previous deep models have explored the multiscale architectures and various operator designs, they are limited to learning the operators as a whole in the coordinate space. In real physical science problems, PDEs are complex coupled equations with numerical solvers relying on discretization into high-dimensional coordinate space, which cannot be precisely approximated by a single operator nor efficiently learned due to the curse of dimensionality. We present Latent Spectral Models (LSM) toward an efficient and precise solver for high-dimensional PDEs. Going beyond the coordinate space, LSM enables an attention-based hierarchical projection network to reduce the high-dimensional data into a compact latent space in linear time. Inspired by classical spectral methods in numerical analysis, we design a neural spectral block to solve PDEs in the latent space that approximates complex input-output mappings via learning multiple basis operators, enjoying nice theoretical guarantees for convergence and approximation. Experimentally, LSM achieves consistent state-of-the-art and yields a relative gain of 11.5% averaged on seven benchmarks covering both solid and fluid physics. Code is available at https://github.com/thuml/Latent-Spectral-Models.

Poster
Yulong Lu

[ Exhibit Hall 1 ]

Finding the mixed Nash equilibria (MNE) of a two-player zero sum continuous game is an important and challenging problem in machine learning. A canonical algorithm to finding the MNE is the noisy gradient descent ascent method which in the infinite particle limit gives rise to the Mean-Field Gradient Descent Ascent (GDA) dynamics on the space of probability measures. In this paper, we first study the convergence of a two-scale Mean-Field GDA dynamics for finding the MNE of the entropy-regularized objective. More precisely we show that for each finite temperature (or regularization parameter), the two-scale Mean-Field GDA with a suitable finite scale ratio converges exponentially to the unique MNE without assuming the convexity or concavity of the interaction potential. The key ingredient of our proof lies in the construction of new Lyapunov functions that dissipate exponentially along the Mean-Field GDA. We further study the simulated annealing of the Mean-Field GDA dynamics. We show that with a temperature schedule that decays logarithmically in time the annealed Mean-Field GDA converges to the MNE of the original unregularized objective.

Poster
Seungki Min · Daniel Russo

[ Exhibit Hall 1 ]

In nonstationary bandit learning problems, the decision-maker must continually gather information and adapt their action selection as the latent state of the environment evolves. In each time period, some latent optimal action maximizes expected reward under the environment state. We view the optimal action sequence as a stochastic process, and take an information-theoretic approach to analyze attainable performance. We bound per-period regret in terms of the entropy rate of the optimal action process. The bound applies to a wide array of problems studied in the literature and reflects the problem's information structure through its information-ratio.

Poster
Tennison Liu · Jeroen Berrevoets · Zhaozhi Qian · Mihaela van der Schaar

[ Exhibit Hall 1 ]

Abstract
This paper addresses unsupervised representation learning on tabular data containing multiple views generated by distinct sources of measurement. Traditional methods, which tackle this problem using the multi-view framework, are constrained by predefined assumptions that assume feature sets share the same information and representations should learn globally shared factors. However, this assumption is not always valid for real-world tabular datasets with complex dependencies between feature sets, resulting in localized information that is harder to learn. To overcome this limitation, we propose a data-driven approach that learns feature set dependencies by representing feature sets as graph nodes and their relationships as learnable edges. Furthermore, we introduce $\texttt{LEGATO}$, a novel hierarchical graph autoencoder that learns a smaller, latent graph to aggregate information from multiple views dynamically. This approach results in latent graph components that specialize in capturing localized information from different regions of the input, leading to superior downstream performance.
Poster
Haotian Fu · Shangqun Yu · Saket Tiwari · Michael L. Littman · George Konidaris

[ Exhibit Hall 1 ]

We propose a novel parameterized skill-learning algorithm that aims to learn transferable parameterized skills and synthesize them into a new action space that supports efficient learning in long-horizon tasks. We propose to leverage off-policy Meta-RL combined with a trajectory-centric smoothness term to learn a set of parameterized skills. Our agent can use these learned skills to construct a three-level hierarchical framework that models a Temporally-extended Parameterized Action Markov Decision Process. We empirically demonstrate that the proposed algorithms enable an agent to solve a set of highly difficult long-horizon (obstacle-course and robot manipulation) tasks.

Poster
Felix Draxler · Lars Kühmichel · Armand Rousselot · Jens Müller · Christoph Schnörr · Ullrich Koethe

[ Exhibit Hall 1 ]

Gaussianization is a simple generative model that can be trained without backpropagation. It has shown compelling performance on low dimensional data. As the dimension increases, however, it has been observed that the convergence speed slows down. We show analytically that the number of required layers scales linearly with the dimension for Gaussian input. We argue that this is because the model is unable to capture dependencies between dimensions. Empirically, we find the same linear increase in cost for arbitrary input $p(x)$, but observe favorable scaling for some distributions. We explore potential speed-ups and formulate challenges for further research.
Poster
Raif Rustamov · Subhabrata Majumdar

[ Exhibit Hall 1 ]

Collections of probability distributions arise in a variety of applications ranging from user activity pattern analysis to brain connectomics. In practice these distributions can be defined over diverse domain types including finite intervals, circles, cylinders, spheres, other manifolds, and graphs. This paper introduces an approach for detecting differences between two collections of distributions over such general domains. To this end, we propose the intrinsic slicing construction that yields a novel class of Wasserstein distances on manifolds and graphs. These distances are Hilbert embeddable, allowing us to reduce the distribution collection comparison problem to a more familiar mean testing problem in a Hilbert space. We provide two testing procedures one based on resampling and another on combining p-values from coordinate-wise tests. Our experiments in various synthetic and real data settings show that the resulting tests are powerful and the p-values are well-calibrated.

Poster
Yurong Chen · Qian Wang · Zhijian Duan · Haoran Sun · Zhaohua Chen · Xiang Yan · Xiaotie Deng

[ Exhibit Hall 1 ]

In online ad markets, a rising number of advertisers are employing bidding agencies to participate in ad auctions. These agencies are specialized in designing online algorithms and bidding on behalf of their clients. Typically, an agency usually has information on multiple advertisers, so she can potentially coordinate bids to help her clients achieve higher utilities than those under independent bidding. In this paper, we study coordinated online bidding algorithms in repeated second-price auctions with budgets. We propose algorithms that guarantee every client a higher utility than the best she can get under independent bidding. We show that these algorithms achieve maximal social welfare and discuss bidders' incentives to misreport their budgets, in symmetric cases. Our proofs combine the techniques of online learning and equilibrium analysis, overcoming the difficulty of competing with a multi-dimensional benchmark. The performance of our algorithms is further evaluated by experiments on both synthetic and real data. To the best of our knowledge, we are the first to consider bidder coordination in online repeated auctions with constraints.

Poster
Idan Shenfeld · Zhang-Wei Hong · Aviv Tamar · Pulkit Agrawal

[ Exhibit Hall 1 ]

We consider solving sequential decision-making problems in the scenario where the agent has access to two supervision sources: $\textit{reward signal}$ and a $\textit{teacher}$ that can be queried to obtain a $\textit{good}$ action for any state encountered by the agent. Learning solely from rewards, or reinforcement learning, is data inefficient and may not learn high-reward policies in challenging scenarios involving sparse rewards or partial observability. On the other hand, learning from a teacher may sometimes be infeasible. For instance, the actions provided by a teacher with privileged information may be unlearnable by an agent with limited information (i.e., partial observability). In other scenarios, the teacher might be sub-optimal, and imitating their actions can limit the agent's performance. To overcome these challenges, prior work proposed to jointly optimize imitation and reinforcement learning objectives but relied on heuristics and problem-specific hyper-parameter tuning to balance the two objectives. We introduce Teacher Guided Reinforcement Learning (TGRL), a principled approach to dynamically balance following the teacher's guidance and leveraging RL. TGRL outperforms strong baselines across diverse domains without hyperparameter tuning.
Poster
Xingyu Xu · Yandi Shen · Yuejie Chi · Cong Ma

[ Exhibit Hall 1 ]

We propose $\textsf{ScaledGD($\lambda$)}$, a preconditioned gradient descent method to tackle the low-rank matrix sensing problem when the true rank is unknown, and when the matrix is possibly ill-conditioned. Using overparametrized factor representations, $\textsf{ScaledGD($\lambda$)}$ starts from a small random initialization, and proceeds by gradient descent with a specific form of preconditioning with a fixed damping term to combat overparameterization. At the expense of light computational overhead incurred by preconditioners, $\textsf{ScaledGD($\lambda$)}$ is remarkably robust to ill-conditioning compared to vanilla gradient descent ($\mathsf{GD}$). Specifically, we show that, under the Gaussian design, $\textsf{ScaledGD($\lambda$)}$ converges to the true low-rank matrix at a constant linear rate that is independent of the condition number (apart from a short nearly dimension-free burdening period), with near-optimal sample complexity. This significantly improves upon the convergence rate of vanilla $\mathsf{GD}$ which suffers from a polynomial dependency with the condition number. Our work provides evidence on the power of preconditioning in accelerating the convergence without hurting generalization in overparameterized learning.
Poster
Zhishuai Guo · Rong Jin · Jiebo Luo · Tianbao Yang

[ Exhibit Hall 1 ]

In this paper, we tackle a novel federated learning (FL) problem for optimizing a family of X-risks, to which no existing FL algorithms are applicable. In particular, the objective has the form of $\mathbb{E}\_{\mathbf{z}\sim \mathcal{S}\_1} f(\mathbb{E}\_{\mathbf{z}'\sim\mathcal{S}\_2} \ell(\mathbf{w}; \mathbf{z}, \mathbf{z}'))$, where two sets of data $\mathcal S\_1, \mathcal S\_2$ are distributed over multiple machines, $\ell(\cdot; \cdot,\cdot)$ is a pairwise loss that only depends on the prediction outputs of the input data pairs $(\mathbf{z}, \mathbf{z}')$. This problem has important applications in machine learning, e.g., AUROC maximization with a pairwise loss, and partial AUROC maximization with a compositional loss. The challenges for designing an FL algorithm for X-risks lie in the non-decomposability of the objective over multiple machines and the interdependency between different machines. To this end, we propose an active-passive decomposition framework that decouples the gradient's components with two types, namely active parts and passive parts, where the active parts depend on local data that are computed with the local model and the passive parts depend on other machines that are communicated/computed based on historical models and samples. Under this framework, we design two FL algorithms (FeDXL) for handling linear and nonlinear $f$, respectively, based on federated averaging and merging and develop …
Poster
Lesi Chen · Jing Xu · Luo Luo

[ Exhibit Hall 1 ]

We consider the optimization problem of the form $\min_{x \in \mathbb{R}^d} f(x) \triangleq \mathbb{E}[F(x;\xi)]$ , where the component $F(x;\xi)$ is $L$-mean-squared Lipschitz but possibly nonconvex and nonsmooth.The recently proposed gradient-free method requires at most $\mathcal{O}( L^4 d^{3/2} \epsilon^{-4} + \Delta L^3 d^{3/2} \delta^{-1} \epsilon^{-4})$ stochastic zeroth-order oracle complexity to find a $(\delta,\epsilon)$-Goldstein stationary point of objective function, where $\Delta = f(x_0) - \inf_{x \in \mathbb{R}^d} f(x)$ and $x_0$ is the initial point of the algorithm. This paper proposes a more efficient algorithm using stochastic recursive gradient estimators, which improves the complexity to $\mathcal{O}(L^3 d^{3/2} \epsilon^{-3}+ \Delta L^2 d^{3/2} \delta^{-1} \epsilon^{-3})$.
Poster
Abhimanyu Das · Ayush Jain · Weihao Kong · Rajat Sen

[ Exhibit Hall 1 ]

We demonstrate the use of batches in studying list-decodable linear regression, in which only $\alpha\in (0,1]$ fraction of batches contain genuine samples from a common distribution and the rest can contain arbitrary or even adversarial samples. When genuine batches have $\ge \tilde\Omega(1/\alpha)$ samples each, our algorithm can efficiently find a small list of potential regression parameters, with a high probability that one of them is close to the true parameter. This is the first polynomial time algorithm for list-decodable linear regression, and its sample complexity scales nearly linearly with the dimension of the covariates. The polynomial time algorithm is made possible by the batch structure and may not be feasible without it, as suggested by a recent Statistical Query lower bound (Diakonikolas et al., 2021b).
Poster
Daniel J. Williams · Song Liu

[ Exhibit Hall 1 ]

Estimating truncated density models is difficult, as these models have intractable normalising constants and hard to satisfy boundary conditions. Score matching can be adapted to solve the truncated density estimation problem, but requires a continuous weighting function which takes zero at the boundary and is positive elsewhere. Evaluation of such a weighting function (and its gradient) often requires a closed-form expression of the truncation boundary and finding a solution to a complicated optimisation problem. In this paper, we propose approximate Stein classes, which in turn leads to a relaxed Stein identity for truncated density estimation. We develop a novel discrepancy measure, truncated kernelised Stein discrepancy (TKSD), which does not require fixing a weighting function in advance, and can be evaluated using only samples on the boundary. We estimate a truncated density model by minimising the Lagrangian dual of TKSD. Finally, experiments show the accuracy of our method to be an improvement over previous works even without the explicit functional form of the boundary.

Poster
Jingyi Cui · Weiran Huang · Yifei Wang · Yisen Wang

[ Exhibit Hall 1 ]

Contrastive learning has shown outstanding performances in both supervised and unsupervised learning, and has recently been introduced to solve weakly supervised learning problems such as semi-supervised learning and noisy label learning. Despite the empirical evidence showing that semi-supervised labels improve the representations of contrastive learning, it remains unknown if noisy supervised information can be directly used in training instead of after manual denoising. Therefore, to explore the mechanical differences between semi-supervised and noisy-labeled information in helping contrastive learning, we establish a unified theoretical framework of contrastive learning under weak supervision. Specifically, we investigate the most intuitive paradigm of jointly training supervised and unsupervised contrastive losses. By translating the weakly supervised information into a similarity graph under the framework of spectral clustering based on the posterior probability of weak labels, we establish the downstream classification error bound. We prove that semi-supervised labels improve the downstream error bound whereas noisy labels have limited effects under such a paradigm. Our theoretical findings here provide new insights for the community to rethink the role of weak supervision in helping contrastive learning.

Poster
Elijah Cole · Grant Horn · Christian Lange · Alexander Shepard · Patrick Leary · Pietro Perona · Scott Loarie · Oisin Mac Aodha

[ Exhibit Hall 1 ]

Estimating the geographical range of a species from sparse observations is a challenging and important geospatial prediction problem. Given a set of locations where a species has been observed, the goal is to build a model to predict whether the species is present or absent at any location. This problem has a long history in ecology, but traditional methods struggle to take advantage of emerging large-scale crowdsourced datasets which can include tens of millions of records for hundreds of thousands of species. In this work, we use Spatial Implicit Neural Representations (SINRs) to jointly estimate the geographical range of 47k species simultaneously. We find that our approach scales gracefully, making increasingly better predictions as we increase the number of species and the amount of data per species when training. To make this problem accessible to machine learning researchers, we provide four new benchmarks that measure different aspects of species range estimation and spatial representation learning. Using these benchmarks, we demonstrate that noisy and biased crowdsourced data can be combined with implicit neural representations to approximate expert-developed range maps for many species.

Poster
Kartik Ahuja · Divyat Mahajan · Yixin Wang · Yoshua Bengio

[ Exhibit Hall 1 ]

Causal representation learning seeks to extract high-level latent factors from low-level sensory data. Most existing methods rely on observational data and structural assumptions (e.g., conditional independence) to identify the latent factors. However, interventional data is prevalent across applications. Can interventional data facilitate causal representation learning? We explore this question in this paper. The key observation is that interventional data often carries geometric signatures of the latent factors' support (i.e. what values each latent can possibly take). For example, when the latent factors are causally connected, interventions can break the dependency between the intervened latents' support and their ancestors'. Leveraging this fact, we prove that the latent causal factors can be identified up to permutation and scaling given data from perfect do interventions. Moreover, we can achieve block affine identification, namely the estimated latent factors are only entangled with a few other latents if we have access to data from imperfect interventions. These results highlight the unique power of interventional data in causal representation learning; they can enable provable identification of latent factors without any assumptions about their distributions or dependency structure.

Poster
Beomsu Kim · Jong Chul YE

[ Exhibit Hall 1 ]

The sampling process of diffusion models can be interpreted as solving the reverse stochastic differential equation (SDE) or the ordinary differential equation (ODE) of the diffusion process, which often requires up to thousands of discretization steps to generate a single image. This has sparked a great interest in developing efficient integration techniques for reverse-S/ODEs. Here, we propose an orthogonal approach to accelerating score-based sampling: Denoising MCMC (DMCMC). DMCMC first uses MCMC to produce initialization points for reverse-S/ODE in the product space of data and diffusion time. Then, a reverse-S/ODE integrator is used to denoise the initialization points. Since MCMC traverses close to the data manifold, the cost of producing a clean sample for DMCMC is much less than that of producing a clean sample from noise. Denoising Langevin Gibbs, an instance of DMCMC, successfully accelerates all six reverse-S/ODE integrators considered in this work, and achieves state-of-the-art results: in the limited number of score function evaluation (NFE) setting on CIFAR10, we have $3.25$ FID with $\approx 10$ NFE and $2.49$ FID with $\approx 16$ NFE. On CelebA-HQ-256, we have $6.99$ FID with $\approx 160$ NFE, which beats the current best record of Kim et al. (2022) among score-based models, $7.16$ FID …
Poster
Gati Aher · Rosa I. Arriaga · Adam Tauman Kalai

[ Exhibit Hall 1 ]

We introduce a new type of test, called a Turing Experiment (TE), for evaluating to what extent a given language model, such as GPT models, can simulate different aspects of human behavior. A TE can also reveal consistent distortions in a language model’s simulation of a specific human behavior. Unlike the Turing Test, which involves simulating a single arbitrary individual, a TE requires simulating a representative sample of participants in human subject research. We carry out TEs that attempt to replicate well-established findings from prior studies. We design a methodology for simulating TEs and illustrate its use to compare how well different language models are able to reproduce classic economic, psycholinguistic, and social psychology experiments: Ultimatum Game, Garden Path Sentences, Milgram Shock Experiment, and Wisdom of Crowds. In the first three TEs, the existing findings were replicated using recent models, while the last TE reveals a “hyper-accuracy distortion” present in some language models (including ChatGPT and GPT-4), which could affect downstream applications in education and the arts.

Poster
Siteng Kang · Zhan Shi · Xinhua Zhang

[ Exhibit Hall 1 ]

Generative models have grown into the workhorse of many state-of-the-art machine learning methods. However, their vulnerability under poisoning attacks has been largely understudied. In this work, we investigate this issue in the context of continual learning, where generative replayers are utilized to tackle catastrophic forgetting. By developing a novel customization of dirty-label input-aware backdoors to the online setting, our attacker manages to stealthily promote forgetting while retaining high accuracy at the current task and sustaining strong defenders. Our approach taps into an intriguing property of generative models, namely that they cannot well capture input-dependent triggers. Experiments on four standard datasets corroborate the poisoner's effectiveness.

Poster
Yijun Yang · Tianyi Zhou · Jing Jiang · Guodong Long · Yuhui Shi

[ Exhibit Hall 1 ]

How to train a generalizable meta-policy by continually learning a sequence of tasks? It is a natural human skill yet challenging to achieve by current reinforcement learning: the agent is expected to quickly adapt to new tasks (plasticity) meanwhile retaining the common knowledge from previous tasks (stability). We address it by "Continual Task Allocation via Sparse Prompting (CoTASP)", which learns over-complete dictionaries to produce sparse masks as prompts extracting a sub-network for each task from a meta-policy network. CoTASP trains a policy for each task by optimizing the prompts and the sub-network weights alternatively. The dictionary is then updated to align the optimized prompts with tasks' embedding, thereby capturing tasks' semantic correlations. Hence, relevant tasks share more neurons in the meta-policy network due to similar prompts while cross-task interference causing forgetting is effectively restrained. Given a meta-policy and dictionaries trained on previous tasks, new task adaptation reduces to highly efficient sparse prompting and sub-network finetuning. In experiments, CoTASP achieves a promising plasticity-stability trade-off without storing or replaying any past tasks' experiences. It outperforms existing continual and multi-task RL methods on all seen tasks, forgetting reduction, and generalization to unseen tasks.

Poster
Mazda Moayeri · Keivan Rezaei · Maziar Sanjabi · Soheil Feizi

[ Exhibit Hall 1 ]

We observe that the mapping between an image's representation in one model to its representation in another can be learned surprisingly well with just a linear layer, even across diverse models. Building on this observation, we propose text-to-concept, where features from a fixed pretrained model are aligned linearly to the CLIP space, so that text embeddings from CLIP's text encoder become directly comparable to the aligned features. With text-to-concept, we convert fixed off-the-shelf vision encoders to surprisingly strong zero-shot classifiers for free, with accuracy at times even surpassing that of CLIP, despite being much smaller models and trained on a small fraction of the data compared to CLIP. We show other immediate use-cases of text-to-concept, like building concept bottleneck models with no concept supervision, diagnosing distribution shifts in terms of human concepts, and retrieving images satisfying a set of text-based constraints. Lastly, we demonstrate the feasibility of concept-to-text, where vectors in a model's feature space are decoded by first aligning to the CLIP before being fed to a GPT-based generative model. Our work suggests existing deep models, with presumably diverse architectures and training, represent input samples relatively similarly, and a two-way communication across model representation spaces and to …

Poster
Ruofan Zhang · Ruofan Zhang · Haoyu Chen · Chao Dong · Yulun Zhang · Wenming Yang

[ Exhibit Hall 1 ]

Super-resolution (SR) techniques designed for real-world applications commonly encounter two primary challenges: generalization performance and restoration accuracy. We demonstrate that when methods are trained using complex, large-range degradations to enhance generalization, a decline in accuracy is inevitable. However, since the degradation in a certain real-world applications typically exhibits a limited variation range, it becomes feasible to strike a trade-off between generalization performance and testing accuracy within this scope. In this work, we introduce a novel approach to craft training degradation distributions using a small set of reference images. Our strategy is founded upon the binned representation of the degradation space and the Frechet distance between degradation distributions. Our results indicate that the proposed technique significantly improves the performance of test images while preserving generalization capabilities in real-world applications.

Poster
Chunlin Sun · Shang Liu · Xiaocheng Li

[ Exhibit Hall 1 ]

In this paper, we study the predict-then-optimize problem where the output of a machine learning prediction task is used as the input of some downstream optimization problem, say, the objective coefficient vector of a linear program. The problem is also known as predictive analytics or contextual linear programming. The existing approaches largely suffer from either (i) optimization intractability (a non-convex objective function)/statistical inefficiency (a suboptimal generalization bound) or (ii) requiring strong condition(s) such as no constraint or loss calibration. We develop a new approach to the problem called maximum optimality margin which designs the machine learning loss function by the optimality condition of the downstream optimization. The max-margin formulation enjoys both computational efficiency and good theoretical properties for the learning procedure. More importantly, our new approach only needs the observations of the optimal solution in the training data rather than the objective function, which makes it a new and natural approach to the inverse linear programming problem under both contextual and context-free settings; we also analyze the proposed method under both offline and online settings, and demonstrate its performance using numerical experiments.

Poster
Yineng Chen · Zuchao Li · Lefei Zhang · Bo Du · hai zhao

[ Exhibit Hall 1 ]

Optimizer is an essential component for the success of deep learning, which guides the neural network to update the parameters according to the loss on the training set. SGD and Adam are two classical and effective optimizers on which researchers have proposed many variants, such as SGDM and RAdam. In this paper, we innovatively combine the backward-looking and forward-looking aspects of the optimizer algorithm and propose a novel Admeta (A Double exponential Moving averagE To Adaptive and non-adaptive momentum) optimizer framework. For backward-looking part, we propose a DEMA variant scheme, which is motivated by a metric in the stock market, to replace the common exponential moving average scheme. While in the forward-looking part, we present a dynamic lookahead strategy which asymptotically approaches a set value, maintaining its speed at early stage and high convergence performance at final stage. Based on this idea, we provide two optimizer implementations, AdmetaR and AdmetaS, the former based on RAdam and the latter based on SGDM. Through extensive experiments on diverse tasks, we find that the proposed Admeta optimizer outperforms our base optimizers and shows advantages over recently proposed competitive optimizers. We also provide theoretical proof of these two …

Poster
Gabriel Cardoso · Yazid Janati el idrissi · Sylvain Le Corff · Eric Moulines · Jimmy Olsson

[ Exhibit Hall 1 ]

Non-linear state-space models, also known as general hidden Markov models (HMM), are ubiquitous in statistical machine learning, being the most classical generative models for serial data and sequences. Learning in HMM, either via Maximum Likelihood Estimation (MLE) or Markov Score Climbing (MSC) requires the estimation of the- smoothing expectation of some additive functionals. Controlling the bias and the variance of this estimation is crucial to establish the convergence of learning algorithms. Our first contribution is to design a novel additive smoothing algorithm, the Parisian particle Gibbs (PPG) sampler, which can be viewed as a PaRIS (Olsson, Westerborn 2017) algorithm driven by conditional SMC moves, resulting in bias-reduced estimates of the targeted quantities. We substantiate the PPG algorithm with theoretical results, including new bounds on bias and variance as well as deviation inequalities. We then establish, in the learning context, and under standard assumptions, non-asymptotic bounds highlighting the value of bias reduction and the implicit Rao--Blackwellization of PPG. These are the first non-asymptotic results of this kind in this setting. We illustrate our theoretical results with numerical experiments supporting our claims.

Poster
Christian Komusiewicz · Pascal Kunz · Frank Sommer · Manuel Sorge

[ Exhibit Hall 1 ]

Random forests and, more generally, (decision-)tree ensembles are widely used methods for classification and regression. Recent algorithmic advances allow to compute decision trees that are optimal for various measures such as their size or depth. We are not aware of such research for tree ensembles and aim to contribute to this area. Mainly, we provide two novel algorithms and corresponding lower bounds. First, we are able to carry over and substantially improve on tractability results for decision trees, obtaining a $(6\delta D S)^S \cdot \mathrm{poly}$-time algorithm, where $S$ is the number of cuts in the tree ensemble, $D$ the largest domain size, and $\delta$ is the largest number of features in which two examples differ. To achieve this, we introduce the witness-tree technique which also seems promising for practice. Second, we show that dynamic programming, which has been successful for decision trees, may also be viable for tree ensembles, providing an $\ell^n \cdot \mathrm{poly}$-time algorithm, where $\ell$ is the number of trees and $n$ the number of examples. Finally, we compare the number of cuts necessary to classify training data sets for decision trees and tree ensembles, showing that ensembles may need exponentially fewer cuts for increasing number of trees.
Poster
Weiming Liu · Haobo Fu · Qiang Fu · Wei Yang

[ Exhibit Hall 1 ]

In recent years, online search has been playing an increasingly important role in imperfect information games (IIGs). Previous online search is known as common-knowledge subgame solving, which has to consider all the states in a common-knowledge closure. This is only computationally tolerable for medium size games, such as poker. To handle larger games, order-1 Knowledge-Limited Subgame Solving (1-KLSS) only considers the states in a knowledge-limited closure, which results in a much smaller subgame. However, 1-KLSS is unsafe. In this paper, we first extend 1-KLSS to Safe-1-KLSS and prove its safeness. To make Safe-1-KLSS applicable to even larger games, we propose Opponent-Limited Subgame Solving (OLSS) to limit how the opponent reaches a subgame and how it acts in the subgame. Limiting the opponent's strategy dramatically reduces the subgame size and improves the efficiency of subgame solving while still preserving some safety in the limit. Experiments in medium size poker show that Safe-1-KLSS and OLSS are orders of magnitude faster than previous common-knowledge subgame solving. Also, OLSS significantly improves the online performance in a two-player Mahjong game, whose game size prohibits the use of previous common-knowledge subgame-solving methods.

Poster
Kishor Jothimurugan · Steve Hsu · Osbert Bastani · Rajeev Alur

[ Exhibit Hall 1 ]

Compositional reinforcement learning is a promising approach for training policies to perform complex long-horizon tasks. Typically, a high-level task is decomposed into a sequence of subtasks and a separate policy is trained to perform each subtask. In this paper, we focus on the problem of training subtask policies in a way that they can be used to perform any task; here, a task is given by a sequence of subtasks. We aim to maximize the worst-case performance over all tasks as opposed to the average-case performance. We formulate the problem as a two agent zero-sum game in which the adversary picks the sequence of subtasks. We propose two RL algorithms to solve this game: one is an adaptation of existing multi-agent RL algorithms to our setting and the other is an asynchronous version which enables parallel training of subtask policies. We evaluate our approach on two multi-task environments with continuous states and actions and demonstrate that our algorithms outperform state-of-the-art baselines.

Poster
Ronshee Chawla · Daniel Vial · Sanjay Shakkottai · R Srikant

[ Exhibit Hall 1 ]

The study of collaborative multi-agent bandits has attracted significant attention recently. In light of this, we initiate the study of a new collaborative setting, consisting of $N$ agents such that each agent is learning one of $M$ stochastic multi-armed bandits to minimize their group cumulative regret. We develop decentralized algorithms which facilitate collaboration between the agents under two scenarios. We characterize the performance of these algorithms by deriving the per agent cumulative regret and group regret upper bounds. We also prove lower bounds for the group regret in this setting, which demonstrates the near-optimal behavior of the proposed algorithms.
Poster
Antonio Sclocchi · Mario Geiger · Matthieu Wyart

[ Exhibit Hall 1 ]

Understanding when the noise in stochastic gradient descent (SGD) affects generalization of deep neural networks remains a challenge, complicated by the fact that networks can operate in distinct training regimes. Here we study how the magnitude of this noise $T$ affects performance as the size of the training set $P$ and the scale of initialization $\alpha$ are varied. For gradient descent, $\alpha$ is a key parameter that controls if the network is `lazy' ($\alpha\gg1$) or instead learns features ($\alpha\ll1$). For classification of MNIST and CIFAR10 images, our central results are: *(i)* obtaining phase diagrams for performance in the $(\alpha,T)$ plane. They show that SGD noise can be detrimental or instead useful depending on the training regime. Moreover, although increasing $T$ or decreasing $\alpha$ both allow the net to escape the lazy regime, these changes can have opposite effects on performance. *(ii)* Most importantly, we find that the characteristic temperature $T_c$ where the noise of SGD starts affecting the trained model (and eventually performance) is a power law of $P$. We relate this finding with the observation that key dynamical quantities, such as the total variation of weights during training, depend on both $T$ and $P$ as power laws. These results …
Poster
PAUL DUETTING · Federico Fusco · Silvio Lattanzi · Ashkan Norouzi-Fard · Morteza Zadimoghaddam

[ Exhibit Hall 1 ]

Maximizing monotone submodular functions under a matroid constraint is a classic algorithmic problem with multiple applications in data mining and machine learning. We study this classic problem in the fully dynamic setting, where elements can be both inserted and deleted in real-time. Our main result is a randomized algorithm that maintains an efficient data structure with an $\tilde{O}(k^2)$ amortized update time (in the number of additions and deletions) and yields a $4$-approximate solution, where $k$ is the rank of the matroid.
Poster
Steven Cao · Percy Liang · Greg Valiant

[ Exhibit Hall 1 ]

Given only a few observed entries from a low-rank matrix $X$, matrix completion is the problem of imputing the missing entries, and it formalizes a wide range of real-world settings that involve estimating missing data. However, when there are too few observed entries to complete the matrix, what other aspects of the underlying matrix can be reliably recovered? We study one such problem setting, that of ``one-sided'' matrix completion, where our goal is to recover the right singular vectors of $X$, even in the regime where recovering the left singular vectors is impossible, which arises when there are more rows than columns and very few observations. We propose a natural algorithm that involves imputing the missing values of the matrix $X^TX$ and show that even with only two observations per row in $X$, we can provably recover $X^TX$ as long as we have at least $\Omega(r^2 d \log d)$ rows, where $r$ is the rank and $d$ is the number of columns. We evaluate our algorithm on one-sided recovery of synthetic data and low-coverage genome sequencing. In these settings, our algorithm substantially outperforms standard matrix completion and a variety of direct factorization methods.
Poster
Wael Alghamdi · Juan Gomez · Shahab Asoodeh · Flavio Calmon · Oliver Kosut · Lalitha Sankar

[ Exhibit Hall 1 ]

We characterize the differential privacy guarantees of privacy mechanisms in the large-composition regime, i.e., when a privacy mechanism is sequentially applied a large number of times to sensitive data. Via exponentially tilting the privacy loss random variable, we derive a new formula for the privacy curve expressing it as a contour integral over an integration path that runs parallel to the imaginary axis with a free real-axis intercept. Then, using the method of steepest descent from mathematical physics, we demonstrate that the choice of saddle-point as the real-axis intercept yields closed-form accurate approximations of the desired contour integral. This procedure---dubbed the saddle-point accountant (SPA)---yields a constant-time accurate approximation of the privacy curve. Theoretically, our results can be viewed as a refinement of both Gaussian Differential Privacy and the moments accountant method found in Rényi Differential Privacy. In practice, we demonstrate through numerical experiments that the SPA provides a precise approximation of privacy guarantees competitive with purely numerical-based methods (such as FFT-based accountants), while enjoying closed-form mathematical expressions.

Poster
Philipp Nazari · Sebastian Damrich · Fred Hamprecht

[ Exhibit Hall 1 ]

Visualization is a crucial step in exploratory data analysis. One possible approach is to train an autoencoder with low-dimensional latent space. Large network depth and width can help unfolding the data. However, such expressive networks can achieve low reconstruction error even when the latent representation is distorted. To avoid such misleading visualizations, we propose first a differential geometric perspective on the decoder, leading to insightful diagnostics for an embedding's distortion, and second a new regularizer mitigating such distortion. Our ``Geometric Autoencoder'' avoids stretching the embedding spuriously, so that the visualization captures the data structure more faithfully. It also flags areas where little distortion could not be achieved, thus guarding against misinterpretation.

Poster
Yan Sun · Li Shen · Shixiang Chen · Liang Ding · Dacheng Tao

[ Exhibit Hall 1 ]

In federated learning (FL), a cluster of local clients are chaired under the coordination of the global server and cooperatively train one model with privacy protection. Due to the multiple local updates and the isolated non-iid dataset, clients are prone to overfit into their own optima, which extremely deviates from the global objective and significantly undermines the performance. Most previous works only focus on enhancing the consistency between the local and global objectives to alleviate this prejudicial client drifts from the perspective of the optimization view, whose performance would be prominently deteriorated on the high heterogeneity. In this work, we propose a novel and general algorithm FedSMOO by jointly considering the optimization and generalization targets to efficiently improve the performance in FL. Concretely, FedSMOO adopts a dynamic regularizer to guarantee the local optima towards the global objective, which is meanwhile revised by the global Sharpness Aware Minimization (SAM) optimizer to search for the consistent flat minima. Our theoretical analysis indicates that FedSMOO achieves fast $\mathcal{O}(1/T)$ convergence rate with low generalization bound. Extensive numerical studies are conducted on the real-world dataset to verify its peerless efficiency and excellent generality.
Poster
Yuhang Lai · Chengxi Li · Yiming Wang · Tianyi Zhang · Ruiqi Zhong · Luke Zettlemoyer · Scott Yih · Daniel Fried · Sida Wang · Tao Yu

[ Exhibit Hall 1 ]

We introduce DS-1000, a code generation benchmark with a thousand data science problems spanning seven Python libraries, such as Numpy and Pandas. Compared to prior works, DS-1000 incorporates three core features. First, our problems reflect diverse, realistic, and practical use cases since we collected them from StackOverflow. Second, our automatic evaluation is highly specific (reliable) -- across all Codex-002-predicted solutions that our evaluation accepts, only 1.8% of them are incorrect; we achieve this with multi-criteria metrics, checking both functional correctness by running test cases and surface-form constraints by restricting API usages or keywords. Finally, we proactively defend against memorization by slightly modifying our problems to be different from the original StackOverflow source; consequently, models cannot answer them correctly by memorizing the solutions from pre-training. The current best public system (Codex-002) achieves 43.3% accuracy, leaving ample room for improvement. We release our benchmark at https://ds1000-code-gen.github.io.

Poster
Itay Evron · Edward Moroshko · Gon Buzaglo · Maroun Khriesh · Badea Marjieh · Nati Srebro · Daniel Soudry

[ Exhibit Hall 1 ]

We analyze continual learning on a sequence of separable linear classification tasks with binary labels. We show theoretically that learning with weak regularization reduces to solving a sequential max-margin problem, corresponding to a special case of the Projection Onto Convex Sets (POCS) framework. We then develop upper bounds on the forgetting and other quantities of interest under various settings with recurring tasks, including cyclic and random orderings of tasks. We discuss several practical implications to popular training practices like regularization scheduling and weighting. We point out several theoretical differences between our continual classification setting and a recently studied continual regression setting.

Poster
Lei Wu · Weijie Su

[ Exhibit Hall 1 ]

In this paper, we study the implicit regularization of stochastic gradient descent (SGD) through the lens of *dynamical stability* (Wu et al., 2018). We start by revising existing stability analyses of SGD, showing how the Frobenius norm and trace of Hessian relate to different notions of stability. Notably, if a global minimum is linearly stable for SGD, then the trace of Hessian must be less than or equal to $2/\eta$, where $\eta$ denotes the learning rate. By contrast, for gradient descent (GD), the stability imposes a similar constraint but only on the largest eigenvalue of Hessian. We then turn to analyze the generalization properties of these stable minima, focusing specifically on two-layer ReLU networks and diagonal linear networks. Notably, we establish the *equivalence* between these metrics of sharpness and certain parameter norms for the two models, which allows us to show that the stable minima of SGD provably generalize well. By contrast, the stability-induced regularization of GD is provably too weak to ensure satisfactory generalization. This discrepancy provides an explanation of why SGD often generalizes better than GD. Note that the learning rate (LR) plays a pivotal role in the strength of stability-induced regularization. As the LR increases, the regularization …
Poster
Yuan Deng · Negin Golrezaei · Patrick Jaillet · Jason Cheuk Nam Liang · Vahab Mirrokni

[ Exhibit Hall 1 ]

In digital online advertising, advertisers procure ad impressions simultaneously on multiple platforms, or so-called channels, such as Google Ads, Meta Ads Manager, etc., each of which consists of numerous ad auctions. We study how an advertiser maximizes total conversion (e.g. ad clicks) while satisfying aggregate return-on-investment (ROI) and budget constraints across all channels. In practice, an advertiser does not have control over, and thus cannot globally optimize, which individual ad auctions she participates in for each channel, and instead authorizes a channel to procure impressions on her behalf: the advertiser can only utilize two levers on each channel, namely setting a per-channel budget and per-channel target ROI. In this work, we first analyze the effectiveness of each of these levers for solving the advertiser's global multi-channel problem. We show that when an advertiser only optimizes over per-channel ROIs, her total conversion can be arbitrarily worse than what she could have obtained in the global problem. Further, we show that the advertiser can achieve the global optimal conversion when she only optimizes over per-channel budgets. In light of this finding, under a bandit feedback setting that mimics real-world scenarios where advertisers have limited information on ad auctions in each channels and …

Poster
Hadi Salman · Alaa Khaddaj · Guillaume Leclerc · Andrew Ilyas · Aleksander Madry

[ Exhibit Hall 1 ]

We present an approach to mitigating the risks of malicious image editing posed by large diffusion models. The key idea is to immunize images so as to make them resistant to manipulation by these models. This immunization relies on injection of imperceptible adversarial perturbations designed to disrupt the operation of the targeted diffusion models, forcing them to generate unrealistic images. We provide two methods for crafting such perturbations, and then demonstrate their efficacy. Finally, we discuss a policy component necessary to make our approach fully effective and practical---one that involves the organizations developing diffusion models, rather than individual users, to implement (and support) the immunization process.


Poster Session 2 Tue 25 Jul 02:00 p.m.  

Poster
Yanwei Jia · Xun Yu Zhou

[ Exhibit Hall 1 ]

We propose a unified framework to study policy evaluation (PE) and the associated temporal difference (TD) methods for reinforcement learning in continuous time and space. We show that PE is equivalent to maintaining the martingale condition of a process. From this perspective, we find that the mean-square TD error approximates the quadratic variation of the martingale and thus is not a suitable objective for PE. We present two methods to use the martingale characterization for designing PE algorithms. The first one minimizes a ``martingale loss function", whose solution is proved to be the best approximation of the true value function in the mean--square sense. This method interprets the classical gradient Monte-Carlo algorithm. The second method is based on a system of equations called the ``martingale orthogonality conditions" with test functions. Solving these equations in different ways recovers various classical TD algorithms, such as TD($\lambda$), LSTD, and GTD. Different choices of test functions determine in what sense the resulting solutions approximate the true value function. Moreover, we prove that any convergent time-discretized algorithm converges to its continuous-time counterpart as the mesh size goes to zero, and we provide the convergence rate. We demonstrate the theoretical results and corresponding algorithms with numerical …
Poster
Brian Swenson · Ryan Murray · H. Vincent Poor · Soummya Kar

[ Exhibit Hall 1 ]

Gradient-descent (GD) based algorithms are an indispensable tool for optimizing modern machine learning models. The paper considers distributed stochastic GD (D-SGD)--a network-based variant of GD. Distributed algorithms play an important role in large-scale machine learning problems as well as the Internet of Things (IoT) and related applications. The paper considers two main issues. First, we study convergence of D-SGD to critical points when the loss function is nonconvex and nonsmooth. We consider a broad range of nonsmooth loss functions including those of practical interest in modern deep learning. It is shown that, for each fixed initialization, D-SGD converges to critical points of the loss with probability one. Next, we consider the problem of avoiding saddle points. It is well known that classical GD avoids saddle points; however, analogous results have been absent for distributed variants of GD. For this problem, we again assume that loss functions may be nonconvex and nonsmooth, but are smooth in a neighborhood of a saddle point. It is shown that, for any fixed initialization, D-SGD avoids such saddle points with probability one. Results are proved by studying the underlying (distributed) gradient flow, using the ordinary differential equation (ODE) method of stochastic approximation.

Poster
Xinwei Shen · Furui Liu · Hanze Dong · Qing Lian · Zhitang Chen · Tong Zhang

[ Exhibit Hall 1 ]

This paper proposes a Disentangled gEnerative cAusal Representation (DEAR) learning method under appropriate supervised information. Unlike existing disentanglement methods that enforce independence of the latent variables, we consider the general case where the underlying factors of interests can be causally related. We show that previous methods with independent priors fail to disentangle causally related factors even under supervision. Motivated by this finding, we propose a new disentangled learning method called DEAR that enables causal controllable generation and causal representation learning. The key ingredient of this new formulation is to use a structural causal model (SCM) as the prior distribution for a bidirectional generative model. The prior is then trained jointly with a generator and an encoder using a suitable GAN algorithm incorporated with supervised information on the ground-truth factors and their underlying causal structure. We provide theoretical justification on the identifiability and asymptotic convergence of the proposed method. We conduct extensive experiments on both synthesized and real data sets to demonstrate the effectiveness of DEAR in causal controllable generation, and the benefits of the learned representations for downstream tasks in terms of sample efficiency and distributional robustness.

Poster
Yu-Guan Hsieh · Franck Iutzeler · Jérôme Malick · Panayotis Mertikopoulos

[ Exhibit Hall 1 ]

In this paper, we provide a general framework for studying multi-agent online learning problems in the presence of delays and asynchronicities. Specifically, we propose and analyze a class of adaptive dual averaging schemes in which agents only need to accumulate gradient feedback received from the whole system, without requiring any between-agent coordination. In the single-agent case, the adaptivity of the proposed method allows us to extend a range of existing results to problems with potentially unbounded delays between playing an action and receiving the corresponding feedback. In the multi-agent case, the situation is significantly more complicated because agents may not have access to a global clock to use as a reference point; to overcome this, we focus on the information that is available for producing each prediction rather than the actual delay associated with each feedback. This allows us to derive adaptive learning strategies with optimal regret bounds, even in a fully decentralized, asynchronous environment. Finally, we also analyze an “optimistic” variant of the proposed algorithm which is capable of exploiting the predictability of problems with a slower variation and leads to improved regret bounds.

Poster
Aleksandr Shevchenko · Vyacheslav Kungurtsev · Marco Mondelli

[ Exhibit Hall 1 ]

Understanding the properties of neural networks trained via stochastic gradient descent (SGD) is at the heart of the theory of deep learning. In this work, we take a mean-field view, and consider a two-layer ReLU network trained via noisy-SGD for a univariate regularized regression problem. Our main result is that SGD with vanishingly small noise injected in the gradients is biased towards a simple solution: at convergence, the ReLU network implements a piecewise linear map of the inputs, and the number of knot'' points -- i.e., points where the tangent of the ReLU network estimator changes -- between two consecutive training inputs is at most three. In particular, as the number of neurons of the network grows, the SGD dynamics is captured by the solution of a gradient flow and, at convergence, the distribution of the weights approaches the unique minimizer of a related free energy, which has a Gibbs form. Our key technical contribution consists in the analysis of the estimator resulting from this minimizer: we show that its second derivative vanishes everywhere, except at some specific locations which represent theknot'' points. We also provide empirical evidence that knots at locations distinct from the data points might occur, …

Poster
Daiqi Gao · Yufeng Liu · Donglin Zeng

[ Exhibit Hall 1 ]

Learning optimal individualized treatment rules (ITRs) has become increasingly important in the modern era of precision medicine. Many statistical and machine learning methods for learning optimal ITRs have been developed in the literature. However, most existing methods are based on data collected from traditional randomized controlled trials and thus cannot take advantage of the accumulative evidence when patients enter the trials sequentially. It is also ethically important that future patients should have a high probability to be treated optimally based on the updated knowledge so far. In this work, we propose a new design called sequentially rule-adaptive trials to learn optimal ITRs based on the contextual bandit framework, in contrast to the response-adaptive design in traditional adaptive trials. In our design, each entering patient will be allocated with a high probability to the current best treatment for this patient, which is estimated using the past data based on some machine learning algorithm (for example, outcome weighted learning in our implementation). We explore the tradeoff between training and test values of the estimated ITR in single-stage problems by proving theoretically that for a higher probability of following the estimated ITR, the training value converges to the optimal value at a faster …

Poster
Narayana Prasad Santhanam · Venkatachalam Anantharam · Wojciech Szpankowski

[ Exhibit Hall 1 ]

Many current applications in data science need rich model classes to adequately represent the statistics that may be driving the observations. Such rich model classes may be too complex to admit uniformly consistent estimators. In such cases, it is conventional to settle for estimators with guarantees on convergence rate where the performance can be bounded in a model-dependent way, i.e. pointwise consistent estimators. But this viewpoint has the practical drawback that estimator performance is a function of the unknown model within the model class that is being estimated. Even if an estimator is consistent, how well it is doing at any given time may not be clear, no matter what the sample size of the observations. In these cases, a line of analysis favors sample dependent guarantees. We explore this framework by studying rich model classes that may only admit pointwise consistency guarantees, yet enough information about the unknown model driving the observations needed to gauge estimator accuracy can be inferred from the sample at hand. In this paper we obtain a novel characterization of lossless compression problems over a countable alphabet in the data-derived framework in terms of what we term deceptive distributions. We also show that the ability …

Poster
Lin Xiao

[ Exhibit Hall 1 ]

We consider infinite-horizon discounted Markov decision problems with finite state and action spaces and study the convergence rates of the projected policy gradient method and a general class of policy mirror descent methods, all with direct parametrization in the policy space. First, we develop a theory of weak gradient-mapping dominance and use it to prove sharp sublinear convergence rate of the projected policy gradient method. Then we show that with geometrically increasing step sizes, a general class of policy mirror descent methods, including the natural policy gradient method and a projected Q-descent method, all enjoy a linear rate of convergence without relying on entropy or other strongly convex regularization. Finally, we also analyze the convergence rate of an inexact policy mirror descent method and estimate its sample complexity under a simple generative model.

Poster
Julie Nutini · Issam Laradji · Mark Schmidt

[ Exhibit Hall 1 ]

Block coordinate descent (BCD) methods are widely used for large-scale numerical optimization because of their cheap iteration costs, low memory requirements, amenability to parallelization, and ability to exploit problem structure. Three main algorithmic choices influence the performance of BCD methods: the block partitioning strategy, the block selection rule, and the block update rule. In this paper we explore all three of these building blocks and propose variations for each that can significantly improve the progress made by each BCD iteration. We (i) propose new greedy block-selection strategies that guarantee more progress per iteration than the Gauss-Southwell rule; (ii) explore practical issues like how to implement the new rules when using "variable" blocks; (iii) explore the use of message-passing to compute matrix or Newton updates efficiently on huge blocks for problems with sparse dependencies between variables; and (iv) consider optimal active manifold identification, which leads to bounds on the "active-set complexity" of BCD methods and leads to superlinear convergence for certain problems with sparse solutions (and in some cases finite termination at an optimal solution). We support all of our findings with numerical results for the classic machine learning problems of least squares, logistic regression, multi-class logistic regression, label propagation, and …

Poster
El Mehdi Achour · Francois Malgouyres · Franck Mamalet

[ Exhibit Hall 1 ]

Imposing orthogonality on the layers of neural networks is known to facilitate the learning by limiting the exploding/vanishing of the gradient; decorrelate the features; improve the robustness. This paper studies the theoretical properties of orthogonal convolutional layers. We establish necessary and sufficient conditions on the layer architecture guaranteeing the existence of an orthogonal convolutional transform. The conditions prove that orthogonal convolutional transforms exist for almost all architectures used in practice for 'circular' padding. We also exhibit limitations with 'valid' boundary conditions and 'same' boundary conditions with zero-padding. Recently, a regularization term imposing the orthogonality of convolutional layers has been proposed, and impressive empirical results have been obtained in different applications (Wang et al., 2020). The second motivation of the present paper is to specify the theory behind this. We make the link between this regularization term and orthogonality measures. In doing so, we show that this regularization strategy is stable with respect to numerical and optimization errors and that, in the presence of small errors and when the size of the signal/image is large, the convolutional layers remain close to isometric. The theoretical results are confirmed with experiments and the landscape of the regularization term is studied. Experiments on real …

Poster
Nan Jiang · Maosen Zhang · Willem-Jan van Hoeve · Yexiang Xue

[ Exhibit Hall 1 ]

Many real-world structured prediction problems need machine learning to capture data distribution and constraint reasoning to ensure structure validity. Nevertheless, constrained structured prediction is still limited in real-world applications because of the lack of tools to bridge constraint satisfaction and machine learning. In this paper, we propose COnstraint REasoning embedded Structured Prediction (Core-Sp), a scalable constraint reasoning and machine learning integrated approach for learning over structured domains. We propose to embed decision diagrams, a popular constraint reasoning tool, as a fully-differentiable module into deep neural networks for structured prediction. We also propose an iterative search algorithm to automate the searching process of the best Core-Sp structure. We evaluate Core-Sp on three applications: vehicle dispatching service planning, if-then program synthesis, and text2SQL generation. The proposed Core-Sp module demonstrates superior performance over state-of-the-art approaches in all three applications. The structures generated with Core-Sp satisfy 100% of the constraints when using exact decision diagrams. In addition, Core-Sp boosts learning performance by reducing the modeling space via constraint satisfaction.

Poster
Rishi Sonthalia · Anna C. Gilbert

[ Exhibit Hall 1 ]

Many important machine learning problems can be formulated as highly constrained convex optimization problems. One important example is metric constrained problems. In this paper, we show that standard optimization techniques can not be used to solve metric constrained problem. To solve such problems, we provide a general active set framework, called Project and Forget, and several variants thereof that use Bregman projections. Project and Forget is a general purpose method that can be used to solve highly constrained convex problems with many (possibly exponentially) constraints. We provide a theoretical analysis of Project and Forget and prove that our algorithms converge to the global optimal solution and have a linear rate of convergence. We demonstrate that using our method, we can solve large problem instances of general weighted correlation clustering, metric nearness, information theoretic metric learning and quadratically regularized optimal transport; in each case, out-performing the state of the art methods with respect to CPU times and problem sizes.

Poster
Shengyi Huang · Rousslan Fernand Julien Dossa · Chang Ye · Jeff Braga · Dipam Chakraborty · Kinal Mehta · João Madeira Araujo

[ Exhibit Hall 1 ]

CleanRL is an open-source library that provides high-quality single-file implementations of Deep Reinforcement Learning (DRL) algorithms. These single-file implementations are self-contained algorithm variant files such as dqn.py, ppo.py, and ppo_atari.py that individually include all algorithm variant's implementation details. Such a paradigm significantly reduces the complexity and the lines of code (LOC) in each implemented variant, which makes them quicker and easier to understand. This paradigm gives the researchers the most fine-grained control over all aspects of the algorithm in a single file, allowing them to prototype novel features quickly. Despite having succinct implementations, CleanRL's codebase is thoroughly documented and benchmarked to ensure performance is on par with reputable sources. As a result, CleanRL produces a repository tailor-fit for two purposes: 1) understanding all implementation details of DRL algorithms and 2) quickly prototyping novel features. CleanRL's source code can be found at https://github.com/vwxyzjn/cleanrl.

Poster
Yaniv Yacoby · Weiwei Pan · Finale Doshi-Velez

[ Exhibit Hall 1 ]

Bayesian Neural Networks with Latent Variables (BNN+LVs) capture predictive uncertainty by explicitly modeling model uncertainty (via priors on network weights) and environmental stochasticity (via a latent input noise variable). In this work, we first show that BNN+LV suffers from a serious form of non-identifiability: explanatory power can be transferred between the model parameters and latent variables while fitting the data equally well. We demonstrate that as a result, in the limit of infinite data, the posterior mode over the network weights and latent variables is asymptotically biased away from the ground-truth. Due to this asymptotic bias, traditional inference methods may in practice yield parameters that generalize poorly and misestimate uncertainty. Next, we develop a novel inference procedure that explicitly mitigates the effects of likelihood non-identifiability during training and yields high-quality predictions as well as uncertainty estimates. We demonstrate that our inference method improves upon benchmark methods across a range of synthetic and real data-sets.

Poster
Harsh Parikh · Cynthia Rudin · Alexander Volfovsky

[ Exhibit Hall 1 ]

We introduce a flexible framework that produces high-quality almost-exact matches for causal inference. Most prior work in matching uses ad-hoc distance metrics, often leading to poor quality matches, particularly when there are irrelevant covariates. In this work, we learn an interpretable distance metric for matching, which leads to substantially higher quality matches. The learned distance metric stretches the covariate space according to each covariate's contribution to outcome prediction: this stretching means that mismatches on important covariates carry a larger penalty than mismatches on irrelevant covariates. Our ability to learn flexible distance metrics leads to matches that are interpretable and useful for the estimation of conditional average treatment effects.

Poster
Lorenzo Rimella · Nick Whiteley

[ Exhibit Hall 1 ]

We propose algorithms for approximate filtering and smoothing in high-dimensional Factorial hidden Markov models. The approximation involves discarding, in a principled way, likelihood factors according to a notion of locality in a factor graph associated with the emission distribution. This allows the exponential-in-dimension cost of exact filtering and smoothing to be avoided. We prove that the approximation accuracy, measured in a local total variation norm, is "dimension-free" in the sense that as the overall dimension of the model increases the error bounds we derive do not necessarily degrade. A key step in the analysis is to quantify the error introduced by localizing the likelihood function in a Bayes' rule update. The factorial structure of the likelihood function which we exploit arises naturally when data have known spatial or network structure. We demonstrate the new algorithms on synthetic examples and a London Underground passenger flow problem, where the factor graph is effectively given by the train network.

Poster
Jin Zhu · Xueqin Wang · Liyuan Hu · Junhao Huang · Kangkang Jiang · Yanhang Zhang · Shiyun Lin · Junxian Zhu

[ Exhibit Hall 1 ]

We introduce a new library named abess that implements a unified framework of best-subset selection for solving diverse machine learning problems, e.g., linear regression, classification, and principal component analysis. Particularly, abess certifiably gets the optimal solution within polynomial time with high probability under the linear model. Our efficient implementation allows abess to attain the solution of best-subset selection problems as fast as or even 20x faster than existing competing variable (model) selection toolboxes. Furthermore, it supports common variants like best subset of groups selection and $\ell_2$ regularized best-subset selection. The core of the library is programmed in C++. For ease of use, a Python library is designed for convenient integration with scikit-learn, and it can be installed from the Python Package Index (PyPI). In addition, a user-friendly R library is available at the Comprehensive R Archive Network (CRAN). The source code is available at: https://github.com/abess-team/abess.
Poster
Nicolas Garcia Trillos · Ryan Murray

[ Exhibit Hall 1 ]

We study a version of adversarial classification where an adversary is empowered to corrupt data inputs up to some distance $\varepsilon$, using tools from variational analysis. In particular, we describe necessary conditions associated with the optimal classifier subject to such an adversary. Using the necessary conditions, we derive a geometric evolution equation which can be used to track the change in classification boundaries as $\varepsilon$ varies. This evolution equation may be described as an uncoupled system of differential equations in one dimension, or as a mean curvature type equation in higher dimension. In one dimension, and under mild assumptions on the data distribution, we rigorously prove that one can use the initial value problem starting from $\varepsilon=0$, which is simply the Bayes classifier, in order to solve for the global minimizer of the adversarial problem for small values of $\varepsilon$. In higher dimensions we provide a similar result, albeit conditional to the existence of regular solutions of the initial value problem. In the process of proving our main results we obtain a result of independent interest connecting the original adversarial problem with an optimal transport problem under no assumptions on whether classes are balanced or not. Numerical examples illustrating these …
Poster
Sarbojit Roy · Soham Sarkar · Subhajit Dutta · Anil K. Ghosh

[ Exhibit Hall 1 ]

In high dimension, low sample size (HDLSS) settings, classifiers based on Euclidean distances like the nearest neighbor classifier and the average distance classifier perform quite poorly if differences between locations of the underlying populations get masked by scale differences. To rectify this problem, several modifications of these classifiers have been proposed in the literature. However, existing methods are confined to location and scale differences only, and they often fail to discriminate among populations differing outside of the first two moments. In this article, we propose some simple transformations of these classifiers resulting in improved performance even when the underlying populations have the same location and scale. We further propose a generalization of these classifiers based on the idea of grouping of variables. High-dimensional behavior of the proposed classifiers is studied theoretically. Numerical experiments with a variety of simulated examples as well as an extensive analysis of benchmark data sets from three different databases exhibit advantages of the proposed methods.

Poster
Baoluo Sun · Yifan Cui · Eric Tchetgen Tchetgen

[ Exhibit Hall 1 ]

Instrumental variable methods have been widely used to identify causal effects in the presence of unmeasured confounding. A key identification condition known as the exclusion restriction states that the instrument cannot have a direct effect on the outcome which is not mediated by the exposure in view. In the health and social sciences, such an assumption is often not credible. To address this concern, we consider identification conditions of the population average treatment effect with an invalid instrumental variable which does not satisfy the exclusion restriction, and derive the efficient influence function targeting the identifying functional under a nonparametric observed data model. We propose a novel multiply robust locally efficient estimator of the average treatment effect that is consistent in the union of multiple parametric nuisance models, as well as a multiply debiased machine learning estimator for which the nuisance parameters are estimated using generic machine learning methods, that effectively exploit various forms of linear or nonlinear structured sparsity in the nuisance parameter space. When one cannot be confident that any of these machine learners is consistent at sufficiently fast rates to ensure $\surd{n}$-consistency for the average treatment effect, we introduce new criteria for selective machine learning which leverage the …
Poster
Xi Peng · Yunfan Li · Ivor W. Tsang · Hongyuan Zhu · Jiancheng Lv · Joey Tianyi Zhou

[ Exhibit Hall 1 ]

In this paper, we study two challenging problems in explainable AI (XAI) and data clustering. The first is how to directly design a neural network with inherent interpretability, rather than giving post-hoc explanations of a black-box model. The second is implementing discrete $k$-means with a differentiable neural network that embraces the advantages of parallel computing, online clustering, and clustering-favorable representation learning. To address these two challenges, we design a novel neural network, which is a differentiable reformulation of the vanilla $k$-means, called inTerpretable nEuraL cLustering (TELL). Our contributions are threefold. First, to the best of our knowledge, most existing XAI works focus on supervised learning paradigms. This work is one of the few XAI studies on unsupervised learning, in particular, data clustering. Second, TELL is an interpretable, or the so-called intrinsically explainable and transparent model. In contrast, most existing XAI studies resort to various means for understanding a black-box model with post-hoc explanations. Third, from the view of data clustering, TELL possesses many properties highly desired by $k$-means, including but not limited to online clustering, plug-and-play module, parallel computing, and provable convergence. Extensive experiments show that our method achieves superior performance comparing with 14 clustering approaches on three challenging data …
Poster
Kayvan Sadeghi · Terry Soo

[ Exhibit Hall 1 ]

We formalize constraint-based structure learning of the "true" causal graph from observed data when unobserved variables are also existent. We provide conditions for a "natural" family of constraint-based structure-learning algorithms that output graphs that are Markov equivalent to the causal graph. Under the faithfulness assumption, this natural family contains all exact structure-learning algorithms. We also provide a set of assumptions, under which any natural structure-learning algorithm outputs Markov equivalent graphs to the causal graph. These assumptions can be thought of as a relaxation of faithfulness, and most of them can be directly tested from (the underlying distribution) of the data, particularly when one focuses on structural causal models. We specialize the definitions and results for structural causal models.

Poster
Rasool Fakoor · Taesup Kim · Jonas Mueller · Alexander Smola · Ryan Tibshirani

[ Exhibit Hall 1 ]

Quantile regression is a fundamental problem in statistical learning motivated by a need to quantify uncertainty in predictions, or to model a diverse population without being overly reductive. For instance, epidemiological forecasts, cost estimates, and revenue predictions all benefit from being able to quantify the range of possible values accurately. As such, many models have been developed for this problem over many years of research in statistics, machine learning, and related fields. Rather than proposing yet another (new) algorithm for quantile regression we adopt a meta viewpoint: we investigate methods for aggregating any number of conditional quantile models, in order to improve accuracy and robustness. We consider weighted ensembles where weights may vary over not only individual models, but also over quantile levels, and feature values. All of the models we consider in this paper can be fit using modern deep learning toolkits, and hence are widely accessible (from an implementation point of view) and scalable. To improve the accuracy of the predicted quantiles (or equivalently, prediction intervals), we develop tools for ensuring that quantiles remain monotonically ordered, and apply conformal calibration methods. These can be used without any modification of the original library of base models. We also review …

Poster
Yann Fraboni · Richard Vidal · Laetitia Kameni · Marco Lorenzi

[ Exhibit Hall 1 ]

We propose a novel framework to study asynchronous federated learning optimization with delays in gradient updates. Our theoretical framework extends the standard FedAvg aggregation scheme by introducing stochastic aggregation weights to represent the variability of the clients update time, due for example to heterogeneous hardware capabilities. Our formalism applies to the general federated setting where clients have heterogeneous datasets and perform at least one step of stochastic gradient descent (SGD). We demonstrate convergence for such a scheme and provide sufficient conditions for the related minimum to be the optimum of the federated problem. We show that our general framework applies to existing optimization schemes including centralized learning, FedAvg, asynchronous FedAvg, and FedBuff. The theory here provided allows drawing meaningful guidelines for designing a federated learning experiment in heterogeneous conditions. In particular, we develop in this work FedFix, a novel extension of FedAvg enabling efficient asynchronous federated training while preserving the convergence stability of synchronous aggregation. We empirically demonstrate our theory on a series of experiments showing that asynchronous FedAvg leads to fast convergence at the expense of stability, and we finally demonstrate the improvements of FedFix over synchronous and asynchronous FedAvg.

Poster
Niladri S. Chatterji · Phil Long

[ Exhibit Hall 1 ]

We bound the excess risk of interpolating deep linear networks trained using gradient flow. In a setting previously used to establish risk bounds for the minimum $\ell_2$-norm interpolant, we show that randomly initialized deep linear networks can closely approximate or even match known bounds for the minimum $\ell_2$-norm interpolant. Our analysis also reveals that interpolating deep linear models have exactly the same conditional variance as the minimum $\ell_2$-norm solution. Since the noise affects the excess risk only through the conditional variance, this implies that depth does not improve the algorithm's ability to "hide the noise". Our simulations verify that aspects of our bounds reflect typical behavior for simple data distributions. We also find that similar phenomena are seen in simulations with ReLU networks, although the situation there is more nuanced.
Poster
Jianhao Ma · Salar Fattahi

[ Exhibit Hall 1 ]

In this work, we study the performance of sub-gradient method (SubGM) on a natural nonconvex and nonsmooth formulation of low-rank matrix recovery with $\ell_1$-loss, where the goal is to recover a low-rank matrix from a limited number of measurements, a subset of which may be grossly corrupted with noise. We study a scenario where the rank of the true solution is unknown and over-estimated instead. The over-estimation of the rank gives rise to an over-parameterized model in which there are more degrees of freedom than needed. Such over-parameterization may lead to overfitting, or adversely affect the performance of the algorithm. We prove that a simple SubGM with small initialization is agnostic to both over-parameterization and noise in the measurements. In particular, we show that small initialization nullifies the effect of over-parameterization on the performance of SubGM, leading to an exponential improvement in its convergence rate. Moreover, we provide the first unifying framework for analyzing the behavior of SubGM under both outlier and Gaussian noise models, showing that SubGM converges to the true solution, even under arbitrarily large and arbitrarily dense noise values, and, perhaps surprisingly, even if the globally optimal solutions do not correspond to the ground truth. At the …
Poster
Bahare Fatemi · Perouz Taslakian · David Vazquez · David Poole

[ Exhibit Hall 1 ]

Relational databases are a successful model for data storage, and rely on query languages for information retrieval. Most of these query languages are based on relational algebra, a mathematical formalization at the core of relational models. Knowledge graphs are flexible data storage structures that allow for knowledge completion using machine learning techniques. Knowledge hypergraphs generalize knowledge graphs by allowing multi-argument relations. This work studies knowledge hypergraph completion through the lens of relational algebra and its core operations. We explore the space between relational algebra foundations and machine learning techniques for knowledge completion. We investigate whether such methods can capture high-level abstractions in terms of relational algebra operations. We propose a simple embedding-based model called Relational Algebra Embedding (ReAlE) that performs link prediction in knowledge hypergraphs. We show theoretically that ReAlE is fully expressive and can represent the relational algebra operations of renaming, projection, set union, selection, and set difference. We verify experimentally that ReAlE outperforms state-of-the-art models in knowledge hypergraph completion, and in representing each of these primitive relational algebra operations. For the latter experiment, we generate a synthetic knowledge hypergraph, for which we design an algorithm based on the Erdos-R'enyi model for generating random graphs.

Poster
Minwoo Chae · Dongha Kim · Yongdai Kim · Lizhen Lin

[ Exhibit Hall 1 ]

We investigate statistical properties of a likelihood approach to nonparametric estimation of a singular distribution using deep generative models. More specifically, a deep generative model is used to model high-dimensional data that are assumed to concentrate around some low-dimensional structure. Estimating the distribution supported on this low-dimensional structure, such as a low-dimensional manifold, is challenging due to its singularity with respect to the Lebesgue measure in the ambient space. In the considered model, a usual likelihood approach can fail to estimate the target distribution consistently due to the singularity. We prove that a novel and effective solution exists by perturbing the data with an instance noise, which leads to consistent estimation of the underlying distribution with desirable convergence rates. We also characterize the class of distributions that can be efficiently estimated via deep generative models. This class is sufficiently general to contain various structured distributions such as product distributions, classically smooth distributions and distributions supported on a low-dimensional manifold. Our analysis provides some insights on how deep generative models can avoid the curse of dimensionality for nonparametric distribution estimation. We conduct a thorough simulation study and real data analysis to empirically demonstrate that the proposed data perturbation technique improves the …

Poster
Chang hoon Song · Geonho Hwang · Jun ho Lee · Myungjoo Kang

[ Exhibit Hall 1 ]

A recurrent neural network (RNN) is a widely used deep-learning network for dealing with sequential data. Imitating a dynamical system, an infinite-width RNN can approximate any open dynamical system in a compact domain. In general, deep narrow networks with bounded width and arbitrary depth are more effective than wide shallow networks with arbitrary width and bounded depth in practice; however, the universal approximation theorem for deep narrow structures has yet to be extensively studied. In this study, we prove the universality of deep narrow RNNs and show that the upper bound of the minimum width for universality can be independent of the length of the data. Specifically, we show a deep RNN with ReLU activation can approximate any continuous function or $L^p$ function with the widths $d_x+d_y+3$ and $\max\{d_x+1,d_y\}$, respectively, where the target function maps a finite sequence of vectors in $\mathbb{R}^{d_x}$ to a finite sequence of vectors in $\mathbb{R}^{d_y}$. We also compute the additional width required if the activation function is sigmoid or more. In addition, we prove the universality of other recurrent networks, such as bidirectional RNNs. Bridging a multi-layer perceptron and an RNN, our theory and technique can shed light on further research on deep RNNs.
Poster
Haixu Ma · Donglin Zeng · Yufeng Liu

[ Exhibit Hall 1 ]

Data driven individualized decision making problems have received a lot of attentions in recent years. In particular, decision makers aim to determine the optimal Individualized Treatment Rule (ITR) so that the expected specified outcome averaging over heterogeneous patient-specific characteristics is maximized. Many existing methods deal with binary or a moderate number of treatment arms and may not take potential treatment effect structure into account. However, the effectiveness of these methods may deteriorate when the number of treatment arms becomes large. In this article, we propose GRoup Outcome Weighted Learning (GROWL) to estimate the latent structure in the treatment space and the optimal group-structured ITRs through a single optimization. In particular, for estimating group-structured ITRs, we utilize the Reinforced Angle based Multicategory Support Vector Machines (RAMSVM) to learn group-based decision rules under the weighted angle based multi-class classification framework. Fisher consistency, the excess risk bound, and the convergence rate of the value function are established to provide a theoretical guarantee for GROWL. Extensive empirical results in simulation studies and real data analysis demonstrate that GROWL enjoys better performance than several other existing methods.

Poster
Glen Berseth · Florian Golemo · Christopher Pal

[ Exhibit Hall 1 ]

Agents that can learn to imitate behaviours observed in video -- without having direct access to internal state or action information of the observed agent -- are more suitable for learning in the natural world. However, formulating a reinforcement learning (RL) agent that facilitates this goal remains a significant challenge. We approach this challenge using contrastive training to learn a reward function by comparing an agent's behaviour with a single demonstration. We use a Siamese recurrent neural network architecture to learn rewards in space and time between motion clips while training an RL policy to minimize this distance. Through experimentation, we also find that the inclusion of multi-task data and additional image encoding losses improve the temporal consistency of the learned rewards and, as a result, significantly improve policy learning. We demonstrate our approach on simulated humanoid, dog, and raptor agents in 2D and quadruped and humanoid agents in 3D. We show that our method outperforms current state-of-the-art techniques and can learn to imitate behaviours from a single video demonstration.

Poster
Brian R. Bartoldson · Bhavya Kailkhura · Davis Blalock

[ Exhibit Hall 1 ]

Although deep learning has made great progress in recent years, the exploding economic and environmental costs of training neural networks are becoming unsustainable. To address this problem, there has been a great deal of research on algorithmically-efficient deep learning, which seeks to reduce training costs not at the hardware or implementation level, but through changes in the semantics of the training program. In this paper, we present a structured and comprehensive overview of the research in this field. First, we formalize the algorithmic speedup problem, then we use fundamental building blocks of algorithmically efficient training to develop a taxonomy. Our taxonomy highlights commonalities of seemingly disparate methods and reveals current research gaps. Next, we present evaluation best practices to enable comprehensive, fair, and reliable comparisons of speedup techniques. To further aid research and applications, we discuss common bottlenecks in the training pipeline (illustrated via experiments) and offer taxonomic mitigation strategies for them. Finally, we highlight some unsolved research challenges and present promising future directions.

Poster
Nicolas Garcia Trillos · Matt Jacobs · Jakwang Kim

[ Exhibit Hall 1 ]

We study a family of adversarial multiclass classification problems and provide equivalent reformulations in terms of: 1) a family of generalized barycenter problems introduced in the paper and 2) a family of multimarginal optimal transport problems where the number of marginals is equal to the number of classes in the original classification problem. These new theoretical results reveal a rich geometric structure of adversarial learning problems in multiclass classification and extend recent results restricted to the binary classification setting. A direct computational implication of our results is that by solving either the barycenter problem and its dual, or the MOT problem and its dual, we can recover the optimal robust classification rule and the optimal adversarial strategy for the original adversarial problem. Examples with synthetic and real data illustrate our results.

Poster
Hanbaek Lyu · Facundo Memoli · David Sivakoff

[ Exhibit Hall 1 ]

A graph homomorphism is a map between two graphs that preserves adjacency relations. We consider the problem of sampling a random graph homomorphism from a graph into a large network. We propose two complementary MCMC algorithms for sampling random graph homomorphisms and establish bounds on their mixing times and the concentration of their time averages. Based on our sampling algorithms, we propose a novel framework for network data analysis that circumvents some of the drawbacks in methods based on independent and neighborhood sampling. Various time averages of the MCMC trajectory give us various computable observables, including well-known ones such as homomorphism density and average clustering coefficient and their generalizations. Furthermore, we show that these network observables are stable with respect to a suitably renormalized cut distance between networks. We provide various examples and simulations demonstrating our framework through synthetic networks. We also \commHL{demonstrate the performance of} our framework on the tasks of network clustering and subgraph classification on the Facebook100 dataset and on Word Adjacency Networks of a set of classic novels.

Poster
Arthur Leroy · Pierre Latouche · Benjamin Guedj · Servane Gey

[ Exhibit Hall 1 ]

A model involving Gaussian processes (GPs) is introduced to simultaneously handle multitask learning, clustering, and prediction for multiple functional data. This procedure acts as a model-based clustering method for functional data as well as a learning step for subsequent predictions for new tasks. The model is instantiated as a mixture of multi-task GPs with common mean processes. A variational EM algorithm is derived for dealing with the optimisation of the hyper-parameters along with the hyper-posteriors’ estimation of latent variables and processes. We establish explicit formulas for integrating the mean processes and the latent clustering variables within a predictive distribution, accounting for uncertainty in both aspects. This distribution is defined as a mixture of cluster-specific GP predictions, which enhances the performance when dealing with group-structured data. The model handles irregular grids of observations and offers different hypotheses on the covariance structure for sharing additional information across tasks. The performances on both clustering and prediction tasks are assessed through various simulated scenarios and real data sets. The overall algorithm, called MagmaClust, is publicly available as an R package.

Poster
Gengchen Mai · Ni Lao · Yutong He · Jiaming Song · Stefano Ermon

[ Exhibit Hall 1 ]

Geo-tagged images are publicly available in large quantities, whereas labels such as object classes are rather scarce and expensive to collect. Meanwhile, contrastive learning has achieved tremendous success in various natural image and language tasks with limited labeled data. However, existing methods fail to fully leverage geospatial information, which can be paramount to distinguishing objects that are visually similar. To directly leverage the abundant geospatial information associated with images in pre-training, fine-tuning, and inference stages, we present Contrastive Spatial Pre-Training (CSP), a self-supervised learning framework for geo-tagged images. We use a dual-encoder to separately encode the images and their corresponding geo-locations, and use contrastive objectives to learn effective location representations from images, which can be transferred to downstream supervised tasks such as image classification. Experiments show that CSP can improve model performance on both iNat2018 and fMoW datasets. Especially, on iNat2018, CSP significantly boosts the model performance with 10-34% relative improvement with various labeled training data sampling ratios.

Poster
Wuyang Chen · Yanqi Zhou · Nan Du · Yanping Huang · James Laudon · Zhifeng Chen · Claire Cui

[ Exhibit Hall 1 ]

Pretraining on a large-scale corpus has become a standard method to build general language models (LMs). Adapting a model to new data distributions targeting different downstream tasks poses significant challenges. Naive fine-tuning may incur catastrophic forgetting when the over-parameterized LMs overfit the new data but fail to preserve the pretrained features. Lifelong learning (LLL) aims to enable information systems to learn from a continuous data stream across time. However, most prior work modifies the training recipe assuming a static fixed network architecture. We find that additional model capacity and proper regularization are key elements to achieving strong LLL performance. Thus, we propose Lifelong-MoE, an extensible MoE (Mixture-of-Experts) architecture that dynamically adds model capacity via adding experts with regularized pretaining. Our results show that by only introducing a limited number of extra experts while keeping the computation cost constant, our model can steadily adapt to data distribution shifts while preserving the previous knowledge. Compared to existing lifelong learning approaches, Lifelong-MoE achieves better few-shot performance on NLP tasks. More impressively, Lifelong-MoE surpasses multi-task learning on 19 downstream NLU tasks.

Poster
Haibin Wang · Ce Ge · Hesen Chen · XIuyu Sun

[ Exhibit Hall 1 ]

The wide application of pre-trained models is driving the trend of once-for-all training in one-shot neural architecture search (NAS). However, training within a huge sample space damages the performance of individual subnets and requires much computation to search for a optimal model. In this paper, we present PreNAS, a search-free NAS approach that accentuates target models in one-shot training. Specifically, the sample space is dramatically reduced in advance by a zero-cost selector, and weight-sharing one-shot training is performed on the preferred architectures to alleviate update conflicts. Extensive experiments have demonstrated that PreNAS consistently outperforms state-of-the-art one-shot NAS competitors for both Vision Transformer and convolutional architectures, and importantly, enables instant specialization with zero search cost. Our code is available at https://github.com/tinyvision/PreNAS.

Poster
Jie Xiao · Xueyang Fu · Man Zhou · Hongjian Liu · Zheng-Jun Zha

[ Exhibit Hall 1 ]

Non-local interactions play a vital role in boosting performance for image restoration. However, local window Transformer has been preferred due to its efficiency for processing high-resolution images. The superiority in efficiency comes at the cost of sacrificing the ability to model non-local interactions. In this paper, we present that local window Transformer can also function as modeling non-local interactions. The counterintuitive function is based on the permutation-equivariance of self-attention. The basic principle is quite simple: by randomly shuffling the input, local self-attention also has the potential to model non-local interactions without introducing extra parameters. Our random shuffle strategy enjoys elegant theoretical guarantees in extending the local scope. The resulting Transformer dubbed ShuffleFormer is capable of processing high-resolution images efficiently while modeling non-local interactions. Extensive experiments demonstrate the effectiveness of ShuffleFormer across a variety of image restoration tasks, including image denoising, deraining, and deblurring. Code is available at https://github.com/jiexiaou/ShuffleFormer.

Poster
Haoyue Bai · Gregory Canal · Xuefeng Du · Jeongyeol Kwon · Robert Nowak · Sharon Li

[ Exhibit Hall 1 ]

Modern machine learning models deployed in the wild can encounter both covariate and semantic shifts, giving rise to the problems of out-of-distribution (OOD) generalization and OOD detection respectively. While both problems have received significant research attention lately, they have been pursued independently. This may not be surprising, since the two tasks have seemingly conflicting goals. This paper provides a new unified approach that is capable of simultaneously generalizing to covariate shifts while robustly detecting semantic shifts. We propose a margin-based learning framework that exploits freely available unlabeled data in the wild that captures the environmental test-time OOD distributions under both covariate and semantic shifts. We show both empirically and theoretically that the proposed margin constraint is the key to achieving both OOD generalization and detection. Extensive experiments show the superiority of our framework, outperforming competitive baselines that specialize in either OOD generalization or OOD detection. Code is publicly available at https://github.com/deeplearning-wisc/scone.

Poster
Jacob C Walker · Eszter Vértes · Yazhe Li · Gabriel Dulac-Arnold · Ankesh Anand · Theophane Weber · Jessica Hamrick

[ Exhibit Hall 1 ]

State of the art reinforcement learning has enabled training agents on tasks of ever increasing complexity. However, the current paradigm tends to favor training agents from scratch on every new task or on collections of tasks with a view towards generalizing to novel task configurations. The former suffers from poor data efficiency while the latter is difficult when test tasks are out-of-distribution. Agents that can effectively transfer their knowledge about the world pose a potential solution to these issues. In this paper, we investigate transfer learning in the context of model-based agents. Specifically, we aim to understand where exactly environment models have an advantage and why. We find that a model-based approach outperforms controlled model-free baselines for transfer learning. Through ablations, we show that both the policy and dynamics model learnt through exploration matter for successful transfer. We demonstrate our results across three domains which vary in their requirements for transfer: in-distribution procedural (Crafter), in-distribution identical (RoboDesk), and out-of-distribution (Meta-World). Our results show that intrinsic exploration combined with environment models present a viable direction towards agents that are self-supervised and able to generalize to novel reward functions.

Poster
Honghua Zhang · Meihua Dang · Nanyun Peng · Guy Van den Broeck

[ Exhibit Hall 1 ]

Despite the success of autoregressive large language models in text generation, it remains a major challenge to generate text that satisfies complex constraints: sampling from the conditional distribution ${\Pr}(\text{text} | \alpha)$ is intractable for even the simplest lexical constraints $\alpha$. To overcome this challenge, we propose to use tractable probabilistic models (TPMs) to impose lexical constraints in autoregressive text generation models, which we refer to as GeLaTo (Generating Language with Tractable Constraints). To demonstrate the effectiveness of this framework, we use distilled hidden Markov models, where we can efficiently compute ${\Pr}(\text{text} | \alpha)$, to guide autoregressive generation from GPT2. GeLaTo achieves state-of-the-art performance on challenging benchmarks for constrained text generation (e.g., CommonGen), beating various strong baselines by a large margin. Our work not only opens up new avenues for controlling large language models but also motivates the development of more expressive TPMs.
Poster
Seungjin Jung · Seungmo Seo · Yonghyun Jeong · Jongwon Choi

[ Exhibit Hall 1 ]

The class-wise training losses often diverge as a result of the various levels of intra-class and inter-class appearance variation, and we find that the diverging class-wise training losses cause the uncalibrated prediction with its reliability. To resolve the issue, we propose a new calibration method to synchronize the class-wise training losses. We design a new training loss to alleviate the variance of class-wise training losses by using multiple class-wise scaling factors. Since our framework can compensate the training losses of overfitted classes with those of under-fitted classes, the integrated training loss is preserved, preventing the performance drop even after the model calibration. Furthermore, our method can be easily employed in the post-hoc calibration methods, allowing us to use the pre-trained model as an initial model and reduce the additional computation for model calibration. We validate the proposed framework by employing it in the various post-hoc calibration methods, which generally improves calibration performance while preserving accuracy, and discover through the investigation that our approach performs well with unbalanced datasets and untuned hyperparameters.

Poster
Difan Zou · Yuan Cao · Yuanzhi Li · Quanquan Gu

[ Exhibit Hall 1 ]

Mixup, a simple data augmentation method that randomly mixes two data points via linear interpolation, has been extensively applied in various deep learning applications to gain better generalization. However, its theoretical explanation remains largely unclear. In this work, we aim to seek a fundamental understanding of the benefits of Mixup. We first show that Mixup using different linear interpolation parameters for features and labels can still achieve similar performance as standard Mixup. This indicates that the intuitive linearity explanation in Zhang et al., (2018) may not fully explain the success of Mixup. Then, we perform a theoretical study of Mixup from the feature learning perspective. We consider a feature-noise data model and show that Mixup training can effectively learn the rare features (appearing in a small fraction of data) from its mixture with the common features (appearing in a large fraction of data). In contrast, standard training can only learn the common features but fails to learn the rare features, thus suffering from bad generalization performance. Moreover, our theoretical analysis also shows that the benefits of Mixup for feature learning are mostly gained in the early training phase, based on which we propose to apply early stopping in Mixup. Experimental …

Poster
Junran Wu · Xueyuan Chen · Bowen Shi · Shangzhe Li · Ke Xu

[ Exhibit Hall 1 ]

In contrastive learning, the choice of "view" controls the information that the representation captures and influences the performance of the model. However, leading graph contrastive learning methods generally produce views via random corruption or learning, which could lead to the loss of essential information and alteration of semantic information. An anchor view that maintains the essential information of input graphs for contrastive learning has been hardly investigated. In this paper, based on the theory of graph information bottleneck, we deduce the definition of this anchor view; put differently, the anchor view with essential information of input graph is supposed to have the minimal structural uncertainty. Furthermore, guided by structural entropy, we implement the anchor view, termed SEGA, for graph contrastive learning. We extensively validate the proposed anchor view on various benchmarks regarding graph classification under unsupervised, semi-supervised, and transfer learning and achieve significant performance boosts compared to the state-of-the-art methods.

Poster
Xiao Shou · DEBARUN BHATTACHARJYA · Tian Gao · Dharmashankar Subramanian · Oktie Hassanzadeh · Kristin Bennett

[ Exhibit Hall 1 ]

Discovering knowledge about which types of events influence others, using datasets of event sequences without time stamps, has several practical applications. While neural sequence models are able to capture complex and potentially long-range historical dependencies, they often lack the interpretability of simpler models for event sequence dynamics. We provide a novel neural framework in such a setting - a probabilistic attention-to-influence neural model - which not only captures complex instance-wise interactions between events but also learns influencers for each event type of interest. Given event sequence data and a prior distribution on type-wise influence, we efficiently learn an approximate posterior for type-wise influence by an attention-to-influence transformation using variational inference. Our method subsequently models the conditional likelihood of sequences by sampling the above posterior to focus attention on influencing event types. We motivate our general framework and show improved performance in experiments compared to existing baselines on synthetic data as well as real-world benchmarks, for tasks involving prediction and influencing set identification.

Poster
Harshit Varma · Abhijeet Awasthi · Sunita Sarawagi

[ Exhibit Hall 1 ]

We present CTreeOT, a convergent, differentiable algorithm for matching two trees when each tree is conditioned on some input. Such conditional tree matching is useful for light-weight, few-shot adaptation of tree prediction models without parameter fine-tuning. CTreeOT includes an alignment algorithm that extends the popular Sinkhorn algorithm for matching tree nodes while supporting constraints on tree edges. The algorithm involves alternating between matrix rescaling and message passing updates, and can be efficiently expressed as GPU tensor operations. The second part of CTreeOT is fine-grained relevance-based reweighting of nodes that makes the match scores useful for prediction tasks. We demonstrate the usefulness of CTreeOT for cross-schema adaptation of Text-to-SQL, a popular semantic parsing task. We show that compared to state-of-the-art methods, we achieve significant increase in adaptation accuracy.

Poster
Jiaming Song · Qinsheng Zhang · Hongxu Yin · Morteza Mardani · Ming-Yu Liu · Jan Kautz · Yongxin Chen · Arash Vahdat

[ Exhibit Hall 1 ]

We consider guiding denoising diffusion models with general differentiable loss functions in a plug-and-play fashion, enabling controllable generation without additional training. This paradigm, termed Loss-Guided Diffusion (LGD), can easily be integrated into all diffusion models and leverage various efficient samplers. Despite the benefits, the resulting guidance term is, unfortunately, an intractable integral and needs to be approximated. Existing methods compute the guidance term based on a point estimate. However, we show that such approaches have significant errors over the scale of the approximations. To address this issue, we propose a Monte Carlo method that uses multiple samples from a suitable distribution to reduce bias. Our method is effective in various synthetic and real-world settings, including image super-resolution, text or label-conditional image generation, and controllable motion synthesis. Notably, we show how our method can be applied to control a pretrained motion diffusion model to follow certain paths and avoid obstacles that are proven challenging to prior methods.

Poster
Dongxia Wu · Ruijia Niu · Matteo Chinazzi · Yian Ma · Rose Yu

[ Exhibit Hall 1 ]

To balance quality and cost, various domain areas of science and engineering run simulations at multiple levels of sophistication. Multi-fidelity active learning aims to learn a direct mapping from input parameters to simulation outputs at the highest fidelity by actively acquiring data from multiple fidelity levels. However, existing approaches based on Gaussian processes are hardly scalable to high-dimensional data. Deep learning-based methods often impose a hierarchical structure in hidden representations, which only supports passing information from low-fidelity to high-fidelity. These approaches can lead to the undesirable propagation of errors from low-fidelity representations to high-fidelity ones. We propose a novel framework called Disentangled Multi-fidelity Deep Bayesian Active Learning (D-MFDAL), which learns the surrogate models conditioned on the distribution of functions at multiple fidelities. On benchmark tasks of learning deep surrogates of partial differential equations including heat equation, Poisson's equation and fluid simulations, our approach significantly outperforms state-of-the-art in prediction accuracy and sample efficiency.

Poster
Weiwei Lin · Chenhang He · Man-Wai Mak · Youzhi Tu

[ Exhibit Hall 1 ]

Self-supervised learning (SSL) speech models such as wav2vec and HuBERT have demonstrated state-of-the-art performance on automatic speech recognition (ASR) and proved to be extremely useful in low label-resource settings. However, the success of SSL models has yet to transfer to utterance-level tasks such as speaker, emotion, and language recognition, which still require supervised fine-tuning of the SSL models to obtain good performance. We argue that the problem is caused by the lack of disentangled representations and an utterance-level learning objective for these tasks. Inspired by how HuBERT uses clustering to discover hidden acoustic units, we formulate a factor analysis (FA) model that uses the discovered hidden acoustic units to align the SSL features. The underlying utterance-level representations are disentangled using probabilistic inference on the aligned features. Furthermore, the variational lower bound derived from the FA model provides an utterance-level objective, allowing error gradients to be backpropagated to the Transformer layers to learn highly discriminative acoustic units. When used in conjunction with HuBERT's masked prediction training, our models outperform the current best model, WavLM, on all utterance-level non-semantic tasks on the SUPERB benchmark with only 20% of labeled data.

Poster
Siddharth Joshi · Baharan Mirzasoleiman

[ Exhibit Hall 1 ]

Self-supervised learning (SSL) learns high-quality representations from large pools of unlabeled training data. As datasets grow larger, it becomes crucial to identify the examples that contribute the most to learning such representations. This enables efficient SSL by reducing the volume of data required. Nevertheless, quantifying the value of examples for SSL has remained an open question. In this work, we address this problem for the first time, by proving that examples that contribute the most to contrastive SSL are those that have the most similar augmentations to other examples, in expectation. We provide rigorous guarantees for the generalization performance of contrastive learning on such subsets. Through extensive experiments, we show that we can safely exclude 20% of examples from CIFAR100 and 40% from STL10 and TinyImageNet, without affecting downstream task performance. In general, subsets selected by our method outperform random subsets by over 3% across these datasets. Interestingly, we also discover the subsets that contribute the most to contrastive learning are those that contribute the least to supervised learning.

Poster
Brett Daley · Martha White · Christopher Amato · Marlos C. Machado

[ Exhibit Hall 1 ]

Off-policy learning from multistep returns is crucial for sample-efficient reinforcement learning, but counteracting off-policy bias without exacerbating variance is challenging. Classically, off-policy bias is corrected in a per-decision manner: past temporal-difference errors are re-weighted by the instantaneous Importance Sampling (IS) ratio after each action via eligibility traces. Many off-policy algorithms rely on this mechanism, along with differing protocols for cutting the IS ratios (traces) to combat the variance of the IS estimator. Unfortunately, once a trace has been cut, the effect cannot be easily reversed. This has led to the development of credit-assignment strategies that account for multiple past experiences at a time. These trajectory-aware methods have not been extensively analyzed, and their theoretical justification remains uncertain. In this paper, we propose a multistep operator that unifies per-decision and trajectory-aware methods. We prove convergence conditions for our operator in the tabular setting, establishing the first guarantees for several existing methods as well as many new ones. Finally, we introduce Recency-Bounded Importance Sampling (RBIS), which leverages trajectory awareness to perform robustly across $\lambda$-values in an off-policy control task.
Poster
Yingcong Li · Muhammed Ildiz · Dimitris Papailiopoulos · Samet Oymak

[ Exhibit Hall 1 ]

In-context learning (ICL) is a type of prompting where a transformer model operates on a sequence of (input, output) examples and performs inference on-the-fly. In this work, we formalize in-context learning as an algorithm learning problem where a transformer model implicitly constructs a hypothesis function at inference-time. We first explore the statistical aspects of this abstraction through the lens of multitask learning: We obtain generalization bounds for ICL when the input prompt is (1) a sequence of i.i.d. (input, label) pairs or (2) a trajectory arising from a dynamical system. The crux of our analysis is relating the excess risk to the stability of the algorithm implemented by the transformer. We characterize when transformer/attention architecture provably obeys the stability condition and also provide empirical verification. For generalization on unseen tasks, we identify an inductive bias phenomenon in which the transfer learning risk is governed by the task complexity and the number of MTL tasks in a highly predictable manner. Finally, we provide numerical evaluations that (1) demonstrate transformers can indeed implement near-optimal algorithms on classical regression problems with i.i.d. and dynamic data, (2) provide insights on stability, and (3) verify our theoretical predictions.

Poster
Chieh Lin · Hung-Yu Tseng · Hsin-Ying Lee · Maneesh Singh · Ming-Hsuan Yang

[ Exhibit Hall 1 ]

Recent studies have shown that paddings in convolutional neural networks encode absolute position information which can negatively affect the model performance for certain tasks. However, existing metrics for quantifying the strength of positional information remain unreliable and frequently lead to erroneous results. To address this issue, we propose novel metrics for measuring and visualizing the encoded positional information. We formally define the encoded information as Position-information Pattern from Padding (PPP) and conduct a series of experiments to study its properties as well as its formation. The proposed metrics measure the presence of positional information more reliably than the existing metrics based on PosENet and tests in F-Conv. We also demonstrate that for any extant (and proposed) padding schemes, PPP is primarily a learning artifact and is less dependent on the characteristics of the underlying padding schemes.

Poster
Tri Nguyen · Shahana Ibrahim · Xiao Fu

[ Exhibit Hall 1 ]

The recent integration of deep learning and pairwise similarity annotation-based constrained clustering---i.e., deep constrained clustering (DCC)---has proven effective for incorporating weak supervision into massive data clustering: Less than 1% of pair similarity annotations can often substantially enhance the clustering accuracy. However, beyond empirical successes, there is a lack of understanding of DCC. In addition, many DCC paradigms are sensitive to annotation noise, but performance-guaranteed noisy DCC methods have been largely elusive. This work first takes a deep look into a recently emerged logistic loss function of DCC, and characterizes its theoretical properties. Our result shows that the logistic DCC loss ensures the identifiability of data membership under reasonable conditions, which may shed light on its effectiveness in practice. Building upon this understanding, a new loss function based on geometric factor analysis is proposed to fend against noisy annotations. It is shown that even under unknown annotation confusions, the data membership can still be provably identified under our proposed learning criterion. The proposed approach is tested over multiple datasets to validate our claims.

Poster
Sara Venturini · Andrea Cristofari · Francesco Rinaldi · Francesco Tudisco

[ Exhibit Hall 1 ]

Clustering (or community detection) on multilayer graphs poses several additional complications with respect to standard graphs as different layers may be characterized by different structures and types of information. One of the major challenges is to establish the extent to which each layer contributes to the cluster assignment in order to effectively take advantage of the multilayer structure and improve upon the classification obtained using the individual layers or their union. However, making an informed a-priori assessment about the clustering information content of the layers can be very complicated. In this work, we assume a semi-supervised learning setting, where the class of a small percentage of nodes is initially provided, and we propose a parameter-free Laplacian-regularized model that learns an optimal nonlinear combination of the different layers from the available input labels. The learning algorithm is based on a Frank-Wolfe optimization scheme with inexact gradient, combined with a modified Label Propagation iteration. We provide a detailed convergence analysis of the algorithm and extensive experiments on synthetic and real-world datasets, showing that the proposed method compares favourably with a variety of baselines and outperforms each individual layer when used in isolation.

Poster
Asuman Ozdaglar · Sarath Pattathil · Jiawei Zhang · Kaiqing Zhang

[ Exhibit Hall 1 ]

Offline reinforcement learning (RL) aims to find an optimal policy for sequential decision-making using a pre-collected dataset, without further interaction with the environment. Recent theoretical progress has focused on developing sample-efficient offline RL algorithms with various relaxed assumptions on data coverage and function approximators, especially to handle the case with excessively large state-action spaces. Among them, the framework based on the linear-programming (LP) reformulation of Markov decision processes has shown promise: it enables sample-efficient offline RL with function approximation, under only partial data coverage and realizability assumptions on the function classes, with favorable computational tractability. In this work, we revisit the LP framework for offline RL, and provide a new reformulation that advances the existing results in several aspects, relaxing certain assumptions and achieving optimal statistical rates in terms of sample size. Our key enabler is to introduce proper constraints in the reformulation, instead of using any regularization as in the literature, also with careful choices of the function classes and initial state distributions. We hope our insights bring into light the use of LP formulations and the induced primal-dual minimax optimization, in offline RL.

Poster
Muthu Chidambaram · Xiang Wang · Chenwei Wu · Rong Ge

[ Exhibit Hall 1 ]

Mixup is a data augmentation technique that relies on training using random convex combinations of data points and their labels. In recent years, Mixup has become a standard primitive used in the training of state-of-the-art image classification models due to its demonstrated benefits over empirical risk minimization with regards to generalization and robustness. In this work, we try to explain some of this success from a feature learning perspective. We focus our attention on classification problems in which each class may have multiple associated features (or $\textit{views}$) that can be used to predict the class correctly. Our main theoretical results demonstrate that, for a non-trivial class of data distributions with two features per class, training a 2-layer convolutional network using empirical risk minimization can lead to learning only one feature for almost all classes while training with a specific instantiation of Mixup succeeds in learning both features for every class. We also show empirically that these theoretical insights extend to the practical settings of image benchmarks modified to have multiple features.
Poster
Iris Huijben · Arthur A. Nijdam · Sebastiaan Overeem · Merel Van Gilst · Ruud J. G. van Sloun

[ Exhibit Hall 1 ]

Continuous monitoring with an ever-increasing number of sensors has become ubiquitous across many application domains. However, acquired time series are typically high-dimensional and difficult to interpret. Expressive deep learning (DL) models have gained popularity for dimensionality reduction, but the resulting latent space often remains difficult to interpret. In this work we propose SOM-CPC, a model that visualizes data in an organized 2D manifold, while preserving higher-dimensional information. We address a largely unexplored and challenging set of scenarios comprising high-rate time series, and show on both synthetic and real-life data (physiological data and audio recordings) that SOM-CPC outperforms strong baselines like DL-based feature extraction, followed by conventional dimensionality reduction techniques, and models that jointly optimize a DL model and a Self-Organizing Map (SOM). SOM-CPC has great potential to acquire a better understanding of latent patterns in high-rate data streams.

Poster
Wenbo Zhang · TONG WU · Yunlong Wang · Yong Cai · Hengrui Cai

[ Exhibit Hall 1 ]

With recent advances in natural language processing, rationalization becomes an essential self-explaining diagram to disentangle the black box by selecting a subset of input texts to account for the major variation in prediction. Yet, existing association-based approaches on rationalization cannot identify true rationales when two or more snippets are highly inter-correlated and thus provide a similar contribution to prediction accuracy, so-called spuriousness. To address this limitation, we novelly leverage two causal desiderata, non-spuriousness and efficiency, into rationalization from the causal inference perspective. We formally define a series of probabilities of causation based on a newly proposed structural causal model of rationalization, with its theoretical identification established as the main component of learning necessary and sufficient rationales. The superior performance of the proposed causal rationalization is demonstrated on real-world review and medical datasets with extensive experiments compared to state-of-the-art methods.

Poster
Xu Chu · Yujie Jin · Xin Wang · Shanghang Zhang · Yasha Wang · Wenwu Zhu · Hong Mei

[ Exhibit Hall 1 ]

Graph size generalization is hard for Message passing neural networks (MPNNs). The graph-level classification performance of MPNNs degrades across various graph sizes. Recently, theoretical studies reveal that a slow uncontrollable convergence rate w.r.t. graph size could adversely affect the size generalization. To address the uncontrollable convergence rate caused by correlations across nodes in the underlying dimensional signal-generating space, we propose to use Wasserstein barycenters as graph-level consensus to combat node-level correlations. Methodologically, we propose a Wasserstein barycenter matching (WBM) layer that represents an input graph by Wasserstein distances between its MPNN-filtered node embeddings versus some learned class-wise barycenters. Theoretically, we show that the convergence rate of an MPNN with a WBM layer is controllable and independent to the dimensionality of the signal-generating space. Thus MPNNs with WBM layers are less susceptible to slow uncontrollable convergence rate and size variations. Empirically, the WBM layer improves the size generalization over vanilla MPNNs with different backbones (e.g., GCN, GIN, and PNA) significantly on real-world graph datasets.

Poster
Beatrice Bevilacqua · Kyriacos Nikiforou · Borja Ibarz · Ioana Bica · Michela Paganini · Charles Blundell · Jovana Mitrovic · Petar Veličković

[ Exhibit Hall 1 ]

Recent work on neural algorithmic reasoning has investigated the reasoning capabilities of neural networks, effectively demonstrating they can learn to execute classical algorithms on unseen data coming from the train distribution. However, the performance of existing neural reasoners significantly degrades on out-of-distribution (OOD) test data, where inputs have larger sizes. In this work, we make an important observation: there are many different inputs for which an algorithm will perform certain intermediate computations identically. This insight allows us to develop data augmentation procedures that, given an algorithm's intermediate trajectory, produce inputs for which the target algorithm would have exactly the same next trajectory step. We ensure invariance in the next-step prediction across such inputs, by employing a self-supervised objective derived by our observation, formalised in a causal graph. We prove that the resulting method, which we call Hint-ReLIC, improves the OOD generalisation capabilities of the reasoner. We evaluate our method on the CLRS algorithmic reasoning benchmark, where we show up to 3x improvements on the OOD test data.

Poster
Jishnu Ray Chowdhury · Cornelia Caragea

[ Exhibit Hall 1 ]

We propose Beam Tree Recursive Cell (BT-Cell) - a backpropagation-friendly framework to extend Recursive Neural Networks (RvNNs) with beam search for latent structure induction. We further extend this framework by proposing a relaxation of the hard top-$k$ operators in beam search for better propagation of gradient signals. We evaluate our proposed models in different out-of-distribution splits in both synthetic and realistic data. Our experiments show that BT-Cell achieves near-perfect performance on several challenging structure-sensitive synthetic tasks like ListOps and logical inference while maintaining comparable performance in realistic data against other RvNN-based models. Additionally, we identify a previously unknown failure case for neural models in generalization to unseen number of arguments in ListOps. The code is available at: https://github.com/JRC1995/BeamTreeRecursiveCells.
Poster
Max Schwarzer · Johan Obando Ceron · Aaron Courville · Marc Bellemare · Rishabh Agarwal · Pablo Samuel Castro

[ Exhibit Hall 1 ]

We introduce a value-based RL agent, which we call BBF, that achieves super-human performance in the Atari 100K benchmark. BBF relies on scaling the neural networks used for value estimation, as well as a number of other design choices that enable this scaling in a sample-efficient manner. We conduct extensive analyses of these design choices and provide insights for future work. We end with a discussion about updating the goalposts for sample-efficient RL research on the ALE. We make our code and data publicly available at https://github.com/google-research/google-research/tree/master/biggerbetterfaster.

Poster
Jacopo Teneggi · Matthew Tivnan · Web Stayman · Jeremias Sulam

[ Exhibit Hall 1 ]

Score-based generative modeling, informally referred to as diffusion models, continue to grow in popularity across several important domains and tasks. While they provide high-quality and diverse samples from empirical distributions, important questions remain on the reliability and trustworthiness of these sampling procedures for their responsible use in critical scenarios. Conformal prediction is a modern tool to construct finite-sample, distribution-free uncertainty guarantees for any black-box predictor. In this work, we focus on image-to-image regression tasks and we present a generalization of the Risk-Controlling Prediction Sets (RCPS) procedure, that we term $K$-RCPS, which allows to $(i)$ provide entrywise calibrated intervals for future samples of any diffusion model, and $(ii)$ control a certain notion of risk with respect to a ground truth image with minimal mean interval length. Differently from existing conformal risk control procedures, ours relies on a novel convex optimization approach that allows for multidimensional risk control while provably minimizing the mean interval length. We illustrate our approach on two real-world image denoising problems: on natural images of faces as well as on computed tomography (CT) scans of the abdomen, demonstrating state of the art performance.
Poster
Runlong Zhou · Zhang Zihan · Simon Du

[ Exhibit Hall 1 ]

We study variance-dependent regret bounds for Markov decision processes (MDPs). Algorithms with variance-dependent regret guarantees can automatically exploit environments with low variance (e.g., enjoying constant regret on deterministic MDPs). The existing algorithms are either variance-independent or suboptimal. We first propose two new environment norms to characterize the fine-grained variance properties of the environment. For model-based methods, we design a variant of the MVP algorithm (Zhang et al., 2021a). We apply new analysis techniques to demonstrate that this algorithm enjoys variance-dependent bounds with respect to the norms we propose. In particular, this bound is simultaneously minimax optimal for both stochastic and deterministic MDPs, the first result of its kind. We further initiate the study on model-free algorithms with variance-dependent regret bounds by designing a reference-function-based algorithm with a novel capped-doubling reference update schedule. Lastly, we also provide lower bounds to complement our upper bounds.

Poster
Wenjie Xu · Yuning Jiang · Bratislav Svetozarevic · Colin Jones

[ Exhibit Hall 1 ]

We study the problem of constrained efficient global optimization, where both the objective and constraints are expensive black-box functions that can be learned with Gaussian processes. We propose CONFIG (CONstrained efFIcient Global Optimization), a simple and effective algorithm to solve it. Under certain regularity assumptions, we show that our algorithm enjoys the same cumulative regret bound as that in the unconstrained case and similar cumulative constraint violation upper bounds. For commonly used Matern and Squared Exponential kernels, our bounds are sublinear and allow us to derive a convergence rate to the optimal solution of the original constrained problem. In addition, our method naturally provides a scheme to declare infeasibility when the original black-box optimization problem is infeasible. Numerical experiments on sampled instances from the Gaussian process, artificial numerical problems, and a black-box building controller tuning problem all demonstrate the competitive performance of our algorithm. Compared to the other state-of-the-art methods, our algorithm significantly improves the theoretical guarantees while achieving competitive empirical performance.

Poster
Aaron Defazio · Konstantin Mishchenko

[ Exhibit Hall 1 ]

The speed of gradient descent for convex Lipschitz functions is highly dependent on the choice of learning rate. Setting the learning rate to achieve the optimal convergence rate requires knowing the distance D from the initial point to the solution set. In this work, we describe a single-loop method, with no back-tracking or line searches, which does not require knowledge of D yet asymptotically achieves the optimal rate of convergence for the complexity class of convex Lipschitz functions. Our approach is the first parameter-free method for this class without additional multiplicative log factors in the convergence rate. We present extensive experiments for SGD and Adam variants of our method, where the method automatically matches hand-tuned learning rates across more than a dozen diverse machine learning problems, including large-scale vision and language problems. Our method is practical, efficient and requires no additional function value or gradient evaluations each step. An implementation is provided in the supplementary material.

Poster
Ainesh Bakshi · Allen Liu · Ankur Moitra · morris yau

[ Exhibit Hall 1 ]

Recently Chen and Poor initiated the study of learning mixtures of linear dynamical systems. While linear dynamical systems already have wide-ranging applications in modeling time-series data, using mixture models can lead to a better fit or even a richer understanding of underlying subpopulations represented in the data. In this work we give a new approach to learning mixtures of linear dynamical systems that is based on tensor decompositions. As a result, our algorithm succeeds without strong separation conditions on the components, and can be used to compete with the Bayes optimal clustering of the trajectories. Moreover our algorithm works in the challenging partially-observed setting. Our starting point is the simple but powerful observation that the classic Ho-Kalman algorithm is a relative of modern tensor decomposition methods for learning latent variable models. This gives us a playbook for how to extend it to work with more complicated generative models.

Poster
Xavi Suau · Federico Danieli · T. Anderson Keller · Arno Blaas · Chen Huang · Jason Ramapuram · Dan Busbridge · Luca Zappella

[ Exhibit Hall 1 ]

Multiview Self-Supervised Learning (MSSL) is based on learning invariances with respect to a set of input transformations. However, invariance partially or totally removes transformation-related information from the representations, which might harm performance for specific downstream tasks that require such information. We propose 2D strUctured and EquivarianT representations (coined DUET), which are 2d representations organized in a matrix structure, and equivariant with respect to transformations acting on the input data. DUET representations maintain information about an input transformation, while remaining semantically expressive. Compared to SimCLR (Chen et al., 2020) (unstructured and invariant) and ESSL (Dangovski et al., 2022) (unstructured and equivariant), the structured and equivariant nature of DUET representations enables controlled generation with lower reconstruction error, while controllability is not possible with SimCLR or ESSL. DUET also achieves higher accuracy for several discriminative tasks, and improves transfer learning.

Poster
Marc Lafon · Elias Ramzi · Clément Rambour · Nicolas THOME

[ Exhibit Hall 1 ]

Out-of-distribution (OOD) detection is a critical requirement for the deployment of deep neural networks. This paper introduces the HEAT model, a new post-hoc OOD detection method estimating the density of in-distribution (ID) samples using hybrid energy-based models (EBM) in the feature space of a pre-trained backbone. HEAT complements prior density estimators of the ID density, e.g. parametric models like the Gaussian Mixture Model (GMM), to provide an accurate yet robust density estimation. A second contribution is to leverage the EBM framework to provide a unified density estimation and to compose several energy terms. Extensive experiments demonstrate the significance of the two contributions. HEAT sets new state-of-the-art OOD detection results on the CIFAR-10 / CIFAR-100 benchmark as well as on the large-scale Imagenet benchmark. The code is available at: https://github.com/MarcLafon/heatood.

Poster
Danny Driess · Fei Xia · Mehdi S. M. Sajjadi · Corey Lynch · Aakanksha Chowdhery · Brian Ichter · Ayzaan Wahid · Jonathan Tompson · Quan Vuong · Tianhe (Kevin) Yu · Wenlong Huang · Yevgen Chebotar · Pierre Sermanet · Daniel Duckworth · Sergey Levine · Vincent Vanhoucke · Karol Hausman · Marc Toussaint · Klaus Greff · Andy Zeng · Igor Mordatch · Pete Florence

[ Exhibit Hall 1 ]

Abstract
Large language models excel at a wide range of complex tasks. However, enabling general inference in the real world, e.g. for robotics problems, raises the challenge of grounding. We propose embodied language models to directly incorporate real-world continuous sensor modalities into language models and thereby establish the link between words and percepts. Input to our embodied language model are multimodal sentences that interleave visual, continuous state estimation, and textual input encodings. We train these encodings end-to-end, in conjunction with a pre-trained large language model, for multiple embodied tasks including sequential robotic manipulation planning, visual question answering, and captioning. Our evaluations show that PaLM-E, a single large embodied multimodal model, can address a variety of embodied reasoning tasks, from a variety of observation modalities, on multiple embodiments, and further, exhibits positive transfer: the model benefits from diverse joint training across internet-scale language, vision, and visual-language domains. Our largest model with 562B parameters, in addition to being trained on robotics tasks, is a visual-language generalist with state-of-the-art performance on OK-VQA, and retains generalist language capabilities with increasing scale.
Poster
Hengyuan Hu · Dorsa Sadigh

[ Exhibit Hall 1 ]

One of the fundamental quests of AI is to produce agents that coordinate well with humans. This problem is challenging, especially in domains that lack high quality human behavioral data, because multi-agent reinforcement learning (RL) often converges to different equilibria from the ones that humans prefer. We propose a novel framework, instructRL, that enables humans to specify what kind of strategies they expect from their AI partners through natural language instructions. We use pretrained large language models to generate a prior policy conditioned on the human instruction and use the prior to regularize the RL objective. This leads to the RL agent converging to equilibria that are aligned with human preferences. We show that instructRL converges to human-like policies that satisfy the given instructions in a proof-of-concept environment as well as the challenging Hanabi benchmark. Finally, we show that knowing the language instruction significantly boosts human-AI coordination performance in human evaluations in Hanabi.

Poster
Era Choshen · Aviv Tamar

[ Exhibit Hall 1 ]

In meta reinforcement learning (meta RL), an agent seeks a Bayes-optimal policy -- the optimal policy when facing an unknown task that is sampled from some known task distribution. Previous approaches tackled this problem by inferring a $\textit{belief}$ over task parameters, using variational inference methods. Motivated by recent successes of contrastive learning approaches in RL, such as contrastive predictive coding (CPC), we investigate whether contrastive methods can be used for learning Bayes-optimal behavior. We begin by proving that representations learned by CPC are indeed sufficient for Bayes optimality. Based on this observation, we propose a simple meta RL algorithm that uses CPC in lieu of variational belief inference. Our method, $\textit{ContraBAR}$, achieves comparable performance to state-of-the-art in domains with state-based observation and circumvents the computational toll of future observation reconstruction, enabling learning in domains with image-based observations. It can also be combined with image augmentations for domain randomization and used seamlessly in both online and offline meta RL settings.
Poster
Kunjal Panchal · Sunav Choudhary · Subrata Mitra · Koyel Mukherjee · Somdeb Sarkhel · Saayan Mitra · Hui Guan

[ Exhibit Hall 1 ]

In Federated Learning (FL), adaptive optimization is an effective approach to addressing the statistical heterogeneity issue but cannot adapt quickly to concept drifts. In this work, we propose a novel adaptive optimizer called Flash that simultaneously addresses both statistical heterogeneity and the concept drift issues. The fundamental insight is that a concept drift can be detected based on the magnitude of parameter updates that are required to fit the global model to each participating client's local data distribution. Flash uses a two-pronged approach that synergizes client-side early-stopping training to facilitate detection of concept drifts and the server-side drift-aware adaptive optimization to effectively adjust effective learning rate. We theoretically prove that Flash matches the convergence rate of state-of-the-art adaptive optimizers and further empirically evaluate the efficacy of Flash on a variety of FL benchmarks using different concept drift settings.

Poster
Anastasiia Koloskova · Hadrien Hendrikx · Sebastian Stich

[ Exhibit Hall 1 ]

Gradient clipping is a popular modification to standard (stochastic) gradient descent, at every iteration limiting the gradient norm to a certain value $c >0$. It is widely used for example for stabilizing the training of deep learning models (Goodfellow et al., 2016), or for enforcing differential privacy (Abadi et al., 2016). Despite popularity and simplicity of the clipping mechanism, its convergence guarantees often require specific values of $c$ and strong noise assumptions. In this paper, we give convergence guarantees that show precise dependence on arbitrary clipping thresholds $c$ and show that our guarantees are tight with both deterministic and stochastic gradients. In particular, we show that (i) for deterministic gradient descent, the clipping threshold only affects the higher-order terms of convergence, (ii) in the stochastic setting convergence to the true optimum cannot be guaranteed under the standard noise assumption, even under arbitrary small step-sizes. We give matching upper and lower bounds for convergence of the gradient norm when running clipped SGD, and illustrate these results with experiments.
Poster
Tom Tirer · Haoxiang Huang · Jonathan Niles-Weed

[ Exhibit Hall 1 ]

Training deep neural networks for classification often includes minimizing the training loss beyond the zero training error point. In this phase of training, a "neural collapse" behavior has been observed: the variability of features (outputs of the penultimate layer) of within-class samples decreases and the mean features of different classes approach a certain tight frame structure. Recent works analyze this behavior via idealized unconstrained features models where all the minimizers exhibit exact collapse. However, with practical networks and datasets, the features typically do not reach exact collapse, e.g., because deep layers cannot arbitrarily modify intermediate features that are far from being collapsed. In this paper, we propose a richer model that can capture this phenomenon by forcing the features to stay in the vicinity of a predefined features matrix (e.g., intermediate features). We explore the model in the small vicinity case via perturbation analysis and establish results that cannot be obtained by the previously studied models. For example, we prove reduction in the within-class variability of the optimized features compared to the predefined input features (via analyzing gradient flow on the "central-path" with minimal assumptions), analyze the minimizers in the near-collapse regime, and provide insights on the effect of regularization …

Poster
Junwei Su · Difan Zou · Zijun Zhang · Chuan Wu

[ Exhibit Hall 1 ]

Incremental learning is a machine learning approach that involves training a model on a sequence of tasks, rather than all tasks at once. This ability to learn incrementally from a stream of tasks is crucial for many real-world applications. However, incremental learning is a challenging problem on graph-structured data, as many graph-related problems involve prediction tasks for each individual node, known as Node-wise Graph Incremental Learning (NGIL). This introduces non-independent and non-identically distributed characteristics in the sample data generation process, making it difficult to maintain the performance of the model as new tasks are added. In this paper, we focus on the inductive NGIL problem, which accounts for the evolution of graph structure (structural shift) induced by emerging tasks. We provide a formal formulation and analysis of the problem, and propose a novel regularization-based technique called Structural-Shift-Risk-Mitigation (SSRM) to mitigate the impact of the structural shift on catastrophic forgetting of the inductive NGIL problem. We show that the structural shift can lead to a shift in the input distribution for the existing tasks, and further lead to an increased risk of catastrophic forgetting. Through comprehensive empirical studies with several benchmark datasets, we demonstrate that our proposed method, Structural-Shift-Risk-Mitigation (SSRM), is …

Poster
Shengcao Cao · Mengtian Li · James Hays · Deva Ramanan · Yu-Xiong Wang · Liangyan Gui

[ Exhibit Hall 1 ]

Resource-constrained perception systems such as edge computing and vision-for-robotics require vision models to be both accurate and lightweight in computation and memory usage. While knowledge distillation is a proven strategy to enhance the performance of lightweight classification models, its application to structured outputs like object detection and instance segmentation remains a complicated task, due to the variability in outputs and complex internal network modules involved in the distillation process. In this paper, we propose a simple yet surprisingly effective sequential approach to knowledge distillation that progressively transfers the knowledge of a set of teacher detectors to a given lightweight student. To distill knowledge from a highly accurate but complex teacher model, we construct a sequence of teachers to help the student gradually adapt. Our progressive strategy can be easily combined with existing detection distillation mechanisms to consistently maximize student performance in various settings. To the best of our knowledge, we are the first to successfully distill knowledge from Transformer-based teacher detectors to convolution-based students, and unprecedentedly boost the performance of ResNet-50 based RetinaNet from 36.5% to 42.0% AP and Mask R-CNN from 38.2% to 42.5% AP on the MS COCO benchmark. Code available at https://github.com/Shengcao-Cao/MTPD.

Poster
Ajay Jaiswal · Shiwei Liu · Tianlong Chen · Ding · Zhangyang “Atlas” Wang

[ Exhibit Hall 1 ]

Graphs are omnipresent and GNNs are a powerful family of neural networks for learning over graphs. Despite their popularity, scaling GNNs either by deepening or widening suffers from prevalent issues of $\textit{unhealthy gradients, over-smoothening, information squashing}$, which often lead to sub-standard performance. In this work, we are interested in exploring a principled way to scale GNNs capacity without deepening or widening, which can improve its performance across multiple small and large graphs. Motivated by the recent intriguing phenomenon of model soups, which suggest that fine-tuned weights of multiple large-language pre-trained models can be merged to a better minima, we argue to exploit the fundamentals of model soups to mitigate the aforementioned issues of memory bottleneck and trainability during GNNs scaling. More specifically, we propose not to deepen or widen current GNNs, but instead present $\textbf{first data-centric perspective}$ of model soups to build powerful GNNs by dividing giant graph data to build independently and parallelly trained multiple comparatively weaker GNNs without any intermediate communication, and $\textit{combining their strength}$ using a greedy interpolation soup procedure to achieve state-of-the-art performance. Moreover, we provide a wide variety of model soup preparation techniques by leveraging state-of-the-art graph sampling and graph partitioning approaches that can handle …
Poster
Pietro Barbiero · Gabriele Ciravegna · Francesco Giannini · Mateo Espinosa Zarlenga · Lucie Charlotte Magister · Alberto Tonda · Pietro Lió · Frederic Precioso · Mateja Jamnik · Giuseppe Marra

[ Exhibit Hall 1 ]

Deep learning methods are highly accurate, yet their opaque decision process prevents them from earning full human trust. Concept-based models aim to address this issue by learning tasks based on a set of human-understandable concepts. However, state-of-the-art concept-based models rely on high-dimensional concept embedding representations which lack a clear semantic meaning, thus questioning the interpretability of their decision process. To overcome this limitation, we propose the Deep Concept Reasoner (DCR), the first interpretable concept-based model that builds upon concept embeddings. In DCR, neural networks do not make task predictions directly, but they build syntactic rule structures using concept embeddings. DCR then executes these rules on meaningful concept truth degrees to provide a final interpretable and semantically-consistent prediction in a differentiable manner. Our experiments show that DCR: (i) improves up to +25% w.r.t. state-of-the-art interpretable concept-based models on challenging benchmarks (ii) discovers meaningful logic rules matching known ground truths even in the absence of concept supervision during training, and (iii), facilitates the generation of counterfactual examples providing the learnt rules as guidance.

Poster
Qinbin Li · Bingsheng He · Dawn Song

[ Exhibit Hall 1 ]

Federated Learning (FL) has been a popular approach to enable collaborative learning on multiple parties without exchanging raw data. However, the model performance of FL may degrade a lot due to non-IID data. While many FL algorithms focus on non-IID labels, FL on non-IID features has largely been overlooked. Different from typical FL approaches, the paper proposes a new learning concept called ADCOL (Adversarial Collaborative Learning) for non-IID features. Instead of adopting the widely used model-averaging scheme, ADCOL conducts training in an adversarial way: the server aims to train a discriminator to distinguish the representations of the parties, while the parties aim to generate a common representation distribution. Our experiments show that ADCOL achieves better performance than state-of-the-art FL algorithms on non-IID features.

Poster
Jinuk Kim · Yeonwoo Jeong · Deokjae Lee · Hyun Oh Song

[ Exhibit Hall 1 ]

Recent works on neural network pruning advocate that reducing the depth of the network is more effective in reducing run-time memory usage and accelerating inference latency than reducing the width of the network through channel pruning. In this regard, some recent works propose depth compression algorithms that merge convolution layers. However, the existing algorithms have a constricted search space and rely on human-engineered heuristics. In this paper, we propose a novel depth compression algorithm which targets general convolution operations. We propose a subset selection problem that replaces inefficient activation layers with identity functions and optimally merges consecutive convolution operations into shallow equivalent convolution operations for efficient end-to-end inference latency. Since the proposed subset selection problem is NP-hard, we formulate a surrogate optimization problem that can be solved exactly via two-stage dynamic programming within a few seconds. We evaluate our methods and baselines by TensorRT for a fair inference latency comparison. Our method outperforms the baseline method with higher accuracy and faster inference speed in MobileNetV2 on the ImageNet dataset. Specifically, we achieve $1.41\times$ speed-up with $0.11$%p accuracy gain in MobileNetV2-1.0 on the ImageNet.
Poster
Weitang Liu · Yi-Zhuang You · Ying Wai Li · Jingbo Shang

[ Exhibit Hall 1 ]

The output distribution of a neural network (NN) over the entire input space captures the complete input-output mapping relationship, offering in- sights toward a more comprehensive NN under- standing. Exhaustive enumeration or traditional Monte Carlo methods for the entire input space can exhibit impractical sampling time, especially for high-dimensional inputs. To make such difficult sampling computationally feasible, in this paper, we propose a novel Gradient-based Wang-Landau (GWL) sampler. We first draw the connection between the output distribution of a NN and the density of states (DOS) of a physical system. Then, we renovate the classic sampler for the DOS problem, Wang-Landau algorithm, by re-placing its random proposals with gradient-based Monte Carlo proposals. This way, our GWL sampler investigates the under-explored subsets of the input space much more efficiently. Extensive experiments have verified the accuracy of the output distribution generated by GWL and also showcased several interesting findings - for example, in a binary image classification task, both CNN and ResNet mapped the majority of human unrecognizable images to very negative logit values.

Poster
Yilun Du · Conor Durkan · Robin Strudel · Josh Tenenbaum · Sander Dieleman · Rob Fergus · Jascha Sohl-Dickstein · Arnaud Doucet · Will Grathwohl

[ Exhibit Hall 1 ]

Since their introduction, diffusion models have quickly become the prevailing approach to generative modeling in many domains. They can be interpreted as learning the gradients of a time-varying sequence of log-probability density functions. This interpretation has motivated classifier-based and classifier-free guidance as methods for post-hoc control of diffusion models. In this work, we build upon these ideas using the score-based interpretation of diffusion models, and explore alternative ways to condition, modify, and reuse diffusion models for tasks involving compositional generation and guidance. In particular, we investigate why certain types of composition fail using current techniques and present a number of solutions. We conclude that the sampler (not the model) is responsible for this failure and propose new samplers, inspired by MCMC, which enable successful compositional generation. Further, we propose an energy-based parameterization of diffusion models which enables the use of new compositional operators and more sophisticated, Metropolis-corrected samplers. Intriguingly we find these samplers lead to notable improvements in compositional generation across a wide variety of problems such as classifier-guided ImageNet modeling and compositional text-to-image generation.

Poster
Rasmus Kjær Høier · D. Staudt · Christopher Zach

[ Exhibit Hall 1 ]

Activity difference based learning algorithms---such as contrastive Hebbian learning and equilibrium propagation---have been proposed as biologically plausible alternatives to error back-propagation. However, on traditional digital chips these algorithms suffer from having to solve a costly inference problem twice, making these approaches more than two orders of magnitude slower than back-propagation. In the analog realm equilibrium propagation may be promising for fast and energy efficient learning, but states still need to be inferred and stored twice. Inspired by lifted neural networks and compartmental neuron models we propose a simple energy based compartmental neuron model, termed dual propagation, in which each neuron is a dyad with two intrinsic states. At inference time these intrinsic states encode the error/activity duality through their difference and their mean respectively. The advantage of this method is that only a single inference phase is needed and that inference can be solved in layerwise closed-form. Experimentally we show on common computer vision datasets, including Imagenet32x32, that dual propagation performs equivalently to back-propagation both in terms of accuracy and runtime.

Poster
Mahdi Nikdan · Tommaso Pegolotti · Eugenia Iofinova · Eldar Kurtic · Dan Alistarh

[ Exhibit Hall 1 ]

We provide an efficient implementation of the backpropagation algorithm, specialized to the case where the weights of the neural network being trained are sparse. Our algorithm is general, as it applies to arbitrary (unstructured) sparsity and common layer types (e.g., convolutional or linear). We provide a fast vectorized implementation on commodity CPUs, and show that it can yield speedups in end-to-end runtime experiments, both in transfer learning using already-sparsified networks, and in training sparse networks from scratch. Thus, our results provide the first support for sparse training on commodity hardware.

Poster
Zichang Liu · Jue Wang · Tri Dao · Tianyi Zhou · Binhang Yuan · Zhao Song · Anshumali Shrivastava · Ce Zhang · Yuandong Tian · Christopher Re · Beidi Chen

[ Exhibit Hall 1 ]

Large language models (LLMs) with hundreds of billions of parameters have sparked a new wave of exciting AI applications. However, they are computationally expensive at inference time. Sparsity is a natural approach to reduce this cost, but existing methods either require costly retraining, have to forgo LLM's in-context learning ability, or do not yield wall-clock time speedup on modern hardware. We hypothesize that contextual sparsity, which are small, input-dependent sets of attention heads and MLP parameters that yield approximately the same output as the dense model for a given input, can address these issues. We show that contextual sparsity exists, that it can be accurately predicted, and that we can exploit it to speed up LLM inference in wall-clock time without compromising LLM's quality or in-context learning ability. Based on these insights, we propose DejaVu, a system that uses a low-cost algorithm to predict contextual sparsity on the fly given inputs to each layer, along with an asynchronous and hardware-aware implementation that speeds up LLM inference. We validate that DejaVu can reduce the inference latency of OPT-175B by over 2$\times$ compared to the state-of-the-art FasterTransformer, and over 6$\times$ compared to the widely used Hugging Face implementation, without compromising model quality. …
Poster
Yuxin Tang · Zhimin Ding · Dimitrije Jankov · Binhang Yuan · Daniel Bourgeois · Chris Jermaine

[ Exhibit Hall 1 ]

The relational data model was designed to facilitate large-scale data management and analytics. We consider the problem of how to differentiate computations expressed relationally. We show experimentally that a relational engine running an auto-differentiated relational algorithm can easily scale to very large datasets, and is competitive with state-of-the-art, special-purpose systems for large-scale distributed machine learning.

Poster
Mikael Henaff · Minqi Jiang · Roberta Raileanu

[ Exhibit Hall 1 ]

Exploration in environments which differ across episodes has received increasing attention in recent years. Current methods use some combination of global novelty bonuses, computed using the agent's entire training experience, and episodic novelty bonuses, computed using only experience from the current episode. However, the use of these two types of bonuses has been ad-hoc and poorly understood. In this work, we shed light on the behavior of these two types of bonuses through controlled experiments on easily interpretable tasks as well as challenging pixel-based settings. We find that the two types of bonuses succeed in different settings, with episodic bonuses being most effective when there is little shared structure across episodes and global bonuses being effective when more structure is shared. We develop a conceptual framework which makes this notion of shared structure precise by considering the variance of the value function across contexts, and which provides a unifying explanation of our empirical results. We furthermore find that combining the two bonuses can lead to more robust performance across different degrees of shared structure, and investigate different algorithmic choices for defining and combining global and episodic bonuses based on function approximation. This results in an algorithm which sets a new …

Poster
Arthur Kosmala · Johannes Gasteiger · Nicholas Gao · Stephan Günnemann

[ Exhibit Hall 1 ]

Neural architectures that learn potential energy surfaces from molecular data have undergone fast improvement in recent years. A key driver of this success is the Message Passing Neural Network (MPNN) paradigm. Its favorable scaling with system size partly relies upon a spatial distance limit on messages. While this focus on locality is a useful inductive bias, it also impedes the learning of long-range interactions such as electrostatics and van der Waals forces. To address this drawback, we propose Ewald message passing: a nonlocal Fourier space scheme which limits interactions via a cutoff on frequency instead of distance, and is theoretically well-founded in the Ewald summation method. It can serve as an augmentation on top of existing MPNN architectures as it is computationally inexpensive and agnostic to architectural details. We test the approach with four baseline models and two datasets containing diverse periodic (OC20) and aperiodic structures (OE62). Across all models and datasets, we observe robust improvements in energy mean absolute errors, averaging 10% on OC20 and 16% on OE62. Our analysis shows an outsize impact of these improvements on structures with high long-range contributions to the ground-truth energy.

Poster
Emanuele Francazi · Marco Baity-Jesi · Aurelien Lucchi

[ Exhibit Hall 1 ]

Data imbalance is a common problem in machine learning that can have a critical effect on the performance of a model. Various solutions exist but their impact on the convergence of the learning dynamics is not understood. Here, we elucidate the significant negative impact of data imbalance on learning, showing that the learning curves for minority and majority classes follow sub-optimal trajectories when training with a gradient-based optimizer. This slowdown is related to the imbalance ratio and can be traced back to a competition between the optimization of different classes. Our main contribution is the analysis of the convergence of full-batch (GD) and stochastic gradient descent (SGD), and of variants that renormalize the contribution of each per-class gradient. We find that GD is not guaranteed to decrease the loss for each class but that this problem can be addressed by performing a per-class normalization of the gradient. With SGD, class imbalance has an additional effect on the direction of the gradients: the minority class suffers from a higher directional noise, which reduces the effectiveness of the per-class gradient normalization. Our findings not only allow us to understand the potential and limitations of strategies involving the per-class gradients, but also the …

Poster
Sameera Ramasinghe · Lachlan E. MacDonald · Moshiur Farazi · Hemanth Saratchandran · Simon Lucey

[ Exhibit Hall 1 ]

Characterizing the remarkable generalization properties of over-parameterized neural networks remains an open problem. A growing body of recent literature shows that the bias of stochastic gradient descent (SGD) and architecture choice implicitly leads to better generalization. In this paper, we show on the contrary that, independently of architecture, SGD can itself be the cause of poor generalization if one does not ensure good initialization. Specifically, we prove that any differentiably parameterized model, trained under gradient flow, obeys a weak spectral bias law which states that sufficiently high frequencies train arbitrarily slowly. This implies that very high frequencies present at initialization will remain after training, and hamper generalization. Further, we empirically test the developed theoretical insights using practical, deep networks. Finally, we contrast our framework with that supplied by the flat-minima conjecture and show that Fourier analysis grants a more reliable framework for understanding the generalization of neural networks.

Poster
Itai Kreisler · Mor Shpigel Nacson · Daniel Soudry · Yair Carmon

[ Exhibit Hall 1 ]

Recent research shows that when Gradient Descent (GD) is applied to neural networks, the loss almost never decreases monotonically. Instead, the loss oscillates as gradient descent converges to its ``Edge of Stability'' (EoS). Here, we find a quantity that does decrease monotonically throughout GD training: the sharpness attained by the gradient flow solution (GFS)---the solution that would be obtained if, from now until convergence, we train with an infinitesimal step size. Theoretically, we analyze scalar neural networks with the squared loss, perhaps the simplest setting where the EoS phenomena still occur. In this model, we prove that the GFS sharpness decreases monotonically. Using this result, we characterize settings where GD provably converges to the EoS in scalar networks. Empirically, we show that GD monotonically decreases the GFS sharpness in a squared regression model as well as practical neural network architectures.

Poster
Chuqin Geng · Van Nham Le · Xiaojie Xu · Zhaoyue Wang · Arie Gurfinkel · Xujie Si

[ Exhibit Hall 1 ]

Having reliable specifications is an unavoidable challenge in achieving verifiable correctness, robustness, and interpretability of AI systems. Existing specifications for neural networks are in the paradigm of data as specification. That is, the local neighborhood centering around a reference input is considered to be correct (or robust). While existing specifications contribute to verifying adversarial robustness, a significant problem in many research domains, our empirical study shows that those verified regions are somewhat tight, and thus fail to allow verification of test set inputs, making them impractical for some real-world applications. To this end, we propose a new family of specifications called neural representation as specification. This form of specifications uses the intrinsic information of neural networks, specifically neural activation patterns (NAPs), rather than input data to specify the correctness and/or robustness of neural network predictions. We present a simple statistical approach to mining neural activation patterns. To show the effectiveness of discovered NAPs, we formally verify several important properties, such as various types of misclassifications will never happen for a given NAP, and there is no ambiguity between different NAPs. We show that by using NAP, we can verify a significant region of the input space, while still recalling 84% …

Poster
ALEXANDRE DUVAL · Victor Schmidt · Alex Hernandez-Garcia · Santiago Miret · Fragkiskos Malliaros · Yoshua Bengio · David Rolnick

[ Exhibit Hall 1 ]

Applications of machine learning techniques for materials modeling typically involve functions that are known to be equivariant or invariant to specific symmetries. While graph neural networks (GNNs) have proven successful in such applications, conventional GNN approaches that enforce symmetries via the model architecture often reduce expressivity, scalability or comprehensibility. In this paper, we introduce (1) a flexible, model-agnostic framework based on stochastic frame averaging that enforces E(3) equivariance or invariance, without any architectural constraints; (2) FAENet: a simple, fast and expressive GNN that leverages stochastic frame averaging to process geometric information without constraints. We prove the validity of our method theoretically and demonstrate its superior accuracy and computational scalability in materials modeling on the OC20 dataset (S2EF, IS2RE) as well as common molecular modeling tasks (QM9, QM7-X).

Poster
Alex Reneau · Jerry Yao-Chieh Hu · Ammar Gilani · Han Liu

[ Exhibit Hall 1 ]

We introduce the concept of programmable feature engineering for time series modeling and propose a feature programming framework. This framework generates large amounts of predictive features for noisy multivariate time series while allowing users to incorporate their inductive bias with minimal effort. The key motivation of our framework is to view any multivariate time series as a cumulative sum of fine-grained trajectory increments, with each increment governed by a novel spin-gas dynamical Ising model. This fine-grained perspective motivates the development of a parsimonious set of operators that summarize multivariate time series in an abstract fashion, serving as the foundation for large-scale automated feature engineering. Numerically, we validate the efficacy of our method on several synthetic and real-world noisy time series datasets.

Poster
Cheol Jun Cho · Edward Chang · Gopala Anumanchipalli

[ Exhibit Hall 1 ]

Understanding the neural implementation of complex human behaviors is one of the major goals in neuroscience. To this end, it is crucial to find a true representation of the neural data, which is challenging due to the high complexity of behaviors and the low signal-to-ratio (SNR) of the signals. Here, we propose a novel unsupervised learning framework, Neural Latent Aligner (NLA), to find well-constrained, behaviorally relevant neural representations of complex behaviors. The key idea is to align representations across repeated trials to learn cross-trial consistent information. Furthermore, we propose a novel, fully differentiable time warping model (TWM) to resolve the temporal misalignment of trials. When applied to intracranial electrocorticography (ECoG) of natural speaking, our model learns better representations for decoding behaviors than the baseline models, especially in lower dimensional space. The TWM is empirically validated by measuring behavioral coherence between aligned trials. The proposed framework learns more cross-trial consistent representations than the baselines, and when visualized, the manifold reveals shared neural trajectories across trials.

Poster
Jiaxuan Chen · Yu Qi · Gang Pan

[ Exhibit Hall 1 ]

Decoding seen images from brain activities has been an absorbing field. However, the reconstructed images still suffer from low quality with existing studies. This can be because our visual system is not like a camera that ''remembers'' every pixel. Instead, only part of the information can be perceived with our selective attention, and the brain ''guesses'' the rest to form what we think we see. Most existing approaches ignored the brain completion mechanism. In this work, we propose to reconstruct seen images with both the visual perception and the brain completion process, and design a simple, yet effective visual decoding framework to achieve this goal. Specifically, we first construct a shared discrete representation space for both brain signals and images. Then, a novel self-supervised token-to-token inpainting network is designed to implement visual content completion by building context and prior knowledge about the visual objects from the discrete latent space. Our approach improved the quality of visual reconstruction significantly and achieved state-of-the-art.

Poster
Rui Xue · Haoyu Han · MohamadAli Torkamani · Jian Pei · Xiaorui Liu

[ Exhibit Hall 1 ]

Recent works have demonstrated the benefits of capturing long-distance dependency in graphs by deeper graph neural networks (GNNs). But deeper GNNs suffer from the long-lasting scalability challenge due to the neighborhood explosion problem in large-scale graphs. In this work, we propose to capture long-distance dependency in graphs by shallower models instead of deeper models, which leads to a much more efficient model, LazyGNN, for graph representation learning. Moreover, we demonstrate that LazyGNN is compatible with existing scalable approaches (such as sampling methods) for further accelerations through the development of mini-batch LazyGNN. Comprehensive experiments demonstrate its superior prediction performance and scalability on large-scale benchmarks. The implementation of LazyGNN is available at https: //github.com/RXPHD/Lazy_GNN.

Poster
Moshe Eliasof · Fabrizio Frasca · Beatrice Bevilacqua · Eran Treister · Gal Chechik · Haggai Maron

[ Exhibit Hall 1 ]

Two main families of node feature augmentation schemes have been explored for enhancing GNNs: random features and spectral positional encoding. Surprisingly, however, there is still no clear understanding of the relation between these two augmentation schemes. Here we propose a novel family of positional encoding schemes which draws a link between the above two approaches and improves over both. The new approach, named Random Feature Propagation (RFP), is inspired by the power iteration method and its generalizations. It concatenates several intermediate steps of an iterative algorithm for computing the dominant eigenvectors of a propagation matrix, starting from random node features. Notably, these propagation steps are based on graph-dependent propagation operators that can be either predefined or learned. We explore the theoretical and empirical benefits of RFP. First, we provide theoretical justifications for using random features, for incorporating early propagation steps, and for using multiple random initializations. Then, we empirically demonstrate that RFP significantly outperforms both spectral PE and random features in multiple node classification and graph classification benchmarks.

Poster
Zaixiang Zheng · Yifan Deng · Dongyu Xue · Yi Zhou · Fei YE · Quanquan Gu

[ Exhibit Hall 1 ]

This paper demonstrates that language models are strong structure-based protein designers. We present LM-Design, a generic approach to reprogramming sequence-based protein language models (pLMs), that have learned massive sequential evolutionary knowledge from the universe of natural protein sequences, to acquire an immediate capability to design preferable protein sequences for given folds. We conduct a structural surgery on pLMs, where a lightweight structural adapter is implanted into pLMs and endows it with structural awareness. During inference, iterative refinement is performed to effectively optimize the generated protein sequences. Experiments show that LM-Design improves the state-of-the-art results by a large margin, leading to 4% to 12% accuracy gains in sequence recovery (e.g., 55.65%/56.63% on CATH 4.2/4.3 single-chain benchmarks, and >60% when designing protein complexes). We provide extensive and in-depth analyses, which verify that LM-Design can (1) indeed leverage both structural and sequential knowledge to accurately handle structurally non-deterministic regions, (2) benefit from scaling data and model size, and (3) generalize to other proteins (e.g., antibodies and de novo proteins).

Poster
Hwan Heo · Taekyung Kim · Jiyoung Lee · Jaewon Lee · Soohyun Kim · Hyunwoo Kim · Jin-Hwa Kim

[ Exhibit Hall 1 ]

Multi-resolution hash encoding has recently been proposed to reduce the computational cost of neural renderings, such as NeRF. This method requires accurate camera poses for the neural renderings of given scenes. However, contrary to previous methods jointly optimizing camera poses and 3D scenes, the naive gradient-based camera pose refinement method using multi-resolution hash encoding severely deteriorates performance. We propose a joint optimization algorithm to calibrate the camera pose and learn a geometric representation using efficient multi-resolution hash encoding. Showing that the oscillating gradient flows of hash encoding interfere with the registration of camera poses, our method addresses the issue by utilizing smooth interpolation weighting to stabilize the gradient oscillation for the ray samplings across hash grids. Moreover, the curriculum training procedure helps to learn the level-wise hash encoding, further increasing the pose refinement. Experiments on the novel-view synthesis datasets validate that our learning frameworks achieve state-of-the-art performance and rapid convergence of neural rendering.

Poster
Chenxi Liu · Kun Kuang

[ Exhibit Hall 1 ]

Causal structure learning can reveal the causal mechanism behind natural systems. It is well studied that the multiple domain data consisting of observational and interventional samples benefit causal identifiability. However, for non-stationary time series data, domain indexes are often unavailable, making it difficult to distinguish observational samples from interventional samples. To address these issues, we propose a novel Latent Intervened Non-stationary learning (LIN) method to make the domain indexes recovery process and the causal structure learning process mutually promote each other. We characterize and justify a possible faithfulness condition to guarantee the identifiability of the proposed LIN method. Extensive experiments on both synthetic and real-world datasets demonstrate that our method outperforms the baselines on causal structure learning for latent intervened non-stationary data.

Poster
Jinpeng Zhang · Yufeng Zheng · Chuheng Zhang · Li Zhao · Lei Song · Yuan Zhou · Jiang Bian

[ Exhibit Hall 1 ]

In many real-world tasks, some parts of state features, called contexts, are independent of action signals, e.g., customer demand in inventory control, speed of lead car in autonomous driving, etc. One of the challenges of reinforcement learning in these applications is that the true context transitions can be easily exposed some unknown source of contamination, leading to a shift of context transitions between source domains and target domains, which could cause performance degradation for RL algorithms. However, existing methods on robust RL aim at learning robust policies against the deviations of the entire system dynamics. To tackle this problem, this paper proposes the framework of robust situational Markov decision process (RS-MDP) which captures the possible deviations of context transitions explicitly. To scale to large context space, we introduce the softmin smoothed robust Bellman operator to learn the robust Q-value approximately, and apply our RS-MDP framework to existing RL algorithm SAC to learn the desired robust policies. We conduct experiments on several robot control tasks with dynamic contexts and inventory control tasks to demonstrate that our algorithm can generalize better and more robust against deviations of context transitions, and outperform existing robust RL algorithms.

Poster
Jikai Jin · Zhiyuan Li · Kaifeng Lyu · Simon Du · Jason Lee

[ Exhibit Hall 1 ]

It is believed that Gradient Descent (GD) induces an implicit bias towards good generalization in training machine learning models. This paper provides a fine-grained analysis of the dynamics of GD for the matrix sensing problem, whose goal is to recover a low-rank ground-truth matrix from near-isotropic linear measurements. It is shown that GD with small initialization behaves similarly to the greedy low-rank learning heuristics and follows an incremental learning procedure: GD sequentially learns solutions with increasing ranks until it recovers the ground truth matrix. Compared to existing works which only analyze the first learning phase for rank-1 solutions, our result provides characterizations for the whole learning process. Moreover, besides the over-parameterized regime that many prior works focused on, our analysis of the incremental learning procedure also applies to the under-parameterized regime. Finally, we conduct numerical experiments to confirm our theoretical findings.

Poster
Songtao Feng · Ming Yin · Ruiquan Huang · Yu-Xiang Wang · Jing Yang · Yingbin LIANG

[ Exhibit Hall 1 ]

General function approximation is a powerful tool to handle large state and action spaces in a broad range of reinforcement learning (RL) scenarios. However, theoretical understanding of non-stationary MDPs with general function approximation is still limited. In this paper, we make the first such an attempt. We first propose a new complexity metric called dynamic Bellman Eluder (DBE) dimension for non-stationary MDPs, which subsumes majority of existing tractable RL problems in static MDPs as well as non-stationary MDPs. Based on the proposed complexity metric, we propose a novel confidence-set based model-free algorithm called SW-OPEA, which features a sliding window mechanism and a new confidence set design for non-stationary MDPs. We then establish an upper bound on the dynamic regret for the proposed algorithm, and show that SW-OPEA is provably efficient as long as the variation budget is not significantly large. We further demonstrate via examples of non-stationary linear and tabular MDPs that our algorithm performs better in small variation budget scenario than the existing UCB-type algorithms. To the best of our knowledge, this is the first dynamic regret analysis in non-stationary MDPs with general function approximation.

Poster
Yuetian Luo · Zhimei Ren · Rina Barber

[ Exhibit Hall 1 ]

Cross-validation (CV) is one of the most popular tools for assessing and selecting predictive models. However, standard CV suffers from high computational cost when the number of folds is large. Recently, under the empirical risk minimization (ERM) framework, a line of works proposed efficient methods to approximate CV based on the solution of the ERM problem trained on the full dataset. However, in large-scale problems, it can be hard to obtain the exact solution of the ERM problem, either due to limited computational resources or due to early stopping as a way of preventing overfitting. In this paper, we propose a new paradigm to efficiently approximate CV when the ERM problem is solved via an iterative first-order algorithm, without running until convergence. Our new method extends existing guarantees for CV approximation to hold along the whole trajectory of the algorithm, including at convergence, thus generalizing existing CV approximation methods. Finally, we illustrate the accuracy and computational efficiency of our method through a range of empirical studies.

Poster
Hanchen Xie · Jiageng Zhu · Mahyar Khayatkhoei · Jiazhi Li · Mohamed Hussein · Wael AbdAlmageed

[ Exhibit Hall 1 ]

Dynamics prediction, which is the problem of predicting future states of scene objects based on current and prior states, is drawing increasing attention as an instance of learning physics. To solve this problem, Region Proposal Convolutional Interaction Network (RPCIN), a vision-based model, was proposed and achieved state-of-the-art performance in long-term prediction. RPCIN only takes raw images and simple object descriptions, such as the bounding box and segmentation mask of each object, as input. However, despite its success, the model's capability can be compromised under conditions of environment misalignment. In this paper, we investigate two challenging conditions for environment misalignment: Cross-Domain and Cross-Context by proposing four datasets that are designed for these challenges: SimB-Border, SimB-Split, BlenB-Border, and BlenB-Split. The datasets cover two domains and two contexts. Using RPCIN as a probe, experiments conducted on the combinations of the proposed datasets reveal potential weaknesses of the vision-based long-term dynamics prediction model. Furthermore, we propose a promising direction to mitigate the Cross-Domain challenge and provide concrete evidence supporting such a direction, which provides dramatic alleviation of the challenge on the proposed datasets.

Poster
Ziqing Yang · Xinlei He · Zheng Li · Michael Backes · Mathias Humbert · Pascal Berrang · Yang Zhang

[ Exhibit Hall 1 ]

Recently, the newly emerged multimodal models, which leverage both visual and linguistic modalities to train powerful encoders, have gained increasing attention. However, learning from a large-scale unlabeled dataset also exposes the model to the risk of potential poisoning attacks, whereby the adversary aims to perturb the model's training data to trigger malicious behaviors in it. In contrast to previous work, only poisoning visual modality, in this work, we take the first step to studying poisoning attacks against multimodal models in both visual and linguistic modalities. Specially, we focus on answering two questions: (1) Is the linguistic modality also vulnerable to poisoning attacks? and (2) Which modality is most vulnerable? To answer the two questions, we propose three types of poisoning attacks against multimodal models. Extensive evaluations on different datasets and model architectures show that all three attacks can achieve significant attack performance while maintaining model utility in both visual and linguistic modalities. Furthermore, we observe that the poisoning effect differs between different modalities. To mitigate the attacks, we propose both pre-training and post-training defenses. We empirically show that both defenses can significantly reduce the attack performance while preserving the model's utility. Our code is available at https://github.com/zqypku/mm_poison/.

Poster
Chumeng Liang · Xiaoyu Wu · Yang Hua · Jiaru Zhang · Yiming Xue · Tao Song · Zhengui XUE · Ruhui Ma · Haibing Guan

[ Exhibit Hall 1 ]

Recently, Diffusion Models (DMs) boost a wave in AI for Art yet raise new copyright concerns, where infringers benefit from using unauthorized paintings to train DMs and generate novel paintings in a similar style. To address these emerging copyright violations, in this paper, we are the first to explore and propose to utilize adversarial examples for DMs to protect human-created artworks. Specifically, we first build a theoretical framework to define and evaluate the adversarial examples for DMs. Then, based on this framework, we design a novel algorithm to generate these adversarial examples, named AdvDM, which exploits a Monte-Carlo estimation of adversarial examples for DMs by optimizing upon different latent variables sampled from the reverse process of DMs. Extensive experiments show that the generated adversarial examples can effectively hinder DMs from extracting their features. Therefore, our method can be a powerful tool for human artists to protect their copyright against infringers equipped with DM-based AI-for-Art applications. The code of our method is available on GitHub: https://github.com/mist-project/mist.git.

Poster
Younggyo Seo · Junsu Kim · Stephen James · Kimin Lee · Jinwoo Shin · Pieter Abbeel

[ Exhibit Hall 1 ]

Visual robotic manipulation research and applications often use multiple cameras, or views, to better perceive the world. How else can we utilize the richness of multi-view data? In this paper, we investigate how to learn good representations with multi-view data and utilize them for visual robotic manipulation. Specifically, we train a multi-view masked autoencoder which reconstructs pixels of randomly masked viewpoints and then learn a world model operating on the representations from the autoencoder. We demonstrate the effectiveness of our method in a range of scenarios, including multi-view control and single-view control with auxiliary cameras for representation learning. We also show that the multi-view masked autoencoder trained with multiple randomized viewpoints enables training a policy with strong viewpoint randomization and transferring the policy to solve real-robot tasks without camera calibration and an adaptation procedure. Video demonstrations are available at: https://sites.google.com/view/mv-mwm.

Poster
Joel Jang · Seungone Kim · Seonghyeon Ye · Doyoung Kim · Lajanugen Logeswaran · Moontae Lee · Kyungjae Lee · Minjoon Seo

[ Exhibit Hall 1 ]

Recently, Language Models (LMs) instruction-tuned on multiple tasks, also known as multitask-prompted fine-tuning (MT), have shown capabilities to generalize to unseen tasks. Previous work has shown that scaling the number of finetuning datasets and instructions is the key component in making stronger MT LMs. In this work, we report surprising findings that show an expert LM trained on just a single task can outperform an MT LM trained with 300+ different tasks on 11 different unseen datasets and on 13 datasets of the BIG-bench benchmark by an average of 3.20% and 1.29%, respectively. This finding casts doubt on the previously held belief that simply scaling the number of tasks makes stronger MT LMs. Leveraging this finding, we further show that this distributed approach of training multiple expert LMs instead of a single MT LM for zero-shot inference possesses many benefits including (1) avoiding negative task transfer that often occurs during instruction tuning, (2) being able to continually learn new tasks without having to re-train on previous tasks to avoid catastrophic forgetting, and (3) showing compositional capabilities when merging individual experts together.

Poster
Haohe Liu · Zehua Chen · Yi Yuan · Xinhao Mei · Xubo Liu · Danilo Mandic · Wenwu Wang · Mark D Plumbley

[ Exhibit Hall 1 ]

Text-to-audio (TTA) systems have recently gained attention for their ability to synthesize general audio based on text descriptions. However, previous studies in TTA have limited generation quality with high computational costs. In this study, we propose AudioLDM, a TTA system that is built on a latent space to learn continuous audio representations from contrastive language-audio pretraining (CLAP) embeddings. The pretrained CLAP models enable us to train LDMs with audio embeddings while providing text embeddings as the condition during sampling. By learning the latent representations of audio signals without modelling the cross-modal relationship, AudioLDM improves both generation quality and computational efficiency. Trained on AudioCaps with a single GPU, AudioLDM achieves state-of-the-art TTA performance compared to other open-sourced systems, measured by both objective and subjective metrics. AudioLDM is also the first TTA system that enables various text-guided audio manipulations (e.g., style transfer) in a zero-shot fashion. Our implementation and demos are available at https://audioldm.github.io.

Poster
Francesco Tonolini · Nikolaos Aletras · Yunlong Jiao · Gabriella Kazai

[ Exhibit Hall 1 ]

Recent advances in weak supervision (WS) techniques allow to mitigate the enormous cost and effort of human data annotation for supervised machine learning by automating it using simple rule-based labelling functions (LFs). However, LFs need to be carefully designed, often requiring expert domain knowledge and extensive validation for existing WS methods to be effective. To tackle this, we propose the Weak Supervision Variational Auto-Encoder (WS-VAE), a novel framework that combines unsupervised representation learning and weak labelling to reduce the dependence of WS on expert and manual engineering of LFs. Our technique learns from inputs and weak labels jointly to capture the input signals distribution with a latent space. The unsupervised representation component of the WS-VAE regularises the inference of weak labels, while a specifically designed decoder allows the model to learn the relevance of LFs for each input. These unique features lead to considerably improved robustness to the quality of LFs, compared to existing methods. An extensive empirical evaluation on a standard WS benchmark shows that our WS-VAE is competitive to state-of-the-art methods and substantially more robust to LF engineering.

Poster
Can Chen · Yingxue Zhang · Xue Liu · Mark Coates

[ Exhibit Hall 1 ]

Offline model-based optimization aims to maximize a black-box objective function with a static dataset of designs and their scores. In this paper, we focus on biological sequence design to maximize some sequence score. A recent approach employs bidirectional learning, combining a forward mapping for exploitation and a backward mapping for constraint, and it relies on the neural tangent kernel (NTK) of an infinitely wide network to build a proxy model. Though effective, the NTK cannot learn features because of its parametrization, and its use prevents the incorporation of powerful pre-trained Language Models (LMs) that can capture the rich biophysical information in millions of biological sequences. We adopt an alternative proxy model, adding a linear head to a pre-trained LM, and propose a linearization scheme. This yields a closed-form loss and also takes into account the biophysical information in the pre-trained LM. In addition, the forward mapping and the backward mapping play different roles and thus deserve different weights during sequence optimization. To achieve this, we train an auxiliary model and leverage its weak supervision signal via a bi-level optimization framework to effectively learn how to balance the two mappings. Further, by extending the framework, we develop the first learning rate …
Poster
Yaniv Leviathan · Matan Kalman · Yossi Matias

[ Exhibit Hall 1 ]

Inference from large autoregressive models like Transformers is slow - decoding K tokens takes K serial runs of the model. In this work we introduce speculative decoding - an algorithm to sample from autoregressive models faster without any changes to the outputs, by computing several tokens in parallel. At the heart of our approach lie the observations that (1) hard language-modeling tasks often include easier subtasks that can be approximated well by more efficient models, and (2) using speculative execution and a novel sampling method, we can make exact decoding from the large models faster, by running them in parallel on the outputs of the approximation models, potentially generating several tokens concurrently, and without changing the distribution. Our method can accelerate existing off-the-shelf models without retraining or architecture changes. We demonstrate it on T5-XXL and show a 2X-3X acceleration compared to the standard T5X implementation, with identical outputs.

Poster
Kirill Neklyudov · Rob Brekelmans · Daniel Severo · Alireza Makhzani

[ Exhibit Hall 1 ]

Learning the continuous dynamics of a system from snapshots of its temporal marginals is a problem which appears throughout natural sciences and machine learning, including in quantum systems, single-cell biological data, and generative modeling. In these settings, we assume access to cross-sectional samples that are uncorrelated over time, rather than full trajectories of samples. In order to better understand the systems under observation, we would like to learn a model of the underlying process that allows us to propagate samples in time and thereby simulate entire individual trajectories. In this work, we propose Action Matching, a method for learning a rich family of dynamics using only independent samples from its time evolution. We derive a tractable training objective, which does not rely on explicit assumptions about the underlying dynamics and does not require back-propagation through differential equations or optimal transport solvers. Inspired by connections with optimal transport, we derive extensions of Action Matching to learn stochastic differential equations and dynamics involving creation and destruction of probability mass. Finally, we showcase applications of Action Matching by achieving competitive performance in a diverse set of experiments from biology, physics, and generative modeling.

Poster
Enayat Ullah · Christopher Choquette-Choo · Peter Kairouz · Sewoong Oh

[ Exhibit Hall 1 ]

We propose new techniques for reducing communication in private federated learning without the need for setting or tuning compression rates. Our on-the-fly methods automatically adjust the compression rate based on the error induced during training, while maintaining provable privacy guarantees through the use of secure aggregation and differential privacy. Our techniques are provably instance-optimal for mean estimation, meaning that they can adapt to the ``hardness of the problem'' with minimal interactivity. We demonstrate the effectiveness of our approach on real-world datasets by achieving favorable compression rates without the need for tuning.

Poster
Vasilii Feofanov · Malik TIOMOKO · Aladin Virmaux

[ Exhibit Hall 1 ]

We propose a theoretical framework to analyze semi-supervised classification under the low density separation assumption in a high-dimensional regime. In particular, we introduce QLDS, a linear classification model, where the low density separation assumption is implemented via quadratic margin maximization. The algorithm has an explicit solution with rich theoretical properties, and we show that particular cases of our algorithm are the least-square support vector machine in the supervised case, the spectral clustering in the fully unsupervised regime, and a class of semi-supervised graph-based approaches. As such, QLDS establishes a smooth bridge between these supervised and unsupervised learning methods. Using recent advances in the random matrix theory, we formally derive a theoretical evaluation of the classification error in the asymptotic regime. As an application, we derive a hyperparameter selection policy that finds the best balance between the supervised and the unsupervised terms of our learning criterion. Finally, we provide extensive illustrations of our framework, as well as an experimental study on several benchmarks to demonstrate that QLDS, while being computationally more efficient, improves over cross-validation for hyperparameter selection, indicating a high promise of the usage of random matrix theory for semi-supervised model selection.

Poster
Adam Yang · Maxime Robeyns · Edward Milsom · Ben Anson · Nandi Schoots · Laurence Aitchison

[ Exhibit Hall 1 ]

The successes of modern deep machine learning methods are founded on their ability to transform inputs across multiple layers to build good high-level representations. It is therefore critical to understand this process of representation learning. However, standard theoretical approaches (formally NNGPs) involving infinite width limits eliminate representation learning. We therefore develop a new infinite width limit, the Bayesian representation learning limit, that exhibits representation learning mirroring that in finite-width models, yet at the same time, retains some of the simplicity of standard infinite-width limits. In particular, we show that Deep Gaussian processes (DGPs) in the Bayesian representation learning limit have exactly multivariate Gaussian posteriors, and the posterior covariances can be obtained by optimizing an interpretable objective combining a log-likelihood to improve performance with a series of KL-divergences which keep the posteriors close to the prior. We confirm these results experimentally in wide but finite DGPs. Next, we introduce the possibility of using this limit and objective as a flexible, deep generalisation of kernel methods, that we call deep kernel machines (DKMs). Like most naive kernel methods, DKMs scale cubically in the number of datapoints. We therefore use methods from the Gaussian process inducing point literature to develop a sparse DKM …

Poster
Antoine Moulin · Gergely Neu

[ Exhibit Hall 1 ]

We propose a new method for optimistic planning in infinite-horizon discounted Markov decision processes based on the idea of adding regularization to the updates of an otherwise standard approximate value iteration procedure. This technique allows us to avoid contraction and monotonicity arguments typically required by existing analyses of approximate dynamic programming methods, and in particular to use approximate transition functions estimated via least-squares procedures in MDPs with linear function approximation. We use our method to recover known guarantees in tabular MDPs and to provide a computationally efficient algorithm for learning near-optimal policies in discounted linear mixture MDPs from a single stream of experience, and show it achieves near-optimal statistical guarantees.

Poster
Sami Davies · Benjamin Moseley · Heather Newman

[ Exhibit Hall 1 ]

We introduce fast algorithms for correlation clustering with respect to the Min Max objective that provide constant factor approximations on complete graphs. Our algorithms are the first purely combinatorial approximation algorithms for this problem. We construct a novel semi-metric on the set of vertices, which we call the correlation metric, that indicates to our clustering algorithms whether pairs of nodes should be in the same cluster. The paper demonstrates empirically that, compared to prior work, our algorithms sacrifice little in the objective quality to obtain significantly better run-time. Moreover, our algorithms scale to larger networks that are effectively intractable for known algorithms.

Poster
Ioannis Panageas · EFSTRATIOS PANTELEIMON SKOULAKIS · Luca Viano · Xiao Wang · Volkan Cevher

[ Exhibit Hall 1 ]

In this work, we propose introduce a variant of online stochastic gradient descent and prove it converges to Nash equilibria and simultaneously it has sublinear regret for the class of congestion games in the semi-bandit feedback setting. Our proposed method admits convergence rates depending only polynomially on the number of players and the number of facilities, but not on the size of the action set, which can be exponentially large in terms of the number of facilities. Moreover, the running time of our method has polynomial-time dependence on the implicit description of the game. Our analysis exploits techniques from convex geometry, in particular Caratheodory's theorem and recent advances in non-convex stochastic optimization. This work improves upon and answers an open question from (Cui et al 2022).

Poster
Chong Liu · Yu-Xiang Wang

[ Exhibit Hall 1 ]

We consider the problem of global optimization with noisy zeroth order oracles — a well-motivated problem useful for various applications ranging from hyper-parameter tuning for deep learning to new material design. Existing work relies on Gaussian processes or other non-parametric family, which suffers from the curse of dimensionality. In this paper, we propose a new algorithm GO-UCB that leverages a parametric family of functions (e.g., neural networks) instead. Under a realizable assumption and a few other mild geometric conditions, we show that GO-UCB achieves a cumulative regret of $\tilde{O}(\sqrt{T})$ where $T$ is the time horizon. At the core of GO-UCB is a carefully designed uncertainty set over parameters based on gradients that allows optimistic exploration. Synthetic and real-world experiments illustrate GO-UCB works better than popular Bayesian optimization approaches, even if the model is misspecified.
Poster
Mohammed Nowaz Rabbani Chowdhury · Shuai Zhang · Meng Wang · Sijia Liu · Pin-Yu Chen

[ Exhibit Hall 1 ]

In deep learning, mixture-of-experts (MoE) activates one or few experts (sub-networks) on a per-sample or per-token basis, resulting in significant computation reduction. The recently proposed patch-level routing in MoE (pMoE) divides each input into $n$ patches (or tokens) and sends $l$ patches ($l\ll n$) to each expert through prioritized routing. pMoE has demonstrated great empirical success in reducing training and inference costs while maintaining test accuracy. However, the theoretical explanation of pMoE and the general MoE remains elusive. Focusing on a supervised classification task using a mixture of two-layer convolutional neural networks (CNNs), we show for the first time that pMoE provably reduces the required number of training samples to achieve desirable generalization (referred to as the sample complexity) by a factor in the polynomial order of $n/l$, and outperforms its single-expert counterpart of the same or even larger capacity. The advantage results from the discriminative routing property, which is justified in both theory and practice that pMoE routers can filter label-irrelevant patches and route similar class-discriminative patches to the same expert. Our experimental results on MNIST, CIFAR-10, and CelebA support our theoretical findings on pMoE's generalization and show that pMoE can avoid learning spurious correlations.
Poster
Shikuang Deng · Hao Lin · Yuhang Li · Shi Gu

[ Exhibit Hall 1 ]

Spiking neural networks provide an alternative solution to conventional artificial neural networks with energy-saving and high-efficiency characteristics after hardware implantation. However, due to its non-differentiable activation function and the temporally delayed accumulation in outputs, the direct training of SNNs is extraordinarily tough even adopting a surrogate gradient to mimic the backpropagation. For SNN training, this non-differentiability causes the intrinsic gradient error that would be magnified through layerwise backpropagation, especially through multiple layers. In this paper, we propose a novel approach to reducing gradient error from a new perspective called surrogate module learning (SML). Surrogate module learning tries to construct a shortcut path to back-propagate more accurate gradient to a certain SNN part utilizing the surrogate modules. Then, we develop a new loss function for concurrently training the network and enhancing the surrogate modules' surrogate capacity. We demonstrate that when the outputs of surrogate modules are close to the SNN output, the fraction of the gradient error drops significantly. Our method consistently and significantly enhances the performance of SNNs on all experiment datasets, including CIFAR-10/100, ImageNet, and ES-ImageNet. For example, for spiking ResNet-34 architecture on ImageNet, we increased the SNN accuracy by 3.46%.

Poster
Fan Bao · Shen Nie · Kaiwen Xue · Chongxuan Li · Shi Pu · Yaole Wang · Gang Yue · Yue Cao · Hang Su · Jun Zhu

[ Exhibit Hall 1 ]

This paper proposes a unified diffusion framework (dubbed UniDiffuser) to fit all distributions relevant to a set of multi-modal data in one model. Our key insight is -- learning diffusion models for marginal, conditional, and joint distributions can be unified as predicting the noise in the perturbed data, where the perturbation levels (i.e. timesteps) can be different for different modalities. Inspired by the unified view, UniDiffuser learns all distributions simultaneously with a minimal modification to the original diffusion model -- perturbs data in all modalities instead of a single modality, inputs individual timesteps in different modalities, and predicts the noise of all modalities instead of a single modality. UniDiffuser is parameterized by a transformer for diffusion models to handle input types of different modalities. Implemented on large-scale paired image-text data, UniDiffuser is able to perform image, text, text-to-image, image-to-text, and image-text pair generation by setting proper timesteps without additional overhead. In particular, UniDiffuser is able to produce perceptually realistic samples in all tasks and its quantitative results (e.g., the FID and CLIP score) are not only superior to existing general-purpose models but also comparable to the bespoken models (e.g., Stable Diffusion and DALL-E 2) in representative tasks (e.g., text-to-image generation).

Poster
Yu Yao · Mingming Gong · Yuxuan Du · Jun Yu · Bo Han · Kun Zhang · Tongliang Liu

[ Exhibit Hall 1 ]

In real life, accurately annotating large-scale datasets is sometimes difficult. Datasets used for training deep learning models are likely to contain label noise. To make use of the dataset containing label noise, two typical methods have been proposed. One is to employ the semi-supervised method by exploiting labeled confident examples and unlabeled unconfident examples. The other one is to model label noise and design statistically consistent classifiers. A natural question remains unsolved: which one should be used for a specific real-world application? In this paper, we answer the question from the perspective of causal data generative process. Specifically, the performance of the semi-supervised based method depends heavily on the data generative process while the method modeling label-noise is not influenced by the generation process. For example, for a given dataset, if it has a causal generative structure that the features cause the label, the semi-supervised based method would not be helpful. When the causal structure is unknown, we provide an intuitive method to discover the causal structure for a given dataset containing label noise.

Poster
Aoran Wang · Jun Pang

[ Exhibit Hall 1 ]

In this paper, we propose a novel framework, Active Learning based Structural Inference (ALaSI), to infer the existence of directed connections from observed agents' states over a time period in a dynamical system. With the help of deep active learning, ALaSI is competent in learning the representation of connections with a relatively small pool of prior knowledge. Moreover, based on information theory, the proposed inter- and out-of-scope message learning pipelines are remarkably beneficial to structural inference for large dynamical systems. We evaluate ALaSI on various large datasets including simulated systems and real-world networks, to demonstrate that ALaSI is able to outperform previous methods in precisely inferring the existence of connections in large systems under either supervised learning or unsupervised learning.

Poster
Omid Memarrast · Linh Vu · Brian Ziebart

[ Exhibit Hall 1 ]

Abstract
The fairness of machine learning-based decisions has become an increasingly important focus in the design of supervised machine learning methods. Most fairness approaches optimize a specified trade-off between performance measure(s) (e.g., accuracy, log loss, or AUC) and fairness metric(s) (e.g., demographic parity, equalized odds). This begs the question: are the right performance-fairness trade-offs being specified? We instead re-cast fair machine learning as an imitation learning task by introducing superhuman fairness, which seeks to simultaneously outperform human decisions on multiple predictive performance and fairness measures. We demonstrate the benefits of this approach given suboptimal decisions.
Poster
Lucile Ter-Minassian · Oscar Clivio · Karla DiazOrdaz · Robin Evans · Christopher Holmes

[ Exhibit Hall 1 ]

Predictive black-box models can exhibit high-accuracy but their opaque nature hinders their uptake in safety-critical deployment environments. Explanation methods (XAI) can provide confidence for decision-making through increased transparency. However, existing XAI methods are not tailored towards models in sensitive domains where one predictor is of special interest, such as a treatment effect in a clinical model, or ethnicity in policy models. We introduce Path-Wise Shapley effects (PWSHAP), a framework for assessing the targeted effect of a binary (e.g. treatment) variable from a complex outcome model. Our approach augments the predictive model with a user-defined directed acyclic graph (DAG). The method then uses the graph alongside on-manifold Shapley values to identify effects along causal pathways whilst maintaining robustness to adversarial attacks. We establish error bounds for the identified path-wise Shapley effects and for Shapley values. We show PWSHAP can perform local bias and mediation analyses with faithfulness to the model. Further, if the targeted variable is randomised we can quantify local effect modification. We demonstrate the resolution, interpretability and true locality of our approach on examples and a real-world experiment.

Poster
Insung Kong · Yuha Park · Joonhyuk Jung · Kwonsang Lee · Yongdai Kim

[ Exhibit Hall 1 ]

Weighting methods in causal inference have been widely used to achieve a desirable level of covariate balancing. However, the existing weighting methods have desirable theoretical properties only when a certain model, either the propensity score or outcome regression model, is correctly specified. In addition, the corresponding estimators do not behave well for finite samples due to large variance even when the model is correctly specified. In this paper, we consider to use the integral probability metric (IPM), which is a metric between two probability measures, for covariate balancing. Optimal weights are determined so that weighted empirical distributions for the treated and control groups have the smallest IPM value for a given set of discriminators. We prove that the corresponding estimator can be consistent without correctly specifying any model (neither the propensity score nor the outcome regression model). In addition, we empirically show that our proposed method outperforms existing weighting methods with large margins for finite samples.

Poster
Miruna Oprescu · Jacob Dorn · Marah Ghoummaid · Andrew Jesson · Nathan Kallus · Uri Shalit

[ Exhibit Hall 1 ]

Estimating heterogeneous treatment effects from observational data is a crucial task across many fields, helping policy and decision-makers take better actions. There has been recent progress on robust and efficient methods for estimating the conditional average treatment effect (CATE) function, but these methods often do not take into account the risk of hidden confounding, which could arbitrarily and unknowingly bias any causal estimate based on observational data. We propose a meta-learner called the B-Learner, which can efficiently learn sharp bounds on the CATE function under limits on the level of hidden confounding. We derive the B-Learner by adapting recent results for sharp and valid bounds of the average treatment effect (Dorn et al., 2021) into the framework given by Kallus & Oprescu (2023) for robust and model-agnostic learning of conditional distributional treatment effects. The B-Learner can use any function estimator such as random forests and deep neural networks, and we prove its estimates are valid, sharp, efficient, and have a quasi-oracle property with respect to the constituent estimators under more general conditions than existing methods. Semi-synthetic experimental comparisons validate the theoretical findings, and we use real-world data demonstrate how the method might be used in practice.

Poster
Rui Qiao · Xinyi Xu · Bryan Kian Hsiang Low

[ Exhibit Hall 1 ]

Abstract
Collaborative causal inference (CCI) aims to improve the estimation of the causal effect of treatment variables by utilizing data aggregated from multiple self-interested parties. Since their source data are valuable proprietary assets that can be costly or tedious to obtain, every party has to be incentivized to be willing to contribute to the collaboration, such as with a guaranteed fair and sufficiently valuable reward (than performing causal inference on its own). This paper presents a reward scheme designed using the unique statistical properties that are required by causal inference to guarantee certain desirable incentive criteria (e.g., fairness, benefit) for the parties based on their contributions. To achieve this, we propose a data valuation function to value parties' data for CCI based on the distributional closeness of its resulting treatment effect estimate to that utilizing the aggregated data from all parties. Then, we show how to value the parties' rewards fairly based on a modified variant of the Shapley value arising from our proposed data valuation for CCI. Finally, the Shapley fair rewards to the parties are realized in the form of improved, stochastically perturbed treatment effect estimates. We empirically demonstrate the effectiveness of our reward scheme using simulated and real-world …
Poster
Christopher Morris · Floris Geerts · Jan M Tönshoff · Martin Grohe

[ Exhibit Hall 1 ]

Recently, many works studied the expressive power of graph neural networks (GNNs) by linking it to the $1$-dimensional Weisfeiler-Leman algorithm ($1\text{-}\mathsf{WL}$). Here, the $1\text{-}\mathsf{WL}$ is a well-studied heuristic for the graph isomorphism problem, which iteratively colors or partitions a graph's vertex set. While this connection has led to significant advances in understanding and enhancing GNNs' expressive power, it does not provide insights into their generalization performance, i.e., their ability to make meaningful predictions beyond the training set. In this paper, we study GNNs' generalization ability through the lens of Vapnik-Chervonenkis (VC) dimension theory in two settings, focusing on graph-level predictions. First, when no upper bound on the graphs' order is known, we show that the bitlength of GNNs' weights tightly bounds their VC dimension. Further, we derive an upper bound for GNNs' VC dimension using the number of colors produced by the $1\text{-}\mathsf{WL}$. Secondly, when an upper bound on the graphs' order is known, we show a tight connection between the number of graphs distinguishable by the $1\text{-}\mathsf{WL}$ and GNNs' VC dimension. Our empirical study confirms the validity of our theoretical findings.
Poster
Quanqi Hu · Zi-Hao Qiu · Zhishuai Guo · Lijun Zhang · Tianbao Yang

[ Exhibit Hall 1 ]

In this paper, we consider non-convex multi-block bilevel optimization (MBBO) problems, which involve $m\gg 1$ lower level problems and have important applications in machine learning. Designing a stochastic gradient and controlling its variance is more intricate due to the hierarchical sampling of blocks and data and the unique challenge of estimating hyper-gradient. We aim to achieve three nice properties for our algorithm: (a) matching the state-of-the-art complexity of standard BO problems with a single block; (b) achieving parallel speedup by sampling $I$ blocks and sampling $B$ samples for each sampled block per-iteration; (c) avoiding the computation of the inverse of a high-dimensional Hessian matrix estimator. However, it is non-trivial to achieve all of these by observing that existing works only achieve one or two of these properties. To address the involved challenges for achieving (a, b, c), we propose two stochastic algorithms by using advanced blockwise variance-reduction techniques for tracking the Hessian matrices (for low-dimensional problems) or the Hessian-vector products (for high-dimensional problems), and prove an iteration complexity of $O(\frac{m\epsilon^{-3}\mathbb{I}(I \textless m)}{I\sqrt{I}}+\frac{m\epsilon^{-3}}{I\sqrt{B}})$ for finding an $\epsilon$-stationary point under appropriate conditions. We also conduct experiments to verify the effectiveness of the proposed algorithms comparing with existing MBBO algorithms.
Poster
Yan Dai · Haipeng Luo · Chen-Yu Wei · Julian Zimmert

[ Exhibit Hall 1 ]

We consider learning in an adversarial Markov Decision Process (MDP) where the loss functions can change arbitrarily over $K$ episodes and the state space can be arbitrarily large. We assume that the Q-function of any policy is linear in some known features, that is, a linear function approximation exists. The best existing regret upper bound for this setting (Luo et al., 2021) is of order $\tilde{\mathcal O}(K^{2/3})$ (omitting all other dependencies), given access to a simulator. This paper provides two algorithms that improve the regret to $\tilde{\mathcal O}(\sqrt K)$ in the same setting. Our first algorithm makes use of a refined analysis of the Follow-the-Regularized-Leader (FTRL) algorithm with the log-barrier regularizer. This analysis allows the loss estimators to be arbitrarily negative and might be of independent interest. Our second algorithm develops a magnitude-reduced loss estimator, further removing the polynomial dependency on the number of actions in the first algorithm and leading to the optimal regret bound (up to logarithmic terms and dependency on the horizon). Moreover, we also extend the first algorithm to simulator-free linear MDPs, which achieves $\tilde{\mathcal O}(K^{8/9})$ regret and greatly improves over the best existing bound $\tilde{\mathcal O}(K^{14/15})$. This algorithm relies on a better alternative to the …
Poster
Raef Bassily · Ziteng Sun

[ Exhibit Hall 1 ]

We study the problem of differentially private (DP) stochastic convex optimization (SCO) under the notion of user-level differential privacy. In this problem, there are $n$ users, each contributing $m>1$ samples to the input dataset of the private SCO algorithm, and the notion of indistinguishability embedded in DP is w.r.t. replacing the entire local dataset of any given user. Under smoothness conditions of the loss, we establish the optimal rates for user-level DP-SCO in both the central and local models of DP. In particular, we show, roughly, that the optimal rate is $\frac{1}{\sqrt{nm}}+\frac{\sqrt{d}}{\varepsilon n \sqrt{m}}$ in the central setting and is $\frac{\sqrt{d}}{\varepsilon \sqrt{nm}}$ in the local setting, where $d$ is the dimensionality of the problem and $\varepsilon$ is the privacy parameter. Our algorithms combine new user-level DP mean estimation techniques with carefully designed first-order stochastic optimization methods. For the central DP setting, our optimal rate improves over the rate attained for the same setting in Levy et al. (2021) by $\sqrt{d}$ factor. One of the main ingredients that enabled such an improvement is a novel application of the generalization properties of DP in the context of multi-pass stochastic gradient methods.
Poster
Emmanuel Esposito · Saeed Masoudian · Hao Qiu · Dirk van der Hoeven · Nicolò Cesa-Bianchi · Yevgeny Seldin

[ Exhibit Hall 1 ]

We study a $K$-armed bandit with delayed feedback and intermediate observations. We consider a model, where intermediate observations have a form of a finite state, which is observed immediately after taking an action, whereas the loss is observed after an adversarially chosen delay. We show that the regime of the mapping of states to losses determines the complexity of the problem, irrespective of whether the mapping of actions to states is stochastic or adversarial. If the mapping of states to losses is adversarial, then the regret rate is of order $\sqrt{(K+d)T}$ (within log factors), where $T$ is the time horizon and $d$ is a fixed delay. This matches the regret rate of a $K$-armed bandit with delayed feedback and without intermediate observations, implying that intermediate observations are not helpful. However, if the mapping of states to losses is stochastic, we show that the regret grows at a rate of $\sqrt{\big(K+\min\\{|\mathcal{S}|,d\\}\big)T}$ (within log factors), implying that if the number $|\mathcal{S}|$ of states is smaller than the delay, then intermediate observations help. We also provide refined high-probability regret upper bounds for non-uniform delays, together with experimental validation of our algorithms.
Poster
Aditya Bhaskara · Ashok Cutkosky · Ravi Kumar · Manish Purohit

[ Exhibit Hall 1 ]

We study variants of the online linear optimization (OLO) problem with bandit feedback, where the algorithm has access to external information about the unknown cost vector. Our motivation is the recent body of work on using such ``hints'' towards improving regret bounds for OLO problems in the full-information setting. Unlike in the full-information OLO setting, with bandit feedback, we first show that one cannot improve the standard regret bounds of $\tilde{O}(\sqrt{T})$ by using hints, even if they are always well-correlated with the cost vector. In contrast, if the algorithm is empowered to issue queries and if all the responses are correct, then we show $O(\log T)$ regret is achievable. We then show how to make this result more robust---when some of the query responses can be adversarial---by using a little feedback on the quality of the responses.
Poster
Xinyu Luo · Christopher Musco · Cas Widdershoven

[ Exhibit Hall 1 ]

Finding the mode of a high dimensional probability distribution $\mathcal{D}$ is a fundamental algorithmic problem in statistics and data analysis. There has been particular interest in efficient methods for solving the problem when $\mathcal{D}$ is represented as a mixture model or kernel density estimate, although few algorithmic results with worst-case approximation and runtime guarantees are known. In this work, we significantly generalize a result of (LeeLiMusco:2021) on mode approximation for Gaussian mixture models. We develop randomized dimensionality reduction methods for mixtures involving a broader class of kernels, including the popular logistic, sigmoid, and generalized Gaussian kernels. As in Lee et al.'s work, our dimensionality reduction results yield quasi-polynomial algorithms for mode finding with multiplicative accuracy $(1-\epsilon)$ for any $\epsilon > 0$. Moreover, when combined with gradient descent, they yield efficient practical heuristics for the problem. In addition to our positive results, we prove a hardness result for box kernels, showing that there is no polynomial time algorithm for finding the mode of a kernel density estimate, unless $\mathit{P} = \mathit{NP}$. Obtaining similar hardness results for kernels used in practice (like Gaussian or logistic kernels) is an interesting future direction.
Poster
Lingxiao Huang · Shaofeng Jiang · Jianing Lou

[ Exhibit Hall 1 ]

We study the power of uniform sampling for $k$-Median in various metric spaces. We relate the query complexity for approximating $k$-Median, to a key parameter of the dataset, called the balancedness $\beta \in (0, 1]$ (with $1$ being perfectly balanced). We show that any algorithm must make $\Omega(1 / \beta)$ queries to the point set in order to achieve $O(1)$-approximation for $k$-Median. This particularly implies existing constructions of coresets, a popular data reduction technique, cannot be query-efficient. On the other hand, we show a simple uniform sample of $\mathrm{poly}(k \epsilon^{-1} \beta^{-1})$ points suffices for $(1 + \epsilon)$-approximation for $k$-Median for various metric spaces, which nearly matches the lower bound. We conduct experiments to verify that in many real datasets, the balancedness parameter is usually well bounded, and that the uniform sampling performs consistently well even for the case with moderately large balancedness, which justifies that uniform sampling is indeed a viable approach for solving $k$-Median.
Poster
Marco Cuturi · Michal Klein · Pierre Ablin

[ Exhibit Hall 1 ]

Optimal transport (OT) theory focuses, among all maps $T:\mathbb{R}^d\rightarrow \mathbb{R}^d$ that can morph a probability measure $\mu$ onto another $\nu$, on those that are the ``thriftiest'', i.e. such that the average cost $c(x, T(x))$ between $x$ and its image $T(x)$ is as small as possible. Many computational approaches have been proposed to estimate such *Monge* maps when $c$ is the squared-Euclidean distance, e.g., using entropic maps [Pooladian+2021], or input convex neural networks [Makkuva+2020, Korotin+2020]. We propose a new research direction, that leverages a specific translation invariant cost $c(x, y):=h(x-y)$ inspired by the elastic net. Here, $h:=\tfrac{1}{2}\|\cdot\|_2^2+\tau(\cdot)$, where $\tau$ is a convex function. We highlight a surprising link tying together a generalized entropic map for $h$, *Bregman* centroids induced by $h$, and the proximal operator of $\tau$. We show how setting $\tau$ to be a sparsity-inducing norm results in the first application of *Occam*'s razor to transport. These maps yield, mechanically, displacement vectors $\Delta(x):= T(x)-x$ that are sparse, with sparsity patterns that vary depending on $x$. We showcase the ability of our method to estimate meaningful OT maps for high-dimensional single-cell transcription data. We use our methods in the $34000$-d space of gene counts for cells, *without* using a prior dimensionality …
Poster
Ameya Velingker · Maximilian Vötsch · David Woodruff · Samson Zhou

[ Exhibit Hall 1 ]

We introduce efficient $(1+\varepsilon)$-approximation algorithms for the binary matrix factorization (BMF) problem, where the inputs are a matrix $\mathbf{A}\in\{0,1\}^{n\times d}$, a rank parameter $k>0$, as well as an accuracy parameter $\varepsilon>0$, and the goal is to approximate $\mathbf{A}$ as a product of low-rank factors $\mathbf{U}\in\{0,1\}^{n\times k}$ and $\mathbf{V}\in\{0,1\}^{k\times d}$. Equivalently, we want to find $\mathbf{U}$ and $\mathbf{V}$ that minimize the Frobenius loss $\|\mathbf{U}\mathbf{V} - \mathbf{A}\|_F^2$. Before this work, the state-of-the-art for this problem was the approximation algorithm of Kumar et. al. [ICML 2019], which achieves a $C$-approximation for some constant $C\ge 576$. We give the first $(1+\varepsilon)$-approximation algorithm using running time singly exponential in $k$, where $k$ is typically a small integer. Our techniques generalize to other common variants of the BMF problem, admitting bicriteria $(1+\varepsilon)$-approximation algorithms for $L_p$ loss functions and the setting where matrix operations are performed in $\mathbb{F}_2$. Our approach can be implemented in standard big data models, such as the streaming or distributed models.
Poster
Zhao Song · Xin Yang · Yuanyuan Yang · Lichen Zhang

[ Exhibit Hall 1 ]

Projection maintenance is one of the core data structure tasks. Efficient data structures for projection maintenance have led to recent breakthroughs in many convex programming algorithms. In this work, we further extend this framework to the Kronecker product structure. Given a constraint matrix ${\sf A}$ and a positive semi-definite matrix $W\in \mathbb{R}^{n\times n}$ with a sparse eigenbasis, we consider the task of maintaining the projection in the form of ${\sf B}^\top({\sf B}{\sf B}^\top)^{-1}{\sf B}$, where ${\sf B}={\sf A}(W\otimes I)$ or ${\sf B}={\sf A}(W^{1/2}\otimes W^{1/2})$. At each iteration, the weight matrix $W$ receives a low rank change and we receive a new vector $h$. The goal is to maintain the projection matrix and answer the query ${\sf B}^\top({\sf B}{\sf B}^\top)^{-1}{\sf B}h$ with good approximation guarantees. We design a fast dynamic data structure for this task and it is robust against an adaptive adversary. Following the beautiful and pioneering work of [Beimel, Kaplan, Mansour, Nissim, Saranurak and Stemmer, STOC'22], we use tools from differential privacy to reduce the randomness required by the data structure and further improve the running time.
Poster
Jeongyeol Kwon · Yonathan Efroni · Constantine Caramanis · Shie Mannor

[ Exhibit Hall 1 ]

We consider episodic reinforcement learning in reward-mixing Markov decision processes (RMMDPs): at the beginning of every episode nature randomly picks a latent reward model among $M$ candidates and an agent interacts with the MDP throughout the episode for $H$ time steps. Our goal is to learn a near-optimal policy that nearly maximizes the $H$ time-step cumulative rewards in such a model. Prior work established an upper bound for RMMDPs with $M=2$. In this work, we resolve several open questions for the general RMMDP setting. We consider an arbitrary $M\ge2$ and provide a sample-efficient algorithm--$EM^2$--that outputs an $\epsilon$-optimal policy using $O \left(\epsilon^{-2} \cdot S^d A^d \cdot \text{poly}(H, Z)^d \right)$ episodes, where $S, A$ are the number of states and actions respectively, $H$ is the time-horizon, $Z$ is the support size of reward distributions and $d=O(\min(M,H))$. We also provide a $(SA)^{\Omega(\sqrt{M})} / \epsilon^{2}$ lower bound, supporting that super-polynomial sample complexity in $M$ is necessary.
Poster
Yecheng Xue · Xiaoyu Chen · Tongyang Li · Shaofeng Jiang

[ Exhibit Hall 1 ]

$k$-Clustering in $\mathbb{R}^d$ (e.g., $k$-median and $k$-means) is a fundamental machine learning problem. While near-linear time approximation algorithms were known in the classical setting for a dataset with cardinality $n$, it remains open to find sublinear-time quantum algorithms. We give quantum algorithms that find coresets for $k$-clustering in $\mathbb{R}^d$ with $\tilde{O}(\sqrt{nk}d^{3/2})$ query complexity. Our coreset reduces the input size from $n$ to $\mathrm{poly}(k\epsilon^{-1}d)$, so that existing $\alpha$-approximation algorithms for clustering can run on top of it and yield $(1 + \epsilon)\alpha$-approximation. This eventually yields a quadratic speedup for various $k$-clustering approximation algorithms. We complement our algorithm with a nearly matching lower bound, that any quantum algorithm must make $\Omega(\sqrt{nk})$ queries in order to achieve even $O(1)$-approximation for $k$-clustering.
Poster
Ora Nova Fandina · Mikael Møller Høgsgaard · Kasper Green Larsen

[ Exhibit Hall 1 ]

The Johnson-Lindenstaruss lemma (Johnson & Lindenstrauss, 1984) is a cornerstone result in dimensionality reduction, stating it is possible to embed a set of $n$ points in $d$-dimensional Euclidean space into optimal $k=O(\varepsilon^{-2} \ln n)$ dimensions, while preserving all pairwise distances to within a factor $(1 \pm \varepsilon)$. The seminal Fast Johnson-Lindenstrauss (Fast JL) transform by Ailon and Chazelle (SICOMP'09) supports computing the embedding of a data point in $O(d \ln d +k \ln^2 n)$ time, where the $d \ln d$ term comes from multiplication with a $d \times d$ Hadamard matrix and the $k \ln^2 n$ term comes from multiplication with a sparse $k \times d$ matrix. Despite the Fast JL transform being more than a decade old, it is one of the fastest dimensionality reduction techniques for many tradeoffs between $\varepsilon, d$ and $n$. In this work, we give a surprising new analysis of the Fast JL transform, showing that the $k \ln^2 n$ term in the embedding time can be improved to $(k \ln^2 n)/\alpha$ for an $\alpha = \Omega(\min\{\varepsilon^{-1}\ln(1/\varepsilon), \ln n\})$. The improvement follows by using an even sparser matrix. We complement our improved analysis with a lower bound showing that our new analysis is in fact …
Poster
Li'ang Li · Yifei duan · Guanghua Ji · Yongqiang Cai

[ Exhibit Hall 1 ]

The study of universal approximation properties (UAP) for neural networks (NN) has a long history. When the network width is unlimited, only a single hidden layer is sufficient for UAP. In contrast, when the depth is unlimited, the width for UAP needs to be not less than the critical width $w^*_{\min}=\max(d_x,d_y)$, where $d_x$ and $d_y$ are the dimensions of the input and output, respectively. Recently, (Cai, 2022) shows that a leaky-ReLU NN with this critical width can achieve UAP for $L^p$ functions on a compact domain $\mathcal{K}$, *i.e.,* the UAP for $L^p(\mathcal{K},\mathbb{R}^{d_y})$. This paper examines a uniform UAP for the function class $C(\mathcal{K},\mathbb{R}^{d_y})$ and gives the exact minimum width of the leaky-ReLU NN as $w_{\min}=\max(d_x+1,d_y)+1_{d_y=d_x+1}$, which involves the effects of the output dimensions. To obtain this result, we propose a novel lift-flow-discretization approach that shows that the uniform UAP has a deep connection with topological theory.
Poster
Alberto Maria Metelli · Filippo Lazzati · Marcello Restelli

[ Exhibit Hall 1 ]

Inverse reinforcement learning (IRL) denotes a powerful family of algorithms for recovering a reward function justifying the behavior demonstrated by an expert agent. A well-known limitation of IRL is the ambiguity in the choice of the reward function, due to the existence of multiple rewards that explain the observed behavior. This limitation has been recently circumvented by formulating IRL as the problem of estimating the feasible reward set, i.e., the region of the rewards compatible with the expert's behavior. In this paper, we make a step towards closing the theory gap of IRL in the case of finite-horizon problems with a generative model. We start by formally introducing the problem of estimating the feasible reward set, the corresponding PAC requirement, and discussing the properties of particular classes of rewards. Then, we provide the first minimax lower bound on the sample complexity for the problem of estimating the feasible reward set of order ${\Omega}\left( \frac{H^3SA}{\epsilon^2} \left( \log \left(\frac{1}{\delta}\right) + S \right)\right)$, being $S$ and $A$ the number of states and actions respectively, $H$ the horizon, $\epsilon$ the desired accuracy, and $\delta$ the confidence. We analyze the sample complexity of a uniform sampling strategy (US-IRL), proving a matching upper bound up to …
Poster
Qixin Zhang · Wenbing Ye · Zaiyi Chen · Haoyuan Hu · Enhong Chen · Yu Yang

[ Exhibit Hall 1 ]

In this paper, we investigate the online allocation problem of maximizing the overall revenue subject to both lower and upper bound constraints. Compared to the extensively studied online problems with only resource upper bounds, the two-sided constraints affect the prospects of resource consumption more severely. As a result, only limited violations of constraints or pessimistic competitive bounds could be guaranteed. To tackle the challenge, we define a measure of feasibility $\xi^*$ to evaluate the hardness of this problem, and estimate this measurement by an optimization routine with theoretical guarantees. We propose an online algorithm adopting a constructive framework, where we initialize a threshold price vector using the estimation, then dynamically update the price vector and use it for decision-making at each step. It can be shown that the proposed algorithm is $\big(1-O(\frac{\varepsilon}{\xi^*-\varepsilon})\big)$ or $\big(1-O(\frac{\varepsilon}{\xi^*-\sqrt{\varepsilon}})\big)$ competitive with high probability for $\xi^*$ known or unknown respectively. To the best of our knowledge, this is the first result establishing a nearly optimal competitive algorithm for solving two-sided constrained online allocation problems with a high probability of feasibility.
Poster
Yeonju Ro · Zhangyang “Atlas” Wang · Vijay Chidambaram · Aditya Akella

[ Exhibit Hall 1 ]

Training data and model sizes are increasing exponentially. One way to reduce training time and resources is to train with a carefully selected subset of the full dataset. Prior work uses the gradient signals obtained during a warm-up or ``pre-training" phase over the full dataset, for determining the core subset; if the pre-training phase is too small, the gradients obtained are chaotic and unreliable. As a result, the pre-training phase itself incurs significant time/resource overhead, and prior work has not gone beyond hyperparameter search to reduce pre-training time. Our work explicitly aims to reduce this $\textbf{pre-training tax}$ in gradient-based subset training. We develop a principled, scalable approach for pre-training in a distributed setup. Our approach is $\textit{lightweight}$ and $\textit{minimizes communication}$ between distributed worker nodes. It is the first to utilize the concept of model-soup based distributed training $\textit{at initialization}$. The key idea is to minimally train an ensemble of models on small, disjointed subsets of the data; we further employ data-driven sparsity and data augmentation for local worker training to boost ensemble diversity. The centralized model, obtained at the end of pre-training by merging the per-worker models, is found to offer stabilized gradient signals to select subsets, on which the …
Poster
Benjamin Freed · Siddarth Venkatraman · Guillaume Sartoretti · Jeff Schneider · Howie Choset

[ Exhibit Hall 1 ]

Agents that can build temporally abstract representations of their environment are better able to understand their world and make plans on extended time scales, with limited computational power and modeling capacity. However, existing methods for automatically learning temporally abstract world models usually require millions of online environmental interactions and incentivize agents to reach every accessible environmental state, which is infeasible for most real-world robots both in terms of data efficiency and hardware safety. In this paper, we present an approach for simultaneously learning sets of skills and temporally abstract, skill-conditioned world models purely from offline data, enabling agents to perform zero-shot online planning of skill sequences for new tasks. We show that our approach performs comparably to or better than a wide array of state-of-the-art offline RL algorithms on a number of simulated robotics locomotion and manipulation benchmarks, while offering a higher degree of adaptability to new goals. Finally, we show that our approach offers a much higher degree of robustness to perturbations in environmental dynamics, compared to policy-based methods.

Poster
Zihan Zhou · Tianshu Yu

[ Exhibit Hall 1 ]

A complex system with cluttered observations may be a coupled mixture of multiple simple sub-systems corresponding to latent entities. Such sub-systems may hold distinct dynamics in the continuous-time domain; therein, complicated interactions between sub-systems also evolve over time. This setting is fairly common in the real world but has been less considered. In this paper, we propose a sequential learning approach under this setting by decoupling a complex system for handling irregularly sampled and cluttered sequential observations. Such decoupling brings about not only subsystems describing the dynamics of each latent entity but also a meta-system capturing the interaction between entities over time. Specifically, we argue that the meta-system evolving within a simplex is governed by projected differential equations (ProjDEs). We further analyze and provide neural-friendly projection operators in the context of Bregman divergence. Experimental results on synthetic and real-world datasets show the advantages of our approach when facing complex and cluttered sequential data compared to the state-of-the-art.

Poster
Ron Shapira Weber · Oren Freifeld

[ Exhibit Hall 1 ]

In time-series analysis, nonlinear temporal misalignment is a major problem that forestalls even simple averaging. An effective learning-based solution for this problem is the Diffeomorphic Temporal Alignment Net (DTAN), that, by relying on a diffeomorphic temporal transformer net and the amortization of the joint-alignment task, eliminates drawbacks of traditional alignment methods. Unfortunately, existing DTAN formulations crucially depend on a regularization term whose optimal hyperparameters are dataset-specific and usually searched via a large number of experiments. Here we propose a regularization-free DTAN that obviates the need to perform such an expensive, and often impractical, search. Concretely, we propose a new well-behaved loss that we call the Inverse Consistency Averaging Error (ICAE), as well as a related new triplet loss. Extensive experiments on 128 UCR datasets show that the proposed method outperforms contemporary methods despite not using a regularization. Moreover, ICAE also gives rise to the first DTAN that supports variable-length signals. Our code is available at https://github.com/BGU-CS-VIL/RF-DTAN.

Poster
Zifan Song · Xiao Gong · Guosheng Hu · Cairong Zhao

[ Exhibit Hall 1 ]

Image perturbation technique is widely used to generate adversarial examples to attack networks, greatly decreasing the performance of networks. Unlike the existing works, in this paper, we introduce a novel framework Deep Perturbation Learning (DPL), the new insights into understanding image perturbations, to enhance the performance of networks rather than decrease the performance. Specifically, we learn image perturbations to amend the data distribution of training set to improve the performance of networks. This optimization w.r.t data distribution is non-trivial. To approach this, we tactfully construct a differentiable optimization target w.r.t. image perturbations via minimizing the empirical risk. Then we propose an alternating optimization of the network weights and perturbations. DPL can easily be adapted to a wide spectrum of downstream tasks and backbone networks. Extensive experiments demonstrate the effectiveness of our DPL on 6 datasets (CIFAR-10, CIFAR100, ImageNet, MS-COCO, PASCAL VOC, and SBD) over 3 popular vision tasks (image classification, object detection, and semantic segmentation) with different backbone architectures (e.g., ResNet, MobileNet, and ViT).

Poster
Wenxuan Bao · Haohan Wang · Jun Wu · Jingrui He

[ Exhibit Hall 1 ]

In federated learning (FL), multiple clients collaborate to train machine learning models together while keeping their data decentralized. Through utilizing more training data, FL suffers from the potential negative transfer problem: the global FL model may even perform worse than the models trained with local data only. In this paper, we propose FedCollab, a novel FL framework that alleviates negative transfer by clustering clients into non-overlapping coalitions based on their distribution distances and data quantities. As a result, each client only collaborates with the clients having similar data distributions, and tends to collaborate with more clients when it has less data. We evaluate our framework with a variety of datasets, models, and types of non-IIDness. Our results demonstrate that FedCollab effectively mitigates negative transfer across a wide range of FL algorithms and consistently outperforms other clustered FL algorithms.

Poster
Ching-Yao Chuang · Stefanie Jegelka · David Alvarez-Melis

[ Exhibit Hall 1 ]

Optimal transport aligns samples across distributions by minimizing the transportation cost between them, e.g., the geometric distances. Yet, it ignores coherence structure in the data such as clusters, does not handle outliers well, and cannot integrate new data points. To address these drawbacks, we propose InfoOT, an information-theoretic extension of optimal transport that maximizes the mutual information between domains while minimizing geometric distances. The resulting objective can still be formulated as a (generalized) optimal transport problem, and can be efficiently solved by projected gradient descent. This formulation yields a new projection method that is robust to outliers and generalizes to unseen samples. Empirically, InfoOT improves the quality of alignments across benchmarks in domain adaptation, cross-domain retrieval, and single-cell alignment.

Poster
Shuangfei Zhai · Tatiana Likhomanenko · Etai Littwin · Dan Busbridge · Jason Ramapuram · Yizhe Zhang · Jiatao Gu · Joshua M Susskind

[ Exhibit Hall 1 ]

Training stability is of great importance to Transformers. In this work, we investigate the training dynamics of Transformers by examining the evolution of the attention layers. In particular, we track the attention entropy for each attention head during the course of training, which is a proxy for model sharpness. We identify a common pattern across different architectures and tasks, where low attention entropy is accompanied by high training instability, which can take the form of oscillating loss or divergence. We denote the pathologically low attention entropy, corresponding to highly concentrated attention scores, as $\textit{entropy collapse}$. As a remedy, we propose $\sigma$Reparam, a simple and efficient solution where we reparametrize all linear layers with spectral normalization and an additional learned scalar. We demonstrate that $\sigma$Reparam successfully prevents entropy collapse in the attention layers, promoting more stable training. Additionally, we prove a tight lower bound of the attention entropy, which decreases exponentially fast with the spectral norm of the attention logits, providing additional motivation for our approach. We conduct experiments with $\sigma$Reparam on image classification, image self-supervised learning, machine translation, speech recognition, and language modeling tasks. We show that $\sigma$Reparam provides stability and robustness with respect to the choice of hyperparameters, going …
Poster
Siddarth Krishnamoorthy · Satvik Mehul Mashkaria · Aditya Grover

[ Exhibit Hall 1 ]

The goal of offline black-box optimization (BBO) is to optimize an expensive black-box function using a fixed dataset of function evaluations. Prior works consider forward approaches that learn surrogates to the black-box function and inverse approaches that directly map function values to corresponding points in the input domain of the black-box function. These approaches are limited by the quality of the offline dataset and the difficulty in learning one-to-many mappings in high dimensions, respectively. We propose Denoising Diffusion Optimization Models (DDOM), a new inverse approach for offline black-box optimization based on diffusion models. Given an offline dataset, DDOM learns a conditional generative model over the domain of the black-box function conditioned on the function values. We investigate several design choices in DDOM, such as reweighting the dataset to focus on high function values and the use of classifier-free guidance at test-time to enable generalization to function values that can even exceed the dataset maxima. Empirically, we conduct experiments on the Design-Bench benchmark (Trabucco et al., 2022) and show that DDOM achieves results competitive with state-of-the-art baselines.

Poster
Chinmaya Kausik · Kevin Tan · Ambuj Tewari

[ Exhibit Hall 1 ]

We present an algorithm for learning mixtures of Markov chains and Markov decision processes (MDPs) from short unlabeled trajectories. Specifically, our method handles mixtures of Markov chains with optional control input by going through a multi-step process, involving (1) a subspace estimation step, (2) spectral clustering of trajectories using "pairwise distance estimators," along with refinement using the EM algorithm, (3) a model estimation step, and (4) a classification step for predicting labels of new trajectories. We provide end-to-end performance guarantees, where we only explicitly require the length of trajectories to be linear in the number of states and the number of trajectories to be linear in a mixing time parameter. Experimental results support these guarantees, where we attain 96.6% average accuracy on a mixture of two MDPs in gridworld, outperforming the EM algorithm with random initialization (73.2% average accuracy). We also significantly outperform the EM algorithm on real data from the LastFM song dataset.

Poster
Khai Nguyen · Dang Nguyen · Nhat Ho

[ Exhibit Hall 1 ]

Max sliced Wasserstein (Max-SW) distance has been widely known as a solution for less discriminative projections of sliced Wasserstein (SW) distance. In applications that have various independent pairs of probability measures, amortized projection optimization is utilized to predict the ``max" projecting directions given two input measures instead of using projected gradient ascent multiple times. Despite being efficient, Max-SW and its amortized version cannot guarantee metricity property due to the sub-optimality of the projected gradient ascent and the amortization gap. Therefore, we propose to replace Max-SW with distributional sliced Wasserstein distance with von Mises-Fisher (vMF) projecting distribution (v-DSW). Since v-DSW is a metric with any non-degenerate vMF distribution, its amortized version can guarantee the metricity when performing amortization. Furthermore, current amortized models are not permutation invariant and symmetric. To address the issue, we design amortized models based on self-attention architecture. In particular, we adopt efficient self-attention architectures to make the computation linear in the number of supports. With the two improvements, we derive self-attention amortized distributional projection optimization and show its appealing performance in point-cloud reconstruction and its downstream applications

Poster
Zhenqiao Song · Lei Li

[ Exhibit Hall 1 ]

Designing protein sequences with desired biological function is crucial in biology and chemistry. Recent machine learning methods use a surrogate sequence-function model to replace the expensive wet-lab validation. How can we efficiently generate diverse and novel protein sequences with high fitness? In this paper, we propose IsEM-Pro, an approach to generate protein sequences towards a given fitness criterion. At its core, IsEM-Pro is a latent generative model, augmented by combinatorial structure features from a separately learned Markov random fields (MRFs). We develop an Monte Carlo Expectation-Maximization method (MCEM) to learn the model. During inference, sampling from its latent space enhances diversity while its MRFs features guide the exploration in high fitness regions. Experiments on eight protein sequence design tasks show that our IsEM-Pro outperforms the previous best methods by at least 55% on average fitness score and generates more diverse and novel protein sequences.

Poster
Jianhao Wang · Jin Zhang · Haozhe Jiang · Junyu Zhang · Liwei Wang · Chongjie Zhang

[ Exhibit Hall 1 ]

Recent offline meta-reinforcement learning (meta-RL) methods typically utilize task-dependent behavior policies (e.g., training RL agents on each individual task) to collect a multi-task dataset. However, these methods always require extra information for fast adaptation, such as offline context for testing tasks. To address this problem, we first formally characterize a unique challenge in offline meta-RL: transition-reward distribution shift between offline datasets and online adaptation. Our theory finds that out-of-distribution adaptation episodes may lead to unreliable policy evaluation and that online adaptation with in-distribution episodes can ensure adaptation performance guarantee. Based on these theoretical insights, we propose a novel adaptation framework, called In-Distribution online Adaptation with uncertainty Quantification (IDAQ), which generates in-distribution context using a given uncertainty quantification and performs effective task belief inference to address new tasks. We find a return-based uncertainty quantification for IDAQ that performs effectively. Experiments show that IDAQ achieves state-of-the-art performance on the Meta-World ML1 benchmark compared to baselines with/without offline adaptation.

Poster
Hanqing Zhao · Dianmo Sheng · Jianmin Bao · Dongdong Chen · Dong Chen · Fang Wen · Lu Yuan · Ce Liu · Wenbo Zhou · Qi Chu · Weiming Zhang · Nenghai Yu

[ Exhibit Hall 1 ]

Copy-Paste is a simple and effective data augmentation strategy for instance segmentation. By randomly pasting object instances onto new background images, it creates new training data for free and significantly boosts the segmentation performance, especially for rare object categories. Although diverse, high-quality object instances used in Copy-Paste result in more performance gain, previous works utilize object instances either from human-annotated instance segmentation datasets or rendered from 3D object models, and both approaches are too expensive to scale up to obtain good diversity. In this paper, we revisit Copy-Paste at scale with the power of newly emerged zero-shot recognition models (e.g., CLIP) and text2image models (e.g., StableDiffusion). We demonstrate for the first time that using a text2image model to generate images or zero-shot recognition model to filter noisily crawled images for different object categories is a feasible way to make Copy-Paste truly scalable. To make such success happen, we design a data acquisition and processing framework, dubbed ``X-Paste", upon which a systematic study is conducted. On the LVIS dataset, X-Paste provides impressive improvements over the strong baseline CenterNet2 with Swin-L as the backbone. Specifically, it archives +2.6 box AP and +2.1 mask AP gains on all classes and even more significant …

Poster
Zejia Weng · Xitong Yang · Ang Li · Zuxuan Wu · Yu-Gang Jiang

[ Exhibit Hall 1 ]

Contrastive Language-Image Pretraining (CLIP) has demonstrated impressive zero-shot learning abilities for image understanding, yet limited effort has been made to investigate CLIP for zero-shot video recognition. We introduce Open-VCLIP, a simple yet effective approach that transforms CLIP into a strong zero-shot video classifier that can recognize unseen actions and events at test time. Our framework extends CLIP with minimal modifications to model spatial-temporal relationships in videos, making it a specialized video classifier, while striving for generalization. We formally show that training an Open-VCLIP is equivalent to continual learning with zero historical data. To address this problem, we propose Interpolated Weight Optimization, which utilizes the benefit of weight interpolation in both training and test time. We evaluate our method on three popular and challenging action recognition datasets following various zero-shot evaluation protocols and we demonstrate our approach outperforms state-of-the-art methods by clear margins. In particular, we achieve 87.9%, 58.3%, 81.1% zero-shot accuracy on UCF, HMDB and Kinetics-600 respectively, outperforming state-of-the-art methods by 8.3%, 7.8% and 12.2%. Code is released at https://github.com/wengzejia1/Open-VCLIP.

Poster
Robi Bhattacharjee · Sanjoy Dasgupta · Kamalika Chaudhuri

[ Exhibit Hall 1 ]

There has been some recent interest in detecting and addressing memorization of training data by deep neural networks. A formal framework for memorization in generative models, called ``data-copying'' was proposed by Meehan et. al (2020). We build upon their work to show that their framework may fail to detect certain kinds of blatant memorization. Motivated by this and the theory of non-parametric methods, we provide an alternative definition of data-copying that applies more locally. We provide a method to detect data-copying, and provably show that it works with high probability when enough data is available. We also provide lower bounds that characterize the sample requirement for reliable detection.

Poster
Eden Saig · Nir Rosenfeld

[ Exhibit Hall 1 ]

Optimizing user engagement is a key goal for modern recommendation systems, but blindly pushing users towards increased consumption risks burn-out, churn, or even addictive habits. To promote digital well-being, most platforms now offer a service that periodically prompts users to take breaks. These, however, must be set up manually, and so may be suboptimal for both users and the system. In this paper, we study the role of breaks in recommendation, and propose a framework for learning optimal breaking policies that promote and sustain long-term engagement. Based on the notion that recommendation dynamics are susceptible to both positive and negative feedback, we cast recommendation as a Lotka-Volterra dynamical system, where breaking reduces to a problem of optimal control. We then give an efficient learning algorithm, provide theoretical guarantees, and empirically demonstrate the utility of our approach on semi-synthetic data.

Poster
Thomas Davies · Zhengchao Wan · Ruben Sanchez-Garcia

[ Exhibit Hall 1 ]

Persistent homology is arguably the most successful technique in Topological Data Analysis. It combines homology, a topological feature of a data set, with persistence, which tracks the evolution of homology over different scales. The persistent Laplacian is a recent theoretical development that combines persistence with the combinatorial Laplacian, the higher-order extension of the well-known graph Laplacian. Crucially, the Laplacian encode both the homology of a data set, and some additional geometric information not captured by the homology. Here, we provide the first investigation into the efficacy of the persistence Laplacian as an embedding of data for downstream classification and regression tasks. We extend the persistent Laplacian to cubical complexes so it can be used on images, then evaluate its performance as an embedding method on the MNIST and MoleculeNet datasets, demonstrating that it consistently outperforms persistent homology across tasks.

Poster
Ali Taghibakhshi · Nicolas Nytko · Tareq Uz Zaman · Scott MacLachlan · Luke Olson · Matthew West

[ Exhibit Hall 1 ]

Domain decomposition methods (DDMs) are popular solvers for discretized systems of partial differential equations (PDEs), with one-level and multilevel variants. These solvers rely on several algorithmic and mathematical parameters, prescribing overlap, subdomain boundary conditions, and other properties of the DDM. While some work has been done on optimizing these parameters, it has mostly focused on the one-level setting or special cases such as structured-grid discretizations with regular subdomain construction. In this paper, we propose multigrid graph neural networks (MG-GNN), a novel GNN architecture for learning optimized parameters in two-level DDMs. We train MG-GNN using a new unsupervised loss function, enabling effective training on small problems that yields robust performance on unstructured grids that are orders of magnitude larger than those in the training set. We show that MG-GNN outperforms popular hierarchical graph network architectures for this optimization and that our proposed loss function is critical to achieving this improved performance.

Poster
Atiyo Ghosh · Antonio Gentile · Mario Dagrada · Chul Lee · Seong-hyok Sean Kim · Hyukgeun Cha · Yunjun Choi · Dongho Kim · JEONG-IL KYE · Vincent E Elfving

[ Exhibit Hall 1 ]

Harmonic functions are abundant in nature, appearing in limiting cases of Maxwell's, Navier-Stokes equations, the heat and the wave equation. Consequently, there are many applications of harmonic functions from industrial process optimisation to robotic path planning and the calculation of first exit times of random walks. Despite their ubiquity and relevance, there have been few attempts to incorporate inductive biases towards harmonic functions in machine learning contexts. In this work, we demonstrate effective means of representing harmonic functions in neural networks and extend such results also to quantum neural networks to demonstrate the generality of our approach. We benchmark our approaches against (quantum) physics-informed neural networks, where we show favourable performance.

Poster
Ofir Nabati · Guy Tennenholtz · Shie Mannor

[ Exhibit Hall 1 ]

We present a representation-driven framework for reinforcement learning. By representing policies as estimates of their expected values, we leverage techniques from contextual bandits to guide exploration and exploitation. Particularly, embedding a policy network into a linear feature space allows us to reframe the exploration-exploitation problem as a representation-exploitation problem, where good policy representations enable optimal exploration. We demonstrate the effectiveness of this framework through its application to evolutionary and policy gradient-based approaches, leading to significantly improved performance compared to traditional methods. Our framework provides a new perspective on reinforcement learning, highlighting the importance of policy representation in determining optimal exploration-exploitation strategies.

Poster
Ming Min · Ruimeng Hu · Tomoyuki Ichiba

[ Exhibit Hall 1 ]

Real-world data can be multimodal distributed, e.g., data describing the opinion divergence in a community, the interspike interval distribution of neurons, and the oscillators natural frequencies. Generating multimodal distributed real-world data has become a challenge to existing generative adversarial networks (GANs). For example, it is often observed that Neural SDEs have only demonstrated successfully performance mainly in generating unimodal time series datasets. In this paper, we propose a novel time series generator, named directed chain GANs (DC-GANs), which inserts a time series dataset (called a neighborhood process of the directed chain or input) into the drift and diffusion coefficients of the directed chain SDEs with distributional constraints. DC-GANs can generate new time series of the same distribution as the neighborhood process, and the neighborhood process will provide the key step in learning and generating multimodal distributed time series. The proposed DC-GANs are examined on four datasets, including two stochastic models from social sciences and computational neuroscience, and two real-world datasets on stock prices and energy consumption. To our best knowledge, DC-GANs are the first work that can generate multimodal time series data and consistently outperforms state-of-the-art benchmarks with respect to measures of distribution, data similarity, and predictive ability.

Poster
Xin Cheng · Yuzhou Cao · Ximing Li · Bo An · Lei Feng

[ Exhibit Hall 1 ]

This paper investigates an interesting weakly supervised regression setting called regression with interval targets (RIT). Although some of the previous methods on relevant regression settings can be adapted to RIT, they are not statistically consistent, and thus their empirical performance is not guaranteed. In this paper, we provide a thorough study on RIT. First, we proposed a novel statistical model to describe the data generation process for RIT and demonstrate its validity. Second, we analyze a simple selecting method for RIT, which selects a particular value in the interval as the target value to train the model. Third, we propose a statistically consistent limiting method for RIT to train the model by limiting the predictions to the interval. We further derive an estimation error bound for our limiting method. Finally, extensive experiments on various datasets demonstrate the effectiveness of our proposed method.

Poster
Dieqiao Feng · Yuanqi Du · Carla Gomes · Bart Selman

[ Exhibit Hall 1 ]

The top-$k$ classification accuracy is a crucial metric in machine learning and is often used to evaluate the performance of deep neural networks. These networks are typically trained using the cross-entropy loss, which optimizes for top-$1$ classification and is considered optimal in the case of infinite data. However, in real-world scenarios, data is often noisy and limited, leading to the need for more robust losses. In this paper, we propose using the Weighted Sampling Without Replacement (WSWR) method as a learning objective for top-$k$ loss. While traditional methods for evaluating **WSWR-based top-$k$ loss** are computationally impractical, we show a novel connection between WSWR and Reinforcement Learning (RL) and apply well-established RL algorithms to estimate gradients. We compared our method with recently proposed top-$k$ losses in various regimes of noise and data size for the prevalent use case of $k = 5$. Our experimental results reveal that our method consistently outperforms all other methods on the top-$k$ metric for noisy datasets, has more robustness on extreme testing scenarios, and achieves competitive results on training with limited data.
Poster
Jinhao Duan · Fei Kong · Shiqi Wang · Xiaoshuang Shi · Kaidi Xu

[ Exhibit Hall 1 ]

Diffusion-based generative models have shown great potential for image synthesis, but there is a lack of research on the security and privacy risks they may pose. In this paper, we investigate the vulnerability of diffusion models to Membership Inference Attacks (MIAs), a common privacy concern. Our results indicate that existing MIAs designed for GANs or VAE are largely ineffective on diffusion models, either due to inapplicable scenarios (e.g., requiring the discriminator of GANs) or inappropriate assumptions (e.g., closer distances between synthetic samples and member samples). To address this gap, we propose Step-wise Error Comparing Membership Inference (SecMI), a query-based MIA that infers memberships by assessing the matching of forward process posterior estimation at each timestep. SecMI follows the common overfitting assumption in MIA where member samples normally have smaller estimation errors, compared with hold-out samples. We consider both the standard diffusion models, e.g., DDPM, and the text-to-image diffusion models, e.g., Latent Diffusion Models and Stable Diffusion. Experimental results demonstrate that our methods precisely infer the membership with high confidence on both of the two scenarios across multiple different datasets. Code is available at https://github.com/jinhaoduan/SecMI.

Poster
Javier E. Santos · Zachary Fox · Nicholas Lubbers · Yen Ting Lin

[ Exhibit Hall 1 ]

Typical generative diffusion models rely on a Gaussian diffusion process for training the backward transformations, which can then be used to generate samples from Gaussian noise. However, real world data often takes place in discrete-state spaces, including many scientific applications. Here, we develop a theoretical formulation for arbitrary discrete-state Markov processes in the forward diffusion process using exact (as opposed to variational) analysis. We relate the theory to the existing continuous-state Gaussian diffusion as well as other approaches to discrete diffusion, and identify the corresponding reverse-time stochastic process and score function in the continuous-time setting, and the reverse-time mapping in the discrete-time setting. As an example of this framework, we introduce ``Blackout Diffusion'', which learns to produce samples from an empty image instead of from noise. Numerical experiments on the CIFAR-10, Binarized MNIST, and CelebA datasets confirm the feasibility of our approach. Generalizing from specific (Gaussian) forward processes to discrete-state processes without a variational approximation sheds light on how to interpret diffusion models, which we discuss.

Poster
Yunhao Tang · Tadashi Kozuno · Mark Rowland · Anna Harutyunyan · Remi Munos · Bernardo Avila Pires · Michal Valko

[ Exhibit Hall 1 ]

Multi-step learning applies lookahead over multiple time steps and has proved valuable in policy evaluation settings. However, in the optimal control case, the impact of multi-step learning has been relatively limited despite a number of prior efforts. Fundamentally, this might be because multi-step policy improvements require operations that cannot be approximated by stochastic samples, hence hindering the widespread adoption of such methods in practice. To address such limitations, we introduce doubly multi-step off-policy VI (DoMo-VI), a novel oracle algorithm that combines multi-step policy improvements and policy evaluations. DoMo-VI enjoys guaranteed convergence speed-up to the optimal policy and is applicable in general off-policy learning settings. We then propose doubly multi-step off-policy actor-critic (DoMo-AC), a practical instantiation of the DoMo-VI algorithm. DoMo-AC introduces a bias-variance trade-off that ensures improved policy gradient estimates. When combined with the IMPALA architecture, DoMo-AC has showed improvements over the baseline algorithm on Atari-57 game benchmarks.

Poster
Thomas Mesnard · Wenqi Chen · Alaa Saade · Yunhao Tang · Mark Rowland · Theophane Weber · Clare Lyle · Audrunas Gruslys · Michal Valko · Will Dabney · Georg Ostrovski · Eric Moulines · Remi Munos

[ Exhibit Hall 1 ]

Abstract
In reinforcement learning, the credit assignment problem is to distinguish luck from skill, that is, separate the inherent randomness in the environment from the controllable effects of the agent's actions. This paper proposes two novel algorithms, Quantile Credit Assignment (QCA) and Hindsight QCA (HQCA), which incorporate distributional value estimation to perform credit assignment. QCA uses a network that predicts the quantiles of the return distribution, whereas HQCA additionally incorporates information about the future. Both QCA and HQCA have the appealing interpretation of leveraging an estimate of the quantile level of the return (interpreted as the level of "luck") in order to derive a "luck-dependent" baseline for policy gradient methods. We show theoretically that this approach gives an unbiased policy gradient estimate that can yield significant variance reductions over a standard value estimate baseline. QCA and HQCA significantly outperform prior state-of-the-art methods on a range of extremely difficult credit assignment problems.
Poster
Lei Shi · Jingshen Wang · Tianhao Wu

[ Exhibit Hall 1 ]

Multi armed bandit (MAB) algorithms have been increasingly used to complement or integrate with A/B tests and randomized clinical trials in e-commerce, healthcare, and policymaking. Recent developments incorporate possible delayed feedback. While existing MAB literature often focuses on maximizing the expected cumulative reward outcomes (or, equivalently, regret minimization), few efforts have been devoted to establish valid statistical inference approaches to quantify the uncertainty of learned policies. We attempt to fill this gap by providing a unified statistical inference framework for policy evaluation where a target policy is allowed to differ from the data collecting policy, and our framework allows delay to be associated with the treatment arms. We present an adaptively weighted estimator that on one hand incorporates the arm-dependent delaying mechanism to achieve consistency, and on the other hand mitigates the variance inflation across stages due to vanishing sampling probability. In particular, our estimator does not critically depend on the ability to estimate the unknown delay mechanism. Under appropriate conditions, we prove that our estimator converges to a normal distribution as the number of time points goes to infinity, which provides guarantees for large-sample statistical inference. We illustrate the finite-sample performance of our approach through Monte Carlo experiments.

Poster
Dheeraj Nagaraj · Suhas Kowshik · Naman Agarwal · Praneeth Netrapalli · Prateek Jain

[ Exhibit Hall 1 ]

We consider collaborative multi-user reinforcement learning, where multiple users have the same state-action space and transition probabilities but different rewards. Under the assumption that the reward matrix of the $N$ users has a low-rank structure -- a standard and practically successful assumption in the collaborative filtering setting -- we design algorithms with significantly lower sample complexity compared to the ones that learn the MDP individually for each user. Our main contribution is an algorithm which explores rewards collaboratively with $N$ user-specific MDPs and can learn rewards efficiently in two key settings: tabular MDPs and linear MDPs. When $N$ is large and the rank is constant, the sample complexity per MDP depends logarithmically over the size of the state-space, which represents an exponential reduction (in the state-space size) when compared to the standard ``non-collaborative'' algorithms. Our main technical contribution is a method to construct policies which obtain data such that low rank matrix completion is possible (without a generative model). This goes beyond the regular RL framework and is closely related to mean field limits of multi-agent RL.
Poster
Byeongchan Kim · Min-hwan Oh

[ Exhibit Hall 1 ]

In this paper, we present a model-based offline reinforcement learning method that integrates count-based conservatism, named $\texttt{Count-MORL}$. Our method utilizes the count estimates of state-action pairs to quantify model estimation error, marking the first algorithm of demonstrating the efficacy of count-based conservatism in model-based offline deep RL to the best of our knowledge. For our proposed method, we first show that the estimation error is inversely proportional to the frequency of state-action pairs. Secondly, we demonstrate that the learned policy under the count-based conservative model offers near-optimality performance guarantees. Through extensive numerical experiments, we validate that $\texttt{Count-MORL}$ with hash code implementation significantly outperforms existing offline RL algorithms on the D4RL benchmark datasets. The code is accessible at https://github.com/oh-lab/Count-MORL.
Poster
Maysam Behmanesh · Maximilian Krahn · Maks Ovsjanikov

[ Exhibit Hall 1 ]

A prominent paradigm for graph neural networks is based on the message-passing framework. In this framework, information communication is realized only between neighboring nodes. The challenge of approaches that use this paradigm is to ensure efficient and accurate long-distance communication between nodes, as deep convolutional networks are prone to over smoothing. In this paper, we present a novel method based on time derivative graph diffusion (TIDE) to overcome these structural limitations of the message-passing framework. Our approach allows for optimizing the spatial extent of diffusion across various tasks and network channels, thus enabling medium and long-distance communication efficiently. Furthermore, we show that our architecture design also enables local message-passing and thus inherits from the capabilities of local message-passing approaches. We show that on both widely used graph benchmarks and synthetic mesh and graph datasets, the proposed framework outperforms state-of-the-art methods by a significant margin.

Poster
Rahul Ramesh · Jialin Mao · Itay Griniasty · Rubing Yang · Han Kheng Teoh · Mark Transtrum · James Sethna · Pratik Chaudhari

[ Exhibit Hall 1 ]

We develop information geometric techniques to understand the representations learned by deep networks when they are trained on different tasks using supervised, meta-, semi-supervised and contrastive learning. We shed light on the following phenomena that relate to the structure of the space of tasks: (1) the manifold of probabilistic models trained on different tasks using different representation learning methods is effectively low-dimensional; (2) supervised learning on one task results in a surprising amount of progress even on seemingly dissimilar tasks; progress on other tasks is larger if the training task has diverse classes; (3) the structure of the space of tasks indicated by our analysis is consistent with parts of the Wordnet phylogenetic tree; (4) episodic meta-learning algorithms and supervised learning traverse different trajectories during training but they fit similar models eventually; (5) contrastive and semi-supervised learning methods traverse trajectories similar to those of supervised learning. We use classification tasks constructed from the CIFAR-10 and Imagenet datasets to study these phenomena. Code is available at https://github.com/grasp-lyrl/pictureofspaceoftasks.

Poster
Raja Marjieh · Ilia Sucholutsky · Thomas Langlois · Nori Jacoby · Thomas Griffiths

[ Exhibit Hall 1 ]

Diffusion models are a class of generative models that learn to synthesize samples by inverting a diffusion process that gradually maps data into noise. While these models have enjoyed great success recently, a full theoretical understanding of their observed properties is still lacking, in particular, their weak sensitivity to the choice of noise family and the role of adequate scheduling of noise levels for good synthesis. By identifying a correspondence between diffusion models and a well-known paradigm in cognitive science known as serial reproduction, whereby human agents iteratively observe and reproduce stimuli from memory, we show how the aforementioned properties of diffusion models can be explained as a natural consequence of this correspondence. We then complement our theoretical analysis with simulations that exhibit these key features. Our work highlights how classic paradigms in cognitive science can shed light on state-of-the-art machine learning problems.

Poster
Devon Graham · Kevin Leyton-Brown · Tim Roughgarden

[ Exhibit Hall 1 ]

When trying to solve a computational problem, we are often faced with a choice between algorithms that are guaranteed to return the right answer but differ in their runtime distributions (e.g., SAT solvers, sorting algorithms). This paper aims to lay theoretical foundations for such choices by formalizing preferences over runtime distributions. It might seem that we should simply prefer the algorithm that minimizes expected runtime. However, such preferences would be driven by exactly how slow our algorithm is on bad inputs, whereas in practice we are typically willing to cut off occasional, sufficiently long runs before they finish. We propose a principled alternative, taking a utility-theoretic approach to characterize the scoring functions that describe preferences over algorithms. These functions depend on the way our value for solving our problem decreases with time and on the distribution from which captimes are drawn. We describe examples of realistic utility functions and show how to leverage a maximum-entropy approach for modeling underspecified captime distributions. Finally, we show how to efficiently estimate an algorithm's expected utility from runtime samples.

Poster
Riashat Islam · Manan Tomar · Alex Lamb · Yonathan Efroni · Hongyu Zang · Aniket Didolkar · Dipendra Misra · Xin Li · Harm Seijen · Remi Tachet des Combes · John Langford

[ Exhibit Hall 1 ]

Learning to control an agent from offline data collected in a rich pixel-based visual observation space is vital for real-world applications of reinforcement learning (RL). A major challenge in this setting is the presence of input information that is hard to model and irrelevant to controlling the agent. This problem has been approached by the theoretical RL community through the lens of exogenous information, i.e., any control-irrelevant information contained in observations. For example, a robot navigating in busy streets needs to ignore irrelevant information, such as other people walking in the background, textures of objects, or birds in the sky. In this paper, we focus on the setting with visually detailed exogenous information and introduce new offline RL benchmarks that offer the ability to study this problem. We find that contemporary representation learning techniques can fail on datasets where the noise is a complex and time-dependent process, which is prevalent in practical applications. To address these, we propose to use multi-step inverse models to learn Agent-Centric Representations for Offline-RL (ACRO). Despite being simple and reward-free, we show theoretically and empirically that the representation created by this objective greatly outperforms baselines.

Poster
Phillip Rust · Anders Søgaard

[ Exhibit Hall 1 ]

Language models such as mBERT, XLM-R, and BLOOM aim to achieve multilingual generalization or compression to facilitate transfer to a large number of (potentially unseen) languages. However, these models should ideally also be private, linguistically fair, and transparent, by relating their predictions to training data. Can these requirements be simultaneously satisfied? We show that multilingual compression and linguistic fairness are compatible with differential privacy, but that differential privacy is at odds with training data influence sparsity, an objective for transparency. We further present a series of experiments on two common NLP tasks and evaluate multilingual compression and training data influence sparsity under different privacy guarantees, exploring these trade-offs in more detail. Our results suggest that we need to develop ways to jointly optimize for these objectives in order to find practical trade-offs.

Poster
Gokul Swamy · David Wu · Sanjiban Choudhury · J. Bagnell · Steven Wu

[ Exhibit Hall 1 ]

Inverse Reinforcement Learning (IRL) is a powerful set of techniques for imitation learning that aims to learn a reward function that rationalizes expert demonstrations. Unfortunately, traditional IRL methods suffer from a computational weakness: they require repeatedly solving a hard reinforcement learning (RL) problem as a subroutine. This is counter-intuitive from the viewpoint of reductions: we have reduced the easier problem of imitation learning to repeatedly solving the harder problem of RL. Another thread of work has proved that access to the side-information of the distribution of states where a strong policy spends time can dramatically reduce the sample and computational complexities of solving an RL problem. In this work, we demonstrate for the first time a more informed imitation learning reduction where we utilize the state distribution of the expert to alleviate the global exploration component of the RL subroutine, providing an exponential speedup in theory. In practice, we find that we are able to significantly speed up the prior art on continuous control tasks.

Poster
Brian Zhang · Gabriele Farina · Tuomas Sandholm

[ Exhibit Hall 1 ]

A classic result in the theory of extensive-form games asserts that the set of strategies available to any perfect-recall player is strategically equivalent to a low-dimensional convex polytope, called the sequence-form polytope. Online convex optimization tools operating on this polytope are the current state-of-the-art for computing several notions of equilibria in games, and have been crucial in landmark applications of computational game theory. However, when optimizing over the joint strategy space of a team of players, one cannot use the sequence form to obtain a strategically-equivalent convex description of the strategy set of the team. In this paper, we provide new complexity results on the computation of optimal strategies for teams, and propose a new representation, coined team belief DAG (TB-DAG), that describes team strategies as a convex set. The TB-DAG enjoys state-of-the-art parameterized complexity bounds, while at the same time enjoying the advantages of efficient regret minimization techniques. We show that TB-DAG can be exponentially smaller and can be computed exponentially faster than all other known representations, and that the converse is never true. Experimentally, we show that the TB-DAG, when paired with learning techniques, yields state of the art on a wide variety of benchmark team …

Poster
Siyu Chen · Jibang Wu · Yifan Wu · Zhuoran Yang

[ Exhibit Hall 1 ]

We study the incentivized information acquisition problem, where a principal hires an agent to gather information on her behalf. Such a problem is modeled as a Stackelberg game between the principal and the agent, where the principal announces a scoring rule that specifies the payment, and then the agent then chooses an effort level that maximizes her own profit and reports the information. We study the online setting of such a problem from the principal's perspective, i.e., designing the optimal scoring rule by repeatedly interacting with the strategic agent. We design a provably sample efficient algorithm that tailors the UCB algorithm (Auer et al., 2002) to our model, which achieves a $\mathcal{O} (K^2\cdot T^{2/3})$ regret after $T$ iterations, where $K$ is the number of effort levels of the agent. Our algorithm features a delicate estimation procedure for the optimal profit of the principal, and a conservative correction scheme that ensures the desired agent's actions are incentivized. Furthermore, a key feature of our regret bound is that it is independent of the number of states of the environment.
Poster
Fan Yao · Chuanhao Li · Denis Nekipelov · Hongning Wang · Haifeng Xu

[ Exhibit Hall 1 ]

This study explores the impact of content creators' competition on user welfare in recommendation platforms, as well as the long-term dynamics of relevance-driven recommendations. We establish a model of creator competition, under the setting where the platform uses a top-$K$ recommendation policy, user decisions are guided by the Random Utility model, and creators, in absence of explicit utility functions, employ arbitrary no-regret learning algorithms for strategy updates. We study the user welfare guarantee through the lens of Price of Anarchy and show that the fraction of user welfare loss due to creator competition is always upper bounded by a small constant depending on $K$ and randomness in user decisions; we also prove the tightness of this bound. Our result discloses an intrinsic merit of the relevance-driven recommendation policy, as long as users' decisions involve randomness and the platform provides reasonably many alternatives to its users.
Poster
Abhishek Panigrahi · Nikunj Saunshi · Haoyu Zhao · Sanjeev Arora

[ Exhibit Hall 1 ]

Pre-trained language models can be fine-tuned to solve diverse NLP tasks, including in few-shot settings. Thus fine-tuning allows the model to quickly pick up task-specific "skills," but there has been limited study of *where* these newly-learnt skills reside inside the massive model. This paper introduces the term *skill localization* for this problem and proposes a solution. Given the downstream task and a model fine-tuned on that task, a simple optimization is used to identify a very small subset of parameters ($\sim$0.01% of model parameters) responsible for (>95%) of the model's performance, in the sense that *grafting* the fine-tuned values for just this tiny subset onto the pre-trained model gives performance almost as well as the fine-tuned model. While reminiscent of recent works on parameter-efficient fine-tuning, the novel aspects here are that: (i) No further retraining is needed on the subset (unlike, say, with lottery tickets). (ii) Notable improvements are seen over vanilla fine-tuning with respect to calibration of predictions in-distribution (40-90% error reduction) as well as quality of predictions out-of-distribution (OOD). In models trained on multiple tasks, a stronger notion of skill localization is observed, where the sparse regions corresponding to different tasks are almost disjoint, and their overlap …
Poster
Rhea Chowers · Yair Weiss

[ Exhibit Hall 1 ]

Abstract
It has previously been reported that the representation that is learned in the first layer of deep Convolutional Neural Networks (CNNs) is highly consistent across initializations and architectures. In this work, we quantify this consistency by considering the first layer as a filter bank and measuring its energy distribution. We find that the energy distribution is very different from that of the initial weights and is remarkably consistent across random initializations, datasets, architectures and even when the CNNs are trained with *random labels*. In order to explain this consistency, we derive an analytical formula for the energy profile of linear CNNs and show that this profile is mostly dictated by the second order statistics of image patches in the training set and it will approach a whitening transformation when the number of iterations goes to infinity. Finally, we show that this formula for linear CNNs also gives an excellent fit for the energy profiles learned by commonly used *nonlinear* CNNs such as ResNet and VGG, and that the first layer of these CNNs indeed performs approximate whitening of their inputs.
Poster
Yefan Zhou · Yaoqing Yang · Arin Chang · Michael Mahoney

[ Exhibit Hall 1 ]

Recent work has highlighted the complex influence training hyperparameters, e.g., the number of training epochs, can have on the prunability of machine learning models. Perhaps surprisingly, a systematic approach to predict precisely how adjusting a specific hyperparameter will affect prunability remains elusive. To address this gap, we introduce a phenomenological model grounded in the statistical mechanics of learning. Our approach uses temperature-like and load-like parameters to model the impact of neural network (NN) training hyperparameters on pruning performance. A key empirical result we identify is a sharp transition phenomenon: depending on the value of a load-like parameter in the pruned model, increasing the value of a temperature-like parameter in the pre-pruned model may either enhance or impair subsequent pruning performance. Based on this transition, we build a three-regime model by taxonomizing the global structure of the pruned NN loss landscape. Our model reveals that the dichotomous effect of high temperature is associated with transitions between distinct types of global structures in the post-pruned model. Based on our results, we present three case-studies: 1) determining whether to increase or decrease a hyperparameter for improved pruning; 2) selecting the best model to prune from a family of models; and 3) tuning the …

Poster
Farhad Pashakhanloo · Alexei Koulakov

[ Exhibit Hall 1 ]

Representational drift refers to over-time changes in neural activation accompanied by a stable task performance. Despite being observed in the brain and in artificial networks, the mechanisms of drift and its implications are not fully understood. Motivated by recent experimental findings of stimulus-dependent drift in the piriform cortex, we use theory and simulations to study this phenomenon in a two-layer linear feedforward network. Specifically, in a continual online learning scenario, we study the drift induced by the noise inherent in the Stochastic Gradient Descent (SGD). By decomposing the learning dynamics into the normal and tangent spaces of the minimum-loss manifold, we show the former corresponds to a finite variance fluctuation, while the latter could be considered as an effective diffusion process on the manifold. We analytically compute the fluctuation and the diffusion coefficients for the stimuli representations in the hidden layer as functions of network parameters and input distribution. Further, consistent with experiments, we show that the drift rate is slower for a more frequently presented stimulus. Overall, our analysis yields a theoretical framework for better understanding of the drift phenomenon in biological and artificial neural networks.

Poster
Dongseok Shim · Seungjae Lee · H. Jin Kim

[ Exhibit Hall 1 ]

As previous representations for reinforcement learning cannot effectively incorporate a human-intuitive understanding of the 3D environment, they usually suffer from sub-optimal performances. In this paper, we present Semantic-aware Neural Radiance Fields for Reinforcement Learning (SNeRL), which jointly optimizes semantic-aware neural radiance fields (NeRF) with a convolutional encoder to learn 3D-aware neural implicit representation from multi-view images. We introduce 3D semantic and distilled feature fields in parallel to the RGB radiance fields in NeRF to learn semantic and object-centric representation for reinforcement learning. SNeRL outperforms not only previous pixel-based representations but also recent 3D-aware representations both in model-free and model-based reinforcement learning.

Poster
Danruo Deng · Guangyong Chen · Yang YU · Furui Liu · Pheng Ann Heng

[ Exhibit Hall 1 ]

Uncertainty estimation is a key factor that makes deep learning reliable in practical applications. Recently proposed evidential neural networks explicitly account for different uncertainties by treating the network's outputs as evidence to parameterize the Dirichlet distribution, and achieve impressive performance in uncertainty estimation. However, for high data uncertainty samples but annotated with the one-hot label, the evidence-learning process for those mislabeled classes is over-penalized and remains hindered. To address this problem, we propose a novel method, Fisher Information-based Evidential Deep Learning ($\mathcal{I}$-EDL). In particular, we introduce Fisher Information Matrix (FIM) to measure the informativeness of evidence carried by each sample, according to which we can dynamically reweight the objective loss terms to make the network more focus on the representation learning of uncertain classes. The generalization ability of our network is further improved by optimizing the PAC-Bayesian bound. As demonstrated empirically, our proposed method consistently outperforms traditional EDL-related algorithms in multiple uncertainty estimation tasks, especially in the more challenging few-shot classification settings.
Poster
Zhichun Guo · William Shiao · Shichang Zhang · Yozen Liu · Nitesh Chawla · Neil Shah · Tong Zhao

[ Exhibit Hall 1 ]

Graph Neural Networks (GNNs) have shown exceptional performance in the task of link prediction. Despite their effectiveness, the high latency brought by non-trivial neighborhood data dependency limits GNNs in practical deployments. Conversely, the known efficient MLPs are much less effective than GNNs due to the lack of relational knowledge. In this work, to combine the advantages of GNNs and MLPs, we start with exploring direct knowledge distillation (KD) methods for link prediction, i.e., predicted logit-based matching and node representation-based matching. Upon observing direct KD analogs do not perform well for link prediction, we propose a relational KD framework, Linkless Link Prediction (LLP), to distill knowledge for link prediction with MLPs. Unlike simple KD methods that match independent link logits or node representations, LLP distills relational knowledge that is centered around each (anchor) node to the student MLP. Specifically, we propose rank-based matching and distribution-based matching strategies that complement each other. Extensive experiments demonstrate that LLP boosts the link prediction performance of MLPs with significant margins and even outperforms the teacher GNNs on 7 out of 8 benchmarks. LLP also achieves a 70.68x speedup in link prediction inference compared to GNNs on the large-scale OGB dataset.

Poster
Wangchunshu Zhou · Yuchen Jiang · Ethan Wilcox · Ryan Cotterell · Mrinmaya Sachan

[ Exhibit Hall 1 ]

Large language models can be prompted to pro- duce fluent output for a wide range of tasks without being specifically trained to do so. Nevertheless, it is notoriously difficult to control their generation in such a way that it satisfies user-specified constraints. In this paper, we present InstructCTG, a simple controlled text generation framework that incorporates different constraints by verbalizing them as natural language instructions. We annotate natural texts through a combination of off-the-shelf NLP tools and simple heuristics with the linguistic and extra-linguistic constraints they satisfy. Then, we verbalize the constraints into natural language instructions to form weakly supervised training data, i.e., we prepend the natural language verbalizations of the constraints in front of their corresponding natural language sentences. Next, we fine-tune a pre-trained language model on the augmented corpus. Compared to existing methods, InstructCTG is more flexible in terms of the types of constraints it allows the practitioner to use. It also does not require any modification of the decoding procedure. Finally, InstructCTG allows the model to adapt to new constraints without re-training through the use of in-context learning.

Poster
Daoyuan Chen · Liuyi Yao · Dawei Gao · Bolin Ding · Yaliang Li

[ Exhibit Hall 1 ]

Federated Learning (FL) aims to train machine learning models for multiple clients without sharing their own private data. Due to the heterogeneity of clients' local data distribution, recent studies explore the personalized FL that learns and deploys distinct local models with the help of auxiliary global models. However, the clients can be heterogeneous in terms of not only local data distribution, but also their computation and communication resources. The capacity and efficiency of personalized models are restricted by the lowest-resource clients, leading to sub-optimal performance and limited practicality of personalized FL. To overcome these challenges, we propose a novel approach named pFedGate for efficient personalized FL by adaptively and efficiently learning sparse local models. With a lightweight trainable gating layer, pFedGate enables clients to reach their full potential in model capacity by generating different sparse models accounting for both the heterogeneous data distributions and resource constraints. Meanwhile, the computation and communication efficiency are both improved thanks to the adaptability between the model sparsity and clients' resources. Further, we theoretically show that the proposed pFedGate has superior complexity with guaranteed convergence and generalization error. Extensive experiments show that pFedGate achieves superior global accuracy, individual accuracy and efficiency simultaneously over state-of-the-art methods. …

Poster
Cai Zhou · Xiyuan Wang · Muhan Zhang

[ Exhibit Hall 1 ]

Relational pooling is a framework for building more expressive and permutation-invariant graph neural networks. However, there is limited understanding of the exact enhancement in the expressivity of RP and its connection with the Weisfeiler-Lehman hierarchy. Starting from RP, we propose to explicitly assign labels to nodes as additional features to improve graph isomorphism distinguishing power of message passing neural networks. The method is then extended to higher-dimensional WL, leading to a novel $k,l$-WL algorithm, a more general framework than $k$-WL. We further introduce the subgraph concept into our hierarchy and propose a localized $k,l$-WL framework, incorporating a wide range of existing work, including many subgraph GNNs. Theoretically, we analyze the expressivity of $k,l$-WL w.r.t. $k$ and $l$ and compare it with the traditional $k$-WL. Complexity reduction methods are also systematically discussed to build powerful and practical $k,l$-GNN instances. We theoretically and experimentally prove that our method is universally compatible and capable of improving the expressivity of any base GNN model. Our $k,l$-GNNs achieve superior performance on many synthetic and real-world datasets, which verifies the effectiveness of our framework.
Poster
Qi Zhang · Yifei Wang · Yisen Wang

[ Exhibit Hall 1 ]

Multi-modal contrastive learning (MMCL) has recently garnered considerable interest due to its superior performance in visual tasks, achieved by embedding multi-modal data, such as visual-language pairs. However, there still lack theoretical understandings of how MMCL extracts useful visual representation from multi-modal pairs, and particularly, how MMCL outperforms previous approaches like self-supervised contrastive learning (SSCL). In this paper, by drawing an intrinsic connection between MMCL and asymmetric matrix factorization, we establish the first generalization guarantees of MMCL for visual downstream tasks. Based on this framework, we further unify MMCL and SSCL by showing that MMCL implicitly performs SSCL with (pseudo) positive pairs induced by text pairs. Through this unified perspective, we characterize the advantage of MMCL by showing that text pairs induce more semantically consistent and diverse positive pairs, which, according to our analysis, provably benefit downstream generalization. Inspired by this finding, we propose several methods to significantly improve the downstream performance of SSCL on ImageNet by leveraging multi-modal information. Code is available at https://github.com/PKU-ML/CLIP-Help-SimCLR.

Poster
Hao Zhao · Yuejiang Liu · Alexandre Alahi · Tao Lin

[ Exhibit Hall 1 ]

Test-Time Adaptation (TTA) has recently gained significant attention as a new paradigm for tackling distribution shifts. Despite the sheer number of existing methods, the inconsistent experimental conditions and lack of standardization in prior literature make it difficult to measure their actual efficacies and progress. To address this issue, we present a large-scale open-sourced Test-Time Adaptation Benchmark, dubbed TTAB, which includes nine state-of-the-art algorithms, a diverse array of distribution shifts, and two comprehensive evaluation protocols. Through extensive experiments, we identify three common pitfalls in prior efforts: (i) choosing appropriate hyper-parameter, especially for model selection, is exceedingly difficult due to online batch dependency; (ii) the effectiveness of TTA varies greatly depending on the quality of the model being adapted; (iii) even under optimal algorithmic conditions, existing methods still systematically struggle with certain types of distribution shifts. Our findings suggest that future research in the field should be more transparent about their experimental conditions, ensure rigorous evaluations on a broader set of models and shifts, and re-examine the assumptions underlying the potential success of TTA for practical applications.

Poster
Arash Nasr-Esfahany · Mohammad Alizadeh · Devavrat Shah

[ Exhibit Hall 1 ]

We study counterfactual identifiability in causal models with bijective generation mechanisms (BGM), a class that generalizes several widely-used causal models in the literature. We establish their counterfactual identifiability for three common causal structures with unobserved confounding, and propose a practical learning method that casts learning a BGM as structured generative modeling. Learned BGMs enable efficient counterfactual estimation and can be obtained using a variety of deep conditional generative models. We evaluate our techniques in a visual task and demonstrate its application in a real-world video streaming simulation task.

Poster
Zhengdao Chen

[ Exhibit Hall 1 ]

To characterize the functions spaces explored by multi-layer neural networks (NNs), we introduce Neural Hilbert Ladders (NHLs), a collection of reproducing kernel Hilbert spaces (RKHSes) that are defined iteratively and adaptive to training. First, we prove a correspondence between functions expressed by L-layer NNs and those belonging to L-level NHLs. Second, we prove generalization guarantees for learning the NHL based on a new complexity measure. Third, corresponding to the training of multi-layer NNs in the infinite-width mean-field limit, we derive an evolution of the NHL characterized by the dynamics of multiple random fields. Finally, we examine linear and shallow NNs from the new perspective and complement the theory with numerical results.

Poster
Krzysztof Choromanski

[ Exhibit Hall 1 ]

We introduce in this paper the mechanism of graph random features (GRFs). GRFs can be used to construct unbiased randomized estimators of several important kernels defined on graphs' nodes, in particular the regularized Laplacian kernel. As regular RFs for non-graph kernels, they provide means to scale up kernel methods defined on graphs to larger networks. Importantly, they give substantial computational gains also for smaller graphs, while applied in downstream applications. Consequently, GRFs address the notoriously difficult problem of cubic (in the number of the nodes of the graph) time complexity of graph kernels algorithms. We provide a detailed theoretical analysis of GRFs and an extensive empirical evaluation: from speed tests, through Frobenius relative error analysis to kmeans graph-clustering with graph kernels. We show that the computation of GRFs admits an embarrassingly simple distributed algorithm that can be applied if the graph under consideration needs to be split across several machines. We also introduce a (still unbiased) quasi Monte Carlo variant of GRFs, q-GRFs, relying on the so-called reinforced random walks that might be used to optimize the variance of GRFs. As a byproduct, we obtain a novel approach to solve certain classes of linear equations with positive and symmetric matrices.

Poster
Amit Attia · Tomer Koren

[ Exhibit Hall 1 ]

We study Stochastic Gradient Descent with AdaGrad stepsizes: a popular adaptive (self-tuning) method for first-order stochastic optimization. Despite being well studied, existing analyses of this method suffer from various shortcomings: they either assume some knowledge of the problem parameters, impose strong global Lipschitz conditions, or fail to give bounds that hold with high probability. We provide a comprehensive analysis of this basic method without any of these limitations, in both the convex and non-convex (smooth) cases, that additionally supports a general ``affine variance'' noise model and provides sharp rates of convergence in both the low-noise and high-noise regimes.

Poster
Yang Xu · Jin Zhu · Chengchun Shi · Shikai Luo · Rui Song

[ Exhibit Hall 1 ]

Off-policy evaluation (OPE) aims to estimate the return of a target policy using some pre-collected observational data generated by a potentially different behavior policy. In many cases, there exist unmeasured variables that confound the action-reward or action-next-state relationships, rendering many existing OPE approaches ineffective. This paper develops an instrumental variable (IV)-based method for consistent OPE in confounded sequential decision making. Similar to single-stage decision making, we show that IV enables us to correctly identify the target policy's value in infinite horizon settings as well. Furthermore, we propose a number of policy value estimators and illustrate their effectiveness through extensive simulations and real data analysis from a world-leading short-video platform.

Poster
Xiaoqiang Lin · Xinyi Xu · See-Kiong Ng · Chuan-Sheng Foo · Bryan Kian Hsiang Low

[ Exhibit Hall 1 ]

In collaborative learning with streaming data, nodes (e.g., organizations) jointly and continuously learn a machine learning (ML) model by sharing the latest model updates computed from their latest streaming data. For the more resourceful nodes to be willing to share their model updates, they need to be fairly incentivized. This paper explores an incentive design that guarantees fairness so that nodes receive rewards commensurate to their contributions. Our approach leverages an explore-then-exploit formulation to estimate the nodes' contributions (i.e., exploration) for realizing our theoretically guaranteed fair incentives (i.e., exploitation). However, we observe a "rich get richer" phenomenon arising from the existing approaches to guarantee fairness and it discourages the participation of the less resourceful nodes. To remedy this, we additionally preserve asymptotic equality, i.e., less resourceful nodes achieve equal performance eventually to the more resourceful/``rich'' nodes. We empirically demonstrate in two settings with real-world streaming data: federated online incremental learning and federated reinforcement learning, that our proposed approach outperforms existing baselines in fairness and learning performance while remaining competitive in preserving equality.

Poster
Ramtin Hosseini · Li Zhang · Bhanu Garg · Pengtao Xie

[ Exhibit Hall 1 ]

The integration of machine learning models in various real-world applications is becoming more prevalent to assist humans in their daily decision-making tasks as a result of recent advancements in this field. However, it has been discovered that there is a tradeoff between the accuracy and fairness of these decision-making tasks. In some cases, these AI systems can be unfair by exhibiting bias or discrimination against certain social groups, which can have severe consequences in real life. Inspired by one of the most well-known human learning skills called grouping, we address this issue by proposing a novel machine learning (ML) framework where the ML model learns to group a diverse set of problems into distinct subgroups to solve each subgroup using its specific sub-model. Our proposed framework involves three stages of learning, which are formulated as a three-level optimization problem: 1) grouping problems into subgroups, 2) learning group-specific sub-models for problem-solving, and 3) updating group assignments of training examples by minimizing validation loss. These three learning stages are performed end-to-end in a joint manner using gradient descent. To improve fairness and accuracy, we develop an efficient optimization algorithm to solve this three-level optimization problem. To further decrease the risk of overfitting …

Poster
Xuxing Chen · Minhui Huang · Shiqian Ma · Krishna Balasubramanian

[ Exhibit Hall 1 ]

Bilevel optimization recently has received tremendous attention due to its great success in solving important machine learning problems like meta learning, reinforcement learning, and hyperparameter optimization. Extending single-agent training on bilevel problems to the decentralized setting is a natural generalization, and there has been a flurry of work studying decentralized bilevel optimization algorithms. However, it remains unknown how to design the distributed algorithm with sample complexity and convergence rate comparable to SGD for stochastic optimization, and at the same time without directly computing the exact Hessian or Jacobian matrices. In this paper we propose such an algorithm. More specifically, we propose a novel decentralized stochastic bilevel optimization (DSBO) algorithm that only requires first order stochastic oracle, Hessian-vector product and Jacobian-vector product oracle. The sample complexity of our algorithm matches the currently best known results for DSBO, while our algorithm does not require estimating the full Hessian and Jacobian matrices, thereby possessing to improved per-iteration complexity.

Poster
Cindy Zhang · Sarah Cen · Devavrat Shah

[ Exhibit Hall 1 ]

In recent years, multiple notions of algorithmic fairness have arisen. One such notion is individual fairness (IF), which requires that individuals who are similar receive similar treatment. In parallel, matrix estimation (ME) has emerged as a natural paradigm for handling noisy data with missing values. In this work, we connect the two concepts. We show that pre-processing data using ME can improve an algorithm's IF without sacrificing performance. Specifically, we show that using a popular ME method known as singular value thresholding (SVT) to pre-process the data provides a strong IF guarantee under appropriate conditions. We then show that, under analogous conditions, SVT pre-processing also yields estimates that are consistent and approximately minimax optimal. As such, the ME pre-processing step does not, under the stated conditions, increase the prediction error of the base algorithm, i.e., does not impose a fairness-performance trade-off. We verify these results on synthetic and real data.

Poster
Ilias Diakonikolas · Daniel Kane · Ankit Pensia · Thanasis Pittas

[ Exhibit Hall 1 ]

We study principal component analysis (PCA), where given a dataset in $\mathbb R^d$ from a distribution, the task is to find a unit vector $v$ that approximately maximizes the variance of the distribution after being projected along $v$. Despite being a classical task, standard estimators fail drastically if the data contains even a small fraction of outliers, motivating the problem of robust PCA. Recent work has developed computationally-efficient algorithms for robust PCA that either take super-linear time or have sub-optimal error guarantees. Our main contribution is to develop a nearly linear time algorithm for robust PCA with near-optimal error guarantees. We also develop a single-pass streaming algorithm for robust PCA with memory usage nearly-linear in the dimension.
Poster
Hyeongrok Han · Siwon Kim · Hyun-Soo Choi · Sungroh Yoon

[ Exhibit Hall 1 ]

Several recent studies have elucidated why knowledge distillation (KD) improves model performance. However, few have researched the other advantages of KD in addition to its improving model performance. In this study, we have attempted to show that KD enhances the interpretability as well as the accuracy of models. We measured the number of concept detectors identified in network dissection for a quantitative comparison of model interpretability. We attributed the improvement in interpretability to the class-similarity information transferred from the teacher to student models. First, we confirmed the transfer of class-similarity information from the teacher to student model via logit distillation. Then, we analyzed how class-similarity information affects model interpretability in terms of its presence or absence and degree of similarity information. We conducted various quantitative and qualitative experiments and examined the results on different datasets, different KD methods, and according to different measures of interpretability. Our research showed that KD models by large models could be used more reliably in various fields. The code is available at https://github.com/Rok07/KD_XAI.git.

Poster
Emanuele Marconato · Gianpaolo Bontempo · ELISA FICARRA · Simone Calderara · Andrea Passerini · Stefano Teso

[ Exhibit Hall 1 ]

We introduce Neuro-Symbolic Continual Learning, where a model has to solve a sequence of neuro-symbolic tasks, that is, it has to map sub-symbolic inputs to high-level concepts and compute predictions by reasoning consistently with prior knowledge. Our key observation is that neuro-symbolic tasks, although different, often share concepts whose semantics remains stable over time. Traditional approaches fall short: existing continual strategies ignore knowledge altogether, while stock neuro-symbolic architectures suffer from catastrophic forgetting. We show that leveraging prior knowledge by combining neuro-symbolic architectures with continual strategies does help avoid catastrophic forgetting, but also that doing so can yield models affected by reasoning shortcuts. These undermine the semantics of the acquired concepts, even when detailed prior knowledge is provided upfront and inference is exact, and in turn continual performance. To overcome these issues, we introduce COOL, a COncept-level cOntinual Learning strategy tailored for neuro-symbolic continual problems that acquires high-quality concepts and remembers them over time. Our experiments on three novel benchmarks highlights how COOL attains sustained high performance on neuro-symbolic continual learning tasks in which other strategies fail.

Poster
Tung Nguyen · Johannes Brandstetter · Ashish Kapoor · Jayesh K. Gupta · Aditya Grover

[ Exhibit Hall 1 ]

Recent data-driven approaches based on machine learning aim to directly solve a downstream forecasting or projection task by learning a data-driven functional mapping using deep neural networks. However, these networks are trained using curated and homogeneous climate datasets for specific spatiotemporal tasks, and thus lack the generality of currently used computationally intensive physics-informed numerical models for weather and climate modeling. We develop and demonstrate ClimaX, a flexible and generalizable deep learning model for weather and climate science that can be trained using heterogeneous datasets spanning different variables, spatio-temporal coverage, and physical groundings. ClimaX extends the Transformer architecture with novel encoding and aggregation blocks that allow effective use of available compute and data while maintaining general utility. ClimaX is pretrained with a self-supervised learning objective on climate datasets derived from CMIP6. The pretrained ClimaX can then be fine-tuned to address a breadth of climate and weather tasks, including those that involve atmospheric variables and spatio-temporal scales unseen during pretraining. Compared to existing data-driven baselines, we show that this generality in ClimaX results in superior performance on benchmarks for weather forecasting and climate projections, even when pretrained at lower resolutions and compute budgets. Our source code is available at https://github.com/microsoft/ClimaX.

Poster
Justin Cui · Ruochen Wang · Si Si · Cho-Jui Hsieh

[ Exhibit Hall 1 ]

Dataset Distillation is a newly emerging area that aims to distill large datasets into much smaller and highly informative synthetic ones to accelerate training and reduce storage. Among various dataset distillation methods, trajectory-matching-based methods (MTT) have achieved SOTA performance in many tasks, e.g., on CIFAR-10/100. However, due to exorbitant memory consumption when unrolling optimization through SGD steps, MTT fails to scale to large-scale datasets such as ImageNet-1K. Can we scale this SOTA method to ImageNet-1K and does its effectiveness on CIFAR transfer to ImageNet-1K? To answer these questions, we first propose a procedure to exactly compute the unrolled gradient with constant memory complexity, which allows us to scale MTT to ImageNet-1K seamlessly with $\sim 6$x reduction in memory footprint. We further discover that it is challenging for MTT to handle datasets with a large number of classes, and propose a novel soft label assignment that drastically improves its convergence. The resulting algorithm sets new SOTA on ImageNet-1K: we can scale up to 50 IPCs (Image Per Class) on ImageNet-1K on a single GPU (all previous methods can only scale to 2 IPCs on ImageNet-1K), leading to the best accuracy (only 5.9% accuracy drop against full dataset training) while utilizing only …
Poster
Feilong Zhang · Xianming Liu · Shiyi Lin · Gang Wu · Xiong Zhou · Junjun Jiang · Xiangyang Ji

[ Exhibit Hall 1 ]

Federated learning suffers from a latency bottleneck induced by network stragglers, which hampers the training efficiency significantly. In addition, due to the heterogeneous data distribution and security requirements, simple and fast averaging aggregation is not feasible anymore. Instead, complicated aggregation operations, such as knowledge distillation, are required. The time cost for complicated aggregation becomes a new bottleneck that limits the computational efficiency of FL. In this work, we claim that the root cause of training latency actually lies in the aggregation-then-broadcasting workflow of the server. By swapping the computational order of aggregation and broadcasting, we propose a novel and efficient parallel federated learning (PFL) framework that unlocks the edge nodes during global computation and the central server during local computation. This fully asynchronous and parallel pipeline enables handling complex aggregation and network stragglers, allowing flexible device participation as well as achieving scalability in computation. We theoretically prove that synchronous and asynchronous PFL can achieve a similar convergence rate as vanilla FL. Extensive experiments empirically show that our framework brings up to $5.56\times$ speedup compared with traditional FL. Code is available at: https://github.com/Hypervoyager/PFL.
Poster
Heng Dong · Junyu Zhang · Tonghan Wang · Chongjie Zhang

[ Exhibit Hall 1 ]

Robot design aims at learning to create robots that can be easily controlled and perform tasks efficiently. Previous works on robot design have proven its ability to generate robots for various tasks. However, these works searched the robots directly from the vast design space and ignored common structures, resulting in abnormal robots and poor performance. To tackle this problem, we propose a Symmetry-Aware Robot Design (SARD) framework that exploits the structure of the design space by incorporating symmetry searching into the robot design process. Specifically, we represent symmetries with the subgroups of the dihedral group and search for the optimal symmetry in structured subgroups. Then robots are designed under the searched symmetry. In this way, SARD can design efficient symmetric robots while covering the original design space, which is theoretically analyzed. We further empirically evaluate SARD on various tasks, and the results show its superior efficiency and generalizability.

Poster
EungGu Yun · Hyungi Lee · Giung Nam · Juho Lee

[ Exhibit Hall 1 ]

Deep ensemble is a simple yet powerful way to improve the performance of deep neural networks. Under this motivation, recent works on mode connectivity have shown that parameters of ensembles are connected by low-loss subspaces, and one can efficiently collect ensemble parameters in those subspaces. While this provides a way to efficiently train ensembles, for inference, multiple forward passes should still be executed using all the ensemble parameters, which often becomes a serious bottleneck for real-world deployment. In this work, we propose a novel framework to reduce such costs. Given a low-loss subspace connecting two modes of a neural network, we build an additional neural network that predicts the output of the original neural network evaluated at a certain point in the low-loss subspace. The additional neural network, which we call a ``bridge'', is a lightweight network that takes minimal features from the original network and predicts outputs for the low-loss subspace without forward passes through the original network. We empirically demonstrate that we can indeed train such bridge networks and significantly reduce inference costs with the help of bridge networks.

Poster
Liang Liu · Yanan Guo · Youtao Zhang · Jun Yang

[ Exhibit Hall 1 ]

Vision Transformer (ViT) is an attention-based model architecture that has demonstrated superior performance on many computer vision tasks. However, its security properties, in particular, the robustness against adversarial attacks, are yet to be thoroughly studied. Recent works have shown that ViT is vulnerable to attention-based adversarial patch attacks, which cover 1-3% area of the input image using adversarial patches and degrades the model accuracy to 0%. This work provides a generic study targeting the attention-based patch attack. First, we experimentally observe that adversarial patches only activate in a few layers and become lazy during attention updating. According to experiments, we study the theory of how a small adversarial patch perturbates the whole model. Based on understanding adversarial patch attacks, we propose a simple but efficient defense that correctly detects more than 95% of adversarial patches.

Poster
Aleksandr Podkopaev · Patrick Bloebaum · Shiva Kasiviswanathan · Aaditya Ramdas

[ Exhibit Hall 1 ]

Independence testing is a classical statistical problem that has been extensively studied in the batch setting when one fixes the sample size before collecting data. However, practitioners often prefer procedures that adapt to the complexity of a problem at hand instead of setting sample size in advance. Ideally, such procedures should (a) stop earlier on easy tasks (and later on harder tasks), hence making better use of available resources, and (b) continuously monitor the data and efficiently incorporate statistical evidence after collecting new data, while controlling the false alarm rate. Classical batch tests are not tailored for streaming data: valid inference after data peeking requires correcting for multiple testing which results in low power. Following the principle of testing by betting, we design sequential kernelized independence tests that overcome such shortcomings. We exemplify our broad framework using bets inspired by kernelized dependence measures, e.g., the Hilbert-Schmidt independence criterion. Our test is also valid under non-i.i.d. time-varying settings. We demonstrate the power of our approaches on both simulated and real data.

Poster
Christopher Choquette-Choo · Hugh B McMahan · J K Rush · Abhradeep Guha Thakurta

[ Exhibit Hall 1 ]

We introduce new differentially private (DP) mechanisms for gradient-based machine learning (ML) with multiple passes (epochs) over a dataset, substantially improving the achievable privacy-utility-computation tradeoffs. We formalize the problem of DP mechanisms for adaptive streams with multiple participations and introduce a non-trivial extension of online matrix factorization DP mechanisms to our setting. This includes establishing the necessary theory for sensitivity calculations and efficient computation of optimal matrices. For some applications like $>\!\! 10,000$ SGD steps, applying these optimal techniques becomes computationally expensive. We thus design an efficient Fourier-transform-based mechanism with only a minor utility loss. Extensive empirical evaluation on both example-level DP for image classification and user-level DP for language modeling demonstrate substantial improvements over all previous methods, including the widely-used DP-SGD. Though our primary application is to ML, our main DP results are applicable to arbitrary linear queries and hence may have much broader applicability.
Poster
Jiayang Li · Jing Yu · Boyi Liu · Yu Nie · Zhaoran Wang

[ Exhibit Hall 1 ]

In this paper, we develop an approximation scheme for solving bilevel programs with equilibrium constraints, which are generally difficult to solve. Among other things, calculating the first-order derivative in such a problem requires differentiation across the hierarchy, which is computationally intensive, if not prohibitive. To bypass the hierarchy, we propose to bound such bilevel programs, equivalent to multiple-followers Stackelberg games, with two new hierarchy-free problems: a $T$-step Cournot game and a $T$-step monopoly model. Since they are standard equilibrium or optimization problems, both can be efficiently solved via first-order methods. Importantly, we show that the bounds provided by these problems --- the upper bound by the $T$-step Cournot game and the lower bound by the $T$-step monopoly model --- can be made arbitrarily tight by increasing the step parameter $T$ for a wide range of problems. We prove that a small $T$ usually suffices under appropriate conditions to reach an approximation acceptable for most practical purposes. Eventually, the analytical insights are highlighted through numerical examples.
Poster
Aritra Guha · Nhat Ho · XuanLong Nguyen

[ Exhibit Hall 1 ]

Dirichlet Process mixture models (DPMM) in combination with Gaussian kernels have been an important modeling tool for numerous data domains arising from biological, physical, and social sciences. However, this versatility in applications does not extend to strong theoretical guarantees for the underlying parameter estimates, for which only a logarithmic rate is achieved. In this work, we (re)introduce and investigate a metric, named Orlicz-Wasserstein distance, in the study of the Bayesian contraction behavior for the parameters. We show that despite the overall slow convergence guarantees for all the parameters, posterior contraction for parameters happens at almost polynomial rates in outlier regions of the parameter space. Our theoretical results provide new insight in understanding the convergence behavior of parameters arising from various settings of hierarchical Bayesian nonparametric models. In addition, we provide an algorithm to compute the metric by leveraging Sinkhorn divergences and validate our findings through a simulation study.

Poster
Robert Busa-Fekete · andres munoz · Umar Syed · Sergei Vassilvitskii

[ Exhibit Hall 1 ]

We study differentially private mechanisms for sharing training data in machine learning settings. Our goal is to enable learning of an accurate predictive model while protecting the privacy of each user's label. Previous work established privacy guarantees that assumed the features are public and given exogenously, a setting known as label differential privacy. In some scenarios, this can be a strong assumption that removes the interplay between features and labels from the privacy analysis. We relax this approach and instead assume the features are drawn from a distribution that depends on the private labels. We first show that simply adding noise to the label, as in previous work, can lead to an arbitrarily weak privacy guarantee, and also present methods for estimating this privacy loss from data. We then present a new mechanism that replaces some training examples with synthetically generated data, and show that our mechanism has a much better privacy-utility tradeoff if the synthetic data is ‘realistic’, in a certain quantifiable sense. Finally, we empirically validate our theoretical analysis.

Poster
Burak Bartan · Haoming Li · Harris Teague · Christopher Lott · Bistra Dilkina

[ Exhibit Hall 1 ]

The deployment and training of neural networks on edge computing devices pose many challenges. The low memory nature of edge devices is often one of the biggest limiting factors encountered in the deployment of large neural network models. Tensor rematerialization or recompute is a way to address high memory requirements for neural network training and inference. In this paper we consider the problem of execution time minimization of compute graphs subject to a memory budget. In particular, we develop a new constraint programming formulation called Moccasin with only $O(n)$ integer variables, where $n$ is the number of nodes in the compute graph. This is a significant improvement over the works in the recent literature that propose formulations with $O(n^2)$ Boolean variables. We present numerical studies that show that our approach is up to an order of magnitude faster than recent work especially for large-scale graphs.
Poster
Jonas Köhler · Michele Invernizzi · Pim de Haan · Frank Noe

[ Exhibit Hall 1 ]

Normalizing flows (NF) are a class of powerful generative models that have gained popularity in recent years due to their ability to model complex distributions with high flexibility and expressiveness. In this work, we introduce a new type of normalizing flow that is tailored for modeling positions and orientations of multiple objects in three-dimensional space, such as molecules in a crystal. Our approach is based on two key ideas: first, we define smooth and expressive flows on the group of unit quaternions, which allows us to capture the continuous rotational motion of rigid bodies; second, we use the double cover property of unit quaternions to define a proper density on the rotation group. This ensures that our model can be trained using standard likelihood-based methods or variational inference with respect to a thermodynamic target density. We evaluate the method by training Boltzmann generators for two molecular examples, namely the multi-modal density of a tetrahedral system in an external field and the ice XI phase in the TIP4P water model. Our flows can be combined with flows operating on the internal degrees of freedom of molecules and constitute an important step towards the modeling of distributions of many interacting molecules.

Poster
Sarah Rathnam · Sonali Parbhoo · Weiwei Pan · Susan Murphy · Finale Doshi-Velez

[ Exhibit Hall 1 ]

Discount regularization, using a shorter planning horizon when calculating the optimal policy, is a popular choice to restrict planning to a less complex set of policies when estimating an MDP from sparse or noisy data (Jiang et al., 2015). It is commonly understood that discount regularization functions by de-emphasizing or ignoring delayed effects. In this paper, we reveal an alternate view of discount regularization that exposes unintended consequences. We demonstrate that planning under a lower discount factor produces an identical optimal policy to planning using any prior on the transition matrix that has the same distribution for all states and actions. In fact, it functions like a prior with stronger regularization on state-action pairs with more transition data. This leads to poor performance when the transition matrix is estimated from data sets with uneven amounts of data across state-action pairs. Our equivalence theorem leads to an explicit formula to set regularization parameters locally for individual state-action pairs rather than globally. We demonstrate the failures of discount regularization and how we remedy them using our state-action-specific method across simple empirical examples as well as a medical cancer simulator.

Poster
Matthias Kirchler · Christoph Lippert · Marius Kloft

[ Exhibit Hall 1 ]

Normalizing flows are powerful non-parametric statistical models that function as a hybrid between density estimators and generative models. Current learning algorithms for normalizing flows assume that data points are sampled independently, an assumption that is frequently violated in practice, which may lead to erroneous density estimation and data generation. We propose a likelihood objective of normalizing flows incorporating dependencies between the data points, for which we derive a flexible and efficient learning algorithm suitable for different dependency structures. We show that respecting dependencies between observations can improve empirical results on both synthetic and real-world data, and leads to higher statistical power in a downstream application to genome-wide association studies.

Poster
Jeremy Sellier · Petros Dellaportas

[ Exhibit Hall 1 ]

In this paper, we introduce a variant of Bayesian online change point detection with a reducedrank Student-t process (TP) and dependent Student-t noise, as a nonparametric time series model. Our method builds and improves upon the state-of-the-art Gaussian process (GP) change point model benchmark of Saatci et al. (2010). The Student-t process generalizes the concept of a GP and hence yields a more flexible alternative. Additionally, unlike a GP, the predictive variance explicitly depends on the training observations, while the use of an entangled Student-t noise model preserves analytical tractability. Our approach also uses a Hilbert space reduced-rank representation of the TP kernel, derived from an eigenfunction expansion of the Laplace operator (Solin & Sarkka, 2020), to alleviate its computational complexity. Improvements in prediction and training time are demonstrated with real-world data-sets

Poster
Paul Monchot · Loic Coquelin · Sébastien J. Petit · Sébastien Marmin · Erwann LE PENNEC · Nicolas Fischer

[ Exhibit Hall 1 ]

When physical sensors are involved, such as image sensors, the uncertainty over the input data is often a major component of the output uncertainty of machine learning models. In this work, we address the problem of input uncertainty propagation through trained neural networks. We do not rely on a Gaussian distribution assumption of the output or of any intermediate layer. We propagate instead a Gaussian Mixture Model (GMM) that offers much more flexibility, using the Split&Merge algorithm. This paper's main contribution is the computation of a Wasserstein criterion to control the Gaussian splitting procedure for which theoretical guarantees of convergence on the output distribution estimates are derived. The methodology is tested against a wide range of datasets and networks. It shows robustness, and genericity and offers highly accurate output probability density function estimation while maintaining a reasonable computational cost compared with the standard Monte Carlo (MC) approach.

Poster
Sohei Arisaka · Qianxiao Li

[ Exhibit Hall 1 ]

Iterative methods are ubiquitous in large-scale scientific computing applications, and a number of approaches based on meta-learning have been recently proposed to accelerate them. However, a systematic study of these approaches and how they differ from meta-learning is lacking. In this paper, we propose a framework to analyze such learning-based acceleration approaches, where one can immediately identify a departure from classical meta-learning. We theoretically show that this departure may lead to arbitrary deterioration of model performance, and at the same time, we identify a methodology to ameliorate it by modifying the loss objective, leading to a novel training method for learning-based acceleration of iterative algorithms. We demonstrate the significant advantage and versatility of the proposed approach through various numerical applications.

Poster
Sunrit Chakraborty · Saptarshi Roy · Ambuj Tewari

[ Exhibit Hall 1 ]

We consider the stochastic linear contextual bandit problem with high-dimensional features. We analyze the Thompson sampling algorithm using special classes of sparsity-inducing priors (e.g., spike-and-slab) to model the unknown parameter and provide a nearly optimal upper bound on the expected cumulative regret. To the best of our knowledge, this is the first work that provides theoretical guarantees of Thompson sampling in high-dimensional and sparse contextual bandits. For faster computation, we use variational inference instead of Markov Chain Monte Carlo (MCMC) to approximate the posterior distribution. Extensive simulations demonstrate the improved performance of our proposed algorithm over existing ones.

Poster
Nicholas Rittler · Kamalika Chaudhuri

[ Exhibit Hall 1 ]

$k$-nearest neighbor classification is a popular non-parametric method because of desirable properties like automatic adaption to distributional scale changes. Unfortunately, it has thus far proved difficult to design active learning strategies for the training of local voting-based classifiers that naturally retain these desirable properties, and hence active learning strategies for $k$-nearest neighbor classification have been conspicuously missing from the literature. In this work, we introduce a simple and intuitive active learning algorithm for the training of $k$-nearest neighbor classifiers, the first in the literature which retains the concept of the $k$-nearest neighbor vote at prediction time. We provide consistency guarantees for a modified $k$-nearest neighbors classifier trained on samples acquired via our scheme, and show that when the conditional probability function $\mathbb{P}(Y=y|X=x)$ is sufficiently smooth and the Tsybakov noise condition holds, our actively trained classifiers converge to the Bayes optimal classifier at a faster asymptotic rate than passively trained $k$-nearest neighbor classifiers.
Poster
Adrien Vacher · François-Xavier Vialard

[ Exhibit Hall 1 ]

In this paper, we derive a semi-dual formulation for the problem of unbalanced quadratic optimal transport and we study its stability properties, namely we give upper and lower bounds for the Bregman divergence of the new objective that hold globally. We observe that the new objective gains even more convexity than in the balanced case. We use this formulation to prove the first results on statistical estimation of UOT potentials and we leverage the extra convexity to recover super-parametric rates. Interestingly, unlike in the balanced case, we do not require the potentials to be smooth. Then, use variable metric descent to solve the semi-dual problem for which we prove convergence at a $1/k$ rate for strongly convex potentials and exponential convergence in the balanced case when potentials are also smooth. We emphasize that our convergence results has an interest on its own as it generalizes previous convergence results to non-equivalent metrics. Last, we instantiate a proof-of-concept tractable version of our theoretical algorithm that we benchmark on a 2D experiment in the balanced case and on a medium dimension synthetic experiment in the unbalanced case.
Poster
Kei Takemura

[ Exhibit Hall 1 ]

The performance of a bandit algorithm is usually measured by the cumulative rewards of the actions chosen by the algorithm. However, in many real-world applications, the rewards in each round should be good enough for reasons such as safety and fairness. In this paper, we investigate the contextual conservative interleaving bandit problem, which has a performance constraint that requires the chosen actions to be not much worse than given baseline actions in each round. This work is the first to simultaneously consider the following practical situations: (1) multiple actions are chosen in a round, (2) the feature vectors associated with given actions depend on the round, and (3) the performance constraints in each round that depend only on the actions chosen in that round. We propose a meta-algorithm, Greedy on Confidence Widths (GCW), that satisfies the performance constraints with high probability. GCW uses a standard bandit algorithm and achieves minimax optimal regret up to logarithmic factors if the algorithm used is also minimax optimal. We improve the existing analyses for the C${}^2$UCB algorithm and the Thompson sampling to combine with GCW. We show that these algorithms achieve near-optimal regret when the feasible sets of given actions are the bases of …
Poster
Yongyi Yang · Jacob Steinhardt · Wei Hu

[ Exhibit Hall 1 ]

Recent work has observed an intriguing "Neural Collapse'' phenomenon in well-trained neural networks, where the last-layer representations of training samples with the same label collapse into each other. This appears to suggest that the last-layer representations are completely determined by the labels, and do not depend on the intrinsic structure of input distribution. We provide evidence that this is not a complete description, and that the apparent collapse hides important fine-grained structure in the representations. Specifically, even when representations apparently collapse, the small amount of remaining variation can still faithfully and accurately captures the intrinsic structure of input distribution. As an example, if we train on CIFAR-10 using only 5 coarse-grained labels (by combining two classes into one super-class) until convergence, we can reconstruct the original 10-class labels from the learned representations via unsupervised clustering. The reconstructed labels achieve 93% accuracy on the CIFAR-10 test set, nearly matching the normal CIFAR-10 accuracy for the same architecture. We also provide an initial theoretical result showing the fine-grained representation structure in a simplified synthetic setting. Our results show concretely how the structure of input data can play a significant role in determining the fine-grained structure of neural representations, going beyond what Neural …

Poster
Haiyang Yu · Zhao Xu · Xiaofeng Qian · Xiaoning Qian · Shuiwang Ji

[ Exhibit Hall 1 ]

We consider the prediction of the Hamiltonian matrix, which finds use in quantum chemistry and condensed matter physics. Efficiency and equivariance are two important, but conflicting factors. In this work, we propose a SE(3)-equivariant network, named QHNet, that achieves efficiency and equivariance. Our key advance lies at the innovative design of QHNet architecture, which not only obeys the underlying symmetries, but also enables the reduction of number of tensor products by 92%. In addition, QHNet prevents the exponential growth of channel dimension when more atom types are involved. We perform experiments on MD17 datasets, including four molecular systems. Experimental results show that our QHNet can achieve comparable performance to the state of the art methods at a significantly faster speed. Besides, our QHNet consumes 50% less memory due to its streamlined architecture. Our code is publicly available as part of the AIRS library (https://github.com/divelab/AIRS).

Poster
Yongtuo Liu · Sara Magliacane · Miltiadis (Miltos) Kofinas · Efstratios Gavves

[ Exhibit Hall 1 ]

Dynamical systems with complex behaviours, e.g. immune system cells interacting with a pathogen, are commonly modelled by splitting the behaviour in different regimes, or modes, each with simpler dynamics, and then learn the switching behaviour from one mode to another. To achieve this, Switching Dynamical Systems (SDS) are a powerful tool that automatically discovers these modes and mode-switching behaviour from time series data. While effective, these methods focus on independent objects, where the modes of one object are independent of the modes of the other objects. In this paper, we focus on the more general interacting object setting for switching dynamical systems, where the per-object dynamics also depend on an unknown and dynamically changing subset of other objects and their modes. To this end, we propose a novel graph-based approach for switching dynamical systems, GRAph Switching dynamical Systems (GRASS), in which we use a dynamic graph to characterize interactions between objects and learn both intra-object and inter-object mode-switching behaviour. For benchmarking, we create two new datasets, a synthesized ODE-driven particles dataset and a real-world Salsa-couple dancing dataset. Experiments show that GRASS can consistently outperforms previous state-of-the-art methods. We will release code and data after acceptance.

Poster
Eunji Kim · Dahuin Jung · Sangha Park · Siwon Kim · Sungroh Yoon

[ Exhibit Hall 1 ]

Interpretable models are designed to make decisions in a human-interpretable manner. Representatively, Concept Bottleneck Models (CBM) follow a two-step process of concept prediction and class prediction based on the predicted concepts. CBM provides explanations with high-level concepts derived from concept predictions; thus, reliable concept predictions are important for trustworthiness. In this study, we address the ambiguity issue that can harm reliability. While the existence of a concept can often be ambiguous in the data, CBM predicts concepts deterministically without considering this ambiguity. To provide a reliable interpretation against this ambiguity, we propose Probabilistic Concept Bottleneck Models (ProbCBM). By leveraging probabilistic concept embeddings, ProbCBM models uncertainty in concept prediction and provides explanations based on the concept and its corresponding uncertainty. This uncertainty enhances the reliability of the explanations. Furthermore, as class uncertainty is derived from concept uncertainty in ProbCBM, we can explain class uncertainty by means of concept uncertainty. Code is publicly available at https://github.com/ejkim47/prob-cbm.

Poster
Tim G. J. Rudner · Sanyam Kapoor · Shikai Qiu · Andrew Wilson

[ Exhibit Hall 1 ]

Parameter-space regularization in neural network optimization is a fundamental tool for improving generalization. However, standard parameter-space regularization methods make it challenging to encode explicit preferences about desired predictive functions into neural network training. In this work, we approach regularization in neural networks from a probabilistic perspective and show that by viewing parameter-space regularization as specifying an empirical prior distribution over the model parameters, we can derive a probabilistically well-motivated regularization technique that allows explicitly encoding information about desired predictive functions into neural network training. This method---which we refer to as function-space empirical Bayes (FS-EB)---includes both parameter- and function-space regularization, is mathematically simple, easy to implement, and incurs only minimal computational overhead compared to standard regularization techniques. We evaluate the utility of this regularization technique empirically and demonstrate that the proposed method leads to near-perfect semantic shift detection, highly-calibrated predictive uncertainty estimates, successful task adaption from pre-trained models, and improved generalization under covariate shift.

Poster
Xiaotong Cheng · Cheng Pan · Setareh Maghsudi

[ Exhibit Hall 1 ]

Contextual bandit algorithms appear in several applications, such as online advertisement and recommendation systems like personalized education or personalized medicine. Individually-tailored recommendations boost the performance of the underlying application; nevertheless, providing individual suggestions becomes costly and even implausible as the number of users grows. As such, to efficiently serve the demands of several users in modern applications, it is imperative to identify the underlying users' clusters, i.e., the groups of users for which a single recommendation might be (near-)optimal. We propose CLUB-HG, a novel algorithm that integrates a game-theoretic approach into clustering inference. Our algorithm achieves Nash equilibrium at each inference step and discovers the underlying clusters. We also provide regret analysis within a standard linear stochastic noise setting. Finally, experiments on synthetic and real-world datasets show the superior performance of our proposed algorithm compared to the state-of-the-art algorithms.

Poster
Jialin Liu · Xiaohan Chen · Zhangyang “Atlas” Wang · Wotao Yin · HanQin Cai

[ Exhibit Hall 1 ]

Learning to Optimize (L2O), a technique that utilizes machine learning to learn an optimization algorithm automatically from data, has gained arising attention in recent years. A generic L2O approach parameterizes the iterative update rule and learns the update direction as a black-box network. While the generic approach is widely applicable, the learned model can overfit and may not generalize well to out-of-distribution test sets. In this paper, we derive the basic mathematical conditions that successful update rules commonly satisfy. Consequently, we propose a novel L2O model with a mathematics-inspired structure that is broadly applicable and generalized well to out-of-distribution problems. Numerical simulations validate our theoretical findings and demonstrate the superior empirical performance of the proposed L2O model.

Poster
Ziqiao Wang · Yongyi Mao

[ Exhibit Hall 1 ]

In this work, we present a variety of novel information-theoretic generalization bounds for learning algorithms, from the supersample setting of Steinke & Zakynthinou (2020)—the setting of the ``conditional mutual information'' framework. Our development exploits projecting the loss pair (obtained from a training instance and a testing instance) down to a single number and correlating loss values with a Rademacher sequence (and its shifted variants). The presented bounds include square-root bounds, fast-rate bounds, including those based on variance and sharpness, and bounds for interpolating algorithms etc. We show theoretically or empirically that these bounds are tighter than all information-theoretic bounds known to date on the same supersample setting.

Poster
Junkai Zhang · Weitong Zhang · Quanquan Gu

[ Exhibit Hall 1 ]

We study reward-free reinforcement learning (RL) with linear function approximation, where the agent works in two phases: (1) in the exploration phase, the agent interacts with the environment but cannot access the reward; and (2) in the planning phase, the agent is given a reward function and is expected to find a near-optimal policy based on samples collected in the exploration phase. The sample complexities of existing reward-free algorithms have a polynomial dependence on the planning horizon, which makes them intractable for long planning horizon RL problems. In this paper, we propose a new reward-free algorithm for learning linear mixture Markov decision processes (MDPs), where the transition probability can be parameterized as a linear combination of known feature mappings. At the core of our algorithm is uncertainty-weighted value-targeted regression with exploration-driven pseudo-reward and a high-order moment estimator for the aleatoric and epistemic uncertainties. When the total reward is bounded by $1$, we show that our algorithm only needs to explore $\tilde O\left( d^2\varepsilon^{-2}\right)$ episodes to find an $\varepsilon$-optimal policy, where $d$ is the dimension of the feature mapping. The sample complexity of our algorithm only has a polylogarithmic dependence on the planning horizon and therefore is "horizon-free''. In addition, we …
Poster
Abdus Salam Azad · Izzeddin Gur · Jasper Emhoff · Nathaniel Alexis · Aleksandra Faust · Pieter Abbeel · Ion Stoica

[ Exhibit Hall 1 ]

Reinforcement Learning (RL) algorithms are often known for sample inefficiency and difficult generalization. Recently, Unsupervised Environment Design (UED) emerged as a new paradigm for zero-shot generalization by simultaneously learning a task distribution and agent policies on the generated tasks. This is a non-stationary process where the task distribution evolves along with agent policies; creating an instability over time. While past works demonstrated the potential of such approaches, sampling effectively from the task space remains an open challenge, bottlenecking these approaches. To this end, we introduce CLUTR: a novel unsupervised curriculum learning algorithm that decouples task representation and curriculum learning into a two-stage optimization. It first trains a recurrent variational autoencoder on randomly generated tasks to learn a latent task manifold. Next, a teacher agent creates a curriculum by maximizing a minimax REGRET-based objective on a set of latent tasks sampled from this manifold. Using the fixed-pretrained task manifold, we show that CLUTR successfully overcomes the non-stationarity problem and improves stability. Our experimental results show CLUTR outperforms PAIRED, a principled and popular UED method, in the challenging CarRacing and navigation environments: achieving 10.6X and 45% improvement in zero-shot generalization, respectively. CLUTR also performs comparably to the non-UED state-of-the-art for CarRacing, while …

Poster
Ted Moskovitz · Brendan O'Donoghue · Vivek Veeriah · Sebastian Flennerhag · Satinder Singh · Tom Zahavy

[ Exhibit Hall 1 ]

In recent years, reinforcement learning (RL) has been applied to real-world problems with increasing success. Such applications often require to put constraints on the agent's behavior. Existing algorithms for constrained RL (CRL) rely on gradient descent-ascent, but this approach comes with a caveat. While these algorithms are guaranteed to converge on average, they do not guarantee last-iterate convergence, i.e., the current policy of the agent may never converge to the optimal solution. In practice, it is often observed that the policy alternates between satisfying the constraints and maximizing the reward, rarely accomplishing both objectives simultaneously. Here, we address this problem by introducing Reinforcement Learning with Optimistic Ascent-Descent (ReLOAD), a principled CRL method with guaranteed last-iterate convergence. We demonstrate its empirical effectiveness on a wide variety of CRL problems including discrete MDPs and continuous control. In the process we establish a benchmark of challenging CRL problems.

Poster
Madhumitha Shridharan · Garud Iyengar

[ Exhibit Hall 1 ]

We consider the problem of computing bounds for causal queries on quasi-Markovian graphs with unobserved confounders and discrete valued observed variables, where identifiability does not hold. Existing non-parametric approaches for computing such bounds use multilinear programming (MP) formulations that are often intractable for existing solvers when the degree of the polynomial objective is greater than two. Hence, one often has to resort to either fast approximate heuristics which are not guaranteed to contain the true query value, or more accurate but computationally intensive procedures. We show how to construct an equivalent MP with a polynomial objective of lower degree. In particular, the degree of the objective in the new MP is equal to only the number of C-components that are intervened upon, instead of the total number of C-components. As a result, we can compute exact bounds for significantly larger causal inference problems as compared to what is possible using existing techniques. We also propose a very efficient Frank-Wolfe heuristic that produces very high quality bounds, and scales to large multilinear problems of higher degree.

Poster
Marina Knittel · Max Springer · John P Dickerson · MohammadTaghi Hajiaghayi

[ Exhibit Hall 1 ]

Clustering is a fundamental building block of modern statistical analysis pipelines. Fair clustering has seen much attention from the machine learning community in recent years. We are some of the first to study fairness in the context of hierarchical clustering, after the results of Ahmadian et al. from NeurIPS in 2020. We evaluate our results using Dasgupta's cost function, perhaps one of the most prevalent theoretical metrics for hierarchical clustering evaluation. Our work vastly improves the previous $O(n^{5/6}poly\log(n))$ fair approximation for cost to a near polylogarithmic $O(n^\delta poly\log(n))$ fair approximation for any constant $\delta\in(0,1)$. This result establishes a cost fairness tradeoff and extends to broader fairness constraints than the previous work. We also show how to alter existing hierarchical clusterings to guarantee fairness and cluster balance across any level in the hierarchy.
Poster
Santhosh Kumar Ramakrishnan · Ziad Al-Halah · Kristen Grauman

[ Exhibit Hall 1 ]

The goal in episodic memory (EM) is to search a long egocentric video to answer a natural language query (e.g., “where did I leave my purse?”). Existing EM methods exhaustively extract expensive fixed-length clip features to look everywhere in the video for the answer, which is infeasible for long wearable-camera videos that span hours or even days. We propose SpotEM, an approach to achieve efficiency for a given EM method while maintaining good accuracy. SpotEM consists of three key ideas: 1) a novel clip selector that learns to identify promising video regions to search conditioned on the language query; 2) a set of low-cost semantic indexing features that capture the context of rooms, objects, and interactions that suggest where to look; and 3) distillation losses that address the optimization issues arising from end-to-end joint training of the clip selector and EM model. Our experiments on 200+ hours of video from the Ego4D EM Natural Language Queries benchmark and three different EM models demonstrate the effectiveness of our approach: computing only 10% – 25% of the clip features, we preserve 84% – 97% of the original EM model’s accuracy. Project page: https://vision.cs.utexas.edu/projects/spotem

Poster
Xiaoyu Tan · Yong LIN · Shengyu Zhu · Chao Qu · Xihe Qiu · Xu Yinghui · Peng Cui · Yuan Qi

[ Exhibit Hall 1 ]

Typical machine learning applications always assume the data follows independent and identically distributed (IID) assumptions. In contrast, this assumption is frequently violated in real-world circumstances, leading to the Out-of-Distribution (OOD) generalization problem and a major drop in model robustness. To mitigate this issue, the invariant learning technique is leveraged to distinguish between spurious features and invariant features among all input features and to train the model purely on the basis of the invariant features. Numerous invariant learning strategies imply that the training data should contain domain information. Such information includes the environment index or auxiliary information acquired from prior knowledge. However, acquiring these information is typically impossible in practice. In this study, we present TIVA for environment-independent invariance learning, which requires no environment-specific information in training data. We discover and prove that, given certain mild data conditions, it is possible to train an environment partitioning policy based on attributes that are independent of the targets and then conduct invariant risk minimization. We examine our method in comparison to other baseline methods, which demonstrate superior performance and excellent robustness under OOD, using multiple benchmarks.

Poster
Adrià Marcos Morales · Matan Leibovich · Sreyas Mohan · Joshua Vincent · Piyush Haluai · Mai Tan · Peter Crozier · Carlos Fernandez-Granda

[ Exhibit Hall 1 ]

Unsupervised denoising is a crucial challenge in real-world imaging applications. Unsupervised deep-learning methods have demonstrated impressive performance on benchmarks based on synthetic noise. However, no metrics exist to evaluate these methods in an unsupervised fashion. This is highly problematic for the many practical applications where ground-truth clean images are not available. In this work, we propose two novel metrics: the unsupervised mean squared error (MSE) and the unsupervised peak signal-to-noise ratio (PSNR), which are computed using only noisy data. We provide a theoretical analysis of these metrics, showing that they are asymptotically consistent estimators of the supervised MSE and PSNR. Controlled numerical experiments with synthetic noise confirm that they provide accurate approximations in practice. We validate our approach on real-world data from two imaging modalities: videos in raw format and transmission electron microscopy. Our results demonstrate that the proposed metrics enable unsupervised evaluation of denoising methods based exclusively on noisy data.

Poster
Thomas Miconi

[ Exhibit Hall 1 ]

A hallmark of intelligence is the ability to autonomously learn new flexible, cognitive behaviors - that is, behaviors where the appropriate action depends not just on immediate stimuli (as in simple reflexive stimulus-response associations), but on contextual information that must be adequately acquired, stored and processed. While many meta-learning algorithms can design agents that autonomously learn new tasks, cognitive tasks adds another level of learning and memory to typical ``learning-to-learn'' problems. Here we evolve neural networks, endowed with plastic connections and neuromodulation, over a sizable set of simple cognitive tasks adapted from a computational neuroscience framework. The resulting evolved networks can automatically modify their own connectivity to acquire a novel simple cognitive task, never seen during evolution, from stimuli and rewards alone, through the spontaneous operation of their evolved neural organization and plasticity system. Our results emphasize the importance of carefully considering the multiple learning loops involved in the emergence of intelligent behavior.

Poster
Neha Mukund Kalibhat · Shweta Bhardwaj · C. Bayan Bruss · Hamed Firooz · Maziar Sanjabi · Soheil Feizi

[ Exhibit Hall 1 ]

We propose Automatic Feature Explanation using Contrasting Concepts (FALCON), an interpretability framework to explain features of image representations. For a target feature, FALCON captions its highly activating cropped images using a large captioning dataset (like LAION-400m) and a pre-trained vision-language model like CLIP. Each word among the captions is scored and ranked leading to a small number of shared, human-understandable concepts that closely describe the target feature. FALCON also applies contrastive interpretation using lowly activating (counterfactual) images, to eliminate spurious concepts. Although many existing approaches interpret features independently, we observe in state-of-the-art self-supervised and supervised models, that less than 20% of the representation space can be explained by individual features. We show that features in larger spaces become more interpretable when studied in groups and can be explained with high-order scoring concepts through FALCON. We discuss how extracted concepts can be used to explain and debug failures in downstream tasks. Finally, we present a technique to transfer concepts from one (explainable) representation space to another unseen representation space by learning a simple linear transformation.

Poster
Zhengxuan Wu · Karel D'Oosterlinck · Atticus Geiger · Amir Zur · Christopher Potts

[ Exhibit Hall 1 ]

Explainability methods for NLP systems encounter a version of the fundamental problem of causal inference: for a given ground-truth input text, we never truly observe the counterfactual texts necessary for isolating the causal effects of model representations on outputs. In response, many explainability methods make no use of counterfactual texts, assuming they will be unavailable. In this paper, we show that robust causal explainability methods can be created using approximate counterfactuals, which can be written by humans to approximate a specific counterfactual or simply sampled using metadata-guided heuristics. The core of our proposal is the Causal Proxy Model (CPM). A CPM explains a black-box model $\mathcal{N}$ because it is trained to have the same *actual* input/output behavior as $\mathcal{N}$ while creating neural representations that can be intervened upon to simulate the *counterfactual* input/output behavior of $\mathcal{N}$. Furthermore, we show that the best CPM for $\mathcal{N}$ performs comparably to $\mathcal{N}$ in making factual predictions, which means that the CPM can simply replace $\mathcal{N}$, leading to more explainable deployed models.
Poster
Sungwoo Park · Byoungwoo Park · Moontae Lee · Changhee Lee

[ Exhibit Hall 1 ]

Modeling spatiotemporal dynamics with neural differential equations has become a major line of research that opens new ways to handle various real-world scenarios (e.g., missing observations, irregular times, etc.). Despite such progress, most existing methods still face challenges in providing a general framework for analyzing time series. To tackle this, we adopt stochastic differential games to suggest a new philosophy of utilizing interacting collective intelligence in time series analysis. For the implementation, we develop the novel gradient descent-based algorithm called deep neural fictitious play to approximate the Nash equilibrium. We theoretically analyze the convergence result of the proposed algorithm and discuss the advantage of cooperative games in handling noninformative observation. Throughout the experiments on various datasets, we demonstrate the superiority of our framework over all the tested benchmarks in modeling time-series prediction by capitalizing on the advantages of applying cooperative games. An ablation study shows that neural agents of the proposed framework learn intrinsic temporal relevance to make accurate time-series predictions.

Poster
Honglin Chen · Rundi Wu · Eitan Grinspun · Changxi Zheng · Peter Yichen Chen

[ Exhibit Hall 1 ]

Implicit Neural Spatial Representation (INSR) has emerged as an effective representation of spatially-dependent vector fields. This work explores solving time-dependent PDEs with INSR. Classical PDE solvers introduce both temporal and spatial discretizations. Common spatial discretizations include meshes and meshless point clouds, where each degree-of-freedom corresponds to a location in space. While these explicit spatial correspondences are intuitive to model and understand, these representations are not necessarily optimal for accuracy, memory usage, or adaptivity. Keeping the classical temporal discretization unchanged (e.g., explicit/implicit Euler), we explore INSR as an alternative spatial discretization, where spatial information is implicitly stored in the neural network weights. The network weights then evolve over time via time integration. Our approach does not require any training data generated by existing solvers because our approach is the solver itself. We validate our approach on various PDEs with examples involving large elastic deformations, turbulent fluids, and multi-scale phenomena. While slower to compute than traditional representations, our approach exhibits higher accuracy and lower memory consumption. Whereas classical solvers can dynamically adapt their spatial representation only by resorting to complex remeshing algorithms, our INSR approach is intrinsically adaptive. By tapping into the rich literature of classic time integrators, e.g., operator-splitting schemes, our …

Poster
Nikola Jovanović · Mislav Balunovic · Dimitar I. Dimitrov · Martin Vechev

[ Exhibit Hall 1 ]

Fair representation learning (FRL) is a popular class of methods aiming to produce fair classifiers via data preprocessing. Recent regulatory directives stress the need for FRL methods that provide practical certificates, i.e., provable upper bounds on the unfairness of any downstream classifier trained on preprocessed data, which directly provides assurance in a practical scenario. Creating such FRL methods is an important challenge that remains unsolved. In this work, we address that challenge and introduce FARE (Fairness with Restricted Encoders), the first FRL method with practical fairness certificates. FARE is based on our key insight that restricting the representation space of the encoder enables the derivation of practical guarantees, while still permitting favorable accuracy-fairness tradeoffs for suitable instantiations, such as one we propose based on fair trees. To produce a practical certificate, we develop and apply a statistical procedure that computes a finite sample high-confidence upper bound on the unfairness of any downstream classifier trained on FARE embeddings. In our comprehensive experimental evaluation, we demonstrate that FARE produces practical certificates that are tight and often even comparable with purely empirical results obtained by prior methods, which establishes the practical value of our approach.

Poster
Seungryong Yoo · Eunji Kim · Dahuin Jung · JUNGBEOM LEE · Sungroh Yoon

[ Exhibit Hall 1 ]

Visual Prompt Tuning (VPT) is an effective tuning method for adapting pretrained Vision Transformers (ViTs) to downstream tasks. It leverages extra learnable tokens, known as prompts, which steer the frozen pretrained ViTs. Although VPT has demonstrated its applicability with supervised vision transformers, it often underperforms with self-supervised ones. Through empirical observations, we deduce that the effectiveness of VPT hinges largely on the ViT blocks with which the prompt tokens interact. Specifically, VPT shows improved performance on image classification tasks for MAE and MoCo v3 when the prompt tokens are inserted into later blocks rather than the first block. These observations suggest that there exists an optimal location of blocks for the insertion of prompt tokens. Unfortunately, identifying the optimal blocks for prompts within each self-supervised ViT for diverse future scenarios is a costly process. To mitigate this problem, we propose a simple yet effective method that learns a gate for each ViT block to adjust its intervention into the prompt tokens. With our method, prompt tokens are selectively influenced by blocks that require steering for task adaptation. Our method outperforms VPT variants in FGVC and VTAB image classification and ADE20K semantic segmentation. The code is available at https://github.com/ryongithub/GatedPromptTuning.

Poster
Nicklas Hansen · Zhecheng Yuan · Yanjie Ze · Tongzhou Mu · Aravind Rajeswaran · Hao Su · Huazhe Xu · Xiaolong Wang

[ Exhibit Hall 1 ]

In this paper, we examine the effectiveness of pre-training for visuo-motor control tasks. We revisit a simple Learning-from-Scratch (LfS) baseline that incorporates data augmentation and a shallow ConvNet, and find that this baseline is surprisingly competitive with recent approaches (PVR, MVP, R3M) that leverage frozen visual representations trained on large-scale vision datasets -- across a variety of algorithms, task domains, and metrics in simulation and on a real robot. Our results demonstrate that these methods are hindered by a significant domain gap between the pre-training datasets and current benchmarks for visuo-motor control, which is alleviated by finetuning. Based on our findings, we provide recommendations for future research in pre-training for control and hope that our simple yet strong baseline will aid in accurately benchmarking progress in this area. Code: https://github.com/gemcollector/learning-from-scratch.

Poster
Xu Luo · Hao Wu · Ji Zhang · Lianli Gao · Jing Xu · Jingkuan Song

[ Exhibit Hall 1 ]

Few-shot classification consists of a training phase where a model is learned on a relatively large dataset and an adaptation phase where the learned model is adapted to previously-unseen tasks with limited labeled samples. In this paper, we empirically prove that the training algorithm and the adaptation algorithm can be completely disentangled, which allows algorithm analysis and design to be done individually for each phase. Our meta-analysis for each phase reveals several interesting insights that may help better understand key aspects of few-shot classification and connections with other fields such as visual representation learning and transfer learning. We hope the insights and research challenges revealed in this paper can inspire future work in related directions. Code and pre-trained models (in PyTorch) are available at https://github.com/Frankluox/CloserLookAgainFewShot.

Poster
Songtao Lu

[ Exhibit Hall 1 ]

Bilevel optimization has gained significant popularity in recent years due to its ability to formulate various machine learning problems. For instance, in meta-learning, the upper-level (UL) problem offers a good initialization for the lower-level (LL) model to facilitate adaptation. However, the decision variables can impact data features and outcomes, leading to the phenomenon known as performativity. In this work, we investigate the inclusion of decision-dependent distributions in bilevel optimization. Specifically, we consider the scenarios where the UL data distribution depends on the LL optimization variable, and the LL data distribution also depends on the UL decision variable. We first establish sufficient conditions for the existence of performatively stable (PS) solutions in this class of bilevel problems. Also, we propose efficient stochastic algorithms to find the PS point with theoretical convergence rate analysis and discuss the theoretical optimality of the obtained solution. Our theoretical analysis is corroborated through a series of numerical experiments, wherein we evaluate the performance of the bilevel performative prediction algorithms alongside non-performative counterparts in the context of meta strategic learning problems.

Poster
Shokichi Takakura · Taiji Suzuki

[ Exhibit Hall 1 ]

Despite the great success of Transformer networks in various applications such as natural language processing and computer vision, their theoretical aspects are not well understood. In this paper, we study the approximation and estimation ability of Transformers as sequence-to-sequence functions with infinite dimensional inputs. Although inputs and outputs are both infinite dimensional, we show that when the target function has anisotropic smoothness, Transformers can avoid the curse of dimensionality due to their feature extraction ability and parameter sharing property. In addition, we show that even if the smoothness changes depending on each input, Transformers can estimate the importance of features for each input and extract important features dynamically. Then, we proved that Transformers achieve similar convergence rate as in the case of the fixed smoothness. Our theoretical results support the practical success of Transformers for high dimensional data.

Poster
Ruiquan Huang · Huanyu Zhang · Luca Melis · Milan Shen · Meisam Hejazinia · Jing Yang

[ Exhibit Hall 1 ]

This paper studies federated linear contextual bandits under the notion of user-level differential privacy (DP). We first introduce a unified federated bandits framework that can accommodate various definitions of DP in the sequential decision-making setting. We then formally introduce user-level central DP (CDP) and local DP (LDP) in the federated bandits framework, and investigate the fundamental trade-offs between the learning regrets and the corresponding DP guarantees in a federated linear contextual bandits model. For CDP, we propose a federated algorithm termed as $\texttt{ROBIN}$ and show that it is near-optimal in terms of the number of clients $M$ and the privacy budget $\varepsilon$ by deriving nearly-matching upper and lower regret bounds when user-level DP is satisfied. For LDP, we obtain several lower bounds, indicating that learning under user-level $(\varepsilon,\delta)$-LDP must suffer a regret blow-up factor at least $\min\{1/\varepsilon,M\}$ or $\min\{1/\sqrt{\varepsilon},\sqrt{M}\}$ under different conditions.
Poster
Andrew Jacobsen · Ashok Cutkosky

[ Exhibit Hall 1 ]

Algorithms for online learning typically require one or more boundedness assumptions: that the domain is bounded, that the losses are Lipschitz, or both. In this paper, we develop a new setting for online learning with unbounded domains and non-Lipschitz losses. For this setting we provide an algorithm which guarantees $R_{T}(u)\le \tilde O(G\|u\|\sqrt{T}+L\|u\|^{2}\sqrt{T})$ regret on any problem where the subgradients satisfy $\|g_{t}\|\le G+L\|w_{t}\|$, and show that this bound is unimprovable without further assumptions. We leverage this algorithm to develop new saddle-point optimization algorithms that converge in duality gap in unbounded domains, even in the absence of meaningful curvature. Finally, we provide the first algorithm achieving non-trivial dynamic regret in an unbounded domain for non-Lipschitz losses, as well as a matching lower bound. The regret of our dynamic regret algorithm automatically improves to a novel $L^{*}$ bound when the losses are smooth.
Poster
Yang Cai · Weiqiang Zheng

[ Exhibit Hall 1 ]

We consider online learning in multi-player smooth monotone games. Existing algorithms have limitations such as (1) being only applicable to strongly monotone games; (2) lacking the no-regret guarantee; (3) having only asymptotic or slow $\mathcal{O}(\frac{1}{\sqrt{T}})$ last-iterate convergence rate to a Nash equilibrium. While the $\mathcal{O}(\frac{1}{\sqrt{T}})$ rate is tight for a large class of algorithms including the well-studied extragradient algorithm and optimistic gradient algorithm, it is not optimal for all gradient-based algorithms. We propose the *accelerated optimistic gradient* (AOG) algorithm, the first doubly optimal no-regret learning algorithm for smooth monotone games. Namely, our algorithm achieves both (i) the optimal $\mathcal{O}(\sqrt{T})$ regret in the adversarial setting under smooth and convex loss functions and (ii) the optimal $\mathcal{O}(\frac{1}{T})$ last-iterate convergence rate to a Nash equilibrium in multi-player smooth monotone games. As a byproduct of the accelerated last-iterate convergence rate, we further show that each player suffers only an $\mathcal{O}(\log T)$ individual *worst-case dynamic regret*, providing an exponential improvement over the previous state-of-the-art $\mathcal{O}(\sqrt{T})$ bound.
Poster
Yanqi Zhou · Nan Du · Yanping Huang · Daiyi Peng · Chang Lan · Da Huang · Siamak Shakeri · David So · Andrew Dai · Yifeng Lu · Zhifeng Chen · Quoc Le · Claire Cui · James Laudon · Jeff Dean

[ Exhibit Hall 1 ]

Transformers are central to recent successes in natural language processing and computer vision. Transformers have a mostly uniform backbone where layers alternate between feed-forward and self-attention in order to build a deep network. Here we investigate this design choice and find that more complex blocks that have different permutations of layer primitives can be more efficient. Using this insight, we develop a complex block, named Brainformer, that consists of a diverse sets of layers such as sparsely gated feed-forward layers, dense feed-forward layers, attention layers, and various forms of layer normalization and activation functions. Brainformer consistently outperforms the state-of-the-art dense and sparse Transformers, in terms of both quality and efficiency. A Brainformer model with 8 billion activated parameters per token demonstrates 2x faster training convergence and 5x faster step time compared to its GLaM counterpart. In downstream task evaluation, Brainformer also demonstrates a 3% higher SuperGLUE score with fine-tuning compared to GLaM with a similar number of activated parameters. Finally, Brainformer largely outperforms a Primer dense model derived with NAS with similar computation per token on fewshot evaluations.

Poster
Maksym Andriushchenko · Francesco Croce · Maximilian Müller · Matthias Hein · Nicolas Flammarion

[ Exhibit Hall 1 ]

Sharpness of minima is a promising quantity that can correlate with generalization in deep networks and, when optimized during training, can improve generalization. However, standard sharpness is not invariant under reparametrizations of neural networks, and, to fix this, reparametrization-invariant sharpness definitions have been proposed, most prominently adaptive sharpness (Kwon et al., 2021). But does it really capture generalization in modern practical settings? We comprehensively explore this question in a detailed study of various definitions of adaptive sharpness in settings ranging from training from scratch on ImageNet and CIFAR-10 to fine-tuning CLIP on ImageNet and BERT on MNLI. We focus mostly on transformers for which little is known in terms of sharpness despite their widespread usage. Overall, we observe that sharpness does not correlate well with generalization but rather with some training parameters like the learning rate that can be positively or negatively correlated with generalization depending on the setup. Interestingly, in multiple cases, we observe a consistent negative correlation of sharpness with OOD generalization implying that sharper minima can generalize better. Finally, we illustrate on a simple model that the right sharpness measure is highly data-dependent, and that we do not understand well this aspect for realistic data distributions.

Poster
Tanguy MARCHAND · Regis Loeb · Ulysse Marteau-Ferey · Jean Ogier du Terrail · Arthur Pignet

[ Exhibit Hall 1 ]

We consider a federated learning (FL) setting where a machine learning model with a fully connected first layer is trained between different clients and a central server using FedAvg, and where the aggregation step can be performed with secure aggregation (SA). We present SRATTA an attack relying only on aggregated models which, under realistic assumptions, (i) recovers data samples from the different clients, and (ii) groups data samples coming from the same client together. While sample recovery has already been explored in an FL setting, the ability to group samples per client, despite the use of SA, is novel. This poses a significant unforeseen security threat to FL and effectively breaks SA. We show that SRATTA is both theoretically grounded and can be used in practice on realistic models and datasets. We also propose counter-measures, and claim that clients should play an active role to guarantee their privacy during training.

Poster
Yiwei Lu · Gautam Kamath · Yaoliang Yu

[ Exhibit Hall 1 ]

Indiscriminate data poisoning attacks aim to decrease a model's test accuracy by injecting a small amount of corrupted training data. Despite significant interest, existing attacks remain relatively ineffective against modern machine learning (ML) architectures. In this work, we introduce the notion of model poisoning reachability as a technical tool to explore the intrinsic limits of data poisoning attacks towards target parameters (i.e., model-targeted attacks). We derive an easily computable threshold to establish and quantify a surprising phase transition phenomenon among popular ML models: data poisoning attacks can achieve certain target parameters only when the poisoning ratio exceeds our threshold. Building on existing parameter corruption attacks and refining the Gradient Canceling attack, we perform extensive experiments to confirm our theoretical findings, test the predictability of our transition threshold, and significantly improve existing indiscriminate data poisoning baselines over a range of datasets and models. Our work highlights the critical role played by the poisoning ratio, and sheds new insights on existing empirical results, attacks and mitigation strategies in data poisoning.

Poster
Zhanke Zhou · Chenyu Zhou · Xuan Li · Jiangchao Yao · QUANMING YAO · Bo Han

[ Exhibit Hall 1 ]

Although powerful graph neural networks (GNNs) have boosted numerous real-world applications, the potential privacy risk is still underexplored. To close this gap, we perform the first comprehensive study of graph reconstruction attack that aims to reconstruct the adjacency of nodes. We show that a range of factors in GNNs can lead to the surprising leakage of private links. Especially by taking GNNs as a Markov chain and attacking GNNs via a flexible chain approximation, we systematically explore the underneath principles of graph reconstruction attack, and propose two information theory-guided mechanisms: (1) the chain-based attack method with adaptive designs for extracting more private information; (2) the chain-based defense method that sharply reduces the attack fidelity with moderate accuracy loss. Such two objectives disclose a critical belief that to recover better in attack, you must extract more multi-aspect knowledge from the trained GNN; while to learn safer for defense, you must forget more link-sensitive information in training GNNs. Empirically, we achieve state-of-the-art results on six datasets and three common GNNs. The code is publicly available at: https://github.com/tmlr-group/MC-GRA.

Poster
Ning Xu · biao liu · JIAQI LYU · Congyu Qiao · Xin Geng

[ Exhibit Hall 1 ]

Partial label learning (PLL) aims to train multiclass classifiers from the examples each annotated with a set of candidate labels where a fixed but unknown candidate label is correct. In the last few years, the instance-independent generation process of candidate labels has been extensively studied, on the basis of which many theoretical advances have been made in PLL. Nevertheless, the candidate labels are always instance-dependent in practice and there is no theoretical guarantee that the model trained on the instance-dependent PLL examples can converge to an ideal one. In this paper, a theoretically grounded and practically effective approach named POP, i.e. PrOgressive Purification for instance-dependent partial label learning, is proposed. Specifically, POP updates the learning model and purifies each candidate label set progressively in every epoch. Theoretically, we prove that POP enlarges the region appropriately fast where the model is reliable, and eventually approximates the Bayes optimal classifier with mild assumptions. Technically, POP is flexible with arbitrary PLL losses and could improve the performance of the previous PLL losses in the instance-dependent case. Experiments on the benchmark datasets and the real-world datasets validate the effectiveness of the proposed method.

Poster
WOOJUN KIM · Jeonghye Kim · Youngchul Sung

[ Exhibit Hall 1 ]

In this paper, a unified framework for exploration in reinforcement learning (RL) is proposed based on an option-critic architecture. The proposed framework learns to integrate a set of diverse exploration strategies so that the agent can adaptively select the most effective exploration strategy to realize an effective exploration-exploitation trade-off for each given task. The effectiveness of the proposed exploration framework is demonstrated by various experiments in the MiniGrid and Atari environments.

Poster
Moksh Jain · Sharath Chandra Raparthy · Alex Hernandez-Garcia · Jarrid Rector-Brooks · Yoshua Bengio · Santiago Miret · Emmanuel Bengio

[ Exhibit Hall 1 ]

We study the problem of generating diverse candidates in the context of Multi-Objective Optimization. In many applications of machine learning such as drug discovery and material design, the goal is to generate candidates which simultaneously optimize a set of potentially conflicting objectives. Moreover, these objectives are often imperfect evaluations of some underlying property of interest, making it important to generate diverse candidates to have multiple options for expensive downstream evaluations. We propose Multi-Objective GFlowNets (MOGFNs), a novel method for generating diverse Pareto optimal solutions, based on GFlowNets. We introduce two variants of MOGFNs: MOGFN-PC, which models a family of independent sub-problems defined by a scalarization function, with reward-conditional GFlowNets, and MOGFN-AL, which solves a sequence of sub-problems defined by an acquisition function in an active learning loop. Our experiments on wide variety of synthetic and benchmark tasks demonstrate advantages of the proposed methods in terms of the Pareto performance and importantly, improved candidate diversity, which is the main contribution of this work.

Poster
Xinlu Zhang · Shiyang Li · Zhiyu Chen · Xifeng Yan · Linda Petzold

[ Exhibit Hall 1 ]

Health conditions among patients in intensive care units (ICUs) are monitored via electronic health records (EHRs), composed of numerical time series and lengthy clinical note sequences, both taken at $\textit{irregular}$ time intervals. Dealing with such irregularity in every modality, and integrating irregularity into multimodal representations to improve medical predictions, is a challenging problem. Our method first addresses irregularity in each single modality by (1) modeling irregular time series by dynamically incorporating hand-crafted imputation embeddings into learned interpolation embeddings via a gating mechanism, and (2) casting a series of clinical note representations as multivariate irregular time series and tackling irregularity via a time attention mechanism. We further integrate irregularity in multimodal fusion with an interleaved attention mechanism across temporal steps. To the best of our knowledge, this is the first work to thoroughly model irregularity in multimodalities for improving medical predictions. Our proposed methods for two medical prediction tasks consistently outperforms state-of-the-art (SOTA) baselines in each single modality and multimodal fusion scenarios. Specifically, we observe relative improvements of 6.5%, 3.6%, and 4.3% in F1 for time series, clinical notes, and multimodal fusion, respectively. These results demonstrate the effectiveness of our methods and the importance of considering irregularity in multimodal EHRs.
Poster
Jiashuo Yu · Yaohui Wang · Xinyuan Chen · Xiao Sun · Yu Qiao

[ Exhibit Hall 1 ]

We consider the problem of generating musical soundtracks in sync with rhythmic visual cues. Most existing works rely on pre-defined music representations, leading to the incompetence of generative flexibility and complexity. Other methods directly generating video-conditioned waveforms suffer from limited scenarios, short lengths, and unstable generation quality. To this end, we present Long-Term Rhythmic Video Soundtracker (LORIS), a novel framework to synthesize long-term conditional waveforms. Specifically, our framework consists of a latent conditional diffusion probabilistic model to perform waveform synthesis. Furthermore, a series of context-aware conditioning encoders are proposed to take temporal information into consideration for a long-term generation. Notably, we extend our model's applicability from dances to multiple sports scenarios such as floor exercise and figure skating. To perform comprehensive evaluations, we establish a benchmark for rhythmic video soundtracks including the pre-processed dataset, improved evaluation metrics, and robust generative baselines. Extensive experiments show that our model generates long-term soundtracks with state-of-the-art musical quality and rhythmic correspondence. Codes are available at https://github.com/OpenGVLab/LORIS.

Poster
Yijun Dong · Yuege Xie · Rachel Ward

[ Exhibit Hall 1 ]

Concept shift is a prevailing problem in natural tasks like medical image segmentation where samples usually come from different subpopulations with variant correlations between features and labels. One common type of concept shift in medical image segmentation is the "information imbalance" between label-sparse samples with few (if any) segmentation labels and label-dense samples with plentiful labeled pixels. Existing distributionally robust algorithms have focused on adaptively truncating/down-weighting the "less informative" (i.e., label-sparse in our context) samples. To exploit data features of label-sparse samples more efficiently, we propose an adaptively weighted online optimization algorithm --- AdaWAC --- to incorporate data augmentation consistency regularization in sample reweighting. Our method introduces a set of trainable weights to balance the supervised loss and unsupervised consistency regularization of each sample separately. At the saddle point of the underlying objective, the weights assign label-dense samples to the supervised loss and label-sparse samples to the unsupervised consistency regularization. We provide a convergence guarantee by recasting the optimization as online mirror descent on a saddle point problem. Our empirical results demonstrate that AdaWAC not only enhances the segmentation performance and sample efficiency but also improves the robustness to concept shift on various medical image segmentation tasks with different UNet-style …

Poster
Vincent Dutordoir · Alan Saul · Zoubin Ghahramani · Fergus Simpson

[ Exhibit Hall 1 ]

Neural network approaches for meta-learning distributions over functions have desirable properties such as increased flexibility and a reduced complexity of inference. Building on the successes of denoising diffusion models for generative modelling, we propose Neural Diffusion Processes (NDPs), a novel approach that learns to sample from a rich distribution over functions through its finite marginals. By introducing a custom attention block we are able to incorporate properties of stochastic processes, such as exchangeability, directly into the NDP's architecture. We empirically show that NDPs can capture functional distributions close to the true Bayesian posterior, demonstrating that they can successfully emulate the behaviour of Gaussian processes and surpass the performance of neural processes. NDPs enable a variety of downstream tasks, including regression, implicit hyperparameter marginalisation, non-Gaussian posterior prediction and global optimisation.

Poster
Yonghan Jung · Jin Tian · Elias Bareinboim

[ Exhibit Hall 1 ]

Estimating the effects of multi-dimensional treatments (i.e., joint treatment effects) is critical in many data-intensive domains, including genetics and drug evaluation. The main challenges for studying the joint treatment effects include the need for large sample sizes to explore different treatment combinations as well as potentially unsafe treatment interactions. In this paper, we develop machinery for estimating joint treatment effects by combining data from multiple experimental datasets. In particular, first, we develop new identification conditions for determining whether a joint treatment effect can be computed in terms of multiple interventional distributions under various scenarios. Further, we develop estimators with statistically appealing properties, including consistency and robustness to model misspecification and slow convergence. Finally, we perform simulation studies, which corroborate the effectiveness of the proposed methods.

Poster
Keyi Chen · Francesco Orabona

[ Exhibit Hall 1 ]

We propose a new class of online learning algorithms, generalized implicit Follow-The-Regularized-Leader (FTRL), that expands the scope of FTRL framework. Generalized implicit FTRL can recover known algorithms, such as FTRL with linearized losses and implicit FTRL, and it allows the design of new update rules, as extensions of aProx and Mirror-Prox to FTRL. Our theory is constructive in the sense that it provides a simple unifying framework to design updates that directly improve the worst-case upper bound on the regret. The key idea is substituting the linearization of the losses with a Fenchel-Young inequality. We show the flexibility of the framework by proving that some known algorithms, like the Mirror-Prox updates, are instantiations of the generalized implicit FTRL. Finally, the new framework allows us to recover the temporal variation bound of implicit OMD, with the same computational complexity.

Poster
Luyu Gao · Aman Madaan · Shuyan Zhou · Uri Alon · Pengfei Liu · Yiming Yang · Jamie Callan · Graham Neubig

[ Exhibit Hall 1 ]

Large language models (LLMs) have demonstrated an impressive ability to perform arithmetic and symbolic reasoning tasks, when provided with a few examples at test time ("few-shot prompting"). Much of this success can be attributed to prompting methods such as "chain-of-thought", which employ LLMs for both understanding the problem description by decomposing it into steps, as well as solving each step of the problem. While LLMs seem to be adept at this sort of step-by-step decomposition, LLMs often make logical and arithmetic mistakes in the solution part, even when the problem is decomposed correctly. In this paper, we present Program-Aided Language models (PAL): a novel approach that uses the LLM to read natural language problems and generate programs as the intermediate reasoning steps, but offloads the solution step to a runtime such as a Python interpreter. With PAL, decomposing the natural language problem into runnable steps remains the only learning task for the LLM, while solving is delegated to the interpreter. We demonstrate this synergy between a neural LLM and a symbolic interpreter across 13 mathematical, symbolic, and algorithmic reasoning tasks from BIG-Bench Hard and others. In all these natural language reasoning tasks, generating code using an LLM and reasoning using …

Poster
Angeliki Giannou · Shashank Rajput · Jy-yong Sohn · Kangwook Lee · Jason Lee · Dimitris Papailiopoulos

[ Exhibit Hall 1 ]

We present a framework for using transformer networks as universal computers by programming them with specific weights and placing them in a loop. Our input sequence acts as a punchcard, consisting of instructions and memory for data read/writes. We demonstrate that a constant number of encoder layers can emulate basic computing blocks, including lexicographic operations, non-linear functions, function calls, program counters, and conditional branches. Using this framework, we emulate a computer using a simple instruction-set architecture, which allows us to map iterative algorithms to programs that can be executed by a constant depth looped transformer network. We show how a single frozen transformer, instructed by its input, can emulate a basic calculator, a basic linear algebra library, and even a full backpropagation, in-context learning algorithm. Our findings reveal the potential of transformer networks as programmable compute units and offer insight into the mechanics of attention.

Poster
Yanzhi Chen · Michael Gutmann · Adrian Weller

[ Exhibit Hall 1 ]

Likelihood-free inference (LFI) is a set of techniques for inference in implicit statistical models. A longstanding question in LFI has been how to design or learn good summary statistics of data, but this might now seem unnecessary due to the advent of recent end-to-end (i.e. neural network-based) LFI methods. In this work, we rethink this question with a new method for learning summary statistics. We show that learning sufficient statistics may be easier than direct posterior inference, as the former problem can be reduced to a set of low-dimensional, easy-to-solve learning problems. This suggests us to explicitly decouple summary statistics learning from posterior inference in LFI. Experiments on diverse inference tasks with different data types validate our hypothesis.

Poster
Eduard Eiben · Robert Ganian · Iyad Kanj · Sebastian Ordyniak · Stefan Szeider

[ Exhibit Hall 1 ]

Hypersphere classification is a classical and foundational method that can provide easy-to-process explanations for the classification of real-valued as well as binary data. However, obtaining an (ideally concise) explanation via hypersphere classification is much more difficult when dealing with binary data as opposed to real-valued data. In this paper, we perform the first complexity-theoretic study of the hypersphere classification problem for binary data. We use the fine-grained parameterized complexity paradigm to analyze the impact of structural properties that may be present in the input data as well as potential conciseness constraints. Our results include not only stronger lower bounds but also a number of new fixed-parameter algorithms for hypersphere classification of binary data, which can find an exact and concise explanation when one exists.

Poster
David Stein · Silvia Di Gregorio · Bjoern Andres

[ Exhibit Hall 1 ]

The higher-order correlation clustering problem is an expressive model, and recently, local search heuristics have been proposed for several applications. Certifying optimality, however, is NP-hard and practically hampered already by the complexity of the problem statement. Here, we focus on establishing partial optimality conditions for the special case of complete graphs and cubic objective functions. In addition, we define and implement algorithms for testing these conditions and examine their effect numerically, on two datasets.

Poster
Qiang Fu · Dongchu Xu · Ashia Wilson

[ Exhibit Hall 1 ]

Non-convex optimization plays a key role in a growing number of machine learning applications. This motivates the identification of specialized structure that enables sharper theoretical analysis. One such identified structure is quasar-convexity, a non-convex generalization of convexity that subsumes convex functions. Existing algorithms for minimizing quasar-convex functions in the stochastic setting have either high complexity or slow convergence, which prompts us to derive a new class of stochastic methods for optimizing smooth quasar-convex functions. We demonstrate that our algorithms have fast convergence and outperform existing algorithms on several examples, including the classical problem of learning linear dynamical systems. We also present a unified analysis of our newly proposed algorithms and a previously studied deterministic algorithm.

Poster
Naman Saxena · Subhojyoti Khastagir · Shishir Nadubettu Yadukumar · Shalabh Bhatnagar

[ Exhibit Hall 1 ]

The average reward criterion is relatively less studied as most existing works in the Reinforcement Learning literature consider the discounted reward criterion. There are few recent works that present on-policy average reward actor-critic algorithms, but average reward off-policy actor-critic is relatively less explored. In this work, we present both on-policy and off-policy deterministic policy gradient theorems for the average reward performance criterion. Using these theorems, we also present an Average Reward Off-Policy Deep Deterministic Policy Gradient (ARO-DDPG) Algorithm. We first show asymptotic convergence analysis using the ODE-based method. Subsequently, we provide a finite time analysis of the resulting stochastic approximation scheme with linear function approximator and obtain an $\epsilon$-optimal stationary policy with a sample complexity of $\Omega(\epsilon^{-2.5})$. We compare the average reward performance of our proposed ARO-DDPG algorithm and observe better empirical performance compared to state-of-the-art on-policy average reward actor-critic algorithms over MuJoCo-based environments.
Poster
Mathieu Even

[ Exhibit Hall 1 ]

We study a variation of vanilla stochastic gradient descent where the optimizer only has access to a Markovian sampling scheme. These schemes encompass applications that range from decentralized optimization with a random walker (token algorithms), to RL and online system identification problems. We focus on obtaining rates of convergence under the least restrictive assumptions possible on the underlying Markov chain and on the functions optimized. We first unveil the theoretical lower bound for methods that sample stochastic gradients along the path of a Markov chain, making appear a dependency in the hitting time of the underlying Markov chain. We then study Markov chain SGD (MC-SGD) under much milder regularity assumptions than prior works. We finally introduce MC-SAG, an alternative to MC-SGD with variance reduction, that only depends on the hitting time of the Markov chain, therefore obtaining a communication-efficient token algorithm.

Poster
Ezgi Korkmaz · Jonah Brown-Cohen

[ Exhibit Hall 1 ]

Learning in MDPs with highly complex state representations is currently possible due to multiple advancements in reinforcement learning algorithm design. However, this incline in complexity, and furthermore the increase in the dimensions of the observation came at the cost of volatility that can be taken advantage of via adversarial attacks (i.e. moving along worst-case directions in the observation space). To solve this policy instability problem we propose a novel method to detect the presence of these non-robust directions via local quadratic approximation of the deep neural policy loss. Our method provides a theoretical basis for the fundamental cut-off between safe observations and adversarial observations. Furthermore, our technique is computationally efficient, and does not depend on the methods used to produce the worst-case directions. We conduct extensive experiments in the Arcade Learning Environment with several different adversarial attack techniques. Most significantly, we demonstrate the effectiveness of our approach even in the setting where non-robust directions are explicitly optimized to circumvent our proposed method.

Poster
Heiner Kremer · Yassine Nemmour · Bernhard Schölkopf · Jia-Jie Zhu

[ Exhibit Hall 1 ]

Moment restrictions and their conditional counterparts emerge in many areas of machine learning and statistics ranging from causal inference to reinforcement learning. Estimators for these tasks, generally called methods of moments, include the prominent generalized method of moments (GMM) which has recently gained attention in causal inference. GMM is a special case of the broader family of empirical likelihood estimators which are based on approximating a population distribution by means of minimizing a $\varphi$-divergence to an empirical distribution. However, the use of $\varphi$-divergences effectively limits the candidate distributions to reweightings of the data samples. We lift this long-standing limitation and provide a method of moments that goes beyond data reweighting. This is achieved by defining an empirical likelihood estimator based on maximum mean discrepancy which we term the kernel method of moments (KMM). We provide a variant of our estimator for conditional moment restrictions and show that it is asymptotically first-order optimal for such problems. Finally, we show that our method achieves competitive performance on several conditional moment restriction tasks.
Poster
Liu Ziyin · Zihao Wang

[ Exhibit Hall 1 ]

We propose to minimize a generic differentiable objective with $L_1$ constraint using a simple reparametrization and straightforward stochastic gradient descent. Our proposal is the direct generalization of previous ideas that the $L_1$ penalty may be equivalent to a differentiable reparametrization with weight decay. We prove that the proposed method, spred, is an exact differentiable solver of $L_1$ and that the reparametrization trick is completely ``benign" for a generic nonconvex function. Practically, we demonstrate the usefulness of the method in (1) training sparse neural networks to perform gene selection tasks, which involves finding relevant features in a very high dimensional space, and (2) neural network compression task, to which previous attempts at applying the $L_1$-penalty have been unsuccessful. Conceptually, our result bridges the gap between the sparsity in deep learning and conventional statistical learning.
Poster
Sanjukta Krishnagopal · Luana Ruiz

[ Exhibit Hall 1 ]

Graph neural networks (GNNs) achieve remarkable performance in graph machine learning tasks but can be hard to train on large-graph data, where their learning dynamics are not well understood. We investigate the training dynamics of large-graph GNNs using graph neural tangent kernels (GNTKs) and graphons. In the limit of large width, optimization of an overparametrized NN is equivalent to kernel regression on the NTK. Here, we investigate how the GNTK evolves as another independent dimension is varied: the graph size. We use graphons to define limit objects---graphon NNs for GNNs, and graphon NTKs for GNTKs---, and prove that, on a sequence of graphs, the GNTKs converge to the graphon NTK. We further prove that the spectrum of the GNTK, which is related to the problem's learning directions, converges to the spectrum of the GNTK. This implies that in the large-graph limit, the GNTK fitted on a graph of moderate size can be used to solve the same task on the large graph, and to infer the learning dynamics of the large-graph GNN. These results are verified empirically on node regression and classification tasks.

Poster
Florian Heinrichs · Mavin Heim · Corinna Weber

[ Exhibit Hall 1 ]

It is desirable for statistical models to detect signals of interest independently of their position. If the data is generated by some smooth process, this additional structure should be taken into account. We introduce a new class of neural networks that are shift invariant and preserve smoothness of the data: functional neural networks (FNNs). For this, we use methods from functional data analysis (FDA) to extend multi-layer perceptrons and convolutional neural networks to functional data. We propose different model architectures, show that the models outperform a benchmark model from FDA in terms of accuracy and successfully use FNNs to classify electroencephalography (EEG) data.

Poster
Tomas Geffner · George Papamakarios · Andriy Mnih

[ Exhibit Hall 1 ]

Neural Posterior Estimation methods for simulation-based inference can be ill-suited for dealing with posterior distributions obtained by conditioning on multiple observations, as they tend to require a large number of simulator calls to learn accurate approximations. In contrast, Neural Likelihood Estimation methods can handle multiple observations at inference time after learning from individual observations, but they rely on standard inference methods, such as MCMC or variational inference, which come with certain performance drawbacks. We introduce a new method based on conditional score modeling that enjoys the benefits of both approaches. We model the scores of the (diffused) posterior distributions induced by individual observations, and introduce a way of combining the learned scores to approximately sample from the target posterior distribution. Our approach is sample-efficient, can naturally aggregate multiple observations at inference time, and avoids the drawbacks of standard inference methods.

Poster
Ali Siahkoohi · Rudy Morel · Maarten de Hoop · Erwan Allys · Gregory Sainton · Taichi Kawamura

[ Exhibit Hall 1 ]

Source separation involves the ill-posed problem of retrieving a set of source signals that have been observed through a mixing operator. Solving this problem requires prior knowledge, which is commonly incorporated by imposing regularity conditions on the source signals, or implicitly learned through supervised or unsupervised methods from existing data. While data-driven methods have shown great promise in source separation, they often require large amounts of data, which rarely exists in planetary space missions. To address this challenge, we propose an unsupervised source separation scheme for domains with limited data access that involves solving an optimization problem in the wavelet scattering covariance representation space---an interpretable, low-dimensional representation of stationary processes. We present a real-data example in which we remove transient, thermally-induced microtilts---known as glitches---from data recorded by a seismometer during NASA's InSight mission on Mars. Thanks to the wavelet scattering covariances' ability to capture non-Gaussian properties of stochastic processes, we are able to separate glitches using only a few glitch-free data snippets.

Poster
Chawin Sitawarin · Florian Tramer · Nicholas Carlini

[ Exhibit Hall 1 ]

Decision-based attacks construct adversarial examples against a machine learning (ML) model by making only hard-label queries. These attacks have mainly been applied directly to standalone neural networks. However, in practice, ML models are just one component of a larger learning system. We find that by adding a single preprocessor in front of a classifier, state-of-the-art query-based attacks are up to seven× less effective at attacking a prediction pipeline than at attacking the model alone. We explain this discrepancy by the fact that most preprocessors introduce some notion of invariance to the input space. Hence, attacks that are unaware of this invariance inevitably waste a large number of queries to re-discover or overcome it. We, therefore, develop techniques to (i) reverse-engineer the preprocessor and then (ii) use this extracted information to attack the end-to-end system. Our preprocessors extraction method requires only a few hundred queries, and our preprocessor-aware attacks recover the same efficacy as when attacking the model alone. The code can be found at https://github.com/google-research/preprocessor-aware-black-box-attack.

Poster
Itay Eilat · Nir Rosenfeld

[ Exhibit Hall 1 ]

The primary goal in recommendation is to suggest relevant content to users, but optimizing for accuracy often results in recommendations that lack diversity. To remedy this, conventional approaches such as re-ranking improve diversity by presenting more diverse items. Here we argue that to promote inherent and prolonged diversity, the system must encourage its creation. Towards this, we harness the performative nature of recommendation, and show how learning can incentivize strategic content creators to create diverse content. Our approach relies on a novel form of regularization that anticipates strategic changes to content, and penalizes for content homogeneity. We provide analytic and empirical results that demonstrate when and how diversity can be incentivized, and experimentally demonstrate the utility of our approach on synthetic and semi-synthetic data.

Poster
Haoran Zhang · Harvineet Singh · Marzyeh Ghassemi · Shalmali Joshi

[ Exhibit Hall 1 ]

Machine learning models frequently experience performance drops under distribution shifts. The underlying cause of such shifts may be multiple simultaneous factors such as changes in data quality, differences in specific covariate distributions, or changes in the relationship between label and features. When a model does fail during deployment, attributing performance change to these factors is critical for the model developer to identify the root cause and take mitigating actions. In this work, we introduce the problem of attributing performance differences between environments to distribution shifts in the underlying data generating mechanisms. We formulate the problem as a cooperative game where the players are distributions. We define the value of a set of distributions to be the change in model performance when only this set of distributions has changed between environments, and derive an importance weighting method for computing the value of an arbitrary set of distributions. The contribution of each distribution to the total performance change is then quantified as its Shapley value. We demonstrate the correctness and utility of our method on synthetic, semi-synthetic, and real-world case studies, showing its effectiveness in attributing performance changes to a wide range of distribution shifts.

Poster
Oleg Balabanov · Matthias Beaupère · Laura Grigori · Victor Lederer

[ Exhibit Hall 1 ]

This article introduces a novel structured random matrix composed blockwise from subsampled randomized Hadamard transforms (SRHTs). The block SRHT is expected to outperform well-known dimension reduction maps, including SRHT and Gaussian matrices on distributed architectures. We prove that a block SRHT with enough rows is an oblivious subspace embedding, i.e., an approximate isometry for an arbitrary low-dimensional subspace with high probability. Our estimate of the required number of rows is similar to that of the standard SRHT. This suggests that the two transforms should provide the same accuracy of approximation in the algorithms. The block SRHT can be readily incorporated into randomized methods for computing a low-rank approximation of a large-scale matrix, such as the Nyström method. For completeness, we revisit this method with a discussion of its implementation on distributed architectures.

Poster
Yue Song · T. Anderson Keller · Nicu Sebe · Max Welling

[ Exhibit Hall 1 ]

Despite the significant recent progress in deep generative models, the underlying structure of their latent spaces is still poorly understood, thereby making the task of performing semantically meaningful latent traversals an open research challenge. Most prior work has aimed to solve this challenge by modeling latent structures linearly, and finding corresponding linear directions which result in `disentangled' generations. In this work, we instead propose to model latent structures with a learned dynamic potential landscape, thereby performing latent traversals as the flow of samples down the landscape's gradient. Inspired by physics, optimal transport, and neuroscience, these potential landscapes are learned as physically realistic partial differential equations, thereby allowing them to flexibly vary over both space and time. To achieve disentanglement, multiple potentials are learned simultaneously, and are constrained by a classifier to be distinct and semantically self-consistent. Experimentally, we demonstrate that our method achieves both more qualitatively and quantitatively disentangled trajectories than state-of-the-art baselines. Further, we demonstrate that our method can be integrated as a regularization term during training, thereby acting as an inductive bias towards the learning of structured representations, ultimately improving model likelihood on similarly structured data. Code is available at https://github.com/KingJamesSong/PDETraversal.

Poster
Abhijeet Vyas · Brian Bullins · Kamyar Azizzadenesheli

[ Exhibit Hall 1 ]

We study the problem of convergence to a stationary point in zero-sum games. We propose competitive gradient optimization (CGO), a gradient-based method that incorporates the interactions between two players in zero-sum games for its iterative updates. We provide a continuous-time analysis of CGO and its convergence properties while showing that in the continuous limit, previous methods degenerate to their gradient descent ascent (GDA) variants. We further provide a rate of convergence to stationary points in the discrete-time setting. We propose a generalized class of $\alpha$-coherent functions and show that for strictly $\alpha$-coherent functions, CGO ensures convergence to a saddle point. Moreover, we propose optimistic CGO (oCGO), an optimistic variant, for which we show a convergence rate of $O(\frac{1}{n})$ to saddle points for $\alpha$-coherent functions.
Poster
Mark Rowland · Yunhao Tang · Clare Lyle · Remi Munos · Marc Bellemare · Will Dabney

[ Exhibit Hall 1 ]

We study the problem of temporal-difference-based policy evaluation in reinforcement learning. In particular, we analyse the use of a distributional reinforcement learning algorithm, quantile temporal-difference learning (QTD), for this task. We reach the surprising conclusion that even if a practitioner has no interest in the return distribution beyond the mean, QTD (which learns predictions about the full distribution of returns) may offer performance superior to approaches such as classical TD learning, which predict only the mean return, even in the tabular setting.

Poster
Yiming Cui · Linjie Yang · Haichao Yu

[ Exhibit Hall 1 ]

Transformer-based detection and segmentation methods use a list of learned detection queries to retrieve information from the transformer network and learn to predict the location and category of one specific object from each query. We empirically find that random convex combinations of the learned queries are still good for the corresponding models. We then propose to learn a convex combination with dynamic coefficients based on the high-level semantics of the image. The generated dynamic queries, named as modulated queries, better capture the prior of object locations and categories in the different images. Equipped with our modulated queries, a wide range of DETR-based models achieve consistent and superior performance across multiple tasks (object detection, instance segmentation, panoptic segmentation) and on different benchmarks (MS COCO, CityScapes, YoutubeVIS).

Poster
Jakob Bauer · Kate Baumli · Feryal Behbahani · Avishkar Bhoopchand · Natalie Bradley-Schmieg · Michael Chang · Natalie Clay · Adrian Collister · Vibhavari Dasagi · Lucy Gonzalez · Karol Gregor · Edward Hughes · Sheleem Kashem · Maria Loks-Thompson · Hannah Openshaw · Jack Parker-Holder · Shreya Pathak · Nicolas Perez-Nieves · Nemanja Rakicevic · Tim Rocktäschel · Yannick Schroecker · Satinder Singh · Jakub Sygnowski · Karl Tuyls · Sarah York · Alexander Zacherl · Lei Zhang

[ Exhibit Hall 1 ]

Foundation models have shown impressive adaptation and scalability in supervised and self-supervised learning problems, but so far these successes have not fully translated to reinforcement learning (RL). In this work, we demonstrate that training an RL agent at scale leads to a general in-context learning algorithm that can adapt to open-ended novel embodied 3D problems as quickly as humans. In a vast space of held-out environment dynamics, our adaptive agent (AdA) displays on-the-fly hypothesis-driven exploration, efficient exploitation of acquired knowledge, and can successfully be prompted with first-person demonstrations. Adaptation emerges from three ingredients: (1) meta-reinforcement learning across a vast, smooth and diverse task distribution, (2) a policy parameterised as a large-scale attention-based memory architecture, and (3) an effective automated curriculum that prioritises tasks at the frontier of an agent's capabilities. We demonstrate characteristic scaling laws with respect to network size, memory length, and richness of the training task distribution. We believe our results lay the foundation for increasingly general and adaptive RL agents that perform well across ever-larger open-ended domains.

Poster
Hanna Tseran · Guido Montufar

[ Exhibit Hall 1 ]

We study the gradients of a maxout network with respect to inputs and parameters and obtain bounds for the moments depending on the architecture and the parameter distribution. We observe that the distribution of the input-output Jacobian depends on the input, which complicates a stable parameter initialization. Based on the moments of the gradients, we formulate parameter initialization strategies that avoid vanishing and exploding gradients in wide networks. Experiments with deep fully-connected and convolutional networks show that this strategy improves SGD and Adam training of deep maxout networks. In addition, we obtain refined bounds on the expected number of linear regions, results on the expected curve length distortion, and results on the NTK.

Poster
Yivan Zhang · Masashi Sugiyama

[ Exhibit Hall 1 ]

Disentangling the factors of variation in data is a fundamental concept in machine learning and has been studied in various ways by different researchers, leading to a multitude of definitions. Despite the numerous empirical studies, more theoretical research is needed to fully understand the defining properties of disentanglement and how different definitions relate to each other. This paper presents a meta-analysis of existing definitions of disentanglement, using category theory as a unifying and rigorous framework. We propose that the concepts of the cartesian and monoidal products should serve as the core of disentanglement. With these core concepts, we show the similarities and crucial differences in dealing with (i) functions, (ii) equivariant maps, (iii) relations, and (iv) stochastic maps. Overall, our meta-analysis deepens our understanding of disentanglement and its various formulations and can help researchers navigate different definitions and choose the most appropriate one for their specific context.

Poster
Nadav Merlis · Hugo Richard · Flore Sentenac · Corentin Odic · Mathieu Molina · Vianney Perchet

[ Exhibit Hall 1 ]

We study single-machine scheduling of jobs, each belonging to a job type that determines its duration distribution. We start by analyzing the scenario where the type characteristics are known and then move to two learning scenarios where the types are unknown: non-preemptive problems, where each started job must be completed before moving to another job; and preemptive problems, where job execution can be paused in the favor of moving to a different job. In both cases, we design algorithms that achieve sublinear excess cost, compared to the performance with known types, and prove lower bounds for the non-preemptive case. Notably, we demonstrate, both theoretically and through simulations, how preemptive algorithms can greatly outperform non-preemptive ones when the durations of different job types are far from one another, a phenomenon that does not occur when the type durations are known.

Poster
Christopher Lu · Timon Willi · Alistair Letcher · Jakob Foerster

[ Exhibit Hall 1 ]

Adversarial attacks in reinforcement learning (RL) often assume highly-privileged access to the victim’s parameters, environment, or data. Instead, this paper proposes a novel adversarial setting called a Cheap Talk MDP in which an Adversary can merely append deterministic messages to the Victim’s observation, resulting in a minimal range of influence. The Adversary cannot occlude ground truth, influence underlying environment dynamics or reward signals, introduce non-stationarity, add stochasticity, see the Victim’s actions, or access their parameters. Additionally, we present a simple meta-learning algorithm called Adversarial Cheap Talk (ACT) to train Adversaries in this setting. We demonstrate that an Adversary trained with ACT can still significantly influence the Victim’s training and testing performance, despite the highly constrained setting. Affecting train-time performance reveals a new attack vector and provides insight into the success and failure modes of existing RL algorithms. More specifically, we show that an ACT Adversary is capable of harming performance by interfering with the learner’s function approximation, or instead helping the Victim’s performance by outputting useful features. Finally, we show that an ACT Adversary can manipulate messages during train-time to directly and arbitrarily control the Victim at test-time.

Poster
Yulun Jiang · Chen Liu · Zhichao Huang · Mathieu Salzmann · Sabine Süsstrunk

[ Exhibit Hall 1 ]

We address the problem of stably and efficiently training a deep neural network robust to adversarial perturbations bounded by an $l_1$ norm. We demonstrate that achieving robustness against $l_1$-bounded perturbations is more challenging than in the $l_2$ or $l_\infty$ cases, because adversarial training against $l_1$-bounded perturbations is more likely to suffer from catastrophic overfitting and yield training instabilities. Our analysis links these issues to the coordinate descent strategy used in existing methods. We address this by introducing Fast-EG-$l_1$, an efficient adversarial training algorithm based on Euclidean geometry and free of coordinate descent. Fast-EG-$l_1$ comes with no additional memory costs and no extra hyper-parameters to tune. Our experimental results on various datasets demonstrate that Fast-EG-$l_1$ yields the best and most stable robustness against $l_1$-bounded adversarial attacks among the methods of comparable computational complexity. Code and the checkpoints are available at https://github.com/IVRL/FastAdvL.
Poster
Yifan Shi · Li Shen · Kang Wei · Yan Sun · Bo Yuan · Xueqian Wang · Dacheng Tao

[ Exhibit Hall 1 ]

To mitigate the privacy leakages and communication burdens of Federated Learning (FL), decentralized FL (DFL) discards the central server and each client only communicates with its neighbors in a decentralized communication network. However, existing DFL suffers from high inconsistency among local clients, which results in severe distribution shift and inferior performance compared with centralized FL (CFL), especially on heterogeneous data or sparse communication topologies. To alleviate this issue, we propose two DFL algorithms named DFedSAM and DFedSAM-MGS to improve the performance of DFL. Specifically, DFedSAM leverages gradient perturbation to generate local flat models via Sharpness Aware Minimization (SAM), which searches for models with uniformly low loss values. DFedSAM-MGS further boosts DFedSAM by adopting Multiple Gossip Steps (MGS) for better model consistency, which accelerates the aggregation of local flat models and better balances communication complexity and generalization. Theoretically, we present improved convergence rates $\small \mathcal{O}\big(\frac{1}{\sqrt{KT}}+\frac{1}{T}+\frac{1}{K^{1/2}T^{3/2}(1-\lambda)^2}\big)$ and $\small \mathcal{O}\big(\frac{1}{\sqrt{KT}}+\frac{1}{T}+\frac{\lambda^Q+1}{K^{1/2}T^{3/2}(1-\lambda^Q)^2}\big)$ in non-convex setting for DFedSAM and DFedSAM-MGS, respectively, where $1-\lambda$ is the spectral gap of gossip matrix and $Q$ is the number of MGS. Empirically, our methods can achieve competitive performance compared with CFL methods and outperform existing DFL methods.
Poster
Hang Zhang · Ping Li

[ Exhibit Hall 1 ]

This paper considers the unlabeled sparse recovery under multiple measurements, i.e., ${\mathbf{Y}} = {\mathbf{\Pi}}^{\natural} {\mathbf{X}} {\mathbf{B}}^{\natural} + {\mathbf{W}}$, where ${\mathbf{Y}} \in \mathbb{R}^{n\times m}, {\mathbf{\Pi}}^{\natural}\in \mathbb{R}^{n\times n}, {\mathbf{X}} \in \mathbb{R}^{n\times p}, {\mathbf{B}} ^{\natural}\in \mathbb{R}^{p\times m}, {\mathbf{W}}\in \mathbb{R}^{n\times m}$ represents the observations, missing (or incomplete) correspondence information, sensing matrix, sparse signals, and additive sensing noise, respectively. Different from the previous works on multiple measurements ($m > 1$) which all focus on the sufficient samples regime, namely, $n > p$, we consider a sparse matrix $\mathbf{B}^{\natural}$ and investigate the insufficient samples regime (i.e., $n \ll p$) for the first time. To begin with, we establish the lower bound on the sample number and *signal-to-noise ratio* ($ {\mathsf{SNR}}$) for the correct permutation recovery. Moreover, we present a simple yet effective estimator. Under mild conditions, we show that our estimator can restore the correct correspondence information with high probability. Numerical experiments are presented to corroborate our theoretical claims.
Poster
Václav Voráček · Matthias Hein

[ Exhibit Hall 1 ]

Randomized smoothing is a popular method to certify robustness of image classifiers to adversarial input perturbations. It is the only certification technique which scales directly to datasets of higher dimension such as ImageNet. However, current techniques are not able to utilize the fact that any adversarial example has to lie in the image space, that is $[0,1]^d$; otherwise, one can trivially detect it. To address this suboptimality, we derive new certification formulae which lead to significant improvements in the certified $\ell_1$-robustness without the need of adapting the classifiers or change of smoothing distributions. The code is released at https://github.com/vvoracek/L1-smoothing
Poster
Oluwadamilola Fasina · Guillaume Huguet · Alexander Tong · Yanlei Zhang · Guy Wolf · Maximilian Nickel · Ian Adelstein · Smita Krishnaswamy

[ Exhibit Hall 1 ]

Although data diffusion embeddings are ubiquitous in unsupervised learning and have proven to be a viable technique for uncovering the underlying intrinsic geometry of data, diffusion embeddings are inherently limited due to their discrete nature. To this end, we propose neural FIM, a method for computing the Fisher information metric (FIM) from point cloud data - allowing for a continuous manifold model for the data. Neural FIM creates an extensible metric space from discrete point cloud data such that information from the metric can inform us of manifold characteristics such as volume and geodesics. We demonstrate Neural FIM's utility in selecting parameters for the PHATE visualization method as well as its ability to obtain information pertaining to local volume illuminating branching points and cluster centers embeddings of a toy dataset and two single-cell datasets of IPSC reprogramming and PBMCs (immune cells).

Poster
Deep Pandey · Qi Yu

[ Exhibit Hall 1 ]

Evidential deep learning, built upon belief theory and subjective logic, offers a principled and computationally efficient way to turn a deterministic neural network uncertainty-aware. The resultant evidential models can quantify fine-grained uncertainty using the learned evidence. To ensure theoretically sound evidential models, the evidence needs to be non-negative, which requires special activation functions for model training and inference. This constraint often leads to inferior predictive performance compared to standard softmax models, making it challenging to extend them to many large-scale datasets. To unveil the real cause of this undesired behavior, we theoretically investigate evidential models and identify a fundamental limitation that explains the inferior performance: existing evidential activation functions create zero evidence regions, which prevent the model to learn from training samples falling into such regions. A deeper analysis of evidential activation functions based on our theoretical underpinning inspires the design of a novel regularizer that effectively alleviates this fundamental limitation. Extensive experiments over many challenging real-world datasets and settings confirm our theoretical findings and demonstrate the effectiveness of our proposed approach.

Poster
Varsha Kishore · Chao Wan · Justin Lovelace · Yoav Artzi · Kilian Weinberger

[ Exhibit Hall 1 ]

Differentiable Search Index is a recently proposed paradigm for document retrieval, that encodes information about a corpus of documents within the parameters of a neural network and directly maps queries to corresponding documents. These models have achieved state-of-the-art performances for document retrieval across many benchmarks. These kinds of models have a significant limitation: it is not easy to add new documents after a model is trained. We propose IncDSI, a method to add documents in real time (about 20-50ms per document), without retraining the model on the entire dataset (or even parts thereof). Instead we formulate the addition of documents as a constrained optimization problem that makes minimal changes to the network parameters. Although orders of magnitude faster, our approach is competitive with re-training the model on the whole dataset and enables the development of document retrieval systems that can be updated with new information in real-time. Our code for IncDSI is available at https://github.com/varshakishore/IncDSI.

Poster
Ryoma Sato

[ Exhibit Hall 1 ]

Graph Neural Networks (GNNs) are popular models for graph learning problems. GNNs show strong empirical performance in many practical tasks. However, the theoretical properties have not been completely elucidated. In this paper, we investigate whether GNNs can exploit the graph structure from the perspective of the expressive power of GNNs. In our analysis, we consider graph generation processes that are controlled by hidden (or latent) node features, which contain all information about the graph structure. A typical example of this framework is kNN graphs constructed from the hidden features. In our main results, we show that GNNs can recover the hidden node features from the input graph alone, even when all node features, including the hidden features themselves and any indirect hints, are unavailable. GNNs can further use the recovered node features for downstream tasks. These results show that GNNs can fully exploit the graph structure by themselves, and in effect, GNNs can use both the hidden and explicit node features for downstream tasks. In the experiments, we confirm the validity of our results by showing that GNNs can accurately recover the hidden features using a GNN architecture built based on our theoretical analysis.

Poster
Tim Dettmers · Luke Zettlemoyer

[ Exhibit Hall 1 ]

Quantization methods reduce the number of bits required to represent each parameter in a model, trading accuracy for smaller memory footprints and inference latencies. However, the final model size depends on both the number of parameters of the original model and the rate of compression. For example, a 30B 8-bit model and a 60B 4-bit model have the same number of bits but may have very different zero-shot accuracies. In this work, we study this trade-off by developing inference scaling laws of zero-shot performance in Large Language Models (LLMs) to determine the bit-precision and model size that maximizes zero-shot performance. We run more than 35,000 experiments with 16-bit inputs and k-bit parameters to examine which zero-shot quantization methods improve scaling for 3 to 8-bit precision at scales of 19M to 176B parameters across the LLM families BLOOM, OPT, NeoX/Pythia, and GPT-2. We find that it is challenging to improve the bit-level scaling trade-off, with the only improvements being the use of a small block size -- splitting the parameters into small independently quantized blocks -- and the quantization data type being used (e.g., Int vs Float). Overall, our findings show that 4-bit precision is almost universally optimal for total model …

Poster
Bilal Chughtai · Lawrence Chan · Neel Nanda

[ Exhibit Hall 1 ]

Universality is a key hypothesis in mechanistic interpretability -- that different models learn similar features and circuits when trained on similar tasks. In this work, we study the universality hypothesis by examining how small networks learn to implement group compositions. We present a novel algorithm by which neural networks may implement composition for any finite group via mathematical representation theory. We then show that these networks consistently learn this algorithm by reverse engineering model logits and weights, and confirm our understanding using ablations. By studying networks trained on various groups and architectures, we find mixed evidence for universality: using our algorithm, we can completely characterize the family of circuits and features that networks learn on this task, but for a given network the precise circuits learned -- as well as the order they develop -- are arbitrary.

Poster
Yihan Ma · Zhikun Zhang · Ning Yu · Xinlei He · Michael Backes · Yun Shen · Yang Zhang

[ Exhibit Hall 1 ]

Graph generative models become increasingly effective for data distribution approximation and data augmentation. While they have aroused public concerns about their malicious misuses or misinformation broadcasts, just as what Deepfake visual and auditory media has been delivering to society. Hence it is essential to regulate the prevalence of generated graphs. To tackle this problem, we pioneer the formulation of the generated graph detection problem to distinguish generated graphs from real ones. We propose the first framework to systematically investigate a set of sophisticated models and their performance in four classification scenarios. Each scenario switches between seen and unseen datasets/generators during testing to get closer to real-world settings and progressively challenge the classifiers. Extensive experiments evidence that all the models are qualified for generated graph detection, with specific models having advantages in specific scenarios. Resulting from the validated generality and oblivion of the classifiers to unseen datasets/generators, we draw a safe conclusion that our solution can sustain for a decent while to curb generated graph misuses.

Poster
Yecheng Jason Ma · Vikash Kumar · Amy Zhang · Osbert Bastani · Dinesh Jayaraman

[ Exhibit Hall 1 ]

We present Language-Image Value learning (LIV), a unified objective for vision-language representation and reward learning from action-free videos with text annotations. Exploiting a novel connection between dual reinforcement learning and mutual information contrastive learning, the LIV objective trains a multi-modal representation that implicitly encodes a universal value function for tasks specified as language or image goals. We use LIV to pre-train the first control-centric vision-language representation from large human video datasets such as EpicKitchen. Given only a language or image goal, the pre-trained LIV model can assign dense rewards to each frame in videos of unseen robots or humans attempting that task in unseen environments. Further, when some target domain-specific data is available, the same objective can be used to fine-tune and improve LIV and even other pre-trained representations for robotic control and reward specification in that domain. In our experiments on several simulated and real-world robot environments, LIV models consistently outperform the best prior input state representations for imitation learning, as well as reward specification methods for policy synthesis. Our results validate the advantages of joint vision-language representation and reward learning within the unified, compact LIV framework.

Poster
Bairu Hou · Joe O'Connor · Jacob Andreas · Shiyu Chang · Yang Zhang

[ Exhibit Hall 1 ]

We describe PromptBoosting, a query-efficient procedure for building a text classifier from a neural language model (LM) without access to the LM's parameters, gradients, or hidden representations. This form of "black-box" classifier training has become increasingly important as the cost of training and inference in large-scale LMs has grown. But existing black-box LM classifier learning approaches are themselves computationally inefficient, typically specializing LMs to the target task by searching in a large space of (discrete or continuous) prompts using zeroth-order optimization methods. Instead of directly optimizing in prompt space, PromptBoosting obtains a small pool of prompts via a gradient-free approach and then constructs a large pool of weak learners by pairing these prompts with different elements of the LM's output distribution. These weak learners are then ensembled using the AdaBoost algorithm. The entire learning process requires only a small number of forward passes and no backward pass. Experiments show that PromptBoosting achieves state-of-the-art performance in multiple black-box few-shot classification tasks, and matches or outperforms full fine-tuning in both few-shot and standard learning paradigms, while training 10x faster than existing black-box methods.

Poster
Seobin Park · Dongjin Kim · Sungyong Baik · Tae Hyun Kim

[ Exhibit Hall 1 ]

Recent deep-learning-based super-resolution (SR) methods have been successful in recovering high-resolution (HR) images from their low-resolution (LR) counterparts, albeit on the synthetic and simple degradation setting: bicubic downscaling. On the other hand, super-resolution on real-world images demands the capability to handle complex downscaling mechanism which produces different artifacts (e.g., noise, blur, color distortion) upon downscaling factors. To account for complex downscaling mechanism in real-world LR images, there have been a few efforts in constructing datasets consisting of LR images with real-world downsampling degradation. However, making such datasets entails a tremendous amount of time and effort, thereby resorting to very few number of downscaling factors (e.g., $\times$2, $\times$3, $\times$4). To remedy the issue, we propose to generate realistic SR datasets for unseen degradation levels by exploring the latent space of real LR images and thereby producing more diverse yet realistic LR images with complex real-world artifacts. Our quantitative and qualitative experiments demonstrate the accuracy of the generated LR images, and we show that the various conventional SR networks trained with our newly generated SR datasets can produce much better HR images.
Poster
Juncheng Dong · Weibin Mo · Zhengling Qi · Cong Shi · Ethan Fang · Vahid Tarokh

[ Exhibit Hall 1 ]

We consider a fundamental class of assortment optimization problems in an offline data-driven setting. The firm does not know the underlying customer choice model but has access to an offline dataset consisting of the historically offered assortment set, customer choice, and revenue. The objective is to use the offline dataset to find an optimal assortment. Due to the combinatorial nature of assortment optimization, the problem of insufficient data coverage is likely to occur in the offline dataset. Therefore, designing a provably efficient offline learning algorithm becomes a significant challenge. To this end, based on the principle of pessimism, we propose a novel algorithm called Pessimistic ASsortment opTimizAtion (PASTA for short), which can correctly identify the optimal assortment by only requiring the offline data to cover the optimal assortment under general settings. In particular, we establish the first regret bound for the offline assortment optimization problem under the celebrated multinomial logit model (MNL). We also propose an efficient computational procedure to solve our pessimistic assortment optimization problem. Our numerical studies demonstrate the superiority of the proposed method over the existing baseline method.

Poster
Ivan Lyzhin · Aleksei Ustimenko · Andrey Gulin · Liudmila Prokhorenkova

[ Exhibit Hall 1 ]

Nowadays, state-of-the-art learning-to-rank methods are based on gradient-boosted decision trees (GBDT). The most well-known algorithm is LambdaMART which was proposed more than a decade ago. Recently, several other GBDT-based ranking algorithms were proposed. In this paper, we thoroughly analyze these methods in a unified setup. In particular, we address the following questions. Is direct optimization of a smoothed ranking loss preferable over optimizing a convex surrogate? How to properly construct and smooth surrogate ranking losses? To address these questions, we compare LambdaMART with YetiRank and StochasticRank methods and their modifications. We also propose a simple improvement of the YetiRank approach that allows for optimizing specific ranking loss functions. As a result, we gain insights into learning-to-rank techniques and obtain a new state-of-the-art algorithm.

Poster
Fabian Altekrüger · Johannes Hertrich · Gabriele Steidl

[ Exhibit Hall 1 ]

Wasserstein gradient flows of maximum mean discrepancy (MMD) functionals with non-smooth Riesz kernels show a rich structure as singular measures can become absolutely continuous ones and conversely. In this paper we contribute to the understanding of such flows. We propose to approximate the backward scheme of Jordan, Kinderlehrer and Otto for computing such Wasserstein gradient flows as well as a forward scheme for so-called Wasserstein steepest descent flows by neural networks (NNs). Since we cannot restrict ourselves to absolutely continuous measures, we have to deal with transport plans and velocity plans instead of usual transport maps and velocity fields. Indeed, we approximate the disintegration of both plans by generative NNs which are learned with respect to appropriate loss functions. In order to evaluate the quality of both neural schemes, we benchmark them on the interaction energy. Here we provide analytic formulas for Wasserstein schemes starting at a Dirac measure and show their convergence as the time step size tends to zero. Finally, we illustrate our neural MMD flows by numerical examples.

Poster
Ira Globus-Harris · Declan Harrison · Michael Kearns · Aaron Roth · Jessica Sorrell

[ Exhibit Hall 1 ]

We study the connection between multicalibration and boosting for squared error regression. First we prove a useful characterization of multicalibration in terms of a ``swap regret'' like condition on squared error. Using this characterization, we give an exceedingly simple algorithm that can be analyzed both as a boosting algorithm for regression and as a multicalibration algorithm for a class $\mathcal{H}$ that makes use only of a standard squared error regression oracle for $\mathcal{H}$. We give a weak learning assumption on $\mathcal{H}$ that ensures convergence to Bayes optimality without the need to make any realizability assumptions --- giving us an agnostic boosting algorithm for regression. We then show that our weak learning assumption on $\mathcal{H}$ is both necessary and sufficient for multicalibration with respect to $\mathcal{H}$ to imply Bayes optimality, answering an open question. We also show that if $\mathcal{H}$ satisfies our weak learning condition relative to another class $\mathcal{C}$ then multicalibration with respect to $\mathcal{H}$ implies multicalibration with respect to $\mathcal{C}$. Finally we investigate the empirical performance of our algorithm experimentally.
Poster
Siddharth Nagar Nayak · Kenneth Choi · Wenqi Ding · Sydney Dolan · Karthik Gopalakrishnan · Hamsa Balakrishnan

[ Exhibit Hall 1 ]

We consider the problem of multi-agent navigation and collision avoidance when observations are limited to the local neighborhood of each agent. We propose InforMARL, a novel architecture for multi-agent reinforcement learning (MARL) which uses local information intelligently to compute paths for all the agents in a decentralized manner. Specifically, InforMARL aggregates information about the local neighborhood of agents for both the actor and the critic using a graph neural network and can be used in conjunction with any standard MARL algorithm. We show that (1) in training, InforMARL has better sample efficiency and performance than baseline approaches, despite using less information, and (2) in testing, it scales well to environments with arbitrary numbers of agents and obstacles. We illustrate these results using four task environments, including one with predetermined goals for each agent, and one in which the agents collectively try to cover all goals.

Poster
Wonyeol Lee · Sejun Park · Alex Aiken

[ Exhibit Hall 1 ]

Recent work has shown that forward- and reverse- mode automatic differentiation (AD) over the reals is almost always correct in a mathematically precise sense. However, actual programs work with machine-representable numbers (e.g., floating-point numbers), not reals. In this paper, we study the correctness of AD when the parameter space of a neural network consists solely of machine-representable numbers. In particular, we analyze two sets of parameters on which AD can be incorrect: the incorrect set on which the network is differentiable but AD does not compute its derivative, and the non-differentiable set on which the network is non-differentiable. For a neural network with bias parameters, we first prove that the incorrect set is always empty. We then prove a tight bound on the size of the non-differentiable set, which is linear in the number of non-differentiabilities in activation functions, and give a simple necessary and sufficient condition for a parameter to be in this set. We further prove that AD always computes a Clarke subderivative even on the non-differentiable set. We also extend these results to neural networks possibly without bias parameters.

Poster
Remo Sasso · Michelangelo Conserva · Paulo Rauber

[ Exhibit Hall 1 ]

Despite remarkable successes, deep reinforcement learning algorithms remain sample inefficient: they require an enormous amount of trial and error to find good policies. Model-based algorithms promise sample efficiency by building an environment model that can be used for planning. Posterior Sampling for Reinforcement Learning is such a model-based algorithm that has attracted significant interest due to its performance in the tabular setting. This paper introduces Posterior Sampling for Deep Reinforcement Learning (PSDRL), the first truly scalable approximation of Posterior Sampling for Reinforcement Learning that retains its model-based essence. PSDRL combines efficient uncertainty quantification over latent state space models with a specially tailored incremental planning algorithm based on value-function approximation. Extensive experiments on the Atari benchmark show that PSDRL significantly outperforms previous state-of-the-art attempts at scaling up posterior sampling while being competitive with a state-of-the-art (model-based) reinforcement learning method, both in sample efficiency and computational efficiency.

Poster
Alexandre Rio · Merwan Barlier · Igor Colin · Marta Soare

[ Exhibit Hall 1 ]

We address multi-agent best arm identification with privacy guarantees. In this setting, agents collaborate by communicating to find the optimal arm. To avoid leaking sensitive data through messages, we consider two notions of privacy withholding different kinds of information: differential privacy and $(\epsilon, \eta)$-privacy. For each privacy definition, we propose an algorithm based on a two-level successive elimination scheme. We provide theoretical guarantees for the privacy level, accuracy and sample complexity of our algorithms. Experiments on various settings support our theoretical findings.
Poster
Mohamad Amin Mohamadi · Won Bae · Danica J Sutherland

[ Exhibit Hall 1 ]

Abstract
Empirical neural tangent kernels (eNTKs) can provide a good understanding of a given network's representation: they are often far less expensive to compute and applicable more broadly than infinite-width NTKs. For networks with $O$ output units (e.g. an $O$-class classifier), however, the eNTK on $N$ inputs is of size $NO \times NO$, taking $\mathcal O\big( (N O)^2\big)$ memory and up to $\mathcal O\big( (N O)^3 \big)$ computation to use. Most existing applications have therefore used one of a handful of approximations yielding $N \times N$ kernel matrices, saving orders of magnitude of computation, but with limited to no justification. We prove that one such approximation, which we call "sum of logits," converges to the true eNTK at initialization. Our experiments demonstrate the quality of this approximation for various uses across a range of settings.
Poster
Shengwei Zhou · Rufan Bai · Xiaowei Wu

[ Exhibit Hall 1 ]

We consider the problem of fairly allocating a sequence of indivisible items that arrive online in an arbitrary order to a group of $n$ agents with additive normalized valuation functions, we consider the allocation of goods and chores separately and propose algorithms for approximating maximin share (MMS) allocations for both settings. When agents have identical valuation functions the problem coincides with the semi-online machine covering problem (when items are goods) and load balancing problem (when items are chores), for both of which optimal competitive ratios have been achieved. In this paper we consider the case when agents have general additive valuation functions. For the allocation of goods we show that no competitive algorithm exists even when there are only three agents and propose an optimal $0.5$-competitive algorithm for the case of two agents. For the allocation of chores we propose a $(2-1/n)$-competitive algorithm for $n\geq 3$ agents and a $\sqrt{2}\approx 1.414$-competitive algorithm for two agents. Additionally, we show that no algorithm can do better than $15/11\approx 1.364$-competitive for two agents.
Poster
José I. Segovia-Martín · Santiago Mazuelas · Anqi Liu

[ Exhibit Hall 1 ]

Supervised learning is often affected by a covariate shift in which the marginal distributions of instances (covariates $x$) of training and testing samples $p_\text{tr}(x)$ and $p_\text{te}(x)$ are different but the label conditionals coincide. Existing approaches address such covariate shift by either using the ratio $p_\text{te}(x)/p_\text{tr}(x)$ to weight training samples (reweighted methods) or using the ratio $p_\text{tr}(x)/p_\text{te}(x)$ to weight testing samples (robust methods). However, the performance of such approaches can be poor under support mismatch or when the above ratios take large values. We propose a minimax risk classification (MRC) approach for covariate shift adaptation that avoids such limitations by weighting both training and testing samples. In addition, we develop effective techniques that obtain both sets of weights and generalize the conventional kernel mean matching method. We provide novel generalization bounds for our method that show a significant increase in the effective sample size compared with reweighted methods. The proposed method also achieves enhanced classification performance in both synthetic and empirical experiments.
Poster
Yi Liu · Qirui Hu · Lei Ding · Linglong Kong

[ Exhibit Hall 1 ]

Based on binary inquiries, we developed an algorithm to estimate population quantiles under Local Differential Privacy (LDP). By self-normalizing, our algorithm provides asymptotically normal estimation with valid inference, resulting in tight confidence intervals without the need for nuisance parameters to be estimated. Our proposed method can be conducted fully online, leading to high computational efficiency and minimal storage requirements with $\mathcal{O}(1)$ space. We also proved an optimality result by an elegant application of one central limit theorem of Gaussian Differential Privacy (GDP) when targeting the frequently encountered median estimation problem. With mathematical proof and extensive numerical testing, we demonstrate the validity of our algorithm both theoretically and experimentally.
Poster
Yue Liu · KE LIANG · Jun Xia · sihang zhou · xihong yang · Xinwang Liu · Stan Z Li

[ Exhibit Hall 1 ]

Deep graph clustering, which aims to group the nodes of a graph into disjoint clusters with deep neural networks, has achieved promising progress in recent years. However, the existing methods fail to scale to the large graph with million nodes. To solve this problem, a scalable deep graph clustering method (Dink-Net) is proposed with the idea of dilation and shrink. Firstly, by discriminating nodes, whether being corrupted by augmentations, representations are learned in a self-supervised manner. Meanwhile, the cluster centers are initialized as learnable neural parameters. Subsequently, the clustering distribution is optimized by minimizing the proposed cluster dilation loss and cluster shrink loss in an adversarial manner. By these settings, we unify the two-step clustering, i.e., representation learning and clustering optimization, into an end-to-end framework, guiding the network to learn clustering-friendly features. Besides, Dink-Net scales well to large graphs since the designed loss functions adopt the mini-batch data to optimize the clustering distribution even without performance drops. Both experimental results and theoretical analyses demonstrate the superiority of our method. Compared to the runner-up, Dink-Net achieves $9.62\%$ NMI improvement on the ogbn-papers100M dataset with 111 million nodes and 1.6 billion edges. The source code is released: https://github.com/yueliu1999/Dink-Net. Besides, a collection (papers, …
Poster
Jennifer J. Sun · Markus Marks · Andrew Ulmer · Dipam Chakraborty · Brian Geuther · Edward Hayes · Heng Jia · Vivek Kumar · Sebastian Oleszko · Zachary Partridge · Milan Peelman · Alice Robie · Catherine Schretter · Keith Sheppard · Chao Sun · Param Uttarwar · Julian Wagner · Erik Werner · Joseph Parker · Pietro Perona · Yisong Yue · Kristin Branson · Ann Kennedy

[ Exhibit Hall 1 ]

We introduce MABe22, a large-scale, multi-agent video and trajectory benchmark to assess the quality of learned behavior representations. This dataset is collected from a variety of biology experiments, and includes triplets of interacting mice (4.7 million frames video+pose tracking data, 10 million frames pose only), symbiotic beetle-ant interactions (10 million frames video data), and groups of interacting flies (4.4 million frames of pose tracking data). Accompanying these data, we introduce a panel of real-life downstream analysis tasks to assess the quality of learned representations by evaluating how well they preserve information about the experimental conditions (e.g. strain, time of day, optogenetic stimulation) and animal behavior. We test multiple state-of-the-art self-supervised video and trajectory representation learning methods to demonstrate the use of our benchmark, revealing that methods developed using human action datasets do not fully translate to animal datasets. We hope that our benchmark and dataset encourage a broader exploration of behavior representation learning methods across species and settings.

Poster
Chenguang Duan · Yuling Jiao · Lican Kang · Xiliang Lu · Jerry Yang

[ Exhibit Hall 1 ]

Based on the offset Rademacher complexity, this work outlines a systematical framework for deriving sharp excess risk bounds in statistical learning without Bernstein condition. In addition to recovering fast rates in a unified way for some parametric and nonparametric supervised learning models with minimum identifiability assumptions, we also obtain new and improved results for LAD (sparse) linear regression and deep logistic regression with deep ReLU neural networks, respectively.

Poster
Michael Bowling · John Martin · David Abel · Will Dabney

[ Exhibit Hall 1 ]

The reward hypothesis posits that, "all of what we mean by goals and purposes can be well thought of as maximization of the expected value of the cumulative sum of a received scalar signal (reward)." We aim to fully settle this hypothesis. This will not conclude with a simple affirmation or refutation, but rather specify completely the implicit requirements on goals and purposes under which the hypothesis holds.

Poster
Wei-Xin Li · Xiaodong Yang

[ Exhibit Hall 1 ]

Evaluating the performance of perception modules in autonomous driving is one of the most critical tasks in developing the complex intelligent system. While module-level unit test metrics adopted from traditional computer vision tasks are feasible to some extent, it remains far less explored to measure the impact of perceptual noise on the driving quality of autonomous vehicles in a consistent and holistic manner. In this work, we propose a principled framework that provides a coherent and systematic understanding of the impact an error in the perception module imposes on an autonomous agent's planning that actually controls the vehicle. Specifically, the planning process is formulated as expected utility maximisation, where all input signals from upstream modules jointly provide a world state description, and the planner strives for the optimal action by maximising the expected utility determined by both world states and actions. We show that, under practical conditions, the objective function can be represented as an inner product between the world state description and the utility function in a Hilbert space. This geometric interpretation enables a novel way to analyse the impact of noise in world state estimation on planning and leads to a universal metric for evaluating perception. The whole …

Poster
Yuhan Liu · Ananda Suresh · Wennan Zhu · Peter Kairouz · Marco Gruteser

[ Exhibit Hall 1 ]

We study the problem of histogram estimation under user-level differential privacy, where the goal is to preserve the privacy of all entries of any single user. We consider the heterogeneous scenario where the quantity of data can be different for each user. In this scenario, the amount of noise injected into the histogram to obtain differential privacy is proportional to the maximum user contribution, which can be amplified by few outliers. One approach to circumvent this would be to bound (or limit) the contribution of each user to the histogram. However, if users are limited to small contributions, a significant amount of data will be discarded. In this work, we propose algorithms to choose the best user contribution bound for histogram estimation under both bounded and unbounded domain settings. When the size of the domain is bounded, we propose a user contribution bounding strategy that almost achieves a two-approximation with respect to the best contribution bound in hindsight. For unbounded domain histogram estimation, we propose an algorithm that is logarithmic-approximation with respect to the best contribution bound in hindsight. This result holds without any distribution assumptions on the data. Experiments on both real and synthetic datasets verify our theoretical findings …


Invited Talk: Shakir Mohamed

Machine Learning with Social Purpose

This talk talk has a single objective: to advocate for machine learning infused with social purpose. Social purpose here is an invitation to deepen our inquiries as investigators and inventors into the relationships between machine learning, our planet, and each other. In this way, social purpose transforms our field of machine learning: into something that is both technical and social. And my belief is that machine learning with social purpose will provide the passion and momentum for the contributions that are needed in overcoming the myriad of global challenges and in achieving our global goals. To make this all concrete, the talk will have three parts: machine learning for the Earth systems, sociotechnical AI, and strengthening global communities. And we’ll cover topics on generative models; evaluations and experts; healthcare and climate; fairness, ethics and safety; and bias and global inclusion. By the end, I hope we’ll have set the scene for a rich discussion on our responsibility and agency as researchers, and new ways of driving machine learning with social purpose.

Shakir Mohamed

 

Shakir Mohamed works on technical and sociotechnical questions in machine learning research, working on problems in machine learning principles, applied problems in healthcare and environment, and ethics and diversity. Shakir is a Director for Research at DeepMind in London, an Associate Fellow at the Leverhulme Centre for the Future of Intelligence, and an Honorary Professor of University College London. Shakir is also a founder and trustee of the Deep Learning Indaba, a grassroots charity whose work is to build pan-African capacity and leadership in AI. Amongst other roles, Shakir served as the senior programme chair for ICLR 2021, and as the General Chair for NeurIPS 2022. Shakir also serves on the Board of Directors for some of the leading conferences in the field of machine learning and AI (ICML, ICLR, NeurIPS), is a member of the Royal Society diversity and inclusion committee, and on the international scientific advisory committee for the pan-Canadian AI strategy. Shakir is from South Africa, completed a postdoc at the University of British Columbia, received his PhD from the University of Cambridge, and received his masters and undergraduate degrees in Electrical and Information engineering from the University of the Witwatersrand, Johannesburg.



Oral A1 Causal Learning, RL, Personalization Tue 25 Jul 05:30 p.m.  

Oral
Yunbei Xu · Assaf Zeevi

[ Exhibit Hall 2 ]

We develop a general theory to optimize the frequentist regret for sequential learning problems, where efficient bandit and reinforcement learning algorithms can be derived from unified Bayesian principles. We propose a novel optimization approach to create "algorithmic beliefs" at each round, and use Bayesian posteriors to make decisions. This is the first approach to make Bayesian-type algorithms prior-free and applicable to adversarial settings, in a generic and optimal manner. Moreover, the algorithms are simple and often efficient to implement. As a major application, we present a novel algorithm for multi-armed bandits that achieves the "best-of-all-worlds" empirical performance in the stochastic, adversarial, and non-stationary environments. And we illustrate how these principles can be used in linear bandits, convex bandits, and reinforcement learning.

Oral
Alberto Maria Metelli · Filippo Lazzati · Marcello Restelli

[ Exhibit Hall 2 ]

Inverse reinforcement learning (IRL) denotes a powerful family of algorithms for recovering a reward function justifying the behavior demonstrated by an expert agent. A well-known limitation of IRL is the ambiguity in the choice of the reward function, due to the existence of multiple rewards that explain the observed behavior. This limitation has been recently circumvented by formulating IRL as the problem of estimating the feasible reward set, i.e., the region of the rewards compatible with the expert's behavior. In this paper, we make a step towards closing the theory gap of IRL in the case of finite-horizon problems with a generative model. We start by formally introducing the problem of estimating the feasible reward set, the corresponding PAC requirement, and discussing the properties of particular classes of rewards. Then, we provide the first minimax lower bound on the sample complexity for the problem of estimating the feasible reward set of order ${\Omega}\left( \frac{H^3SA}{\epsilon^2} \left( \log \left(\frac{1}{\delta}\right) + S \right)\right)$, being $S$ and $A$ the number of states and actions respectively, $H$ the horizon, $\epsilon$ the desired accuracy, and $\delta$ the confidence. We analyze the sample complexity of a uniform sampling strategy (US-IRL), proving a matching upper bound up to …
Oral
Haotian Ye · Xiaoyu Chen · Liwei Wang · Simon Du

[ Exhibit Hall 2 ]

Generalization in Reinforcement Learning (RL) aims to train an agent during training that generalizes to the target environment. In this work, we first point out that RL generalization is fundamentally different from the generalization in supervised learning, and fine-tuning on the target environment is necessary for good test performance. Therefore, we seek to answer the following question: how much can we expect pre-training over training environments to be helpful for efficient and effective fine-tuning? On one hand, we give a surprising result showing that asymptotically, the improvement from pre-training is at most a constant factor. On the other hand, we show that pre-training can be indeed helpful in the non-asymptotic regime by designing a policy collection-elimination (PCE) algorithm and proving a distribution-dependent regret bound that is independent of the state-action space. We hope our theoretical results can provide insight towards understanding pre-training and generalization in RL.

Oral
Sattar Vakili · Danyal Ahmed · Alberto Bernacchia · Ciara Pike-Burke

[ Exhibit Hall 2 ]

Black box optimisation of an unknown function from expensive and noisy evaluations is a ubiquitous problem in machine learning, academic research and industrial production. An abstraction of the problem can be formulated as a kernel based bandit problem (also known as Bayesian optimisation), where a learner aims at optimising a kernelized function through sequential noisy observations. The existing work predominantly assumes feedback is immediately available; an assumption which fails in many real world situations, including recommendation systems, clinical trials and hyperparameter tuning. We consider a kernel bandit problem under stochastically delayed feedback, and propose an algorithm with $\tilde{\mathcal{O}}\left(\sqrt{\Gamma_k(T) T}+\mathbb{E}[\tau]\right)$ regret, where $T$ is the number of time steps, $\Gamma_k(T)$ is the maximum information gain of the kernel with $T$ observations, and $\tau$ is the delay random variable. This represents a significant improvement over the state of the art regret bound of $\tilde{\mathcal{O}}\left(\Gamma_k(T)\sqrt{ T}+\mathbb{E}[\tau]\Gamma_k(T)\right)$ reported in (Verma et al., 2022). In particular, for very non-smooth kernels, the information gain grows almost linearly in time, trivializing the existing results. We also validate our theoretical results with simulations.
Oral
Jack Brady · Roland S. Zimmermann · Yash Sharma · Bernhard Schölkopf · Julius von Kügelgen · Wieland Brendel

[ Exhibit Hall 2 ]

Learning structured representations of the visual world in terms of objects promises to significantly improve the generalization abilities of current machine learning models. While recent efforts to this end have shown promising empirical progress, a theoretical account of when unsupervised object-centric representation learning is possible is still lacking. Consequently, understanding the reasons for the success of existing object-centric methods as well as designing new theoretically grounded methods remains challenging. In the present work, we analyze when object-centric representations can provably be learned without supervision. To this end, we first introduce two assumptions on the generative process for scenes comprised of several objects, which we call compositionality and irreducibility. Under this generative process, we prove that the ground-truth object representations can be identified by an invertible and compositional inference model, even in the presence of dependencies between objects. We empirically validate our results through experiments on synthetic data. Finally, we provide evidence that our theory holds predictive power for existing object-centric models by showing a close correspondence between models' compositionality and invertibility and their empirical identifiability.

Oral
Bethany Connolly · Kimberley Moore · Tobias Schwedes · Alexander Adam · Gary Willis · Ilya Feige · Christopher Frye

[ Exhibit Hall 2 ]

Understanding causality should be a core requirement of any attempt to build real impact through AI. Due to the inherent unobservability of counterfactuals, large randomised trials (RCTs) are the standard for causal inference. But large experiments are generically expensive, and randomisation carries its own costs, e.g. when suboptimal decisions are trialed. Recent work has proposed more sample-efficient alternatives to RCTs, but these are not adaptable to the downstream application for which the causal effect is sought. In this work, we develop a task-specific approach to experimental design and derive sampling strategies customised to particular downstream applications. Across a range of important tasks, real-world datasets, and sample sizes, our method outperforms other benchmarks, e.g. requiring an order-of-magnitude less data to match RCT performance on targeted marketing tasks.

Oral
Aude Sportisse · Hugo Schmutz · Olivier HUMBERT · Charles Bouveyron · Pierre-Alexandre Mattei

[ Exhibit Hall 2 ]

Semi-supervised learning is a powerful technique for leveraging unlabeled data to improve machine learning models, but it can be affected by the presence of ``informative" labels, which occur when some classes are more likely to be labeled than others. In the missing data literature, such labels are called missing not at random. In this paper, we propose a novel approach to address this issue by estimating the missing-data mechanism and using inverse propensity weighting to debias any SSL algorithm, including those using data augmentation. We also propose a likelihood ratio test to assess whether or not labels are indeed informative. Finally, we demonstrate the performance of the proposed methods on different datasets, in particular on two medical datasets for which we design pseudo-realistic missing data scenarios.

Oral
Kartik Ahuja · Divyat Mahajan · Yixin Wang · Yoshua Bengio

[ Exhibit Hall 2 ]

Causal representation learning seeks to extract high-level latent factors from low-level sensory data. Most existing methods rely on observational data and structural assumptions (e.g., conditional independence) to identify the latent factors. However, interventional data is prevalent across applications. Can interventional data facilitate causal representation learning? We explore this question in this paper. The key observation is that interventional data often carries geometric signatures of the latent factors' support (i.e. what values each latent can possibly take). For example, when the latent factors are causally connected, interventions can break the dependency between the intervened latents' support and their ancestors'. Leveraging this fact, we prove that the latent causal factors can be identified up to permutation and scaling given data from perfect do interventions. Moreover, we can achieve block affine identification, namely the estimated latent factors are only entangled with a few other latents if we have access to data from imperfect interventions. These results highlight the unique power of interventional data in causal representation learning; they can enable provable identification of latent factors without any assumptions about their distributions or dependency structure.

Oral
Shahine Bouabid · Jake Fawkes · Dino Sejdinovic

[ Exhibit Hall 2 ]

A directed acyclic graph (DAG) provides valuable prior knowledge that is often discarded in regression tasks in machine learning. We show that the independences arising from the presence of collider structures in DAGs provide meaningful inductive biases, which constrain the regression hypothesis space and improve predictive performance. We introduce collider regression, a framework to incorporate probabilistic causal knowledge from a collider in a regression problem. When the hypothesis space is a reproducing kernel Hilbert space, we prove a strictly positive generalisation benefit under mild assumptions and provide closed-form estimators of the empirical risk minimiser. Experiments on synthetic and climate model data demonstrate performance gains of the proposed methodology.

Oral
Elisabeth Ailer · Jason Hartford · Niki Kilbertus

[ Exhibit Hall 2 ]

Instrumental variable (IV) methods are used to estimate causal effects in settings with unobserved confounding, where we cannot directly experiment on the treatment variable. Instruments are variables which only affect the outcome indirectly via the treatment variable(s). Most IV applications focus on low-dimensional treatments and crucially require at least as many instruments as treatments. This assumption is restrictive: in the natural sciences we often seek to infer causal effects of high-dimensional treatments (e.g., the effect of gene expressions or microbiota on health and disease), but can only run few experiments with a limited number of instruments (e.g., drugs or antibiotics). In such under-specified problems, the full treatment effect is not identifiable in a single experiment even in the linear case. We show that one can still reliably recover the projection of the treatment effect onto the instrumented subspace and develop techniques to consistently combine such partial estimates from different sets of instruments. We then leverage our combined estimators in an algorithm that iteratively proposes the most informative instruments at each round of experimentation to maximize the overall information about the full causal effect.


Oral A6 Reinforcement Learning 2 Tue 25 Jul 05:30 p.m.  

Oral
Kanika Madan · Jarrid Rector-Brooks · Maksym Korablyov · Emmanuel Bengio · Moksh Jain · Andrei-Cristian Nica · Tom Bosc · Yoshua Bengio · Nikolay Malkin

[ Ballroom C ]

Generative flow networks (GFlowNets) are a family of algorithms for training a sequential sampler of discrete objects under an unnormalized target density and have been successfully used for various probabilistic modeling tasks. Existing training objectives for GFlowNets are either local to states or transitions, or propagate a reward signal over an entire sampling trajectory. We argue that these alternatives represent opposite ends of a gradient bias-variance tradeoff and propose a way to exploit this tradeoff to mitigate its harmful effects. Inspired by the TD($\lambda$) algorithm in reinforcement learning, we introduce *subtrajectory balance* or SubTB($\lambda$), a GFlowNet training objective that can learn from partial action subsequences of varying lengths. We show that SubTB($\lambda$) accelerates sampler convergence in previously studied and new environments and enables training GFlowNets in environments with longer action sequences and sparser reward landscapes than what was possible before. We also perform a comparative analysis of stochastic gradient dynamics, shedding light on the bias-variance tradeoff in GFlowNet training and the advantages of subtrajectory balance.
Oral
Ghada Sokar · Rishabh Agarwal · Pablo Samuel Castro · Utku Evci

[ Ballroom C ]

In this work we identify the dormant neuron phenomenon in deep reinforcement learning, where an agent's network suffers from an increasing number of inactive neurons, thereby affecting network expressivity. We demonstrate the presence of this phenomenon across a variety of algorithms and environments, and highlight its effect on learning. To address this issue, we propose a simple and effective method (ReDo) that Recycles Dormant neurons throughout training. Our experiments demonstrate that ReDo maintains the expressive power of networks by reducing the number of dormant neurons and results in improved performance.

Oral
Dibya Ghosh · Chethan Bhateja · Sergey Levine

[ Ballroom C ]

Passive observational data, such as human videos, is abundant and rich in information, yet remains largely untapped by current RL methods. Perhaps surprisingly, we show that passive data, despite not having reward or action labels, can still be used to learn features that accelerate downstream RL. Our approach learns from passive data by modeling intentions: measuring how the likelihood of future outcomes change when the agent acts to achieve a particular task. We propose a temporal difference learning objective to learn about intentions, resulting in an algorithm similar to conventional RL, but which learns entirely from passive data. When optimizing this objective, our agent simultaneously learns representations of states, of policies, and of possible outcomes in an environment, all from raw observational data. Both theoretically and empirically, this scheme learns features amenable for value prediction for downstream tasks, and our experiments demonstrate the ability to learn from many forms of passive data, including cross-embodiment video data and YouTube videos.

Oral
Christoph Dann · Chen-Yu Wei · Julian Zimmert

[ Ballroom C ]

Policy optimization methods are popular reinforcement learning algorithms in practice and recent works have build theoretical foundation for them by proving $\sqrt{T}$ regret bounds even when the losses are adversarial. Such bounds are tight in the worst case but often overly pessimistic. In this work, we show that by carefully designing the regularizer, bonus terms, and learning rates, one can achieve a more favorable $\text{polylog}(T)$ regret bound when the losses are stochastic, without sacrificing the worst-case guarantee in the adversarial regime. Specifically, we show the first best of both worlds guarantee for policy optimization in tabular MDPs by leveraging either a Tsallis entropy or a Shannon entropy regularizer. Then we show that under known transitions, we can further obtain a first-order regret bound in the adversarial regime by leveraging the log barrier regularizer.
Oral
Imad AOUALI · Victor-Emmanuel Brunel · David Rohde · Anna Korba

[ Ballroom C ]

Off-policy learning (OPL) aims at finding improved policies from logged bandit data, often by minimizing the inverse propensity scoring (IPS) estimator of the risk. In this work, we investigate a smooth regularization for IPS, for which we derive a two-sided PAC-Bayes generalization bound. The bound is tractable, scalable, interpretable and provides learning certificates. In particular, it is also valid for standard IPS without making the assumption that the importance weights are bounded. We demonstrate the relevance of our approach and its favorable performance through a set of learning tasks. Since our bound holds for standard IPS, we are able to provide insight into when regularizing IPS is useful. Namely, we identify cases where regularization might not be needed. This goes against the belief that, in practice, clipped IPS often enjoys favorable performance than standard IPS in OPL.

Oral
Thomas Mesnard · Wenqi Chen · Alaa Saade · Yunhao Tang · Mark Rowland · Theophane Weber · Clare Lyle · Audrunas Gruslys · Michal Valko · Will Dabney · Georg Ostrovski · Eric Moulines · Remi Munos

[ Ballroom C ]

In reinforcement learning, the credit assignment problem is to distinguish luck from skill, that is, separate the inherent randomness in the environment from the controllable effects of the agent's actions. This paper proposes two novel algorithms, Quantile Credit Assignment (QCA) and Hindsight QCA (HQCA), which incorporate distributional value estimation to perform credit assignment. QCA uses a network that predicts the quantiles of the return distribution, whereas HQCA additionally incorporates information about the future. Both QCA and HQCA have the appealing interpretation of leveraging an estimate of the quantile level of the return (interpreted as the level of "luck") in order to derive a "luck-dependent" baseline for policy gradient methods. We show theoretically that this approach gives an unbiased policy gradient estimate that can yield significant variance reductions over a standard value estimate baseline. QCA and HQCA significantly outperform prior state-of-the-art methods on a range of extremely difficult credit assignment problems.

Oral
Sai Rajeswar · Pietro Mazzaglia · Tim Verbelen · Alex Piche · Bart Dhoedt · Aaron Courville · Alexandre Lacoste

[ Ballroom C ]

Controlling artificial agents from visual sensory data is an arduous task. Reinforcement learning (RL) algorithms can succeed but require large amounts of interactions between the agent and the environment. To alleviate the issue, unsupervised RL proposes to employ self-supervised interaction and learning, for adapting faster to future tasks. Yet, as shown in the Unsupervised RL Benchmark (URLB; Laskin et al. 2021), whether current unsupervised strategies can improve generalization capabilities is still unclear, especially in visual control settings. In this work, we study the URLB and propose a new method to solve it, using unsupervised model-based RL, for pre-training the agent, and a task-aware fine-tuning strategy combined with a new proposed hybrid planner, Dyna-MPC, to adapt the agent for downstream tasks. On URLB, our method obtains 93.59% overall normalized performance, surpassing previous baselines by a staggering margin. The approach is empirically evaluated through a large-scale empirical study, which we use to validate our design choices and analyze our models. We also show robust performance on the Real-Word RL benchmark, hinting at resiliency to environment perturbations during adaptation. Project website: https://masteringurlb.github.io/

Oral
Daniel Furelos-Blanco · Mark Law · Anders Jonsson · Krysia Broda · Alessandra Russo

[ Ballroom C ]

Reward machines (RMs) are a recent formalism for representing the reward function of a reinforcement learning task through a finite-state machine whose edges encode subgoals of the task using high-level events. The structure of RMs enables the decomposition of a task into simpler and independently solvable subtasks that help tackle long-horizon and/or sparse reward tasks. We propose a formalism for further abstracting the subtask structure by endowing an RM with the ability to call other RMs, thus composing a hierarchy of RMs (HRM). We exploit HRMs by treating each call to an RM as an independently solvable subtask using the options framework, and describe a curriculum-based method to learn HRMs from traces observed by the agent. Our experiments reveal that exploiting a handcrafted HRM leads to faster convergence than with a flat HRM, and that learning an HRM is feasible in cases where its equivalent flat representation is not.

Oral
Jakob Bauer · Kate Baumli · Feryal Behbahani · Avishkar Bhoopchand · Natalie Bradley-Schmieg · Michael Chang · Natalie Clay · Adrian Collister · Vibhavari Dasagi · Lucy Gonzalez · Karol Gregor · Edward Hughes · Sheleem Kashem · Maria Loks-Thompson · Hannah Openshaw · Jack Parker-Holder · Shreya Pathak · Nicolas Perez-Nieves · Nemanja Rakicevic · Tim Rocktäschel · Yannick Schroecker · Satinder Singh · Jakub Sygnowski · Karl Tuyls · Sarah York · Alexander Zacherl · Lei Zhang

[ Ballroom C ]

Foundation models have shown impressive adaptation and scalability in supervised and self-supervised learning problems, but so far these successes have not fully translated to reinforcement learning (RL). In this work, we demonstrate that training an RL agent at scale leads to a general in-context learning algorithm that can adapt to open-ended novel embodied 3D problems as quickly as humans. In a vast space of held-out environment dynamics, our adaptive agent (AdA) displays on-the-fly hypothesis-driven exploration, efficient exploitation of acquired knowledge, and can successfully be prompted with first-person demonstrations. Adaptation emerges from three ingredients: (1) meta-reinforcement learning across a vast, smooth and diverse task distribution, (2) a policy parameterised as a large-scale attention-based memory architecture, and (3) an effective automated curriculum that prioritises tasks at the frontier of an agent's capabilities. We demonstrate characteristic scaling laws with respect to network size, memory length, and richness of the training task distribution. We believe our results lay the foundation for increasingly general and adaptive RL agents that perform well across ever-larger open-ended domains.

Oral
Michael Bowling · John Martin · David Abel · Will Dabney

[ Ballroom C ]

The reward hypothesis posits that, "all of what we mean by goals and purposes can be well thought of as maximization of the expected value of the cumulative sum of a received scalar signal (reward)." We aim to fully settle this hypothesis. This will not conclude with a simple affirmation or refutation, but rather specify completely the implicit requirements on goals and purposes under which the hypothesis holds.


Oral A3 ML Theory Tue 25 Jul 05:30 p.m.  

Oral
Vishwaraj Doshi · Jie Hu · Do-Young Eun

[ Meeting Room 316 A-C ]

We consider random walks on discrete state spaces, such as general undirected graphs, where the random walkers are designed to approximate a target quantity over the network topology via sampling and neighborhood exploration in the form of Markov chain Monte Carlo (MCMC) procedures. Given any Markov chain corresponding to a target probability distribution, we design a *self-repellent random walk* (SRRW) which is less likely to transition to nodes that were highly visited in the past, and more likely to transition to seldom visited nodes. For a class of SRRWs parameterized by a positive real $\alpha$, we prove that the empirical distribution of the process converges almost surely to the the target (stationary) distribution of the underlying Markov chain kernel. We then provide a central limit theorem and derive the exact form of the arising asymptotic co-variance matrix, which allows us to show that the SRRW with a stronger repellence (larger $\alpha$) always achieves a smaller asymptotic covariance, in the sense of Loewner ordering of co-variance matrices. Especially for SRRW-driven MCMC algorithms, we show that the decrease in the asymptotic sampling variance is of the order $O(1/\alpha)$, eventually going down to zero. Finally, we provide numerical simulations complimentary to our theoretical …
Oral
Jaeyoung Cha · Jaewook Lee · Chulhee Yun

[ Meeting Room 316 A-C ]

We study convergence lower bounds of without-replacement stochastic gradient descent (SGD) for solving smooth (strongly-)convex finite-sum minimization problems. Unlike most existing results focusing on final iterate lower bounds in terms of the number of components $n$ and the number of epochs $K$, we seek bounds for arbitrary weighted average iterates that are tight in all factors including the condition number $\kappa$. For SGD with Random Reshuffling, we present lower bounds that have tighter $\kappa$ dependencies than existing bounds. Our results are the first to perfectly close the gap between lower and upper bounds for weighted average iterates in both strongly-convex and convex cases. We also prove weighted average iterate lower bounds for arbitrary permutation-based SGD, which apply to all variants that carefully choose the best permutation. Our bounds improve the existing bounds in factors of $n$ and $\kappa$ and thereby match the upper bounds shown for a recently proposed algorithm called GraB.
Oral
Yihao Xue · Siddharth Joshi · Eric Gan · Pin-Yu Chen · Baharan Mirzasoleiman

[ Meeting Room 316 A-C ]

Contrastive learning (CL) has emerged as a powerful technique for representation learning, with or without label supervision. However, supervised CL is prone to collapsing representations of subclasses within a class by not capturing all their features, and unsupervised CL may suppress harder class-relevant features by focusing on learning easy class-irrelevant features; both significantly compromise representation quality. Yet, there is no theoretical understanding of class collapse or feature suppression at test time. We provide the first unified theoretically rigorous framework to determine which features are learnt by CL. Our analysis indicate that, perhaps surprisingly, bias of (stochastic) gradient descent towards finding simpler solutions is a key factor in collapsing subclass representations and suppressing harder class-relevant features. Moreover, we present increasing embedding dimensionality and improving the quality of data augmentations as two theoretically motivated solutions to feature suppression. We also provide the first theoretical explanation for why employing supervised and unsupervised CL together yields higher-quality representations, even when using commonly-used stochastic gradient methods.

Oral
Ziqiao Wang · Yongyi Mao

[ Meeting Room 316 A-C ]

In this work, we present a variety of novel information-theoretic generalization bounds for learning algorithms, from the supersample setting of Steinke & Zakynthinou (2020)—the setting of the ``conditional mutual information'' framework. Our development exploits projecting the loss pair (obtained from a training instance and a testing instance) down to a single number and correlating loss values with a Rademacher sequence (and its shifted variants). The presented bounds include square-root bounds, fast-rate bounds, including those based on variance and sharpness, and bounds for interpolating algorithms etc. We show theoretically or empirically that these bounds are tighter than all information-theoretic bounds known to date on the same supersample setting.

Oral
Simone Bombari · Shayan Kiyani · Marco Mondelli

[ Meeting Room 316 A-C ]

Machine learning models are vulnerable to adversarial perturbations, and a thought-provoking paper by Bubeck and Sellke has analyzed this phenomenon through the lens of over-parameterization: interpolating smoothly the data requires significantly more parameters than simply memorizing it. However, this "universal" law provides only a necessary condition for robustness, and it is unable to discriminate between models. In this paper, we address these gaps by focusing on empirical risk minimization in two prototypical settings, namely, random features and the neural tangent kernel (NTK). We prove that, for random features, the model is not robust for any degree of over-parameterization, even when the necessary condition coming from the universal law of robustness is satisfied. In contrast, for even activations, the NTK model meets the universal lower bound, and it is robust as soon as the necessary condition on over-parameterization is fulfilled. This also addresses a conjecture in prior work by Bubeck, Li and Nagaraj. Our analysis decouples the effect of the kernel of the model from an "interaction matrix", which describes the interaction with the test data and captures the effect of the activation. Our theoretical results are corroborated by numerical evidence on both synthetic and standard datasets (MNIST, CIFAR-10).

Oral
Hugo Cui · FLORENT KRZAKALA · Lenka Zdeborova

[ Meeting Room 316 A-C ]

We consider the problem of learning a target function corresponding to a deep, extensive-width, non-linear neural network with random Gaussian weights. We consider the asymptotic limit where the number of samples, the input dimension and the network width are proportionally large and propose a closed-form expression for the Bayes-optimal test error, for regression and classification tasks. We further compute closed-form expressions for the test errors of ridge regression, kernel and random features regression. We find, in particular, that optimally regularized ridge regression, as well as kernel regression, achieve Bayes-optimal performances, while the logistic loss yields a near-optimal test error for classification. We further show numerically that when the number of samples grows faster than the dimension, ridge and kernel methods become suboptimal, while neural networks achieve test error close to zero from quadratically many samples.

Oral
Kamalika Chaudhuri · Kartik Ahuja · Martin Arjovsky · David Lopez-Paz

[ Meeting Room 316 A-C ]

When facing data with imbalanced classes or groups, practitioners follow an intriguing strategy to achieve best results. They throw away examples until the classes or groups are balanced in size, and then perform empirical risk minimization on the reduced training set. This opposes common wisdom in learning theory, where the expected error is supposed to decrease as the dataset grows in size. In this work, we leverage extreme value theory to address this apparent contradiction. Our results show that the tails of the data distribution play an important role in determining the worst-group-accuracy of linear classifiers. When learning on data with heavy tails, throwing away data restores the geometric symmetry of the resulting classifier, and therefore improves its worst-group generalization.

Oral
David Wipf

[ Meeting Room 316 A-C ]

Although the variational autoencoder (VAE) represents a widely-used deep generative model, the underlying energy function when applied to continuous data remains poorly understood. In fact, most prior theoretical analysis has assumed a simplified affine decoder such that the model collapses to probabilistic PCA, a restricted regime whereby existing classical algorithms can also be trivially applied to guarantee globally optimal solutions. To push our understanding into more complex, practically-relevant settings, this paper instead adopts a deceptively sophisticated single-layer decoder that nonetheless allows the VAE to address the fundamental challenge of learning optimally sparse representations of continuous data originating from popular multiple-response regression models. In doing so, we can then examine VAE properties within the non-trivial context of solving difficult, NP-hard inverse problems. More specifically, we prove rigorous conditions which guarantee that any minimum of the VAE energy (local or global) will produce the optimally sparse latent representation, meaning zero reconstruction error using a minimal number of active latent dimensions. This is ultimately possible because VAE marginalization over the latent posterior selectively smooths away bad local minima as has been conjectured but not actually proven in prior work. We then discuss how equivalent-capacity deterministic autoencoders, even with appropriate sparsity-promoting regularization of the …

Oral
David Woodruff · Taisuke Yasuda

[ Meeting Room 316 A-C ]

In large scale machine learning, *random sampling* is a popular way to approximate datasets by a small representative subset of examples. In particular, *sensitivity sampling* is an intensely studied technique which provides provable guarantees on the quality of approximation, while reducing the number of examples to the product of the *VC dimension* $d$ and the *total sensitivity* $\mathfrak{S}$ in remarkably general settings. However, guarantees going beyond this general bound of $\mathfrak{S} d$ are known in perhaps only one setting, for *$\ell_2$ subspace embeddings*, despite intense study of sensitivity sampling in prior work. In this work, we show the first bounds for sensitivity sampling for $\ell_p$ subspace embeddings for $p\neq 2$ that improve over the general $\mathfrak{S} d$ bound, achieving a bound of roughly $\mathfrak{S}^{2/p}$ for $1\leq p2$ and $\mathfrak{S}^{2-2/p}$ for $2<p<\infty$. For $1\leq p<2$, we show that this bound is tight, in the sense that there exist matrices for which $\mathfrak{S}^{2/p}$ samples is necessary. Furthermore, our techniques yield further new results in the study of sampling algorithms, showing that the *root leverage score sampling* algorithm achieves a bound of roughly $d$ for $1\leq p<2$, and that a combination of leverage score and sensitivity sampling achieves an improved bound of roughly …
Oral
Mikael Møller Høgsgaard · Kasper Green Larsen · Martin Ritzert

[ Meeting Room 316 A-C ]

AdaBoost is a classic boosting algorithm for combining multiple inaccurate classifiers produced by a weak learner, to produce a strong learner with arbitrarily high accuracy when given enough training data. Determining the optimal number of samples necessary to obtain a given accuracy of the strong learner, is a basic learning theoretic question. Larsen and Ritzert (NeurIPS'22) recently presented the first provably optimal weak-to-strong learner. However, their algorithm is somewhat complicated and it remains an intriguing question whether the prototypical boosting algorithm AdaBoost also makes optimal use of training samples. In this work, we answer this question in the negative. Concretely, we show that the sample complexity of AdaBoost, and other classic variations thereof, are sub-optimal by at least one logarithmic factor in the desired accuracy of the strong learner.

Oral
Emmanuel Abbe · Samy Bengio · Aryo Lotfi · Kevin Rizk

[ Meeting Room 316 A-C ]

This paper considers the learning of logical (Boolean) functions with focus on the generalization on the unseen (GOTU) setting, a strong case of out-of-distribution generalization. This is motivated by the fact that the rich combinatorial nature of data in certain reasoning tasks (e.g., arithmetic/logic) makes representative data sampling challenging, and learning successfully under GOTU gives a first vignette of an 'extrapolating' or 'reasoning' learner. We then study how different network architectures trained by (S)GD perform under GOTU and provide both theoretical and experimental evidence that for a class of network models including instances of Transformers, random features models, and diagonal linear networks, a min-degree-interpolator is learned on the unseen. We also provide evidence that other instances with larger learning rates or mean-field networks reach leaky min-degree solutions. These findings lead to two implications: (1) we provide an explanation to the length generalization problem (e.g., Anil et al. 2022); (2) we introduce a curriculum learning algorithm called Degree-Curriculum that learns monomials more efficiently by incrementing supports.


Oral A4 Diffusion Tue 25 Jul 05:30 p.m.  

Oral
Zhixuan Liang · Yao Mu · Mingyu Ding · Fei Ni · Masayoshi Tomizuka · Ping Luo

[ Ballroom A ]

Diffusion models have demonstrated their powerful generative capability in many tasks, with great potential to serve as a paradigm for offline reinforcement learning. However, the quality of the diffusion model is limited by the insufficient diversity of training data, which hinders the performance of planning and the generalizability to new tasks. This paper introduces AdaptDiffuser, an evolutionary planning method with diffusion that can self-evolve to improve the diffusion model hence a better planner, not only for seen tasks but can also adapt to unseen tasks. AdaptDiffuser enables the generation of rich synthetic expert data for goal-conditioned tasks using guidance from reward gradients. It then selects high-quality data via a discriminator to finetune the diffusion model, which improves the generalization ability to unseen tasks. Empirical experiments on two benchmark environments and two carefully designed unseen tasks in KUKA industrial robot arm and Maze2D environments demonstrate the effectiveness of AdaptDiffuser. For example, AdaptDiffuser not only outperforms the previous art Diffuser by 20.8% on Maze2D and 7.5% on MuJoCo locomotion, but also adapts better to new tasks, e.g., KUKA pick-and-place, by 27.9% without requiring additional expert data. More visualization results and demo videos could be found on our project page.

Oral
Chumeng Liang · Xiaoyu Wu · Yang Hua · Jiaru Zhang · Yiming Xue · Tao Song · Zhengui XUE · Ruhui Ma · Haibing Guan

[ Ballroom A ]

Recently, Diffusion Models (DMs) boost a wave in AI for Art yet raise new copyright concerns, where infringers benefit from using unauthorized paintings to train DMs and generate novel paintings in a similar style. To address these emerging copyright violations, in this paper, we are the first to explore and propose to utilize adversarial examples for DMs to protect human-created artworks. Specifically, we first build a theoretical framework to define and evaluate the adversarial examples for DMs. Then, based on this framework, we design a novel algorithm to generate these adversarial examples, named AdvDM, which exploits a Monte-Carlo estimation of adversarial examples for DMs by optimizing upon different latent variables sampled from the reverse process of DMs. Extensive experiments show that the generated adversarial examples can effectively hinder DMs from extracting their features. Therefore, our method can be a powerful tool for human artists to protect their copyright against infringers equipped with DM-based AI-for-Art applications. The code of our method is available on GitHub: https://github.com/mist-project/mist.git.

Oral
Christian Weilbach · William Harvey · Frank Wood

[ Ballroom A ]

We introduce a framework for automatically defining and learning deep generative models with problem-specific structure. We tackle problem domains that are more traditionally solved by algorithms such as sorting, constraint satisfaction for Sudoku, and matrix factorization. Concretely, we train diffusion models with an architecture tailored to the problem specification. This problem specification should contain a graphical model describing relationships between variables, and often benefits from explicit representation of subcomputations. Permutation invariances can also be exploited. Across a diverse set of experiments we improve the scaling relationship between problem dimension and our model's performance, in terms of both training time and final accuracy. Our code can be found at https://github.com/plai-group/gsdm.

Oral
Victor Boutin · Thomas FEL · Lakshya Singhal · Rishav Mukherji · Akash Nagaraj · Julien Colin · Thomas Serre

[ Ballroom A ]

An important milestone for AI is the development of algorithms that can produce drawings that are indistinguishable from those of humans. Here, we adapt the ''diversity vs. recognizability'' scoring framework from Boutin et al (2022) and find that one-shot diffusion models have indeed started to close the gap between humans and machines. However, using a finer-grained measure of the originality of individual samples, we show that strengthening the guidance of diffusion models helps improve the humanness of their drawings, but they still fall short of approximating the originality and recognizability of human drawings. Comparing human category diagnostic features, collected through an online psychophysics experiment, against those derived from diffusion models reveals that humans rely on fewer and more localized features. Overall, our study suggests that diffusion models have significantly helped improve the quality of machine-generated drawings; however, a gap between humans and machines remains -- in part explainable by discrepancies in visual strategies.

Oral
Dongjun Kim · Yeongmin Kim · Se Jung Kwon · Wanmo Kang · IL CHUL MOON

[ Ballroom A ]

The proposed method, Discriminator Guidance, aims to improve sample generation of pre-trained diffusion models. The approach introduces a discriminator that gives explicit supervision to a denoising sample path whether it is realistic or not. Unlike GANs, our approach does not require joint training of score and discriminator networks. Instead, we train the discriminator after score training, making discriminator training stable and fast to converge. In sample generation, we add an auxiliary term to the pre-trained score to deceive the discriminator. This term corrects the model score to the data score at the optimal discriminator, which implies that the discriminator helps better score estimation in a complementary way. Using our algorithm, we achive state-of-the-art results on ImageNet 256x256 with FID 1.83 and recall 0.64, similar to the validation data's FID (1.68) and recall (0.66). We release the code at https://github.com/alsdudrla10/DG.

Oral
Kazusato Oko · Shunta Akiyama · Taiji Suzuki

[ Ballroom A ]

While efficient distribution learning is no doubt behind the groundbreaking success of diffusion modeling, its theoretical guarantees are quite limited. In this paper, we provide the first rigorous analysis on approximation and generalization abilities of diffusion modeling for well-known function spaces. The highlight of this paper is that when the true density function belongs to the Besov space and the empirical score matching loss is properly minimized, the generated data distribution achieves the nearly minimax optimal estimation rates in the total variation distance and in the Wasserstein distance of order one. Furthermore, we extend our theory to demonstrate how diffusion models adapt to low-dimensional data distributions. We expect these results advance theoretical understandings of diffusion modeling and its ability to generate verisimilar outputs.

Oral
Naoki Murata · Koichi Saito · Chieh-Hsin Lai · Yuhta Takida · Toshimitsu Uesaka · Yuki Mitsufuji · Stefano Ermon

[ Ballroom A ]

Pre-trained diffusion models have been successfully used as priors in a variety of linear inverse problems, where the goal is to reconstruct a signal from noisy linear measurements. However, existing approaches require knowledge of the linear operator. In this paper, we propose GibbsDDRM, an extension of Denoising Diffusion Restoration Models (DDRM) to a blind setting in which the linear measurement operator is unknown. GibbsDDRM constructs a joint distribution of the data, measurements, and linear operator by using a pre-trained diffusion model for the data prior, and it solves the problem by posterior sampling with an efficient variant of a Gibbs sampler. The proposed method is problem-agnostic, meaning that a pre-trained diffusion model can be applied to various inverse problems without fine-tuning. In experiments, it achieved high performance on both blind image deblurring and vocal dereverberation tasks, despite the use of simple generic priors for the underlying linear operators.

Oral
Shahar Lutati · Lior Wolf

[ Ballroom A ]

We present a dynamic model in which the weights are conditioned on an input sample x and are learned to match those that would be obtained by finetuning a base model on x and its label y. This mapping between an input sample and network weights is approximated by a denoising diffusion model. The diffusion model we employ focuses on modifying a single layer of the base model and is conditioned on the input, activations, and output of this layer. Since the diffusion model is stochastic in nature, multiple initializations generate different networks, forming an ensemble, which leads to further improvements. Our experiments demonstrate the wide applicability of the method for image classification, 3D reconstruction, tabular data, speech separation, and natural language processing.

Oral
Beomsu Kim · Jong Chul YE

[ Ballroom A ]

The sampling process of diffusion models can be interpreted as solving the reverse stochastic differential equation (SDE) or the ordinary differential equation (ODE) of the diffusion process, which often requires up to thousands of discretization steps to generate a single image. This has sparked a great interest in developing efficient integration techniques for reverse-S/ODEs. Here, we propose an orthogonal approach to accelerating score-based sampling: Denoising MCMC (DMCMC). DMCMC first uses MCMC to produce initialization points for reverse-S/ODE in the product space of data and diffusion time. Then, a reverse-S/ODE integrator is used to denoise the initialization points. Since MCMC traverses close to the data manifold, the cost of producing a clean sample for DMCMC is much less than that of producing a clean sample from noise. Denoising Langevin Gibbs, an instance of DMCMC, successfully accelerates all six reverse-S/ODE integrators considered in this work, and achieves state-of-the-art results: in the limited number of score function evaluation (NFE) setting on CIFAR10, we have $3.25$ FID with $\approx 10$ NFE and $2.49$ FID with $\approx 16$ NFE. On CelebA-HQ-256, we have $6.99$ FID with $\approx 160$ NFE, which beats the current best record of Kim et al. (2022) among score-based models, $7.16$ FID …
Oral
Zhiheng Liu · Ruili Feng · Kai Zhu · Yifei Zhang · Kecheng Zheng · Yu Liu · Deli Zhao · Jingren Zhou · Yang Cao

[ Ballroom A ]

Human brains respond to semantic features of presented stimuli with different neurons. This raises the question of whether deep neural networks admit a similar behavior pattern. To investigate this phenomenon, this paper identifies a small cluster of neurons associated with a specific subject in a diffusion model. We call those neurons the concept neurons. They can be identified by statistics of network gradients to a stimulation connected with the given subject. The concept neurons demonstrate magnetic properties in interpreting and manipulating generation results. Shutting them can directly yield the related subject contextualized in different scenes. Concatenating multiple clusters of concept neurons can vividly generate all related concepts in a single image. Our method attains impressive performance for multi-subject customization, even four or more subjects. For large-scale applications, the concept neurons are environmentally friendly as we only need to store a sparse cluster of int index instead of dense float32 parameter values, reducing storage consumption by 90% compared with previous customized generation methods. Extensive qualitative and quantitative studies on diverse scenarios show the superiority of our method in interpreting and manipulating diffusion models.


Oral A2 Computer Vision and Efficient ML Tue 25 Jul 05:30 p.m.  

Oral
Hadi Salman · Alaa Khaddaj · Guillaume Leclerc · Andrew Ilyas · Aleksander Madry

[ Meeting Room 313 ]

We present an approach to mitigating the risks of malicious image editing posed by large diffusion models. The key idea is to immunize images so as to make them resistant to manipulation by these models. This immunization relies on injection of imperceptible adversarial perturbations designed to disrupt the operation of the targeted diffusion models, forcing them to generate unrealistic images. We provide two methods for crafting such perturbations, and then demonstrate their efficacy. Finally, we discuss a policy component necessary to make our approach fully effective and practical---one that involves the organizations developing diffusion models, rather than individual users, to implement (and support) the immunization process.

Oral
Zhengqi Pei · Shuhui Wang

[ Meeting Room 313 ]

This paper investigates the dynamics-inspired neuromorphic architecture for visual representation learning following Hamilton's principle. Our method converts weight-based neural structure to its dynamics-based form that consists of finite sub-models, whose mutual relations measured by computing path integrals amongst their dynamical states are equivalent to the typical neural weights. Based on the entropy reduction process derived from the Euler-Lagrange equations, the feedback signals interpreted as stress forces amongst sub-models push them to move. We first train a dynamics-based neural model from scratch and observe that this model outperforms traditional neural models on MNIST. We then convert several pre-trained neural structures into dynamics-based forms, followed by fine-tuning via entropy reduction to obtain the stabilized dynamical states. We observe consistent improvements in these transformed models over their weight-based counterparts on ImageNet and WebVision in terms of computational complexity, parameter size, testing accuracy, and robustness. Besides, we show the correlation between model performance and structural entropy, providing deeper insight into weight-free neuromorphic learning.

Oral
Mostafa Dehghani · Josip Djolonga · Basil Mustafa · Piotr Padlewski · Jonathan Heek · Justin Gilmer · Andreas Steiner · Mathilde Caron · Robert Geirhos · Ibrahim Alabdulmohsin · Rodolphe Jenatton · Lucas Beyer · Michael Tschannen · Anurag Arnab · Xiao Wang · Carlos Riquelme · Matthias Minderer · Joan Puigcerver · Utku Evci · Manoj Kumar · Sjoerd van Steenkiste · Gamaleldin Elsayed · Aravindh Mahendran · Fisher Yu · Avital Oliver · Fantine Huot · Jasmijn Bastings · Mark Collier · Alexey Gritsenko · Vighnesh N Birodkar · Cristina Vasconcelos · Yi Tay · Thomas Mensink · Alexander Kolesnikov · Filip Pavetic · Dustin Tran · Thomas Kipf · Mario Lucic · Xiaohua Zhai · Daniel Keysers · Jeremiah Harmsen · Neil Houlsby

[ Meeting Room 313 ]

The scaling of Transformers has driven breakthrough capabilities for language models. At present, the largest large language models (LLMs) contain upwards of 100B parameters. Vision Transformers (ViT) have introduced the same architecture to image and video modelling, but these have not yet been successfully scaled to nearly the same degree; the largest dense ViT contains 4B parameters (Chen et al., 2022). We present a recipe for highly efficient and stable training of a 22B-parameter ViT (ViT-22B) and perform a wide variety of experiments on the resulting model. When evaluated on downstream tasks (often with a lightweight linear model on frozen features), ViT-22B demonstrates increasing performance with scale. We further observe other interesting benefits of scale, including an improved tradeoff between fairness and performance, state-of-the-art alignment to human visual perception in terms of shape/texture bias, and improved robustness. ViT-22B demonstrates the potential for "LLM-like" scaling in vision, and provides key steps towards getting there.

Oral
Andrey Savchenko

[ Meeting Room 313 ]

In this paper, we consider the problem of the high computational complexity of video-based facial expression recognition. A novel sequential procedure is proposed with an adaptive frame rate selection in a short video fragment to speed up decision-making. We automatically adjust the frame rate and process fewer frames with a low frame rate for more straightforward videos and more frames for complex ones. To determine the frame rate at which an inference is sufficiently reliable, the Benjamini-Hochberg procedure from multiple comparisons theory is employed to control the false discovery rate. The main advantages of our method are an improvement of the trustworthiness of decision-making by maintaining only one hyper-parameter (false acceptance rate) and its applicability with arbitrary neural network models used as facial feature extractors without the need to re-train these models. An experimental study on datasets from ABAW and EmotiW challenges proves the superior performance (1.5-40 times faster) of the proposed approach compared to processing all frames and existing techniques with early exiting and adaptive frame selection.

Oral
Man Zhou · Jie Huang · Chunle Guo · Chongyi Li

[ Meeting Room 313 ]

Global modeling-based image restoration frameworks have become popular. However, they often require a high memory footprint and do not consider task-specific degradation. Our work presents an alternative approach to global modeling that is more efficient for image restoration. The key insights which motivate our study are two-fold: 1) Fourier transform is capable of disentangling image degradation and content component to a certain extent, serving as the image degradation prior, and 2) Fourier domain innately embraces global properties, where each pixel in the Fourier space is involved with all spatial pixels. While adhering to the ``spatial interaction + channel evolution'' rule of previous studies, we customize the core designs with Fourier spatial interaction modeling and Fourier channel evolution. Our paradigm, Fourmer, achieves competitive performance on common image restoration tasks such as image de-raining, image enhancement, image dehazing, and guided image super-resolution, while requiring fewer computational resources. The code for Fourmer will be made publicly available.

Oral
Baorui Ma · Yushen Liu · Zhizhong Han

[ Meeting Room 313 ]

Learning signed distance functions (SDFs) from 3D point clouds is an important task in 3D computer vision. However, without ground truth signed distances, point normals or clean point clouds, current methods still struggle from learning SDFs from noisy point clouds. To overcome this challenge, we propose to learn SDFs via a noise to noise mapping, which does not require any clean point cloud or ground truth supervision for training. Our novelty lies in the noise to noise mapping which can infer a highly accurate SDF of a single object or scene from its multiple or even single noisy point cloud observations. Our novel learning manner is supported by modern Lidar systems which capture multiple noisy observations per second. We achieve this by a novel loss which enables statistical reasoning on point clouds and maintains geometric consistency although point clouds are irregular, unordered and have no point correspondence among noisy observations. Our evaluation under the widely used benchmarks demonstrates our superiority over the state-of-the-art methods in surface reconstruction, point cloud denoising and upsampling. Our code, data, and pre-trained models are available at https://github.com/mabaorui/Noise2NoiseMapping/ .

Oral
Chaitanya Ryali · Yuan-Ting Hu · Daniel Bolya · Chen Wei · Haoqi Fan · Po-Yao Huang · Vaibhav Aggarwal · Arkabandhu Chowdhury · Omid Poursaeed · Judy Hoffman · Jitendra Malik · Yanghao Li · Christoph Feichtenhofer

[ Meeting Room 313 ]

Modern hierarchical vision transformers have added several vision-specific components in the pursuit of supervised classification performance. While these components lead to effective accuracies and attractive FLOP counts, the added complexity actually makes these transformers slower than their vanilla ViT counterparts. In this paper, we argue that this additional bulk is unnecessary. By pretraining with a strong visual pretext task (MAE), we can strip out all the bells-and-whistles from a state-of-the-art multi-stage vision transformer without losing accuracy. In the process, we create Hiera, an extremely simple hierarchical vision transformer that is more accurate than previous models while being significantly faster both at inference and during training. We evaluate Hiera on a variety of tasks for image and video recognition. Our code and models are available at https://github.com/facebookresearch/hiera.

Oral
Xunyi Zhao · Théotime Le Hellard · Lionel Eyraud-Dubois · Julia Gusak · Olivier Beaumont

[ Meeting Room 313 ]

We propose Rockmate to control the memory requirements when training PyTorch DNN models. Rockmate is an automatic tool that starts from the model code and generates an equivalent model, using a predefined amount of memory for activations, at the cost of a few re-computations. Rockmate automatically detects the structure of computational and data dependencies and rewrites the initial model as a sequence of complex blocks. We show that such a structure is widespread and can be found in many models in the literature (Transformer based models, ResNet, RegNets,...). This structure allows us to solve the problem in a fast and efficient way, using an adaptation of Checkmate (too slow on the whole model but general) at the level of individual blocks and an adaptation of Rotor (fast but limited to sequential models) at the level of the sequence itself. We show through experiments on many models that Rockmate is as fast as Rotor and as efficient as Checkmate, and that it allows in many cases to obtain a significantly lower memory consumption for activations (by a factor of 2 to 5) for a rather negligible overhead (of the order of 10% to 20%). Rockmate is open source and available at …

Oral
Mahdi Nikdan · Tommaso Pegolotti · Eugenia Iofinova · Eldar Kurtic · Dan Alistarh

[ Meeting Room 313 ]

We provide an efficient implementation of the backpropagation algorithm, specialized to the case where the weights of the neural network being trained are sparse. Our algorithm is general, as it applies to arbitrary (unstructured) sparsity and common layer types (e.g., convolutional or linear). We provide a fast vectorized implementation on commodity CPUs, and show that it can yield speedups in end-to-end runtime experiments, both in transfer learning using already-sparsified networks, and in training sparse networks from scratch. Thus, our results provide the first support for sparse training on commodity hardware.

Oral
Yaniv Leviathan · Matan Kalman · Yossi Matias

[ Meeting Room 313 ]

Inference from large autoregressive models like Transformers is slow - decoding K tokens takes K serial runs of the model. In this work we introduce speculative decoding - an algorithm to sample from autoregressive models faster without any changes to the outputs, by computing several tokens in parallel. At the heart of our approach lie the observations that (1) hard language-modeling tasks often include easier subtasks that can be approximated well by more efficient models, and (2) using speculative execution and a novel sampling method, we can make exact decoding from the large models faster, by running them in parallel on the outputs of the approximation models, potentially generating several tokens concurrently, and without changing the distribution. Our method can accelerate existing off-the-shelf models without retraining or architecture changes. We demonstrate it on T5-XXL and show a 2X-3X acceleration compared to the standard T5X implementation, with identical outputs.


Oral A5 Reinforcement Learning 1 Tue 25 Jul 05:30 p.m.  

Oral
Alexander Pan · Jun Shern Chan · Andy Zou · Nathaniel Li · Steven Basart · Thomas Woodside · Hanlin Zhang · Scott Emmons · Dan Hendrycks

[ Ballroom B ]

Artificial agents have traditionally been trained to maximize reward, which may incentivize power-seeking and deception, analogous to how next-token prediction in language models (LMs) may incentivize toxicity. So do agents naturally learn to be Machiavellian? And how do we measure these behaviors in general-purpose models such as GPT-4? Towards answering these questions, we introduce Machiavelli, a benchmark of 134 Choose-Your-Own-Adventure games containing over half a million rich, diverse scenarios that center on social decision-making. Scenario labeling is automated with LMs, which are more performant than human annotators. We mathematize dozens of harmful behaviors and use our annotations to evaluate agents' tendencies to be power-seeking, cause disutility, and commit ethical violations. We observe some tension between maximizing reward and behaving ethically. To improve this trade-off, we investigate LM-based methods to steer agents towards less harmful behaviors. Our results show that agents can both act competently and morally, so concrete progress can currently be made in machine ethics--designing agents that are Pareto improvements in both safety and capabilities.

Oral
HyeongJoo Hwang · Seokin Seo · Youngsoo Jang · Sungyoon Kim · Geon-Hyeong Kim · Seunghoon Hong · Kee-Eung Kim

[ Ballroom B ]

Multi-View Reinforcement Learning (MVRL) seeks to find an optimal control for an agent given multi-view observations from various sources. Despite recent advances in multi-view learning that aim to extract the latent representation from multi-view data, it is not straightforward to apply them to control tasks, especially when the observations are temporally dependent on one another. The problem can be even more challenging if the observations are intermittently missing for a subset of views. In this paper, we introduce Fuse2Control (F2C), an information-theoretic approach to capturing the underlying state space model from the sequences of multi-view observations. We conduct an extensive set of experiments in various control tasks showing that our method is highly effective in aggregating task-relevant information across many views, that scales linearly with the number of views while retaining robustness to arbitrary missing view scenarios.

Oral
Zhiao Huang · Litian Liang · Zhan Ling · Xuanlin Li · Chuang Gan · Hao Su

[ Ballroom B ]

We investigate the challenge of parametrizing policies for reinforcement learning (RL) in high-dimensional continuous action spaces. Our objective is to develop a multimodal policy that overcomes limitations inherent in the commonly-used Gaussian parameterization. To achieve this, we propose a principled framework that models the continuous RL policy as a generative model of optimal trajectories. By conditioning the policy on a latent variable, we derive a novel variational bound as the optimization objective, which promotes exploration of the environment. We then present a practical model-based RL method, called Reparameterized Policy Gradient (RPG), which leverages the multimodal policy parameterization and learned world model to achieve strong exploration capabilities and high data efficiency. Empirical results demonstrate that our method can help agents evade local optima in tasks with dense rewards and solve challenging sparse-reward environments by incorporating an object-centric intrinsic reward. Our method consistently outperforms previous approaches across a range of tasks. Code and supplementary materials are available on the project page https://haosulab.github.io/RPG/

Oral
Zakaria Mhammedi · Dylan Foster · Alexander Rakhlin

[ Ballroom B ]

We study the design of sample-efficient algorithms for reinforcement learning in the presence of rich, high-dimensional observations, formalized via the Block MDP problem. Existing algorithms suffer from either 1) computational intractability, 2) strong statistical assumptions that are not necessarily satisfied in practice, or 3) suboptimal sample complexity. We address these issues by providing the first computationally efficient algorithm that attains rate-optimal sample complexity with respect to the desired accuracy level, with minimal statistical assumptions. Our algorithm, MusIK, combines exploration with representation learning based on multi-step inverse kinematics, a learning objective in which the aim is to predict the current action from the current observation and observations in the (potentially distant) future. MusIK is simple and flexible, and can efficiently take advantage of general-purpose function approximation. Our analysis of MusIK leverages several new techniques tailored to non-optimistic algorithms for reward-free exploration, which we anticipate will find broader use.

Oral
Runfa Chen · Jiaqi Han · Fuchun Sun · Wenbing Huang

[ Ballroom B ]

Learning a shared policy that guides the locomotion of different agents is of core interest in Reinforcement Learning (RL), which leads to the study of morphology-agnostic RL. However, existing benchmarks are highly restrictive in the choice of starting point and target point, constraining the movement of the agents within 2D space. In this work, we propose a novel setup for morphology-agnostic RL, dubbed Subequivariant Graph RL in 3D environments (3D-SGRL). Specifically, we first introduce a new set of more practical yet challenging benchmarks in 3D space that allows the agent to have full Degree-of-Freedoms to explore in arbitrary directions starting from arbitrary configurations. Moreover, to optimize the policy over the enlarged state-action space, we propose to inject geometric symmetry, i.e., subequivariance, into the modeling of the policy and Q-function such that the policy can generalize to all directions, improving exploration efficiency. This goal is achieved by a novel SubEquivariant Transformer (SET) that permits expressive message exchange. Finally, we evaluate the proposed method on the proposed benchmarks, where our method consistently and significantly outperforms existing approaches on single-task, multi-task, and zero-shot generalization scenarios. Extensive ablations are also conducted to verify our design.

Oral
Mikael Henaff · Minqi Jiang · Roberta Raileanu

[ Ballroom B ]

Exploration in environments which differ across episodes has received increasing attention in recent years. Current methods use some combination of global novelty bonuses, computed using the agent's entire training experience, and episodic novelty bonuses, computed using only experience from the current episode. However, the use of these two types of bonuses has been ad-hoc and poorly understood. In this work, we shed light on the behavior of these two types of bonuses through controlled experiments on easily interpretable tasks as well as challenging pixel-based settings. We find that the two types of bonuses succeed in different settings, with episodic bonuses being most effective when there is little shared structure across episodes and global bonuses being effective when more structure is shared. We develop a conceptual framework which makes this notion of shared structure precise by considering the variance of the value function across contexts, and which provides a unifying explanation of our empirical results. We furthermore find that combining the two bonuses can lead to more robust performance across different degrees of shared structure, and investigate different algorithmic choices for defining and combining global and episodic bonuses based on function approximation. This results in an algorithm which sets a new …

Oral
Hang Wang · Sen Lin · Junshan Zhang

[ Ballroom B ]

Warm-Start reinforcement learning (RL), aided by a prior policy obtained from offline training, is emerging as a promising RL approach for practical applications. Recent empirical studies have demonstrated that the performance of Warm-Start RL can be improved quickly in some cases but become stagnant in other cases, especially when the function approximation is used. To this end, the primary objective of this work is to build a fundamental understanding on ''whether and when online learning can be significantly accelerated by a warm-start policy from offline RL?''. Specifically, we consider the widely used Actor-Critic (A-C) method with a prior policy. We first quantify the approximation errors in the Actor update and the Critic update, respectively. Next, we cast the Warm-Start A-C algorithm as Newton's method with perturbation, and study the impact of the approximation errors on the finite-time learning performance with inaccurate Actor/Critic updates. Under some general technical conditions, we derive the upper bounds, which shed light on achieving the desired finite-learning performance in the Warm-Start A-C algorithm. In particular, our findings reveal that it is essential to reduce the algorithm bias in online learning. We also obtain lower bounds on the sub-optimality gap of the Warm-Start A-C algorithm to quantify …

Oral
Kevin Gmelin · Shikhar Bahl · Russell Mendonca · Deepak Pathak

[ Ballroom B ]

Agents that are aware of the separation between the environments and themselves can leverage this understanding to form effective representations of visual input. We propose an approach for learning such structured representations for RL algorithms, using visual knowledge of the agent, which is often inexpensive to obtain, such as its shape or mask. This is incorporated into the RL objective using a simple auxiliary loss. We show that our method, SEAR (Structured Environment-Agent Representations), outperforms state-of-the-art model-free approaches over 18 different challenging visual simulation environments spanning 5 different robots.

Oral
Sam Lobel · Akhil Bagaria · George Konidaris

[ Ballroom B ]

We propose a new method for count-based exploration in high-dimensional state spaces. Unlike previous work which relies on density models, we show that counts can be derived by averaging samples from the Rademacher distribution (or coin flips). This insight is used to set up a simple supervised learning objective which, when optimized, yields a state's visitation count. We show that our method is significantly more effective at deducing ground-truth visitation counts than previous work; when used as an exploration bonus for a model-free reinforcement learning algorithm, it outperforms existing approaches on most of 9 challenging exploration tasks, including the Atari game Montezuma's Revenge.

Oral
David Cheikhi · Daniel Russo

[ Ballroom B ]

Given a dataset on actions and resulting long-term rewards, a direct estimation approach fits value functions that minimize prediction error on the training data. Temporal difference learning (TD) methods instead fit value functions by minimizing the degree of temporal inconsistency between estimates made at successive time-steps. Focusing on finite state Markov chains, we provide a crisp asymptotic theory of the statistical advantages of this approach. First, we show that an intuitive inverse trajectory pooling coefficient completely characterizes the percent reduction in mean-squared error of value estimates. Depending on problem structure, the reduction could be enormous or nonexistent. Next, we prove that there can be dramatic improvements in estimates of the difference in value-to-go for two states: TD's errors are bounded in terms of a novel measure -- the problem's trajectory crossing time -- which can be much smaller than the problem's time horizon.