Skip to yearly menu bar Skip to main content


Poster Session

Poster Session 4 East

East Exhibition Hall A-B
Wed 16 Jul 4:30 p.m. PDT — 7 p.m. PDT
Abstract:
Chat is not available.


Poster
#E-1000
FairICP: Encouraging Equalized Odds via Inverse Conditional Permutation

Yuheng Lai · Leying Guan

Equalized odds, an important notion of algorithmic fairness, aims to ensure that sensitive variables, such as race and gender, do not unfairly influence the algorithm's prediction when conditioning on the true outcome. Despite rapid advancements, current research primarily focuses on equalized odds violations caused by a single sensitive attribute, leaving the challenge of simultaneously accounting for multiple attributes under-addressed. We bridge this gap by introducing an in-processing fairness-aware learning approach, FairICP, which integrates adversarial learning with a novel inverse conditional permutation scheme. FairICP offers a flexible and efficient scheme to promote equalized odds under fairness conditions described by complex and multi-dimensional sensitive attributes. The efficacy and adaptability of our method are demonstrated through both simulation studies and empirical analyses of real-world datasets.


Poster
#E-1001
Optimal Fair Learning Robust to Adversarial Distribution Shift

Sushant Agarwal · Amit Jayant Deshpande · Rajmohan Rajaraman · Ravi Sundaram

Previous work in fair machine learning has characterised the Fair Bayes Optimal Classifier (BOC) on a given distribution for both deterministic and randomized classifiers. We study the robustness of the Fair BOC to adversarial noise in the data distribution. Kearns & Li (1988) implies that the accuracy of the deterministic BOC without any fairness constraints is robust (Lipschitz) to malicious noise in the data distribution. We demonstrate that their robustness guarantee breaks down when we add fairness constraints. Hence, we consider the randomized Fair BOC, and our central result is that its accuracy is robust to malicious noise in the data distribution. Our robustness result applies to various fairness constraints---Demographic Parity, Equal Opportunity, Predictive Equality. Beyond robustness, we demonstrate that randomization leads to better accuracy and efficiency. We show that the randomized Fair BOC is nearly-deterministic, and gives randomized predictions on at most one data point, hence availing numerous benefits of randomness, while using very little of it.


Poster
#E-1002
Disparate Conditional Prediction in Multiclass Classifiers

Sivan Sabato · Eran Treister · Elad Yom-Tov

We propose methods for auditing multiclass classifiers for fairness under multiclass equalized odds, by estimating the deviation from equalized odds when the classifier is not completely fair. We generalize to multiclass classifiers the measure of Disparate Conditional Prediction (DCP), originally suggested by Sabato & Yom-Tov (2020) for binary classifiers. DCP is defined as the fraction of the population for which the classifier predicts with conditional prediction probabilities that differ from the closest common baseline. We provide new local-optimization methods for estimating the multiclass DCP under two different regimes, one in which the conditional confusion matrices for each protected sub-population are known, and one in which these cannot be estimated, for instance, because the classifier is inaccessible orbecause good-quality individual-level data is not available. These methods can be used to detect classifiers that likely treat a significant fraction of the population unfairly. Experiments demonstrate the accuracy of the methods. The code for the experiments is provided as supplementary material.


Poster
#E-1003
KGMark: A Diffusion Watermark for Knowledge Graphs

Hongrui Peng · Haolang Lu · Yuanlong Yu · WeiYe Fu · Kun Wang · Guoshun Nan

Knowledge graphs (KGs) are ubiquitous in numerous real-world applications, and watermarking facilitates protecting intellectual property and preventing potential harm from AI-generated content. Existing watermarking methods mainly focus on static plain text or image data, while they can hardly be applied to dynamic graphs due to spatial and temporal variations of structured data. This motivates us to propose KGMark, the first graph watermarking framework that aims to generate robust, detectable, and transparent diffusion fingerprints for dynamic KG data. Specifically, we propose a novel clustering-based alignment method to adapt the watermark to spatial variations. Meanwhile, we present a redundant embedding strategy to harden the diffusion watermark against various attacks, facilitating the robustness of the watermark to the temporal variations. Additionally, we introduce a novel learnable mask matrix to improve the transparency of diffusion fingerprints. By doing so, our KGMark properly tackles the variation challenges of structured data. Experiments on various public benchmarks show the effectiveness of our proposed KGMark.


Poster
#E-1004
Fairness on Principal Stratum: A New Perspective on Counterfactual Fairness

Haoxuan Li · Zeyu Tang · Zhichao Jiang · Zhuangyan Fang · Yue Liu · zhi geng · Kun Zhang

Fairness in human and algorithmic decision-making is crucial in areas such as criminal justice, education, and social welfare. Recently, counterfactual fairness has drawn increasing research interest, suggesting that decision-making for individuals should remain the same when intervening with different values on protected attributes. Nevertheless, the question of "which attributes and individuals should be protected" is rarely discussed in the existing counterfactual fairness literature. For example, when considering leg disability as a protected attribute, the algorithms should not treat individuals with leg disabilities differently in college admissions, but one may naturally consider this factor when selecting runner athletes. In other words, when and how to enforce fairness is expected to depend on the causal relation between the protected attribute and the outcome of interest. Formally, this paper proposes principal counterfactual fairness using the concept of principal stratification from the causal inference literature, focusing on whether an algorithm is counterfactually fair for individuals whose protected attribute has no individual causal effect on the outcome of interest. To examine whether an algorithm satisfies principal counterfactual fairness, we derive the statistical bounds and propose a post-processing approach to achieving principal counterfactual fairness with minimal individual decision changes. Experiments are conducted using synthetic and real-world datasets to verify the effectiveness of our methods.


Spotlight Poster
#E-1005
Lightweight Protocols for Distributed Private Quantile Estimation

Anders Aamand · Fabrizio Boninsegna · Abigail Gentle · Jacob Imola · Rasmus Pagh

Distributed data analysis is a large and growing field driven by a massive proliferation of user devices, and by privacy concerns surrounding the centralised storage of data. We consider two \emph{adaptive} algorithms for estimating one quantile (e.g.~the median) when each user holds a single data point lying in a domain $[B]$ that can be queried once through a private mechanism; one under local differential privacy (LDP) and another for shuffle differential privacy (shuffle-DP). In the adaptive setting we present an $\varepsilon$-LDP algorithm which can estimate any quantile within error $\alpha$ only requiring $O(\frac{\log B}{\varepsilon^2\alpha^2})$ users, and an $(\varepsilon,\delta)$-shuffle DP algorithm requiring only $\widetilde{O}((\frac{1}{\varepsilon^2}+\frac{1}{\alpha^2})\log B)$ users. Prior (nonadaptive) algorithms require more users by several logarithmic factors in $B$. We further provide a matching lower bound for adaptive protocols, showing that our LDP algorithm is optimal in the low-$\varepsilon$ regime. Additionally, we establish lower bounds against non-adaptive protocols which paired with our understanding of the adaptive case, proves a fundamental separation between these models.


Poster
#E-1006
Private Federated Learning using Preference-Optimized Synthetic Data

Charlie Hou · Mei-Yu Wang · Yige Zhu · Daniel Lazar · Giulia Fanti

In practical settings, differentially private federated learning (DP-FL) is the dominant method for training models from private, on-device client data. Recent work has suggested that DP-FL may be enhanced or outperformed by methods that use DP synthetic data (Wu et al., 2024; Hou et al., 2024). The primary algorithms for generating DP synthetic data for FL applications require careful prompt engineering based on public information and/or iterative private client feedback. Our key insight is that the private client feedback collected by prior DP synthetic data methods (Hou et al., 2024; Xie et al., 2024) can be viewed as a preference ranking. Our algorithm, Preference Optimization for Private Client Data (POPri) harnesses client feedback using preference optimization algorithms such as Direct Preference Optimization (DPO) to fine-tune LLMs to generate high-quality DP synthetic data. To evaluate POPri, we release LargeFedBench, a new federated text benchmark for uncontaminated LLM evaluations on federated client data. POPri closes the gap in next-token prediction accuracy between the fully-private and non-private settings by up to 68%, compared to 52% for prior synthetic data methods, and 10% for state-of-the-art DP federated learning methods. The code and data are available at https://github.com/meiyuw/POPri.


Poster
#E-1007
Privacy-Preserving Federated Convex Optimization: Balancing Partial-Participation and Efficiency via Noise Cancellation

Roie Reshef · Kfir Levy

This paper addresses the challenge of achieving Differential Privacy (DP) in Federated Learning (FL) under the partial-participation setting, where each machine participates in only some of training rounds.While earlier work achieved optimal performance and efficiency in full-participation scenarios, these methods could not extend effectively to cases with partial-participation.Our approach addresses this gap by introducing a novel noise-cancellation mechanism that ensures privacy without compromising convergence rates or computational efficiency.We analyze our method within the Stochastic Convex Optimization (SCO) framework and demonstrate that it achieves optimal performance for both homogeneous and heterogeneous data distributions.This work broadens the applicability of DP in FL, providing a practical and efficient solution for privacy-preserving learning in distributed systems with partial participation.


Poster
#E-1008
EncryptedLLM: Privacy-Preserving Large Language Model Inference via GPU-Accelerated Fully Homomorphic Encryption

Leo de Castro · Daniel Escudero · Adya Agrawal · Antigoni Polychroniadou · Manuela Veloso

As large language models (LLMs) become more powerful, the computation required to run these models is increasingly outsourced to a third-party cloud. While this saves clients' computation, it risks leaking the clients' LLM queries to the cloud provider. Fully homomorphic encryption (FHE) presents a natural solution to this problem: simply encrypt the query and evaluate the LLM homomorphically on the cloud machine. The result remains encrypted and can only be learned by the client who holds the secret key. In this work, we present a GPU-accelerated implementation of FHE and use this implementation to benchmark an encrypted GPT-2 forward pass, with runtimes over $200\times$ faster than the CPU baseline. We also present novel and extensive experimental analysis of approximations of LLM activation functions to maintain accuracy while achieving this performance.


Spotlight Poster
#E-1009
Auditing $f$-differential privacy in one run

Saeed Mahloujifar · Luca Melis · Kamalika Chaudhuri

Empirical auditing has emerged as a means of catching some of the flaws in the implementation of privacy-preserving algorithms. Existing auditing mechanisms, however, are either computationally inefficient -- requiring multiple runs of the machine learning algorithms —- or suboptimal in calculating an empirical privacy. In this work, we present a tight and efficient auditing procedure and analysis that can effectively assess the privacy of mechanisms. Our approach is efficient; Similar to the recent work of Steinke, Nasr and Jagielski (2023), our auditing procedure leverages the randomness of examples in the input dataset and requires only a single run of the target mechanism. And it is more accurate; we provide a novel analysis that enables us to achieve tight empirical privacy estimates by using the hypothesized $f$-DP curve of the mechanism, which provides a more accurate measure of privacy than the traditional $\epsilon,\delta$ differential privacy parameters. We use our auditing procure and analysis to obtain empirical privacy, demonstrating that our auditing procedure delivers tighter privacy estimates.


Poster
#E-1100
You Get What You Give: Reciprocally Fair Federated Learning

Aniket Murhekar · Jiaxin Song · Parnian Shahkar · Bhaskar Ray Chaudhury · Ruta Mehta

Federated learning (FL) is a popular collaborative learning paradigm, whereby agents with individual datasets can jointly train an ML model. While higher data sharing improves model accuracy and leads to higher payoffs, it also raises costs associated with data acquisition or loss of privacy, causing agents to be strategic about their data contribution. This leads to undesirable behavior at a Nash equilibrium (NE) such as *free-riding*, resulting in sub-optimal fairness, data sharing, and welfare.To address this, we design $\mathcal{M}^{Shap}$, a budget-balanced payment mechanism for FL, that admits Nash equilibria under mild conditions, and achieves *reciprocal fairness*: where each agent's payoff equals her contribution to the collaboration, as measured by the Shapley share. In addition to fairness, we show that the NE under $\mathcal{M}^{Shap}$ has desirable guarantees in terms of accuracy, welfare, and total data collected.We validate our theoretical results through experiments, demonstrating that $\mathcal{M}^{Shap}$ outperforms baselines in terms of fairness and efficiency.


Poster
#E-1101
FACTER: Fairness-Aware Conformal Thresholding and Prompt Engineering for Enabling Fair LLM-Based Recommender Systems

Arya Fayyazi · Mehdi Kamal · Massoud Pedram

We propose FACTER, a fairness-aware framework for LLM-based recommendation systems that integrates conformal prediction with dynamic prompt engineering. By introducing an adaptive semantic variance threshold and a violation-triggered mechanism, FACTER automatically tightens fairness constraints whenever biased patterns emerge. We further develop an adversarial prompt generator that leverages historical violations to reduce repeated demographic biases without retraining the LLM. Empirical results on MovieLens and Amazon show that FACTER substantially reduces fairness violations (up to 95.5%) while maintaining strong recommendation accuracy, revealing semantic variance as a potent proxy of bias.


Poster
#E-1102
Fairness Overfitting in Machine Learning: An Information-Theoretic Perspective

Firas Laakom · Haobo Chen · Jürgen Schmidhuber · Yuheng Bu

Despite substantial progress in promoting fairness in high-stake applications using machine learning models, existing methods often modify the training process, such as through regularizers or other interventions, but lack formal guarantees that fairness achieved during training will generalize to unseen data. Although overfitting with respect to prediction performance has been extensively studied, overfitting in terms of fairness loss has received far less attention. This paper proposes a theoretical framework for analyzing fairness generalization error through an information-theoretic lens. Our novel bounding technique is based on Efron–Stein inequality, which allows us to derive tight information-theoretic fairness generalization bounds with both Mutual Information (MI) and Conditional Mutual Information (CMI). Our empirical results validate the tightness and practical relevance of these bounds across diverse fairness-aware learning algorithms.Our framework offers valuable insights to guide the design of algorithms improving fairness generalization.


Poster
#E-1103
Clone-Robust AI Alignment

Ariel Procaccia · Benjamin Schiffer · Shirley Zhang

A key challenge in training Large Language Models (LLMs) is properly aligning them with human preferences. Reinforcement Learning with Human Feedback (RLHF) uses pairwise comparisons from human annotators to train reward functions and has emerged as a popular alignment method. However, input datasets in RLHF can be unbalanced due to adversarial manipulation or inadvertent repetition. Therefore, we want RLHF algorithms to perform well even when the set of alternatives is not uniformly distributed. Drawing on insights from social choice theory, we introduce robustness to approximate clones, a desirable property of RLHF algorithms which requires that adding near-duplicate alternatives does not significantly change the learned reward function. We first demonstrate that the standard RLHF algorithm based on regularized maximum likelihood estimation (MLE) fails to satisfy this property. We then propose the weighted MLE, a new RLHF algorithm that modifies the standard regularized MLE by weighting alternatives based on their similarity to other alternatives. This new algorithm guarantees robustness to approximate clones while preserving desirable theoretical properties.


Poster
#E-1104
Understanding Fixed Predictions via Confined Regions

Connor Lawless · Lily Weng · Berk Ustun · Madeleine Udell

Machine learning models can assign fixed predictions that preclude individuals from changing their outcome. Existing approaches to audit fixed predictions do so on a pointwise basis, which requires access to an existing dataset of individuals and may fail to anticipate fixed predictions in out-of-sample data. This work presents a new paradigm to identify fixed predictions by finding confined regions of the feature space in which all individuals receive fixed predictions. This paradigm enables the certification of recourse for out-of-sample data, works in settings without representative datasets, and provides interpretable descriptions of individuals with fixed predictions. We develop a fast method to discover confined regions for linear classifiers using mixed-integer quadratically constrained programming. We conduct a comprehensive empirical study of confined regions across diverse applications. Our results highlight that existing pointwise verification methods fail to anticipate future individuals with fixed predictions, while our method both identifies them and provides an interpretable description.


Poster
#E-1105
Graph Inverse Style Transfer for Counterfactual Explainability

Bardh Prenkaj · Efstratios Zaradoukas · Gjergji Kasneci

Counterfactual explainability seeks to uncover model decisions by identifying minimal changes to the input that alter the predicted outcome. This task becomes particularly challenging for graph data due to preserving structural integrity and semantic meaning. Unlike prior approaches that rely on forward perturbation mechanisms, we introduce Graph Inverse Style Transfer (GIST), the first framework to re-imagine graph counterfactual generation as a backtracking process, leveraging spectral style transfer. By aligning the global structure with the original input spectrum and preserving local content faithfulness, GIST produces valid counterfactuals as interpolations between the input style and counterfactual content. Tested on 8 binary and multi-class graph classification benchmarks, GIST achieves a remarkable +7.6% improvement in the validity of produced counterfactuals and significant gains (+45.5%) in faithfully explaining the true class distribution. Additionally, GIST's backtracking mechanism effectively mitigates overshooting the underlying predictor's decision boundary, minimizing the spectral differences between the input and the counterfactuals. These results challenge traditional forward perturbation methods, offering a novel perspective that advances graph explainability.


Poster
#E-1106
TOPLOC: A Locality Sensitive Hashing Scheme for Trustless Verifiable Inference

Jack Min Ong · Matthew Di Ferrante · Aaron Pazdera · Ryan Garner · Sami Jaghouar · Manveer Basra · Max Ryabinin · Johannes Hagemann

Large language models (LLMs) have proven to be very capable, but access to frontier models currently relies on inference providers.This introduces trust challenges: how can we be sure that the provider is using the model configuration they claim?We propose TOPLOC, a novel method for verifiable inference that addresses this problem.TOPLOC leverages a compact locality-sensitive hashing mechanism for intermediate activations, which can detect unauthorized modifications to models, prompts, or precision with 100\% accuracy, achieving no false positives or negatives in our empirical evaluations.Our approach is robust across diverse hardware configurations, GPU types, and algebraic reorderings, which allows for validation speeds significantly faster than the original inference.By introducing a polynomial encoding scheme, TOPLOC minimizes the memory overhead of the generated proofs by $1000\times$, requiring only 258 bytes of storage per 32 new tokens, compared to the 262 KB requirement of storing the token embeddings directly for Llama 3.1-8B-Instruct.Our method empowers users to verify LLM inference computations efficiently, fostering greater trust and transparency in open ecosystems and laying a foundation for decentralized, verifiable and trustless AI services.


Poster
#E-1107
Evaluating Neuron Explanations: A Unified Framework with Sanity Checks

Tuomas Oikarinen · Ge Yan · Lily Weng

Understanding the function of individual units in a neural network is an important building block for mechanistic interpretability. This is often done by generating a simple text explanation of the behavior of individual neurons or units. For these explanations to be useful, we must understand how reliable and truthful they are. In this work we unify many existing explanation evaluation methods under one mathematical framework. This allows us to compare and contrast existing evaluation metrics, understand the evaluation pipeline with increased clarity and apply existing statistical concepts on the evaluation. In addition, we propose two simple sanity checks on the evaluation metrics and show that many commonly used metrics fail these tests and do not change their score after massive changes to the concept labels. Based on our experimental and theoretical results, we propose guidelines that future evaluations should follow and identify a set of reliable evaluationmetrics.


Spotlight Poster
#E-1108
Near-Optimal Decision Trees in a SPLIT Second

Varun Babbar · Hayden McTavish · Cynthia Rudin · Margo Seltzer

Decision tree optimization is fundamental to interpretable machine learning. The most popular approach is to greedily search for the best feature at every decision point, which is fast but provably suboptimal. Recent approaches find the global optimum using branch and bound with dynamic programming, showing substantial improvements in accuracy and sparsity at great cost to scalability. An ideal solution would have the accuracy of an optimal method and the scalability of a greedy method. We introduce a family of algorithms called SPLIT (SParse Lookahead for Interpretable Trees) that moves us significantly forward in achieving this ideal balance. We demonstrate that not all sub-problems need to be solved to optimality to find high quality trees; greediness suffices near the leaves. Since each depth adds an exponential number of possible trees, this change makes our algorithms orders of magnitude faster than existing optimal methods, with negligible loss in performance. We extend this algorithm to allow scalable computation of sets of near-optimal trees (i.e., the Rashomon set).


Poster
#E-1109
X-Hacking: The Threat of Misguided AutoML

Rahul Sharma · Sumantrak Mukherjee · Andrea Šipka · Eyke Hüllermeier · Sebastian Vollmer · Sergey Redyuk · David A Selby

Explainable AI (XAI) and interpretable machine learning methods help to build trust in model predictions and derived insights, yet also present a perverse incentive for analysts to manipulate XAI metrics to support pre-specified conclusions. This paper introduces the concept of X-hacking, a form of p-hacking applied to XAI metrics such as Shap values. We show how easily an automated machine learning pipeline can be adapted to exploit model multiplicity at scale: searching a set of ‘defensible’ models with similar predictive performance to find a desired explanation. We formulate the trade-off between explanation and accuracy as a multi-objective optimisation problem, and illustrate empirically on familiar real-world datasets that, on average, Bayesian optimisation accelerates X-hacking 3-fold for features susceptible to it, versus random sampling. We show the vulnerability of a dataset to X-hacking can be determined by information redundancy among features. Finally, we suggest possible methods for detection and prevention, and discuss ethical implications for the credibility and reproducibility of XAI.


Poster
#E-1200
Sampling Binary Data by Denoising through Score Functions

Francis Bach · Saeed Saremi

Gaussian smoothing combined with a probabilistic framework for denoising via the empirical Bayes formalism, i.e., the Tweedie-Miyasawa formula (TMF), are the two key ingredients in the success of score-based generative models in Euclidean spaces. Smoothing holds the key for easing the problem of learning and sampling in high dimensions, denoising is needed for recovering the original signal, and TMF ties these together via the score function of noisy data. In this work, we extend this paradigm to the problem of learning and sampling the distribution of binary data on the Boolean hypercube by adopting Bernoulli noise, instead of Gaussian noise, as a smoothing device. We first derive a TMF-like expression for the optimal denoiser for the Hamming loss, where a score function naturally appears. Sampling noisy binary data is then achieved using a Langevin-like sampler which we theoretically analyze for different noise levels. At high Bernoulli noise levels sampling becomes easy, akin to log-concave sampling in Euclidean spaces. In addition, we extend the sequential multi-measurement sampling of Saremi et al. (2024) to the binary setting where we can bring the "effective noise" down by sampling multiple noisy measurements at a fixed noise level, without the need for continuous-time stochastic processes. We validate our formalism and theoretical findings by experiments on synthetic data and binarized images.


Poster
#E-1201
Conditioning Diffusions Using Malliavin Calculus

Jakiw Pidstrigach · Elizabeth Baker · Carles Domingo i Enrich · George Deligiannidis · Nikolas Nüsken

In generative modelling and stochastic optimal control, a central computational task is to modify a reference diffusion process to maximise a given terminal-time reward. Most existing methods require this reward to be differentiable, using gradients to steer the diffusion towards favourable outcomes. However, in many practical settings, like diffusion bridges, the reward is singular, taking an infinite value if the target is hit and zero otherwise.We introduce a novel framework, based on Malliavin calculus and centred around a generalisation of the Tweedie score formula to nonlinear stochastic differential equations, that enables the development of methods robust to such singularities.This allows our approach to handle a broad range of applications, like diffusion bridges, or adding conditional controls to an already trained diffusion model.We demonstrate that our approach offers stable and reliable training, outperforming existing techniques. As a byproduct, we also introduce a novel score matching objective. Our loss functions are formulated such that they could readily be extended to manifold-valued and infinite dimensional diffusions.


Poster
#E-1202
Learn to Vaccinate: Combining Structure Learning and Effective Vaccination for Epidemic and Outbreak Control

Sepehr Elahi · Paula Mürmann · Patrick Thiran

The Susceptible-Infected-Susceptible (SIS) model is a widely used model for the spread of information and infectious diseases, particularly non-immunizing ones, on a graph. Given a highly contagious disease, a natural question is how to best vaccinate individuals to minimize the disease's extinction time. While previous works showed that the problem of optimal vaccination is closely linked to the NP-hard Spectral Radius Minimization (SRM) problem, they assumed that the graph is known, which is often not the case in practice. In this work, we consider the problem of minimizing the extinction time of an outbreak modeled by an SIS model where the graph on which the disease spreads is unknown and only the infection states of the vertices are observed. To this end, we split the problem into two: learning the graph and determining effective vaccination strategies. We propose a novel inclusion-exclusion-based learning algorithm and, unlike previous approaches, establish its sample complexity for graph recovery. We then detail an optimal algorithm for the SRM problem and prove that its running time is polynomial in the number of vertices for graphs with bounded treewidth. This is complemented by an efficient and effective polynomial-time greedy heuristic for any graph. Finally, we present experiments on synthetic and real-world data that numerically validate our learning and vaccination algorithms.


Poster
#E-1203
Prediction-Powered E-Values

Daniel Csillag · Claudio Struchiner · Guilherme Tegoni Goedert

Quality statistical inference requires a sufficient amount of data, which can be missing or hard to obtain. To this end, prediction-powered inference has risen as a promising methodology, but existing approaches are largely limited to Z-estimation problems such as inference of means and quantiles. In this paper, we apply ideas of prediction-powered inference to e-values. By doing so, we inherit all the usual benefits of e-values -- such as anytime-validity, post-hoc validity and versatile sequential inference -- as well as greatly expand the set of inferences achievable in a prediction-powered manner. In particular, we show that every inference procedure that can be framed in terms of e-values has a prediction-powered counterpart, given by our method. We showcase the effectiveness of our framework across a wide range of inference tasks, from simple hypothesis testing and confidence intervals to more involved procedures for change-point detection and causal discovery, which were out of reach of previous techniques. Our approach is modular and easily integrable into existing algorithms, making it a compelling choice for practical applications.


Poster
#E-1204
On the Vulnerability of Applying Retrieval-Augmented Generation within Knowledge-Intensive Application Domains

Xun Xian · Ganghua Wang · Xuan Bi · Rui Zhang · Jayanth Srinivasa · Ashish Kundu · Charles Fleming · Mingyi Hong · Jie Ding

Retrieval-Augmented Generation (RAG) has been empirically shown to enhance the performance of large language models (LLMs) in knowledge-intensive domains such as healthcare, finance, and legal contexts. Given a query, RAG retrieves relevant documents from a corpus and integrates them into the LLMs’ generation process. In this study, we investigate the adversarial robustness of RAG, focusing specifically on examining the retrieval system. First, across 225 different setup combinations of corpus, retriever, query, and targeted information, we show that retrieval systems are vulnerable to universal poisoning attacks in medical Q&A. In such attacks, adversaries generate poisoned documents containing a broad spectrum of targeted information, such as personally identifiable information. When these poisoned documents are inserted into a corpus, they can be accurately retrieved by any users, as long as attacker-specified queries are used. To understand this vulnerability, we discovered that the deviation from the query’s embedding to that of the poisoned document tends to follow a pattern in which the high similarity between the poisoned document and the query is retained, thereby enabling precise retrieval. Based on these findings, we develop a new detection-based defense to ensure the safe use of RAG. Through extensive experiments spanning various Q&A domains, we observed that our proposed method consistently achieves excellent detection rates in nearly all cases.


Poster
#E-1205
LIMEFLDL: A Local Interpretable Model-Agnostic Explanations Approach for Label Distribution Learning

Xiuyi Jia · Jinchi Li · Yunan Lu · Weiwei Li

Label distribution learning (LDL) is a novel machine learning paradigm that can handle label ambiguity. This paper focuses on the interpretability issue of label distribution learning. Existing local interpretability models are mainly designed for single-label learning problems and are difficult to directly interpret label distribution learning models. In response to this situation, we propose an improved local interpretable model-agnostic explanations algorithm that can effectively interpret any black-box model in label distribution learning.To address the label dependency problem, we introduce the feature attribution distribution matrix and derive the solution formula for explanations under the label distribution form. Meanwhile, to enhance the transparency and trustworthiness of the explanation algorithm, we provide an analytical solution and derive the boundary conditions for explanation convergence and stability. In addition, we design a feature selection scoring function and a fidelity metric for the explanation task of label distribution learning. A series of numerical experiments and human experiments were conducted to validate the performance of the proposed algorithm in practical applications. The experimental results demonstrate that the proposed algorithm achieves high fidelity, consistency, and trustworthiness in explaining LDL models.


Poster
#E-1206
What makes an Ensemble (Un) Interpretable?

Shahaf Bassan · Guy Amir · Meirav Zehavi · Guy Katz

Ensemble models are widely recognized in the ML community for their limited interpretability. For instance, while a single decision tree is considered interpretable, ensembles of trees (e.g., boosted trees) are often treated as black-boxes. Despite this folklore recognition, there remains a lack of rigorous mathematical understanding of what particularly makes an ensemble (un)-interpretable, including how fundamental factors like the (1) *number*, (2) *size*, and (3) *type* of base models influence its interpretability. In this work, we seek to bridge this gap by applying concepts from computational complexity theory to study the challenges of generating explanations for various ensemble configurations. Our analysis uncovers nuanced complexity patterns influenced by various factors. For example, we demonstrate that under standard complexity assumptions like P$\neq$NP, interpreting ensembles remains intractable even when base models are of constant size. Surprisingly, the complexity changes drastically with the number of base models: small ensembles of decision trees are efficiently interpretable, whereas ensembles of linear models remain intractable, even with a constant number of models. We believe that our findings provide a more robust foundation for understanding the interpretability of ensembles, emphasizing the benefits of examining it through a computational complexity lens.


Poster
#E-1207
Adversarial Cooperative Rationalization: The Risk of Spurious Correlations in Even Clean Datasets

Wei Liu · Zhongyu Niu · Lang Gao · Zhiying Deng · Jun Wang · Haozhao Wang · Ruixuan Li

This study investigates the self-rationalization framework constructed with a cooperative game, where a generator initially extracts the most informative segment from raw input, and a subsequent predictor utilizes the selected subset for its input. The generator and predictor are trained collaboratively to maximize prediction accuracy. In this paper, we first uncover a potential caveat: such a cooperative game could unintentionally introduce a sampling bias during rationale extraction. Specifically, the generator might inadvertently create an incorrect correlation between the selected rationale candidate and the label, even when they are semantically unrelated in the original dataset. Subsequently, we elucidate the origins of this bias using both detailed theoretical analysis and empirical evidence. Our findings suggest a direction for inspecting these correlations through attacks, based on which we further introduce an instruction to prevent the predictor from learning the correlations.Through experiments on six text classification datasets and two graph classification datasets using three network architectures (GRUs, BERT, and GCN), we show that our method significantly outperforms recent rationalization methods.


Poster
#E-1208
Learning to Route LLMs with Confidence Tokens

Yu-Neng Chuang · Prathusha Sarma · Parikshit Gopalan · John Boccio · Sara Bolouki · Xia Hu · Helen Zhou

Large language models (LLMs) have demonstrated impressive performance on several tasks and are increasingly deployed in real-world applications. However, especially in high-stakes settings, it becomes vital to know when the output of an LLM may be unreliable. Depending on whether an answer is trustworthy, a system can then choose to route the question to another expert, or otherwise fall back on a safe default behavior. In this work, we study the extent to which LLMs can reliably indicate confidence in their answers, and how this notion of confidence can translate into downstream accuracy gains. We propose Self-Reflection with Error-based Feedback (Self-REF), a lightweight training strategy to teach LLMs to express confidence in whether their answers are correct in a reliable manner. Self-REF introduces confidence tokens into the LLM, from which a confidence score can be extracted. Compared to conventional approaches such as verbalizing confidence and examining token probabilities, we demonstrate empirically that confidence tokens show significant improvements in downstream routing and rejection learning tasks.


Poster
#E-1209
Activation Space Interventions Can Be Transferred Between Large Language Models

Narmeen Oozeer · Dhruv Nathawani · Nirmalendu Prakash · Michael Lan · Abir HARRASSE · Amirali Abdullah

The study of representation universality in AI models reveals growing convergence across domains, modalities, and architectures. However, the practical applications of representation universality remain largely unexplored. We bridge this gap by demonstrating that safety interventions can be transferred between models through learned mappings of their shared activation spaces. We demonstrate this approach on two well-established AI safety tasks: backdoor removal and refusal of harmful prompts, showing successful transfer of steering vectors that alter the models' outputs in a predictable way. Additionally, we propose a new task, corrupted capabilities, where models are fine-tuned to embed knowledge tied to a backdoor. This tests their ability to separate useful skills from backdoors, reflecting real-world challenges. Extensive experiments across Llama, Qwen and Gemma model families show that our method enables using smaller models to efficiently align larger ones. Furthermore, we demonstrate that autoencoder mappings between base and fine-tuned models can serve as reliable "lightweight safety switches", allowing dynamic toggling between model behaviors.


Poster
#E-1300
Differential Privacy Guarantees of Markov Chain Monte Carlo Algorithms

Andrea Bertazzi · Tim Johnston · Gareth Roberts · Alain Oliviero Durmus

This paper aims to provide differential privacy (DP) guarantees for Markov chain Monte Carlo (MCMC) algorithms. In a first part, we establish DP guarantees on samples output by MCMC algorithms as well as Monte Carlo estimators associated with these methods under assumptions on the convergence properties of the underlying Markov chain. In particular, our results highlight the critical condition of ensuring the target distribution is differentially private itself. In a second part, we specialise our analysis to the unadjusted Langevin algorithm and stochastic gradient Langevin dynamics and establish guarantees on their (Rényi) DP. To this end, we develop a novel methodology based on Girsanov's theorem combined with a perturbation trick to obtain bounds for an unbounded domain and in a non-convex setting. We establish: (i) uniform in $n$ privacy guarantees when the state of the chain after $n$ iterations is released, (ii) bounds on the privacy of the entire chain trajectory. These findings provide concrete guidelines for privacy-preserving MCMC.


Spotlight Poster
#E-1301
New Bounds for Sparse Variational Gaussian Processes

Michalis Titsias

Sparse variational Gaussian processes (GPs) construct tractable posterior approximations to GP models. At the core of these methods is the assumption that the true posterior distribution over training function values ${\bf f}$ and inducing variables ${\bf u}$ is approximated by a variational distribution that incorporates the conditional GP prior $p({\bf f} | {\bf u})$ in its factorization. While this assumption is considered as fundamental, we show that for model training we can relax it through the use of a more general variational distribution $q({\bf f} | {\bf u} )$ that depends on $N$ extra parameters, where $N$ is the number of training examples. In GP regression, we can analytically optimize the evidence lower bound over the extra parameters and express a tractable collapsed bound that is tighter than the previous bound. The new bound is also amenable to stochastic optimization and its implementation requires minor modifications to existing sparse GP code. Further, we also describe extensions to non-Gaussian likelihoods. On several datasets we demonstrate that our method can reduce bias when learning the hyperparameters and can lead to better predictive performance.


Spotlight Poster
#E-1302
Return of the Latent Space COWBOYS: Re-thinking the use of VAEs for Bayesian Optimisation of Structured Spaces

Henry Moss · Sebastian Ober · Tom Diethe

Bayesian optimisation in the latent space of a VAE is a powerful framework for optimisation tasks over complex structured domains, such as the space of valid molecules. However, existing approaches tightly couple the surrogate and generative models, which can lead to suboptimal performance when the latent space is not tailored to specific tasks, which in turn has led to the proposal of increasingly sophisticated algorithms. In this work, we explore a new direction, instead proposing a decoupled approach that trains a generative model and a GP surrogate separately, then combines them via a simple yet principled Bayesian update rule. This separation allows each component to focus on its strengths— structure generation from the VAE and predictive modelling by the GP. We show that our decoupled approach improves our ability to identify high-potential candidates in molecular optimisation problems under constrained evaluation budgets.


Poster
#E-1303
Determinant Estimation under Memory Constraints and Neural Scaling Laws

Siavash Ameli · Chris van der Heide · Liam Hodgkinson · Fred Roosta · Michael Mahoney

Calculating or accurately estimating log-determinants of large positive semi-definite matrices is of fundamental importance in many machine learning tasks. While its cubic computational complexity can already be prohibitive, in modern applications even storing the matrices themselves can pose a memory bottleneck. To address this, we derive a novel hierarchical algorithm based on block-wise computation of the LDL decomposition for large-scale log-determinant calculation in memory-constrained settings. In extreme cases where matrices are highly ill-conditioned, accurately computing the full matrix itself may be infeasible. This is particularly relevant when considering kernel matrices at scale, including the empirical Neural Tangent Kernel (NTK) of neural networks trained on large datasets. Under the assumption of neural scaling laws in the test error, we show that the ratio of pseudo-determinants satisfies a power-law relationship, enabling the derivation of corresponding scaling laws. This allows for accurate estimation of NTK log-determinants from a tiny fraction of the full dataset; in our experiments, this results in a $\sim$100,000$\times$ speedup with improved accuracy to other state-of-the-art approaches. Using these techniques, we successfully estimate log-determinants for dense matrices of extreme sizes, which were previously deemed intractable and inaccessible due to their enormous scale and computational requirements.


Poster
#E-1304
Outsourced Diffusion Sampling: Efficient Posterior Inference in Latent Spaces of Generative Models

Siddarth Venkatraman · Mohsin Hasan · Minsu Kim · Luca Scimeca · Marcin Sendera · Yoshua Bengio · Glen Berseth · Nikolay Malkin

Any well-behaved generative model over a variable $\mathbf{x}$ can be expressed as a deterministic transformation of an exogenous (‘*outsourced'*) Gaussian noise variable $\mathbf{z}$: $\mathbf{x}=f_\theta(\mathbf{z})$. In such a model (*eg*, a VAE, GAN, or continuous-time flow-based model), sampling of the target variable $\mathbf{x} \sim p_\theta(\mathbf{x})$ is straightforward, but sampling from a posterior distribution of the form $p(\mathbf{x}\mid\mathbf{y}) \propto p_\theta(\mathbf{x})r(\mathbf{x},\mathbf{y})$, where $r$ is a constraint function depending on an auxiliary variable $\mathbf{y}$, is generally intractable.We propose to amortize the cost of sampling from such posterior distributions with diffusion models that sample a distribution in the noise space ($\mathbf{z}$). These diffusion samplers are trained by reinforcement learning algorithms to enforce that the transformed samples $f_\theta(\mathbf{z})$ are distributed according to the posterior in the data space ($\mathbf{x}$). For many models and constraints, the posterior in noise space is smoother than in data space, making it more suitable for amortized inference. Our method enables conditional sampling under unconditional GAN, (H)VAE, and flow-based priors, comparing favorably with other inference methods. We demonstrate the proposed ___outsourced diffusion sampling___ in several experiments with large pretrained prior models: conditional image generation, reinforcement learning with human feedback, and protein structure generation.


Spotlight Poster
#E-1305
Outstanding Paper
Conformal Prediction as Bayesian Quadrature

Jake Snell · Thomas Griffiths

As machine learning-based prediction systems are increasingly used in high-stakes situations, it is important to understand how such predictive models will perform upon deployment. Distribution-free uncertainty quantification techniques such as conformal prediction provide guarantees about the loss black-box models will incur even when the details of the models are hidden. However, such methods are based on frequentist probability, which unduly limits their applicability. We revisit the central aspects of conformal prediction from a Bayesian perspective and thereby illuminate the shortcomings of frequentist guarantees. We propose a practical alternative based on Bayesian quadrature that provides interpretable guarantees and offers a richer representation of the likely range of losses to be observed at test time.


Poster
#E-1306
Sample Complexity of Branch-length Estimation by Maximum Likelihood

David Clancy · Hanbaek Lyu · Sebastien Roch

We consider the branch-length estimation problem on a bifurcating tree: a character evolves along the edges of a binary tree according to a two-state symmetric Markov process, and we seek to recover the edge transition probabilities from repeated observations at the leaves. This problem arises in phylogenetics, and is related to latent tree graphical model inference. In general, the log-likelihood function is non-concave and may admit many critical points. Nevertheless, simple coordinate maximization has been known to perform well in practice, defying the complexity of the likelihood landscape. In this work, we provide the first theoretical guarantee as to why this might be the case. We show that deep inside the Kesten-Stigum reconstruction regime, provided with polynomially many $m$ samples (assuming the tree is balanced), there exists a universal parameter regime (independent of the size of the tree) where the log-likelihood function is strongly concave and smooth with high probability. On this high-probability likelihood landscape event, we show that the standard coordinate maximization algorithm converges exponentially fast to the maximum likelihood estimator, which is within $O(1/\sqrt{m})$ from the true parameter, provided a sufficiently close initial point.


Poster
#E-1307
A Mixture-Based Framework for Guiding Diffusion Models

Yazid Janati · Badr MOUFAD · Mehdi Qassime · Alain Oliviero Durmus · Eric Moulines · Jimmy Olsson

Denoising diffusion models have driven significant progress in the field of Bayesian inverse problems. Recent approaches use pre-trained diffusion models as priors to solve a wide range of such problems, only leveraging inference-time compute and thereby eliminating the need to retrain task-specific models on the same dataset. To approximate the posterior of a Bayesian inverse problem, a diffusion model samples from a sequence of intermediate posterior distributions, each with an intractable likelihood function. This work proposes a novel mixture approximation of these intermediate distributions. Since direct gradient-based sampling of these mixtures is infeasible due to intractable terms, we propose a practical method based on Gibbs sampling. We validate our approach through extensive experiments on image inverse problems, utilizing both pixel- and latent-space diffusion priors, as well as on source separation with an audio diffusion model. The code is available at \url{https://www.github.com/badr-moufad/mgdm}.


Poster
#E-1308
LEAPS: A discrete neural sampler via locally equivariant networks

Peter Holderrieth · Michael Albergo · Tommi Jaakkola

We propose LEAPS, an algorithm to sample from discrete distributions known up to normalization by learning a rate matrix of a continuous-time Markov chain (CTMC). LEAPS can be seen as a continuous-time formulation of annealed importance sampling and sequential Monte Carlo methods, extended so that the variance of the importance weights is offset by the inclusion of the CTMC. To derive these importance weights, we introduce a set of Radon-Nikodym derivatives of CTMCs over their path measures. Because the computation of these weights is intractable with standard neural network parameterizations of rate matrices, we devise a new compact representation for rate matrices via what we call \textit{locally equivariant} functions. To parameterize them, we introduce a family of locally equivariant multilayer perceptrons, attention layers, and convolutional networks, and provide an approach to make deep networks that preserve the local equivariance. This property allows us to propose a scalable training algorithm for the rate matrix such that the variance of the importance weights associated to the CTMC are minimal. We demonstrate the efficacy of LEAPS on problems in statistical physics. We provide code in https://github.com/malbergo/leaps/.


Poster
#E-1309
TRACE Back from the Future: A Probabilistic Reasoning Approach to Controllable Language Generation

Gwen Yidou-Weng · Benjie Wang · Guy Van den Broeck

As large language models (LMs) advance, there is an increasing need to control their outputs to align with human values (e.g., detoxification) or desired attributes (e.g., personalization, topic). However, autoregressive models focus on next-token predictions and struggle with global properties that require looking ahead. Existing solutions either post-train LMs for each new attribute—expensive and inflexible—or approximate the Expected Attribute Probability (EAP) of future sequences by sampling or training, which is slow and unreliable for rare attributes. We introduce TRACE (Tractable Probabilistic Reasoning for Adaptable Controllable gEneration), a novel framework that efficiently computes EAP and adapts to new attributes through tractable probabilistic reasoning and lightweight control. TRACE distills a Hidden Markov Model (HMM) from an LM and pairs it with a small classifier to estimate attribute probabilities, enabling exact EAP computation over the HMM’s predicted futures. This EAP is then used to reweigh the LM’s next-token probabilities for globally compliant continuations. Empirically, TRACE achieves state-of-the-art detoxification results with only 20% decoding overhead, yields 76 low-resource personalized LMs within seconds, and seamlessly extends to composite attributes.


Spotlight Poster
#E-1400
Learning Soft Sparse Shapes for Efficient Time-Series Classification

Zhen Liu · Yicheng Luo · Boyuan Li · Emadeldeen Eldele · Min Wu · Qianli Ma

Shapelets are discriminative subsequences (or shapes) with high interpretability in time series classification. Due to the time-intensive nature of shapelet discovery, existing shapelet-based methods mainly focus on selecting discriminative shapes while discarding others to achieve candidate subsequence sparsification. However, this approach may exclude beneficial shapes and overlook the varying contributions of shapelets to classification performance. To this end, we propose a Soft sparse Shapes (SoftShape) model for efficient time series classification. Our approach mainly introduces soft shape sparsification and soft shape learning blocks. The former transforms shapes into soft representations based on classification contribution scores, merging lower-scored ones into a single shape to retain and differentiate all subsequence information. The latter facilitates intra- and inter-shape temporal pattern learning, improving model efficiency by using sparsified soft shapes as inputs. Specifically, we employ a learnable router to activate a subset of class-specific expert networks for intra-shape pattern learning. Meanwhile, a shared expert network learns inter-shape patterns by converting sparsified shapes into sequences. Extensive experiments show that SoftShape outperforms state-of-the-art methods and produces interpretable results.


Poster
#E-1401
Weakly Supervised Anomaly Detection via Dual-Tailed Kernel

Walid Durani · Tobias Nitzl · Claudia Plant · Christian Böhm

Detecting anomalies with limited supervision is challenging due to the scarcity of labeled anomalies, which often fail to capture the diversity of abnormal behaviors. We propose Weakly Supervised Anomaly Detection via Dual-Tailed Kernel (WSAD-DT), a novel framework that learns robust latent representations to distinctly separate anomalies from normal samples under weak supervision. WSAD-DT introduces two centroids—one for normal samples and one for anomalies—and leverages a dual-tailed kernel scheme: a light-tailed kernel to compactly model in-class points and a heavy-tailed kernel to main- tain a wider margin against out-of-class instances. To preserve intra-class diversity, WSAD-DT in- corporates kernel-based regularization, encouraging richer representations within each class. Furthermore, we devise an ensemble strategy that partition unlabeled data into diverse subsets, while sharing the limited labeled anomalies among these partitions to maximize their impact. Empirically, WSAD-DT achieves state-of-the-art performance on several challenging anomaly detection benchmarks, outperforming leading ensemble-based methods such as XGBOD.


Spotlight Poster
#E-1402
Weakly-Supervised Contrastive Learning for Imprecise Class Labels

Zi-Hao Zhou · Jun-Jie Wang · Tong Wei · Min-Ling Zhang

Contrastive learning has achieved remarkable success in learning effective representations, with supervised contrastive learning often outperforming self-supervised approaches. However, in real-world scenarios, data annotations are often ambiguous or inaccurate, meaning that class labels may not reliably indicate whether two examples belong to the same class. This limitation restricts the applicability of supervised contrastive learning. To address this challenge, we introduce the concept of ``continuous semantic similarity'' to define positive and negative pairs. Instead of directly relying on imprecise class labels, we measure the semantic similarity between example pairs, which quantifies how closely they belong to the same category by iteratively refining weak supervisory signals. Based on this concept, we propose a graph-theoretic framework for weakly-supervised contrastive learning, where semantic similarity serves as the graph weights. Our framework is highly versatile and can be applied to many weakly-supervised learning scenarios. We demonstrate its effectiveness through experiments in two common settings, i.e., noisy label and partial label learning, where existing methods can be easily integrated to significantly improve performance. Theoretically, we establish an error bound for our approach, showing that it can approximate supervised contrastive learning under mild conditions. The implementation code is available at https://github.com/Speechless-10308/WSC.


Poster
#E-1403
A Theoretical Framework For Overfitting In Energy-based Modeling

Giovanni Catania · Aurélien Decelle · Cyril Furtlehner · Beatriz Seoane

We investigate the impact of limited data on training pairwise energy-based models for inverse problems aimed at identifying interaction networks. Utilizing the Gaussian model as testbed, we dissect training trajectories across the eigenbasis of the coupling matrix, exploiting the independent evolution of eigenmodes and revealing that the learning timescales are tied to the spectral decomposition of the empirical covariance matrix. We see that optimal points for early stopping arise from the interplay between these timescales and the initial conditions of training. Moreover, we show that finite data corrections can be accurately modeled through asymptotic random matrix theory calculations and provide the counterpart of generalized cross-validation in the energy based model context. Our analytical framework extends to binary-variable maximum-entropy pairwise models with minimal variations.These findings offer strategies to control overfitting in discrete-variable models through empirical shrinkage corrections, improving the management of overfitting in energy-based generative models.Finally, we propose a generalization to arbitrary energy-based models by deriving the neural tangent kernel dynamics of the score function under the score-matching algorithm.


Spotlight Poster
#E-1404
Partition First, Embed Later: Laplacian-Based Feature Partitioning for Refined Embedding and Visualization of High-Dimensional Data

Erez Peterfreund · Ofir Lindenbaum · Yuval Kluger · Boris Landa

Embedding and visualization techniques are essential for analyzing high-dimensional data, but they often struggle with complex data governed by multiple latent variables, potentially distorting key structural characteristics. This paper considers scenarios where the observed features can be partitioned into mutually exclusive subsets, each capturing a different smooth substructure. In such cases, visualizing the data based on each feature partition can better characterize the underlying processes and structures in the data, leading to improved interpretability. To partition the features, we propose solving an optimization problem that promotes graph Laplacian-based smoothness in each partition, thereby prioritizing partitions with simpler geometric structures. Our approach generalizes traditional embedding and visualization techniques, allowing them to learn multiple embeddings simultaneously. We establish that if several independent or partially dependent manifolds are embedded in distinct feature subsets in high-dimensional space, then our framework can reliably identify the correct subsets with theoretical guarantees. Finally, we demonstrate the effectiveness of our approach in extracting multiple low-dimensional structures and partially independent processes from both simulated and real data.


Poster
#E-1405
Lightspeed Geometric Dataset Distance via Sliced Optimal Transport

Khai Nguyen · Hai Nguyen · Tuan Pham · Nhat Ho

We introduce sliced optimal transport dataset distance (s-OTDD), a model-agnostic, embedding-agnostic approach for dataset comparison that requires no training, is robust to variations in the number of classes, and can handle disjoint label sets. The core innovation is Moment Transform Projection (MTP), which maps a label, represented as a distribution over features, to a real number. Using MTP, we derive a data point projection that transforms datasets into one-dimensional distributions. The s-OTDD is defined as the expected Wasserstein distance between the projected distributions, with respect to random projection parameters. Leveraging the closed form solution of one-dimensional optimal transport, s-OTDD achieves (near-)linear computational complexity in the number of data points and feature dimensions and is independent of the number of classes. With its geometrically meaningful projection, s-OTDD strongly correlates with the optimal transport dataset distance while being more efficient than existing dataset discrepancy measures. Moreover, it correlates well with the performance gap in transfer learning and classification accuracy in data augmentation.


Poster
#E-1406
Generalized Venn and Venn-Abers Calibration with Applications in Conformal Prediction

Lars van der Laan · Ahmed Alaa

Ensuring model calibration is critical for reliable prediction, yet popular distribution-free methods such as histogram binning and isotonic regression offer only asymptotic guarantees. We introduce a unified framework for Venn and Venn-Abers calibration that extends Vovk's approach beyond binary classification to a broad class of prediction tasks defined by generic loss functions. Our method transforms any perfectly in-sample calibrated predictor into a set-valued predictor that, in finite samples, outputs at least one marginally calibrated point prediction. These set predictions shrink asymptotically and converge to a conditionally calibrated prediction, capturing epistemic uncertainty. We further propose Venn multicalibration, a new approach for achieving finite-sample calibration across subpopulations. For quantile loss, our framework recovers group-conditional and multicalibrated conformal prediction as special cases and yields novel prediction intervals with quantile-conditional coverage.


Poster
#E-1407
Online Detection of LLM-Generated Texts via Sequential Hypothesis Testing by Betting

Can Chen · Jun-Kun Wang

Developing algorithms to differentiate between machine-generated texts and human-written texts has garnered substantial attention in recent years. Existing methods in this direction typically concern an offline setting where a dataset containing a mix of real and machine-generated texts is given upfront, and the task is to determine whether each sample in the dataset is from a large language model (LLM) or a human. However, in many practical scenarios, sources such as news websites, social media accounts, and online forums publish content in a streaming fashion. Therefore, in this online scenario, how to quickly and accurately determine whether the source is an LLM with strong statistical guarantees is crucial for these media or platforms to function effectively and prevent the spread of misinformation and other potential misuse of LLMs. To tackle the problem of online detection, we develop an algorithm based on the techniques of sequential hypothesis testing by betting that not only builds upon and complements existing offline detection techniques but also enjoys statistical guarantees, which include a controlled false positive rate and the expected time to correctly identify a source as an LLM. Experiments were conducted to demonstrate the effectiveness of our method.


Poster
#E-1409
Learning Survival Distributions with the Asymmetric Laplace Distribution

Deming Sheng · Ricardo Henao

Probabilistic survival analysis models seek to estimate the distribution of the future occurrence (time) of an event given a set of covariates.In recent years, these models have preferred nonparametric specifications that avoid directly estimating survival distributions via discretization.Specifically, they estimate the probability of an individual event at fixed times or the time of an event at fixed probabilities (quantiles), using supervised learning.Borrowing ideas from the quantile regression literature, we propose a parametric survival analysis method based on the Asymmetric Laplace Distribution (ALD).This distribution allows for closed-form calculation of popular event summaries such as mean, median, mode, variation, and quantiles.The model is optimized by maximum likelihood to learn, at the individual level, the parameters (location, scale, and asymmetry) of the ALD distribution.Extensive results on synthetic and real-world data demonstrate that the proposed method outperforms parametric and nonparametric approaches in terms of accuracy, discrimination and calibration.


Poster
#E-1500
PTTA: Purifying Malicious Samples for Test-Time Model Adaptation

Jing Ma · Hanlin Li · Xiang Xiang

Test-Time Adaptation (TTA) enables deep neural networks to adapt to arbitrary distributions during inference. Existing TTA algorithms generally tend to select benign samples that help achieve robust online prediction and stable self-training. Although malicious samples that would undermine the model's optimization should be filtered out, it also leads to a waste of test data. To alleviate this issue, we focus on how to make full use of the malicious test samples for TTA by transforming them into benign ones, and propose a plug-and-play method, PTTA. The core of our solution lies in the purification strategy, which retrieves benign samples having opposite effects on the objective function to perform Mixup with malicious samples, based on a saliency indicator for encoding benign and malicious data. This strategy results in effective utilization of the information in malicious samples and an improvement of the models' online test accuracy. In this way, we can directly apply the purification loss to existing TTA algorithms without the need to carefully adjust the sample selection threshold. Extensive experiments on four types of TTA tasks as well as classification, segmentation, and adversarial defense demonstrate the effectiveness of our method. Code is available at https://github.com/HAIV-Lab/PTTA.


Poster
#E-1501
Whoever Started the interference Should End It: Guiding Data-Free Model Merging via Task Vectors

Runxi Cheng · Feng Xiong · Yongxian Wei · Wanyun Zhu · Chun Yuan

Model merging seeks to integrate task-specific expert models into a unified architecture while preserving multi-task generalization capabilities, yet parameter interference between constituent models frequently induces performance degradation. Although prior work has explored many merging strategies, resolving interference without additional data for retraining or test-time computation remains challenging. In this paper, we theoretically demonstrate that the task vectors of the linear layer constitute an approximate linear subspace for its corresponding input. Therefore, we can minimize interference under the guidance of task vectors. Based on this insight, we propose WUDI-Merging (Whoever started the interference shoUld enD It), a simple yet effective model merging method that eliminates interference without any additional data or rescaling coefficients. Comprehensive empirical evaluations across vision and language benchmarks demonstrate our method's superiority, achieving state-of-the-art performance in data-free model merging scenarios (average 10.9% improvement versus baseline methods) while even outperforming mainstream test-time adaptation approaches by 3.3%, and only very few computing resources are required. The source code and implementation details are available at https://github.com/nathanielyvo/WUDI-Merging.


Poster
#E-1502
Generalized additive models via direct optimization of regularized decision stump forests

Magzhan Gabidolla · Miguel Carreira-Perpinan

We explore ensembles of axis-aligned decision stumps, which can be viewed as a generalized additive model (GAM). In this model, stumps utilizing the same feature are grouped to form a shape function for that feature. Instead of relying on boosting or bagging, we employ alternating optimization to learn a fixed-size stump forest. We optimize the parameters of each stump exactly through enumeration, given the other stumps are fixed. For fixed stump splits, the leaf values are optimized jointly by solving a convex problem. To address the overfitting issue inherent in naive optimization of stump forests, we propose effective regularization techniques. Our regularized stump forests achieve accuracy comparable to state-of-the-art GAM methods while using fewer parameters. This work is the first to successfully learn stump forests without employing traditional ensembling techniques like bagging or boosting.


Poster
#E-1503
Approximately Correct Label Distribution Learning

Weiwei Li · Haitao Wu · Yunan Lu · Xiuyi Jia

Label distribution learning (LDL) is a powerful learning paradigm that emulates label polysemy by assigning label distributions over the label space. However, existing LDL evaluation metrics struggle to capture meaningful performance differences due to their insensitivity to subtle distributional changes, and existing LDL learning objectives often exhibit biases by disproportionately emphasizing a small subset of samples with extreme predictions. As a result, the LDL metrics lose their discriminability, and the LDL objectives are also at risk of overfitting. In this paper, we propose DeltaLDL, a percentage of predictions that are approximately correct within the context of LDL, as a solution to the above problems. DeltaLDL can serve as a novel evaluation metric, which is parameter-free and reflects more on real performance improvements. DeltaLDL can also serve as a novel learning objective, which is differentiable and encourages most samples to be predicted as approximately correct, thereby mitigating overfitting. Our theoretical analysis and empirical results demonstrate the effectiveness of the proposed solution.


Poster
#E-1504
Compressing tree ensembles through Level-wise Optimization and Pruning

Laurens Devos · Timo Martens · Deniz Oruc · Wannes Meert · Hendrik Blockeel · Jesse Davis

Tree ensembles (e.g., gradient boosting decision trees) are often used in practice because they offer excellent predictive performance while still being easy and efficient to learn. In some contexts, it is important to additionally optimize their size: this is specifically the case when models need to have verifiable properties (verification of fairness, robustness, etc. is often exponential in the ensemble's size), or when models run on battery-powered devices (smaller ensembles consume less energy, increasing battery autonomy). For this reason, compression of tree ensembles is worth studying. This paper presents LOP, a method for compressing a given tree ensemble by pruning or entirely removing trees in it, while updating leaf predictions in such a way that predictive accuracy is mostly unaffected. Empirically, LOP achieves compression factors that are often 10 to 100 times better than that of competing methods.


Poster
#E-1505
Learning Imbalanced Data with Beneficial Label Noise

Guangzheng Hu · Feng Liu · Mingming Gong · Guanghui Wang · Liuhua Peng

Data imbalance is a common factor hindering classifier performance. Data-level approaches for imbalanced learning, such as resampling, often lead to information loss or generative errors. Building on theoretical studies of imbalance ratio in binary classification, it is found that adding suitable label noise can adjust biased decision boundaries and improve classifier performance. This paper proposes the Label-Noise-based Re-balancing (LNR) approach to solve imbalanced learning by employing a novel design of an asymmetric label noise model. In contrast to other data-level methods, LNR alleviates the issues of informative loss and generative errors and can be integrated seamlessly with any classifier or algorithm-level method. We validated the superiority of LNR on synthetic and real-world datasets. Our work opens a new avenue for imbalanced learning, highlighting the potential of beneficial label noise.


Poster
#E-1506
Predictive Performance of Deep Quantum Data Re-uploading Models

Xin Wang · Hanxiao Tao · Re-Bing Wu

Quantum machine learning models incorporating data re-uploading circuits have garnered significant attention due to their exceptional expressivity and trainability. However, their ability to generate accurate predictions on unseen data, referred to as the predictive performance, remains insufficiently investigated. This study reveals a fundamental limitation in predictive performance when deep encoding layers are employed within the data re-uploading model. Concretely, we theoretically demonstrate that when processing high-dimensional data with limited-qubit data re-uploading models, their predictive performance progressively degenerates to near random-guessing levels as the number of encoding layers increases. In this context, the repeated data uploading cannot mitigate the performance degradation. These findings are validated through experiments on both synthetic linearly separable datasets and real-world datasets. Our results demonstrate that when processing high-dimensional data, the quantum data re-uploading models should be designed with wider circuit architectures rather than deeper and narrower ones.


Poster
#E-1507
Right Time to Learn: Promoting Generalization via Bio-inspired Spacing Effect in Knowledge Distillation

Guanglong Sun · Hongwei Yan · Liyuan Wang · Qian Li · Bo Lei · Yi Zhong

Knowledge distillation (KD) is a powerful strategy for training deep neural networks (DNNs). While it was originally proposed to train a more compact “student” model from a large “teacher” model, many recent efforts have focused on adapting it as an effective way to promote generalization of the model itself, such as online KD and self KD. Here, we propose an easy-to-use and compatible strategy named Spaced KD to improve the effectiveness of both online KD and self KD, in which the student model distills knowledge from a teacher model trained with a space interval ahead. This strategy is inspired by a prominent theory named spacing effect in the field of biological learning and memory, positing that appropriate intervals between learning trials can significantly enhance learning performance. We provide an in-depth theoretical and empirical analysis showing that the benefits of the proposed spacing effect in KD stem from seeking a flat minima during stochastic gradient descent (SGD). We perform extensive experiments to demonstrate the effectiveness of our Spaced KD in improving the learning performance of DNNs (e.g., the additional performance gain is up to 2.31% and 3.34% on Tiny-ImageNet over online KD and self KD, respectively). Our codes have been released on github~\url{https://github.com/SunGL001/Spaced-KD}.


Poster
#E-1508
Bipartite Ranking From Multiple Labels: On Loss Versus Label Aggregation

Michal Lukasik · Lin Chen · Harikrishna Narasimhan · Aditya Menon · Wittawat Jitkrittum · Felix Xinnan Yu · Sashank J. Reddi · Thomas Fu · MohammadHossein Bateni · Sanjiv Kumar

Bipartite ranking is a fundamental supervised learning problem, with the goal of learning a ranking over instances with maximal area under the ROC curve (AUC) against a single binary target label. However, one may often observe multiple binary target labels, e.g., from distinct human annotators. How can one synthesize such labels into a single coherent ranking? In this work, we formally analyze two approaches to this problem—loss aggregation and label aggregation—by characterizing their Bayes-optimal solutions. We show that while both approaches can yield Pareto-optimal solutions, loss aggregation can exhibit label dictatorship: one can inadvertently (and undesirably) favor one label over others. This suggests that label aggregation can be preferable to loss aggregation, which we empirically verify.


Poster
#E-1509
Concentration Distribution Learning from Label Distributions

Jiawei Tang · Yuheng Jia

Label distribution learning (LDL) is an effective method to predict the relative label description degree (a.k.a. label distribution) of a sample. However, the label distribution is not a complete representation of an instance because it overlooks the absolute intensity of each label. Specifically, it's impossible to obtain the total description degree of hidden labels that not in the label space, which leads to the loss of information and confusion in instances. To solve the above problem, we come up with a new concept named background concentration to serve as the absolute description degree term of the label distribution and introduce it into the LDL process, forming the improved paradigm of concentration distribution learning. Moreover, we propose a novel model by probabilistic methods and neural networks to learn label distributions and background concentrations from existing LDL datasets. Extensive experiments prove that the proposed approach is able to extract background concentrations from label distributions while producing more accurate prediction results than the state-of-the-art LDL methods. The code is available in https://github.com/seutjw/CDL-LD.


Poster
#E-1600
Efficient LiDAR Reflectance Compression via Scanning Serialization

Jiahao Zhu · Kang You · Dandan Ding · Zhan Ma

Reflectance attributes in LiDAR point clouds provide essential information for downstream tasks but remain underexplored in neural compression methods. To address this, we introduce SerLiC, a serialization-based neural compression framework to fully exploit the intrinsic characteristics of LiDAR reflectance. SerLiC first transforms 3D LiDAR point clouds into 1D sequences via scan-order serialization, offering a device-centric perspective for reflectance analysis. Each point is then tokenized into a contextual representation comprising its sensor scanning index, radial distance, and prior reflectance, for effective dependencies exploration. For efficient sequential modeling, Mamba is incorporated with a dual parallelization scheme, enabling simultaneous autoregressive dependency capture and fast processing. Extensive experiments demonstrate that SerLiC attains over 2$\times$ volume reduction against the original reflectance data, outperforming the state-of-the-art method by up to 22\% reduction of compressed bits while using only 2\% of its parameters. Moreover, a lightweight version of SerLiC achieves $\geq 10$ fps (frames per second) with just 111K parameters, which is attractive for real applications.


Poster
#E-1601
Improved Coresets for Vertical Federated Learning: Regularized Linear and Logistic Regressions

Supratim Shit · Gurmehak chadha · Surendra kumar · Bapi Chatterjee

Coreset, as a summary of training data, offers an efficient approach for reducing data processing and storage complexity during training. In the emerging vertical federated learning (VFL) setting, where scattered clients store different data features, it directly reduces communication complexity. In this work, we introduce coresets construction for regularized logistic regression both in centralized and VFL settings. Additionally, we improve the coreset size for regularized linear regression in the VFL setting. We also eliminate the dependency of the coreset size on a property of the data due to the VFL setting. The improvement in the coreset sizes is due to our novel coreset construction algorithms that capture the reduced model complexity due to the added regularization and its subsequent analysis. In experiments, we provide extensive empirical evaluation that backs our theoretical claims. We also report the performance of our coresets by comparing the models trained on the complete data and on the coreset.


Poster
#E-1602
SKIM: Any-bit Quantization Pushing The Limits of Post-Training Quantization

Runsheng Bai · Bo Liu · qiang liu

Large Language Models (LLMs) exhibit impressive performance across various tasks, but deploying them for inference poses challenges. Their high resource demands often necessitate complex, costly multi-GPU pipelines, or the use of smaller, less capable models. While quantization offers a promising solution utilizing lower precision for model storage, existing methods frequently experience significant performance drops at lower precision levels. Additionally, they typically provide only a limited set of solutions at specific bit levels, many of which are extensively manually tuned. To address these challenges, we propose a new method called \textbf{SKIM}: Scaled K-means clustering wIth Mixed precision. Our approach introduces two novel techniques: 1. A \textit{greedy algorithm} to solve approximately optimal bit allocation across weight channels, and 2. A \textit{trainable scaling vector} for non-differentiable K-means clustering. These techniques substantially improve the model performance and can be adapted to any given bit. Notably, in terms of perplexity, our method narrows the gap between quantized LLaMA models and their full precision counterparts by around \textbf{14\%} on average.


Poster
#E-1603
Geometric Contact Flows: Contactomorphisms for Dynamics and Control

Andrea Testa · Søren Hauberg · Tamim Asfour · Leonel Rozo

Accurately modeling and predicting complex dynamical systems, particularly those involving force exchange and dissipation, is crucial for applications ranging from fluid dynamics to robotics, but presents significant challenges due to the intricate interplay of geometric constraints and energy transfer. This paper introduces Geometric Contact Flows (GFC), a novel framework leveraging Riemannian and Contact geometry as inductive biases to learn such systems. GCF constructs a latent contact Hamiltonian model encoding desirable properties like stability or energy conservation. An ensemble of contactomorphisms then adapts this model to the target dynamics while preserving these properties. This ensemble allows for uncertainty-aware geodesics that attract the system’s behavior toward the data support, enabling robust generalization and adaptation to unseen scenarios. Experiments on learning dynamics for physical systems and for controlling robots on interaction tasks demonstrate the effectiveness of our approach.


Poster
#E-1604
KoNODE: Koopman-Driven Neural Ordinary Differential Equations with Evolving Parameters for Time Series Analysis

Hanru Bai · Weiyang Ding

Neural ordinary differential equations (NODEs) have demonstrated strong capabilities in modeling time series. However, existing NODE- based methods often focus solely on the surface-level dynamics derived from observed states, which limits their ability to capture more complex underlying behaviors. To overcome this challenge, we propose KoNODE, a Koopman-driven NODE framework that explicitly models the evolution of ODE parameters over time to encode deep-level information. KoNODE captures the essential yet simple intrinsic linear dynamics that govern the surface dynamics by employing Koopman operators. Our framework operates at three hierarchical levels: the observed state dynamics, the parameter dynamics, and the Koopman linear dynamics, representing the fundamental driving rules of the state dynamics. The proposed approach offers significant improvements in two critical time series tasks: long-term prediction (enabled by the simple linear dynamics) and generalization to new data (driven by the evolving ODE parameters). We validate KoNODE through experiments on synthetic data from complex dynamic systems and real-world datasets, demonstrating its effectiveness in practical scenarios.


Poster
#E-1605
Spectral-Aware Reservoir Computing for Fast and Accurate Time Series Classification

Shikang Liu · Chuyang Wei · Xiren Zhou · Huanhuan Chen

Analyzing inherent temporal dynamics is a critical pathway for time series classification, where Reservoir Computing (RC) exhibits effectiveness and high efficiency. However, typical RC considers recursive updates from adjacent states, struggling with long-term dependencies. In response, this paper proposes a Spectral-Aware Reservoir Computing framework (SARC), incorporating spectral insights to enhance long-term dependency modeling. Prominent frequencies are initially extracted to reveal explicit or implicit cyclical patterns. For each prominent frequency, SARC further integrates a Frequency-informed Reservoir Network (FreqRes) to adequately capture both sequential and cyclical dynamics, thereby deriving effective dynamic features. Synthesizing these features across various frequencies, SARC offers a multi-scale analysis of temporal dynamics and improves the modeling of long-term dependencies. Experiments on public datasets demonstrate that SARC achieves state-of-the-art results, while maintaining high efficiency compared to existing methods.


Poster
#E-1606
Conformal Anomaly Detection in Event Sequences

Shuai Zhang · Chuan Zhou · Yang Liu · PENG ZHANG · Xixun Lin · Shirui Pan

Anomaly detection in continuous-time event sequences is a crucial task in safety-critical applications. While existing methods primarily focus on developing a superior test statistic, they fail to provide guarantees regarding the false positive rate (FPR), which undermines their reliability in practical deployments. In this paper, we propose CADES (Conformal Anomaly Detection in Event Sequences), a novel test procedure based on conformal inference for the studied task with finite-sample FPR control. Specifically, by using the time-rescaling theorem, we design two powerful non-conformity scores tailored to event sequences, which exhibit complementary sensitivities to different abnormal patterns. CADES combines these scores with Bonferroni correction to leverage their respective strengths and addresses non-identifiability issues of existing methods. Theoretically, we prove the validity of CADES and further provide strong guarantees on calibration-conditional FPR control. Experimental results on synthetic and real-world datasets, covering various types of anomalies, demonstrate that CADES outperforms state-of-the-art methods while maintaining FPR control.


Poster
#E-1607
Provable Length Generalization in Sequence Prediction via Spectral Filtering

Annie Marsden · Evan Dogariu · Naman Agarwal · Xinyi Chen · Daniel Suo · Elad Hazan

We consider the problem of length generalization in sequence prediction. We define a new metric of performance in this setting – the Asymmetric-Regret– which measures regret against a benchmark predictor with longer context length than available to the learner. We continue by studying this concept through the lens of the spectral filter-ing algorithm. We present a gradient-based learn-ing algorithm that provably achieves length generalization for linear dynamical systems. We conclude with proof-of-concept experiments which are consistent with our theory.


Poster
#E-1608
Residual TPP: A Unified Lightweight Approach for Event Stream Data Analysis

Ruoxin Yuan · Guanhua Fang

This work introduces Residual TPP, a novel, unified, and lightweight approach for analyzing event stream data. It leverages the strengths of both simple statistical TPPs and expressive neural TPPs to achieve superior performance. Specifically, we propose the Residual Events Decomposition (RED) technique in temporal point processes, which defines a weight function to quantify how well the intensity function captures the event characteristics. The RED serves as a flexible, plug-and-play module that can be integrated with any TPP model in a wide range of tasks. It enables the identification of events for which the intensity function provides a poor fit, referred to as residual events. By combining RED with a Hawkes process, we capture the self-exciting nature of the data and identify residual events. Then an arbitrary neural TPP is employed to take care of residual events. Extensive experimental results demonstrate that Residual TPP consistently achieves state-of-the-art goodness-of-fit and prediction performance in multiple domains and offers significant computational advantages as well.


Poster
#E-1609
VisionTS: Visual Masked Autoencoders Are Free-Lunch Zero-Shot Time Series Forecasters

Mouxiang Chen · Lefei Shen · Zhuo Li · Xiaoyun Wang · Jianling Sun · Chenghao Liu

Foundation models have emerged as a promising approach in time series forecasting (TSF). Existing approaches either repurpose large language models (LLMs) or build large-scale time series datasets to develop TSF foundation models for universal forecasting. However, these methods face challenges due to the severe cross-domain gap or in-domain heterogeneity. This paper explores a new road to building a TSF foundation model from rich, high-quality natural images. Our key insight is that a visual masked autoencoder, pre-trained on the ImageNet dataset, can naturally be a numeric series forecaster. By reformulating TSF as an image reconstruction task, we bridge the gap between image pre-training and TSF downstream tasks. Surprisingly, without further adaptation in the time series domain, the proposed VisionTS could achieve better zero-shot forecast performance than existing TSF foundation models. With fine-tuning for one epoch, VisionTS could further improve the forecasting and achieve state-of-the-art performance in most cases. Extensive experiments reveal intrinsic similarities between images and real-world time series, suggesting that visual models may offer a "free lunch" for TSF and highlight the potential for future cross-modality research. Our code is available in the https://github.com/Keytoyze/VisionTS.


Poster
#E-1700
Low-distortion and GPU-compatible Tree Embeddings in Hyperbolic Space

Max van Spengler · Pascal Mettes

Embedding tree-like data, from hierarchies to ontologies and taxonomies, forms a well-studied problem for representing knowledge across many domains. Hyperbolic geometry provides a natural solution for embedding trees, with vastly superior performance over Euclidean embeddings. Recent literature has shown that hyperbolic tree embeddings can even be placed on top of neural networks for hierarchical knowledge integration in deep learning settings. For all applications, a faithful embedding of trees is needed, with combinatorial constructions emerging as the most effective direction. This paper identifies and solves two key limitations of existing works. First, the combinatorial construction hinges on finding highly separated points on a hypersphere, a notoriously difficult problem. Current approaches achieve poor separation, degrading the quality of the corresponding hyperbolic embedding. We propose highly separated Delaunay tree embeddings (HS-DTE), which integrates angular separation in a generalized formulation of Delaunay embeddings, leading to lower embedding distortion. Second, low-distortion requires additional precision. The current approach for increasing precision is to use multiple precision arithmetic, which renders the embeddings useless on GPUs in deep learning settings. We reformulate the combinatorial construction using floating point expansion arithmetic, leading to superior embedding quality while retaining utility on accelerated hardware.


Poster
#E-1701
Controlling Neural Collapse Enhances Out-of-Distribution Detection and Transfer Learning

Md Yousuf Harun · Jhair Gallardo · Christopher Kanan

Out-of-distribution (OOD) detection and OOD generalization are widely studied in Deep Neural Networks (DNNs), yet their relationship remains poorly understood. We empirically show that the degree of Neural Collapse (NC) in a network layer is inversely related with these objectives: stronger NC improves OOD detection but degrades generalization, while weaker NC enhances generalization at the cost of detection. This trade-off suggests that a single feature space cannot simultaneously achieve both tasks. To address this, we develop a theoretical framework linking NC to OOD detection and generalization. We show that entropy regularization mitigates NC to improve generalization, while a fixed Simplex ETF projector enforces NC for better detection. Based on these insights, we propose a method to control NC at different DNN layers. In experiments, our method excels at both tasks across OOD datasets and DNN architectures.


Poster
#E-1702
The Complexity of Learning Sparse Superposed Features with Feedback

Akash Kumar

The success of deep networks is crucially attributed to their ability to capture latent features within a representation space. In this work, we investigate whether the underlying learned features of a model can be efficiently retrieved through feedback from an agent, such as a large language model (LLM), in the form of relative triplet comparisons. These features may represent various constructs, including dictionaries in LLMs or components of a covariance matrix of Mahalanobis distances. We analyze the feedback complexity associated with learning a feature matrix in sparse settings. Our results establish tight bounds when the agent is permitted to construct activations and demonstrate strong upper bounds in sparse scenarios when the agent's feedback is limited to distributional information. We validate our theoretical findings through experiments on two distinct applications: feature recovery from Recursive Feature Machine-trained models and dictionary extraction from sparse autoencoders trained on Large Language Models.


Poster
#E-1703
Contrastive Learning with Simplicial Convolutional Networks for Short-Text Classification

Liang Huang · Benedict Lee · Daniel Ng · Kelin Xia

Text classification is a fundamental task in Natural Language Processing (NLP). Short text classification has recently captured much attention due to its increased amount from various sources with limited labels and its inherent challenges for its sparsity in words and semantics. Recent studies have adopted self-supervised contrastive learning across different representations to improve performance. However, most of the current models face several challenges. Firstly, the augmentation step might not be able to generate positive and negative samples that are semantically similar and dissimilar to the anchor respectively. Secondly, the text data could be enhanced with external auxiliary information that might introduce noise to the sparse text data. In addition, they are limited in capturing higher-order information such as group-wise interactions. In this work, we propose a novel document simplicial complex construction based on text data for a higher-order message-passing mechanism. We enhance the short text classification performance by contrasting the structural representation with the sequential representation generated by the transformer mechanism for improved outcomes and mitigated issues. The proposed framework, Contrastive Learning with Simplicial Convolutional Networks (C-SCN), leverages the expressive power of graph neural networks, models higher-order information beyond pair-wise relations and enriches features through contrastive learning. Experimental results on four benchmark datasets demonstrate the capability of C-SCN to outperform existing models in analysing sequential and complex short-text data.


Poster
#E-1704
The Generalized Skew Spectrum of Graphs

Armando Bellante · Martin Plávala · Alessandro Luongo

This paper proposes a family of permutation-invariant graph embeddings, generalizing the Skew Spectrum of graphs of Kondor & Borgwardt (2008). Grounded in group theory and harmonic analysis, our method introduces a new class of graph invariants that are isomorphism-invariant and capable of embedding richer graph structures - including attributed graphs, multilayer graphs, and hypergraphs - which the Skew Spectrum could not handle. Our generalization further defines a family of functions that enables a trade-off between computational complexity and expressivity. By applying generalization-preserving heuristics to this family, we improve the Skew Spectrum's expressivity at the same computational cost. We formally prove the invariance of our generalization, demonstrate its improved expressiveness through experiments, and discuss its efficient computation.


Poster
#E-1705
Beyond Matryoshka: Revisiting Sparse Coding for Adaptive Representation

Tiansheng Wen · Yifei Wang · Zequn Zeng · Zhong Peng · Yudi Su · Xinyang Liu · Bo Chen · Hongwei Liu · Stefanie Jegelka · Chenyu You

Many large-scale systems rely on high-quality deep representations (embeddings) to facilitate tasks like retrieval, search, and generative modeling. Matryoshka Representation Learning (MRL) recently emerged as a solution for adaptive embedding lengths, but it requires full model retraining and suffers from noticeable performance degradations at short lengths. In this paper, we show that sparse coding offers a compelling alternative for achieving adaptive representation with minimal overhead and higher fidelity. We propose Contrastive Sparse Representation (CSR), a method that specifies pre-trained embeddings into a high-dimensional but selectively activated feature space. By leveraging lightweight autoencoding and task-aware contrastive objectives, CSR preserves semantic quality while allowing flexible, cost-effective inference at different sparsity levels. Extensive experiments on image, text, and multimodal benchmarks demonstrate that CSR consistently outperforms MRL in terms of both accuracy and retrieval speed—often by large margins—while also cutting training time to a fraction of that required by MRL. Our results establish sparse coding as a powerful paradigm for adaptive representation learning in real-world applications where efficiency and fidelity are both paramount. Code is available at this URL.


Poster
#E-1706
Near Optimal Best Arm Identification for Clustered Bandits

Yash Kheshwani · Avishek Ghosh · Nikhil Karamchandani

This work investigates the problem of best arm identification for multi-agent multi-armed bandits. We consider $N$ agents grouped into $M$ clusters, where each cluster solves a stochastic bandit problem. The mapping between agents and bandits is \textit{a priori} unknown. Each bandit is associated with $K$ arms, and the goal is to identify the best arm for each agent under a $\delta$-probably correct ($\delta$-PC) framework, while minimizing sample complexity and communication overhead. We propose two novel algorithms: \emph{Clustering then Best Arm Identification} (\texttt{Cl-BAI}) and \emph{Best Arm Identification then Clustering} (\texttt{BAI-Cl}). \texttt{Cl-BAI} employs a two-phase approach that first clusters agents based on the bandit problems they are learning, followed by identifying the best arm for each cluster. \texttt{BAI-Cl} reverses the sequence by identifying the best arms first and then clustering agents accordingly. Both algorithms exploit the successive elimination framework to ensure computational efficiency and high accuracy. Theoretical analysis establishes $\delta$-PC guarantees for both methods, derives bounds on their sample complexity, and provides a lower bound for the problem class. Moreover, when $M$ is small (a constant), we show that the sample complexity of (a variant of) \texttt{BAI-Cl} is (order-wise) minimax optimal. Experiments on synthetic and real-world (Movie Lens, Yelp) data demonstrates the superior performance of the proposed algorithms in terms of sample and communication efficiency, particularly in settings where $M \ll N$.


Poster
#E-1707
Wait-Less Offline Tuning and Re-solving for Online Decision Making

Jingruo Sun · Wenzhi Gao · Ellen Vitercik · Yinyu Ye

Online linear programming (OLP) has found broad applications in revenue management and resource allocation. State-of-the-art OLP algorithms achieve low regret by repeatedly solving linear programming (LP) subproblems that incorporate updated resource information. However, LP-based methods are computationally expensive and often inefficient for large-scale applications. By contrast, recent first-order OLP algorithms are more computationally efficient but typically suffer from weaker regret guarantees. To address these shortcomings, we propose a new algorithm that combines the strengths of LP-based and first-order OLP algorithms. Our algorithm re-solves the LP subproblems periodically at a predefined frequency $f$ and uses the latest dual prices to guide online decision-making. In parallel, a first-order method runs during each interval between LP re-solves and smooths resource consumption. Our algorithm achieves $\mathcal{O}(\log (T/f) + \sqrt{f})$ regret and delivers a "wait-less" online decision-making process that balances computational efficiency and regret guarantees. Extensive experiments demonstrate at least $10$-fold improvements in regret over first-order methods and $100$-fold improvements in runtime over LP-based methods.


Poster
#E-1708
Efficient Core-set Selection for Deep Learning Through Squared Loss Minimization

Jianting Chen

Core-set selection (CS) for deep learning has become crucial for enhancing training efficiency and understanding datasets by identifying the most informative subsets. However, most existing methods rely on heuristics or complex optimization, struggling to balance efficiency and effectiveness. To address this, we propose a novel CS objective that adaptively balances losses between core-set and non-core-set samples by minimizing the sum of squared losses across all samples. Building on this objective, we introduce theMaximum Reduction as Maximum Contribution criterion (MRMC), which identifies samples with the maximal reduction in loss as those making the maximal contribution to overall convergence. Additionally, a balance constraint is incorporated to ensure an even distribution of contributions from the core-set. Experimental results demonstrate that MRMC improves training efficiency significantly while preserving model performance with minimal cost.


Poster
#E-1709
Sample Efficient Demonstration Selection for In-Context Learning

Kiran Purohit · Venktesh V · Sourangshu Bhattacharya · Avishek Anand

The in-context learning paradigm with LLMs has been instrumental in advancing a wide range of natural language processing tasks. The selection of few-shot examples (exemplars / demonstration samples) is essential for constructing effective prompts under context-length budget constraints. In this paper, we formulate the exemplar selection task as a top-m best arms identification problem. A key challenge in this setup is the exponentially large number of arms that need to be evaluated to identify the m-best arms. We propose CASE (Challenger Arm Sampling for Exemplar selection), a novel sample-efficient selective exploration strategy that maintains a shortlist of “challenger” arms, which are current candidates for the top-m arms. In each iteration, only one of the arms from this shortlist or the current top-m set is pulled, thereby reducing sample complexity and, consequently, the number of LLM evaluations. Furthermore, we model the scores of exemplar subsets (arms) using a parameterized linear scoring function, leading to stochastic linear bandits setting. CASE achieves remarkable efficiency gains of up to 7× speedup in runtime while requiring 7× fewer LLM calls (87% reduction) without sacrificing performance compared to state-of-the-art exemplar selection methods. We release our code and data (https://github.com/kiranpurohit/CASE).


Poster
#E-1800
Robust Consensus Anchor Learning for Efficient Multi-view Subspace Clustering

Yalan Qin · Nan Pu · Guorui Feng · Nicu Sebe

As a leading unsupervised classification algorithm in artificial intelligence, multi-view subspace clustering segments unlabeled data from different subspaces. Recent works based on the anchor have been proposed to decrease the computation complexity for the datasets with large scales in multi-view clustering. The major differences among these methods lie on the objective functions they define. Despite considerable success, these works pay few attention to guaranting the robustness of learned consensus anchors via effective manner for efficient multi-view clustering and investigating the specific local distribution of cluster in the affine subspace. Besides, the robust consensus anchors as well as the common cluster structure shared by different views are not able to be simultaneously learned. In this paper, we propose Robust Consensus anchors learning for efficient multi-view Subspace Clustering (RCSC). We first show that if the data are sufficiently sampled from independent subspaces, and the objective function meets some conditions, the achieved anchor graph has the block-diagonal structure. As a special case, we provide a model based on Frobenius norm, non-negative and affine constraints in consensus anchors learning, which guarantees the robustness of learned consensus anchors for efficient multi-view clustering and investigates the specific local distribution of cluster in the affine subspace. While it is simple, we theoretically give the geometric analysis regarding the formulated RCSC. The union of these three constraints is able to restrict how each data point is described in the affine subspace with specific local distribution of cluster for guaranting the robustness of learned consensus anchors. RCSC takes full advantages of correlation among consensus anchors, which encourages the grouping effect and groups highly correlated consensus anchors together with the guidance of view-specific projection. The anchor graph construction, partition and robust anchor learning are jointly integrated into a unified framework. It ensures the mutual enhancement for these procedures and helps lead to more discriminative consensus anchors as well as the cluster indicator. We then adopt an alternative optimization strategy for solving the formulated problem. Experiments performed on eight multi-view datasets confirm the superiority of RCSC based on the effectiveness and efficiency.


Poster
#E-1801
From Spectrum-free towards Baseline-view-free: Double-track Proximity Driven Multi-view Clustering

Shengju Yu · Dong Zhibin · Siwei Wang · Suyuan Liu · KE LIANG · Xinwang Liu · Yue Liu · Yi Zhang

Current multi-view clustering (MVC) techniques generally focus only on the relationship between anchors and samples, while overlooking that between anchors. Moreover, due to the lack of data labels, the cluster order is inconsistent across views and accordingly anchors encounter misalignment, which will confuse the graph structure and disorganize cluster representation. Even worse, it typically brings variance during forming spectral embedding, degenerating the stability of clustering results. In response to these concerns, in the paper we propose a MVC approach named DTP-SF-BVF. Concretely, we explicitly exploit the geometric properties between anchors via self-expression learning skill, and utilize topology learning strategy to feed captured anchor-anchor features into anchor-sample graph so as to explore the manifold structure hidden within samples more adequately. To reduce the misalignment risk, we introduce a permutation mechanism for each view to jointly rearrange anchors according to respective view characteristics. Besides not involving selecting the baseline view, it also can coordinate with anchors in the unified framework and thereby facilitate the learning of anchors. Further, rather than forming spectrum and then performing embedding partitioning, based on the criterion that samples and clusters should be hard assignment, we manage to construct the cluster labels directly from original samples using the binary strategy, not only preserving the data diversity but avoiding variance. Experiments on multiple publicly available datasets confirm the effectiveness of proposed DTP-SF-BVF method.


Poster
#E-1802
COKE: Core Kernel for More Efficient Approximation of Kernel Weights in Multiple Kernel Clustering

Weixuan Liang · Xinwang Liu · KE LIANG · Jiyuan Liu · En Zhu

Inspired by the well-known coreset in clustering algorithms, we introduce the definition of the core kernel for multiple kernel clustering (MKC) algorithms. The core kernel refers to running MKC algorithms on smaller-scale base kernel matrices to obtain kernel weights similar to those obtained from the original full-scale kernel matrices. Specifically, the core kernel refers to a set of kernel matrices of size $\widetilde{\mathcal{O}}(1/\varepsilon^2)$ that perform MKC algorithms on them can achieve a $(1+\varepsilon)$-approximation for the kernel weights. Subsequently, we can leverage approximated kernel weights to obtain a theoretically guaranteed large-scale extension of MKC algorithms. In this paper, we propose a core kernel construction method based on singular value decomposition and prove that it satisfies the definition of the core kernel for three mainstream MKC algorithms. Finally, we conduct experiments on several benchmark datasets to verify the correctness of theoretical results and the efficiency of the proposed method.


Poster
#E-1803
TypyBench: Evaluating LLM Type Inference for Untyped Python Repositories

Honghua Dong · Jiacheng Yang · Xun Deng · Yuhe Jiang · Gennady Pekhimenko · Fan Long · Xujie Si

Type inference for dynamic languages like Python is a persistent challenge in software engineering. While large language models (LLMs) have shown promise in code understanding, their type inference capabilities remain underexplored. We introduce TypyBench, a benchmark designed to evaluate LLMs' type inference across entire Python repositories. TypyBench features two novel metrics: TypeSim, which captures nuanced semantic relationships between predicted and ground truth types, and TypeCheck, which assesses type consistency across codebases. Our evaluation of various LLMs on a curated dataset of 50 high-quality Python repositories reveals that, although LLMs achieve decent TypeSim scores, they struggle with complex nested types and exhibit significant type consistency errors. These findings suggest that future research should shift focus from improving type similarity to addressing repository-level consistency. TypyBench provides a foundation for this new direction, offering insights into model performance across different type complexities and usage contexts. Our code and data are available at \href{https://github.com/typybench/typybench}.


Poster
#E-1804
Regression for the Mean: Auto-Evaluation and Inference with Few Labels through Post-hoc Regression

Benjamin Eyre · David Madras

The availability of machine learning systems that can effectively perform arbitrary tasks has led to synthetic labels from these systems being used in applications of statistical inference, such as data analysis or model evaluation. The Prediction Powered Inference (PPI) framework provides a way of leveraging both a large pool of pseudo-labelled data and a small sample with real, high-quality labels to produce a low-variance, unbiased estimate of the quantity being evaluated for. Most work on PPI considers a relatively sizable set of labelled samples, which can be resource intensive to obtain. However, we find that when labelled data is scarce, the PPI++ method can perform even worse than classical inference. We analyze this phenomenon by relating PPI++ to ordinary least squares regression, which also experiences high variance with small sample sizes, and use this regression framework to better understand the efficacy of PPI. Motivated by this, we present two new PPI-based techniques that leverage robust regressors to produce even lower variance estimators in the few-label regime


Spotlight Poster
#E-1805
On Path to Multimodal Generalist: General-Level and General-Bench

Hao Fei · Yuan Zhou · Juncheng Li · Xiangtai Li · Qingshan Xu · Bobo Li · Shengqiong Wu · Yaoting Wang · Junbao Zhou · Jiahao Meng · Qingyu Shi · Zhiyuan Zhou · Liangtao Shi · Minghe Gao · Daoan Zhang · Zhiqi Ge · Siliang Tang · Kaihang Pan · Yaobo Ye · Haobo Yuan · Tao Zhang · Weiming Wu · Tianjie Ju · Zixiang Meng · Shilin Xu · Liyu Jia · Wentao Hu · Meng Luo · Jiebo Luo · Tat-Seng Chua · Shuicheng YAN · Hanwang Zhang

The Multimodal Large Language Model (MLLM) is currently experiencing rapid growth, driven by the advanced capabilities of language-based LLMs. Unlike their specialist predecessors, existing MLLMs are evolving towards a Multimodal Generalist paradigm. Initially limited to understanding multiple modalities, these models have advanced to not only comprehend but also generate across modalities. Their capabilities have expanded from coarse-grained to fine-grained multimodal understanding and from supporting singular modalities to accommodating a wide array of or even arbitrary modalities. To assess the capabilities of various MLLMs, a diverse array of benchmark test sets has been proposed. This leads to a critical question: Can we simply assume that higher performance across tasks indicates a stronger MLLM capability, bringing us closer to human-level AI?We argue that the answer is not as straightforward as it seems. In this project, we introduce an evaluation framework to delineate the capabilities and behaviors of current multimodal generalists. This framework, named General-Level, establishes 5-scale levels of MLLM performance and generality, offering a methodology to compare MLLMs and gauge the progress of existing systems towards more robust multimodal generalists and, ultimately, towards AGI (Artificial General Intelligence). Central to our framework is the use of Synergy as the evaluative criterion, categorizing capabilities based on whether MLLMs preserve synergy across comprehension and generation, as well as across multimodal interactions.To evaluate the comprehensive abilities of various generalists, we present a massive multimodal benchmark, General-Bench, which encompasses a broader spectrum of skills, modalities, formats, and capabilities, including over 700 tasks and 325,800 instances. The evaluation results that involve over 100 existing state-of-the-art MLLMs uncover the capability rankings of generalists, highlighting the challenges in reaching genuine AI. We expect this project to pave the way for future research on next-generation multimodal foundation models, providing a robust infrastructure to accelerate the realization of AGI.Project Page: https://generalist.top/,Leaderboard: https://generalist.top/leaderboard/,Benchmark: https://huggingface.co/General-Level/.


Spotlight Poster
#E-1806
Is Complex Query Answering Really Complex?

Cosimo Gregucci · Bo Xiong · Daniel Hernández · Lorenzo Loconte · Pasquale Minervini · Steffen Staab · Antonio Vergari

Complex query answering (CQA) on knowledge graphs (KGs) is gaining momentum as a challenging reasoning task.In this paper, we show that the current benchmarks for CQA might not be as complex as we think, as the way they are built distorts our perception of progress in this field.For example, we find that in these benchmarks most queries (up to 98% for some query types) can be reduced to simpler problems, e.g., link prediction, where only one link needs to be predicted.The performance of state-of-the-art CQA models decreses significantly when such models are evaluated on queries that cannot be reduced to easier types.Thus, we propose a set of more challenging benchmarks composed of queries that require models to reason over multiple hops and better reflect the construction of real-world KGs.In a systematic empirical investigation, the new benchmarks show that current methods leave much to be desired from current CQA methods.


Poster
#E-1807
SyncMind: Measuring Agent Out-of-Sync Recovery in Collaborative Software Engineering

Xuehang Guo · Xingyao Wang · Yangyi Chen · Sha Li · Chi Han · Manling Li · Heng Ji

Software engineering (SE) is increasingly collaborative, with developers working together on shared complex codebases. Effective collaboration in shared environments requires participants---whether humans or AI agents---to stay on the same page as their environment evolves. When a collaborator's understanding diverges from the current state---what we term the *out-of-sync* challenge---the collaborator's actions may fail, leading to integration issues. In this work, we introduce **SyncMind**, a framework that systematically defines the *out-of-sync* problem faced by large language model (LLM) agents in collaborative software engineering (CSE). Based on ***SyncMind***, we create **SyncBench**, a benchmark featuring 24,332 instances of agent *out-of-sync* scenarios in real-world CSE derived from 21 popular *GitHub* repositories with executable verification tests. Experiments on ***SyncBench*** uncover critical insights into existing LLM agents' capabilities and limitations. Besides substantial performance gaps among agents (from *Llama-3.1* agents $\leq 3.33\%$ to *Claude-3.5-Sonnet* $\geq 28.18\%$), their consistently low collaboration willingness ($\le 4.86\%$) suggests fundamental limitations of existing LLM in CSE. However, when collaboration occurs, it positively correlates with *out-of-sync* recovery success. Minimal performance differences in agents' resource-aware *out-of-sync* recoveries further reveal their significant lack of resource awareness and adaptability, shedding light on future development of resource-efficient collaborative systems. Our code and data are openly available on our project website: https://xhguo7.github.io/SyncMind/.


Poster
#E-1808
To Each Metric Its Decoding: Post-Hoc Optimal Decision Rules of Probabilistic Hierarchical Classifiers

Roman Plaud · Alexandre Perez-Lebel · Matthieu Labeau · Antoine Saillenfest · Thomas Bonald

Hierarchical classification offers an approach to incorporate the concept of mistake severity by leveraging a structured, labeled hierarchy. However, decoding in such settings frequently relies on heuristic decision rules, which may not align with task-specific evaluation metrics. In this work, we propose a framework for the optimal decoding of an output probability distribution with respectto a target metric. We derive optimal decision rules for increasingly complex prediction settings, providing universal algorithms when candidates are limited to the set of nodes. In the most general case of predicting a *subset of nodes*, we focus on rules dedicated to the hierarchical $\mathrm{hF}_{\beta}$ scores, tailored to hierarchical settings. To demonstrate the practical utility of our approach, we conductextensive empirical evaluations, showcasing the superiority of our proposed optimal strategies, particularly in underdetermined scenarios. These results highlight the potential of our methods to enhance the performance and reliability of hierarchical classifiers in real-world applications.


Poster
#E-1809
Pfeife: Automatic Pipeline Parallelism for PyTorch

Ho Young Jhoo · Chung-Kil Hur · Nuno P. Lopes

The memory requirements of machine learning (ML) models has been growing quickly. However, the memory capacity of GPUs has not kept pace. Despite significant research on reducing the memory usage of ML models, the larger models do not fit in a single device. A popular solution to the memory capacity issue is to use multiple devices in parallel. In this paper, we focus on a particular form of parallelism called pipelining, as it offers a good balance between cost and performance for many ML models. We present Pfeife, the first tool that integrates with PyTorch to provide automatic pipelining of ML models. Pfeife intercepts the execution of models and parallelizes them transparently, requiring no manual work. We show that Pfeife can execute large models that would otherwise not run due to not fitting in a single device. Moreover, Pfeife can pipeline non-sequential models such as Stable Diffusion, which are not supported by existing pipelining parallelism tools. Pfeife outperforms state-of-the-art tools by up to 22%.


Poster
#E-1810
K$^2$IE: Kernel Method-based Kernel Intensity Estimators for Inhomogeneous Poisson Processes

Hideaki Kim · Tomoharu Iwata · Akinori Fujino

Kernel method-based intensity estimators, formulated within reproducing kernel Hilbert spaces (RKHSs), and classical kernel intensity estimators (KIEs) have been among the most easy-to-implement and feasible methods for estimating the intensity functions of inhomogeneous Poisson processes. While both approaches share the term "kernel", they are founded on distinct theoretical principles, each with its own strengths and limitations. In this paper, we propose a novel regularized kernel method for Poisson processes based on the least squares loss and show that the resulting intensity estimator involves a specialized variant of the representer theorem: it has the dual coefficient of unity and coincides with classical KIEs. This result provides new theoretical insights into the connection between classical KIEs and kernel method-based intensity estimators, while enabling us to develop an efficient KIE by leveraging advanced techniques from RKHS theory. We refer to the proposed model as the *kernel method-based kernel intensity estimator* (K$^2$IE). Through experiments on synthetic datasets, we show that K$^2$IE achieves comparable predictive performance while significantly surpassing the state-of-the-art kernel method-based estimator in computational efficiency.


Poster
#E-1811
Kernel Quantile Embeddings and Associated Probability Metrics

Masha Naslidnyk · Siu Lun Chau · Francois-Xavier Briol · Krikamol Muandet

Embedding probability distributions into reproducing kernel Hilbert spaces (RKHS) has enabled powerful nonparametric methods such as the maximum mean discrepancy (MMD), a statistical distance with strong theoretical and computational properties. At its core, the MMD relies on kernel mean embeddings to represent distributions as mean functions in RKHS. However, it remains unclear if the mean function is the only meaningful RKHS representation.Inspired by generalised quantiles, we introduce the notion of kernel quantile embeddings (KQEs). We then use KQEs to construct a family of distances that:(i) are probability metrics under weaker kernel conditions than MMD;(ii) recover a kernelised form of the sliced Wasserstein distance; and(iii) can be efficiently estimated with near-linear cost.Through hypothesis testing, we show that these distances offer a competitive alternative to MMD and its fast approximations.


Poster
#E-1812
Learning Safe Strategies for Value Maximizing Buyers in Uniform Price Auctions

Negin Golrezaei · Sourav Sahoo

We study the bidding problem in repeated uniform price multi-unit auctions from the perspective of a single *value-maximizing* buyer who aims to maximize their cumulative value over $T$ rounds while adhering to return-on-investment (RoI) constraints in each round. Buyers adopt $m$-*uniform bidding* format, where they submit $m$ bid-quantity pairs $(b_i, q_i)$ to demand $q_i$ units at bid $b_i$. We introduce *safe* bidding strategies as those that satisfy RoI constraints in every auction, regardless of competing bids. We show that these strategies depend only on the bidder’s valuation curve, and the bidder can focus on a finite subset of this class without loss of generality. While the number of strategies in this subset is exponential in $m$, we develop a polynomial-time algorithm to learn the optimal safe strategy that achieves sublinear regret in the online setting, where regret is measured against a clairvoyant benchmark that knows the competing bids *a priori* and selects a fixed hindsight optimal safe strategy. We then evaluate the performance of safe strategies against a clairvoyant that selects the optimal strategy from a richer class of strategies in the online setting. In this scenario, we compute the *richness ratio*, $\alpha\in(0, 1]$ for the class of strategies chosen by the clairvoyant and show that our algorithm, designed to learn safe strategies, achieves $\alpha$-approximate sublinear regret against these stronger benchmarks. Experiments on semi-synthetic data from real-world auctions show that safe strategies substantially outperform the derived theoretical bounds, making them quite appealing in practice.


Poster
#E-1900
Clustering via Self-Supervised Diffusion

Roy Uziel · Irit Chelly · Oren Freifeld · Ari Pakman

Diffusion models, widely recognized for their success in generative tasks, have not yet been applied to clustering. We introduce Clustering via Diffusion (CLUDI), a self-supervised framework that combines the generative power of diffusion models with pre-trained Vision Transformer features to achieve robust and accurate clustering. CLUDI is trained via a teacher–student paradigm: the teacher uses stochastic diffusion-based sampling to produce diverse cluster assignments, which the student refines into stable predictions. This stochasticity acts as a novel data augmentation strategy, enabling CLUDI to uncover intricate structures in high-dimensional data. Extensive evaluations on challenging datasets demonstrate that CLUDI achieves state-of-the-art performance in unsupervised classification, setting new benchmarks in clustering robustness and adaptability to complex data distributions.


Poster
#E-1901
Generalization Performance of Ensemble Clustering: From Theory to Algorithm

Xu Zhang · Haoye Qiu · Weixuan Liang · Hui LIU · Junhui Hou · Yuheng Jia

Ensemble clustering has demonstrated great success in practice; however, its theoretical foundations remain underexplored. This paper examines the generalization performance of ensemble clustering, focusing on generalization error, excess risk and consistency. We derive a convergence rate of generalization error bound and excess risk bound both of $\mathcal{O}(\sqrt{\frac{\log n}{m}}+\frac{1}{\sqrt{n}})$, with $n$ and $m$ being the numbers of samples and base clusterings. Based on this, we prove that when $m$ and $n$ approach infinity and $m$ is significantly larger than log $n$, i.e., $m,n\to \infty, m\gg \log n$, ensemble clustering is consistent. Furthermore, recognizing that $n$ and $m$ are finite in practice, the generalization error cannot be reduced to zero. Thus, by assigning varying weights to finite clusterings, we minimize the error between the empirical average clusterings and their expectation. From this, we theoretically demonstrate that to achieve better clustering performance, we should minimize the deviation (bias) of base clustering from its expectation and maximize the differences (diversity) among various base clusterings. Additionally, we derive that maximizing diversity is nearly equivalent to a robust (min-max) optimization model. Finally, we instantiate our theory to develop a new ensemble clustering algorithm. Compared with SOTA methods, our approach achieves average improvements of 6.1\%, 7.3\%, and 6.0\% on 10 datasets w.r.t. NMI, ARI, and Purity. The code is available at https://github.com/xuz2019/GPEC.


Poster
#E-1902
Almost Optimal Fully Dynamic $k$-Center Clustering with Recourse

Sayan Bhattacharya · Martín Costa · Ermiya Farokhnejad · Silvio Lattanzi · Nikos Parotsidis

In this paper, we consider the *metric $k$-center* problem in the fully dynamic setting, where we are given a metric space $(V,d)$ evolving via a sequence of point insertions and deletions and our task is to maintain a subset $S \subseteq V$ of at most $k$ points that minimizes the objective $\max_{x \in V} \min_{y \in S}d(x, y)$. We want to design our algorithm so that we minimize its *approximation ratio*, *recourse* (the number of changes it makes to the solution $S$) and *update time* (the time it takes to handle an update). We give a simple algorithm for dynamic $k$-center that maintains a $O(1)$-approximate solution with $O(1)$ amortized recourse and $\tilde O(k)$ amortized update time, *obtaining near-optimal approximation, recourse and update time simultaneously*. We obtain our result by combining a variant of the dynamic $k$-center algorithm of Bateni et al. [SODA'23] with the dynamic sparsifier of Bhattacharya et al. [NeurIPS'23].


Poster
#E-1903
Super Deep Contrastive Information Bottleneck for Multi-modal Clustering

Zhengzheng Lou · Ke Zhang · Yucong Wu · Shizhe Hu

In an era of increasingly diverse information sources, multi-modal clustering (MMC) has become a key technology for processing multi-modal data. It can apply and integrate the feature information and potential relationships of different modalities. Although there is a wealth of research on MMC, due to the complexity of datasets, a major challenge remains in how to deeply explore the complex latent information and interdependencies between modalities. To address this issue, this paper proposes a method called super deep contrastive information bottleneck (SDCIB) for MMC, which aims to explore and utilize all types of latent information to the fullest extent. Specifically, the proposed SDCIB explicitly introduces the rich information contained in the encoder's hidden layers into the loss function for the first time, thoroughly mining both modal features and the hidden relationships between modalities. Moreover, the proposed SDCIB performs dual optimization by simultaneously considering consistency information from both the feature distribution and clustering assignment perspectives, the proposed SDCIB significantly improves clustering accuracy and robustness. We conducted experiments on 4 multi-modal datasets and the accuracy of the method on the ESP dataset improved by 9.3\%. The results demonstrate the superiority and clever design of the proposed SDCIB. The source code is available on https://github.com/ShizheHu.


Poster
#E-1904
Fast Incomplete Multi-view Clustering by Flexible Anchor Learning

Yalan Qin · Guorui Feng · Xinpeng Zhang

Multi-view clustering aims to improve the final performance by taking advantages of complementary and consistent information of all views. In real world, data samples with partially available information are common and the issue regarding the clustering for incomplete multi-view data is inevitably raised. To deal with the partial data with large scales, some fast clustering approaches for incomplete multi-view data have been presented. Despite the significant success, few of these methods pay attention to learning anchors with high quality in a unified framework for incomplete multi-view clustering, while ensuring the scalability for large-scale incomplete datasets. In addition, most existing approaches based on incomplete multi-view clustering ignore to build the relation between anchor graph and similarity matrix in symmetric nonnegative matrix factorization and then directly conduct graph partition based on the anchor graph to reduce the space and time consumption. In this paper, we propose a novel fast incomplete multi-view clustering method for the data with large scales, termed Fast Incomplete Multi-view clustering by flexible anchor Learning (FIML), where graph construction, anchor learning and graph partition are simultaneously integrated into a unified framework for fast incomplete multi-view clustering. To be specific, we learn a shared anchor graph to guarantee the consistency among multiple views and employ a adaptive weight coefficient to balance the impact for each view. The relation between anchor graph and similarity matrix in symmetric nonnegative matrix factorization can also be built, i.e., each entry in the anchor graph can characterize the similarity between the anchor and original data sample. We then adopt an alternative algorithm for solving the formulated problem. Experiments conducted on different datasets confirm the superiority of FIML compared with other clustering methods for incomplete multi-view data.


Poster
#E-1905
Graph Minimum Factor Distance and Its Application to Large-Scale Graph Data Clustering

Jicong Fan

Measuring the distance or similarity between graphs is the foundation of many graph analysis tasks, such as graph classification and clustering, but remains a challenge on large datasets. In this work, we treat the adjacency matrices of two graphs as two kernel matrices given by some unknown indefinite kernel function performed on two discrete distributions and define the distance between the two distributions as a measure, called MMFD, of the dissimilarity between two graphs. We show that MMFD is a pseudo-metric. Although the initial definition of MMFD seems complex, we show that it has a closed-form solution with extremely simple computation. To further improve the efficiency of large-scale clustering, we propose an MMFD-KM with linear space and time complexity with respect to the number of graphs. We also provide a generalization of MMFD, called MFD, which is more effective in exploiting the information of factors of adjacency matrices. The experiments on simulated graphs intuitively show that our methods are effective in comparing graphs. The experiments on real-world datasets demonstrate that, compared to the competitors, our methods have much better clustering performance in terms of three evaluation metrics and time cost.


Spotlight Poster
#E-1906
Exogenous Isomorphism for Counterfactual Identifiability

Yikang Chen · Dehui du

This paper investigates $\sim_{\mathcal{L}\_3}$-identifiability, a form of complete counterfactual identifiability within the Pearl Causal Hierarchy (PCH) framework, ensuring that all Structural Causal Models (SCMs) satisfying the given assumptions provide consistent answers to all causal questions. To simplify this problem, we introduce exogenous isomorphism and propose $\sim_{\mathrm{EI}}$-identifiability, reflecting the strength of model identifiability required for $\sim_{\mathcal{L}\_3}$-identifiability. We explore sufficient assumptions for achieving $\sim_{\mathrm{EI}}$-identifiability in two special classes of SCMs: Bijective SCMs (BSCMs), based on counterfactual transport, and Triangular Monotonic SCMs (TM-SCMs), which extend $\sim_{\mathcal{L}\_2}$-identifiability. Our results unify and generalize existing theories, providing theoretical guarantees for practical applications. Finally, we leverage neural TM-SCMs to address the consistency problem in counterfactual reasoning, with experiments validating both the effectiveness of our method and the correctness of the theory.


Poster
#E-1907
Strategic A/B testing via Maximum Probability-driven Two-armed Bandit

Yu Zhang · Shanshan Zhao · Bokui Wan · Jinjuan Wang · Xiaodong Yan

Detecting a minor average treatment effect is a major challenge in large-scale applications, where even minimal improvements can have a significant economic impact. Traditional methods, reliant on normal distribution-based or expanded statistics, often fail to identify such minor effects because of their inability to handle small discrepancies with sufficient sensitivity. This work leverages a counterfactual outcome framework and proposes a maximum probability-driven two-armed bandit (TAB) process by weighting the mean volatility statistic, which controls Type I error. The implementation of permutation methods further enhances the robustness and efficacy. The established strategic central limit theorem (SCLT) demonstrates that our approach yields a more concentrated distribution under the null hypothesis and a less concentrated one under the alternative hypothesis, greatly improving statistical power. The experimental results indicate a significant improvement in the A/B testing, highlighting the potential to reduce experimental costs while maintaining high statistical power.


Spotlight Poster
#E-1908
Local Identifying Causal Relations in the Presence of Latent Variables

Zheng Li · Zeyu Liu · Feng Xie · Hao Zhang · Chunchen LIU · zhi geng

We tackle the problem of identifying whether a variable is the cause of a specified target using observational data. State-of-the-art causal learning algorithms that handle latent variables typically rely on identifying the global causal structure, often represented as a partial ancestral graph (PAG), to infer causal relationships. Although effective, these approaches are often redundant and computationally expensive when the focus is limited to a specific causal relationship. In this work, we introduce novel local characterizations that are necessary and sufficient for various types of causal relationships between two variables, enabling us to bypass the need for global structure learning. Leveraging these local insights, we develop efficient and fully localized algorithms that accurately identify causal relationships from observational data. We theoretically demonstrate the soundness and completeness of our approach. Extensive experiments on benchmark networks and real-world datasets further validate the effectiveness and efficiency of our method.


Poster
#E-1909
Distributionally Robust Policy Learning under Concept Drifts

Jingyuan Wang · Zhimei Ren · Ruohan Zhan · Zhengyuan Zhou

Distributionally robust policy learning aims to find a policy that performs well under the worst-case distributional shift, and yet most existing methods for robust policy learning consider the worst-case *joint* distribution of the covariate and the outcome. The joint-modeling strategy can be unnecessarily conservative when we have more information on the source of distributional shifts. This paper studies a more nuanced problem --- robust policy learning under the *concept drift*, when only the conditional relationship between the outcome and the covariate changes. To this end, we first provide a doubly-robust estimator for evaluating the worst-case average reward of a given policy under a set of perturbed conditional distributions. We show that the policy value estimator enjoys asymptotic normality even if the nuisance parameters are estimated with a slower-than-root-$n$ rate. We then propose a learning algorithm that outputs the policy maximizing the estimated policy value within a given policy class $\Pi$, and show that the sub-optimality gap of the proposed algorithm is of the order $\kappa(\Pi)n^{-1/2}$, where $\kappa(\Pi)$ is the entropy integral of $\Pi$ under the Hamming distance and $n$ is the sample size. A matching lower bound is provided to show the optimality of the rate. The proposed methods are implemented and evaluated in numerical studies, demonstrating substantial improvement compared with existing benchmarks.


Poster
#E-1910
Counterfactual Contrastive Learning with Normalizing Flows for Robust Treatment Effect Estimation

Jiaxuan Zhang · Emadeldeen Eldele · Fuyuan CAO · Yang Wang · Xiaoli Li · Jiye Liang

Estimating Individual Treatment Effects (ITE) from observational data is challenging due to covariate shift and counterfactual absence. While existing methods attempt to balance distributions globally, they often lack fine-grained sample-level alignment, especially in scenarios with significant individual heterogeneity. To address these issues, we reconsider counterfactual as a proxy to emulate balanced randomization. Furthermore, we derive a theoretical bound that links the expected ITE estimation error to both factual prediction errors and representation distances between factuals and counterfactuals. Building on this theoretical foundation, we propose FCCL, a novel method designed to effectively capture the nuances of potential outcomes under different treatments by (i) generating diffeomorphic counterfactuals that adhere to the data manifold while maintaining high semantic similarity to their factual counterparts, and (ii) mitigating distribution shift via sample-level alignment grounded in our derived generalization-error bound, which considers factual-counterfactual similarity and category consistency. Extensive evaluations on benchmark datasets demonstrate that FCCL outperforms 13 state-of-the-art methods, particularly in capturing individual-level heterogeneity and handling sparse boundary samples.


Poster
#E-1911
Reducing Confounding Bias without Data Splitting for Causal Inference via Optimal Transport

Yuguang Yan · Zongyu Li · Haolin Yang · Zeqin Yang · Hao Zhou · Ruichu Cai · Zhifeng Hao

Causal inference seeks to estimate the effect given a treatment such as a medicine or the dosage of a medication. To reduce the confounding bias caused by the non-randomized treatment assignment, most existing methods reduce the shift between subpopulations receiving different treatments. However, these methods split limited training samples into smaller groups, which cuts down the number of samples in each group, while precise distribution estimation and alignment highly rely on a sufficient number of training samples. In this paper, we propose a distribution alignment paradigm without data splitting, which can be naturally applied in the settings of binary and continuous treatments. To this end, we characterize the confounding bias by considering different probability measures of the same set including all the training samples, and exploit the optimal transport theory to analyze the confounding bias and outcome estimation error. Based on this, we propose to learn balanced representations by reducing the bias between the marginal distribution and the conditional distribution of a treatment. As a result, data reduction caused by splitting is avoided, and the outcome prediction model trained on one treatment group can be generalized to the entire population. The experiments on both binary and continuous treatment settings demonstrate the effectiveness of our method.


Poster
#E-1912
Differentiable Structure Learning with Ancestral Constraints

Taiyu Ban · Changxin Rong · Xiangyu Wang · Lyuzhou Chen · Xin Wang · Derui Lyu · Qinrui Zhu · Huanhuan Chen

Differentiable structure learning of causal directed acyclic graphs (DAGs) is an emerging field in causal discovery, leveraging powerful neural learners. However, the incorporation of ancestral constraints, essential for representing abstract prior causal knowledge, remains an open research challenge. This paper addresses this gap by introducing a generalized framework for integrating ancestral constraints. Specifically, we identify two key issues: the non-equivalence of relaxed characterizations for representing path existence and order violations among paths during optimization. In response, we propose a binary-masked characterization method and an order-guided optimization strategy, tailored to address these challenges. We provide theoretical justification for the correctness of our approach, complemented by experimental evaluations on both synthetic and real-world datasets.


Poster
#E-2000
Compelling ReLU Networks to Exhibit Exponentially Many Linear Regions at Initialization and During Training

Max Milkert · David Hyde · Forrest Laine

In a neural network with ReLU activations, the number of piecewise linear regions in the output can grow exponentially with depth.However, this is highly unlikely to happen when the initial parameters are sampled randomly, which therefore often leads to the use of networks that are unnecessarily large.To address this problem, we introduce a novel parameterization of the network that restricts its weights so that a depth $d$ network produces exactly $2^d$ linear regions at initialization and maintains those regions throughout training under the parameterization.This approach allows us to learn approximations of convex, one-dimensional functions that are several orders of magnitude more accurate than their randomly initialized counterparts.We further demonstrate a preliminary extension of our construction to multidimensional and non-convex functions, allowing the technique to replace traditional dense layers in various architectures.


Poster
#E-2001
Come Together, But Not Right Now: A Progressive Strategy to Boost Low-Rank Adaptation

Zhan Zhuang · Xiequn Wang · Wei Li · Yulong Zhang · Qiushi Huang · Shuhao Chen · Xuehao Wang · Yanbin Wei · Yuhe Nie · Kede Ma · Yu Zhang · Ying Wei

Low-rank adaptation (LoRA) has emerged as a leading parameter-efficient fine-tuning technique for adapting large foundation models, yet it often locks adapters into suboptimal minima near their initialization. This hampers model generalization and limits downstream operators such as adapter merging and pruning. Here, we propose CoTo, a progressive training strategy that gradually increases adapters' activation probability over the course of fine-tuning. By stochastically deactivating adapters, CoTo encourages more balanced optimization and broader exploration of the loss landscape. We provide a theoretical analysis showing that CoTo promotes layer-wise dropout stability and linear mode connectivity, and we adopt a cooperative-game approach to quantify each adapter's marginal contribution. Extensive experiments demonstrate that CoTo consistently boosts single-task performance, enhances multi-task merging accuracy, improves pruning robustness, and reduces training overhead, all while remaining compatible with diverse LoRA variants. Code is available at https://github.com/zwebzone/coto.


Poster
#E-2002
Feature Shift Localization Network

Míriam Barrabés · Daniel Mas Montserrat · Kapal Dev · Alexander Ioannidis

Feature shifts between data sources are present in many applications involving healthcare, biomedical, socioeconomic, financial, survey, and multi-sensor data, among others, where unharmonized heterogeneous data sources, noisy data measurements, or inconsistent processing and standardization pipelines can lead to erroneous features. Localizing shifted features is important to address the underlying cause of the shift and correct or filter the data to avoid degrading downstream analysis. While many techniques can detect distribution shifts, localizing the features originating them is still challenging, with current solutions being either inaccurate or not scalable to large and high-dimensional datasets. In this work, we introduce the Feature Shift Localization Network (FSL-Net), a neural network that can localize feature shifts in large and high-dimensional datasets in a fast and accurate manner. The network, trained with a large number of datasets, learns to extract the statistical properties of the datasets and can localize feature shifts from previously unseen datasets and shifts without the need for re-training. The code and ready-to-use trained model are available at \url{https://github.com/AI-sandbox/FSL-Net}.


Poster
#E-2003
One-Shot Heterogeneous Federated Learning with Local Model-Guided Diffusion Models

Mingzhao Yang · Shangchao Su · Bin Li · Xiangyang Xue

In recent years, One-shot Federated Learning (OSFL) methods based on Diffusion Models (DMs) have garnered increasing attention due to their remarkable performance. However, most of these methods require the deployment of foundation models on client devices, which significantly raises the computational requirements and reduces their adaptability to heterogeneous client models. In this paper, we propose FedLMG, a heterogeneous one-shot Federated learning method with Local Model-Guided diffusion models. In our method, clients do not need access to any foundation models but only train and upload their local models, which is consistent with traditional FL methods. On the clients, we employ classification loss and batch normalization loss to capture the broad category features and detailed contextual features of the client distributions. On the server, based on the uploaded client models, we utilize backpropagation to guide the server’s DM in generating synthetic datasets that comply with the client distributions, which are then used to train the aggregated model. By using the local models as a medium to transfer client knowledge, our method significantly reduces the computational requirements on client devices and effectively adapts to scenarios with heterogeneous clients. Extensive quantitation and visualization experiments on three large-scale real-world datasets, along with theoretical analysis, demonstrate that the synthetic datasets generated by FedLMG exhibit comparable quality and diversity to the client datasets, which leads to an aggregated model that outperforms all compared methods and even the performance ceiling, further elucidating the significant potential of utilizing DMs in FL.


Poster
#E-2004
Learning with Selectively Labeled Data from Multiple Decision-makers

Jian Chen · Zhehao Li · Xiaojie Mao

We study the problem of classification with selectively labeled data, whose distribution may differ from the full population due to historical decision-making. We exploit the fact that in many applications historical decisions were made by multiple decision-makers, each with different decision rules. We analyze this setup under a principled instrumental variable (IV) framework and rigorously study the identification of classification risk. We establish conditions for the exact identification of classification risk and derive tight partial identification bounds when exact identification fails. We further propose a unified cost-sensitive learning (UCL) approach to learn classifiers robust to selection bias in both identification settings. Finally, we theoretically and numerically validate the efficacy of our proposed method.


Poster
#E-2005
Federated Learning for Feature Generalization with Convex Constraints

Dongwon Kim · Donghee Kim · Sung Kuk Shyn · Kwangsu Kim

Federated learning (FL) often struggles with generalization due to heterogeneous client data. Local models are prone to overfitting their local data distributions, and even transferable features can be distorted during aggregation. To address these challenges, we propose FedCONST, an approach that adaptively modulates update magnitudes based on the global model’s parameter strength. This prevents over-emphasizing well-learned parameters while reinforcing underdeveloped ones. Specifically, FedCONST employs linear convex constraints to ensure training stability and preserve locally learned generalization capabilities during aggregation. A Gradient Signal-to-Noise Ratio (GSNR) analysis further validates FedCONST's effectiveness in enhancing feature transferability and robustness. As a result, FedCONST effectively aligns local and global objectives, mitigating overfitting and promoting stronger generalization across diverse FL environments, achieving state-of-the-art performance.


Poster
#E-2006
Disentangling Invariant Subgraph via Variance Contrastive Estimation under Distribution Shifts

Haoyang Li · Xin Wang · Xueling Zhu · Weigao Wen · Wenwu Zhu

Graph neural networks (GNNs) have achieved remarkable success, yet most are developed under the in-distribution assumption and fail to generalize to out-of-distribution (OOD) environments. To tackle this problem, some graph invariant learning methods aim to learn invariant subgraph against distribution shifts, which heavily rely on predefined or automatically generated environment labels. However, directly annotating or estimating such environment labels from biased graph data is typically impractical or inaccurate for real-world graphs. Consequently, GNNs may become biased toward variant patterns, resulting in poor OOD generalization. In this paper, we propose to learn disentangled invariant subgraph via self-supervised contrastive variant subgraph estimation for achieving satisfactory OOD generalization. Specifically, we first propose a GNN-based invariant subgraph generator to disentangle the invariant and variant subgraphs. Then, we estimate the degree of the spurious correlations by conducting self-supervised contrastive learning on variant subgraphs. Thanks to the accurate identification and estimation of the variant subgraphs, we can capture invariant subgraphs effectively and further eliminate spurious correlations by inverse propensity score reweighting. We provide theoretical analyses to show that our model can disentangle the ground-truth invariant and variant subgraphs for OOD generalization. Extensive experiments demonstrate the superiority of our model over state-of-the-art baselines.


Poster
#E-2007
Info-Coevolution: An Efficient Framework for Data Model Coevolution

Ziheng Qin · Hailun Xu · Wei Yew · Qi Jia · Yang Luo · Kanchan Sarkar · Danhui Guan · Kai Wang · Yang You

Machine learning relies heavily on data, yet the continuous growth of real-world data poses challenges for efficient dataset construction and training. A fundamental yet unsolved question is: given our current model and data, does a new data (sample/batch) need annotation/learning? Conventional approaches retain all available data, leading to non-optimal data and training efficiency. Active learning aims to reduce data redundancy by selecting a subset of samples to annotate, while it increases pipeline complexity and introduces bias. In this work, we propose Info-Coevolution, a novel framework that efficiently enables models and data to coevolve through online selective annotation with no bias. Leveraging task-specific models (and open-source models), it selectively annotates and integrates online and web data to improve datasets efficiently. For real-world datasets like ImageNet-1K, Info-Coevolution reduces annotation and training costsby 32% without performance loss. It is able to automatically give the saving ratio without tuning the ratio. It can further reduce the annotation ratio to 50% with semi-supervised learning. We also explore retrieval-based dataset enhancement using unlabeled open-source data. Code is available at https://github.com/NUS-HPC-AI-Lab/Info-Coevolution/.


Poster
#E-2008
Evolving Minds: Logic-Informed Inference from Temporal Action Patterns

Chao Yang · Shuting Cui · Yang Yang · Shuang Li

Understanding human mental states—such as intentions and desires—is crucial for natural AI-human collaboration. However, this is challenging because human actions occur irregularly over time, and the underlying mental states that drive these actions are unobserved. To tackle this, we propose a novel framework that combines a logic-informed temporal point process (TPP) with amortized variational Expectation-Maximization (EM). Our key innovation is integrating logic rules as priors to guide the TPP’s intensity function, allowing the model to capture the interplay between actions and mental events while reducing dependence on large datasets. To handle the intractability of mental state inference, we introduce a discrete-time renewal process to approximate the posterior. By jointly optimizing model parameters, logic rules, and inference networks, our approach infers entire mental event sequences and adaptively predicts future actions. Experiments on both synthetic and real-world datasets show that our method outperforms existing approaches in accurately inferring mental states and predicting actions, demonstrating its effectiveness in modeling human cognitive processes.


Poster
#E-2009
Projection Pursuit Density Ratio Estimation

Meilin Wang · Wei Huang · Mingming Gong · Zheng Zhang

Density ratio estimation (DRE) is a paramount task in machine learning, for its broad applications across multiple domains, such as covariate shift adaptation, causal inference, independence tests and beyond. Parametric methods for estimating the density ratio possibly lead to biased results if models are misspecified, while conventional non-parametric methods suffer from the curse of dimensionality when the dimension of data is large. To address these challenges, in this paper, we propose a novel approach for DRE based on the projection pursuit (PP) approximation. The proposed method leverages PP to mitigate the impact of high dimensionality while retaining the model flexibility needed for the accuracy of DRE. We establish the consistency and the convergence rate for the proposed estimator. Experimental results demonstrate that our proposed method outperforms existing alternatives in various applications.


Poster
#E-2010
Adaptive Estimation and Learning under Temporal Distribution Shift

Dheeraj Baby · Yifei Tang · Hieu Nguyen · Yu-Xiang Wang · Rohit Pyati

In this paper, we study the problem of estimation and learning under temporal distribution shift. Consider an observation sequence of length $n$, which is a noisy realization of a time-varying ground-truth sequence. Our focus is to develop methods to estimate the groundtruth at the final time-step while providing sharp point-wise estimation error rates. We show that, *without prior knowledge* on the level of temporal shift, a wavelet soft-thresholding estimator provides an *optimal* estimation error bound for the groundtruth. Our proposed estimation method generalizes existing researches (Mazetto and Upfal, 2023) by establishing a connection between the sequence's non-stationarity level and the sparsity in the wavelet-transformed domain. Our theoretical findings are validated by numerical experiments. Additionally, we applied the estimator to derive sparsity-aware excess risk bounds for binary classification under distribution shift and to develop computationally efficient training objectives. As a final contribution, we draw parallels between our results and the classical signal processing problem of total-variation denoising (Mammen and van de Geer 1997; Tibshirani 2014 ), uncovering *novel optimal* algorithms for such task.


Poster
#E-2011
Provable Maximum Entropy Manifold Exploration via Diffusion Models

Riccardo De Santi · Marin Vlastelica · Ya-Ping Hsieh · Zebang Shen · Niao He · Andreas Krause

Exploration is critical for solving real-world decision-making problems such as scientific discovery, where the objective is to generate truly novel designs rather than mimic existing data distributions. In this work, we address the challenge of leveraging the representational power of generative models for exploration without relying on explicit uncertainty quantification. We introduce a novel framework that casts exploration as entropy maximization over the approximate data manifold implicitly defined by a pre-trained diffusion model. Then, we present a novel principle for exploration based on density estimation, a problem well-known to be challenging in practice. To overcome this issue and render this method truly scalable, we leverage a fundamental connection between the entropy of the density induced by a diffusion model and its score function. Building on this, we develop an algorithm based on mirror descent that solves the exploration problem as sequential fine-tuning of a pre-trained diffusion model. We prove its convergence to the optimal exploratory diffusion model under realistic assumptions by leveraging recent understanding of mirror flows. Finally, we empirically evaluate our approach on both synthetic and high-dimensional text-to-image diffusion, demonstrating promising results.


Poster
#E-2012
A Online Statistical Framework for Out-of-Distribution Detection

Xinsong Ma · Xin Zou · Weiwei Liu

Out-of-distribution (OOD) detection task is significant in reliable and safety-critical applications. Existing approaches primarily focus on developing the powerful score function, but overlook the design of decision-making rules based on these score function. In contrast to prior studies, we rethink the OOD detection task from an perspective of online multiple hypothesis testing. We then propose a novel generalized LOND (g-LOND) algorithm to solve the above problem. Theoretically, the g-LOND algorithm controls false discovery rate (FDR) at pre-specified level without the consideration for the dependence between the p-values. Furthermore, we prove that the false positive rate (FPR) of the g-LOND algorithm converges to zero in probability based on the generalized Gaussian-like distribution family. Finally, the extensive experimental results verify the effectiveness of g-LOND algorithm for OOD detection.


Poster
#E-2100
Advancing Constrained Monotonic Neural Networks: Achieving Universal Approximation Beyond Bounded Activations

Davide Sartor · Alberto Sinigaglia · Gian Antonio Susto

Imposing input-output constraints in multi-layer perceptrons (MLPs) plays a pivotal role in many real world applications. Monotonicity in particular is a common requirement in applications that need transparent and robust machine learning models. Conventional techniques for imposing monotonicity in MLPs by construction involve the use of non-negative weight constraints and bounded activation functions, which poses well known optimization challenges. In this work, we generalize previous theoretical results, showing that MLPs with non-negative weight constraint and activations that saturate on alternating sides are universal approximators for monotonic functions. Additionally, we show an equivalence between saturation side in the activations and sign of the weight constraint. This connection allows us to prove that MLPs with convex monotone activations and non-positive constrained weights also qualify as universal approximators, in contrast to their non-negative constrained counterparts. This results provide theoretical grounding to the empirical effectiveness observed in previous works, while leading to possible architectural simplification. Moreover, to further alleviate the optimization difficulties, we propose an alternative formulation that allows the network to adjust its activations according to the sign of the weights. This eliminates the requirement for weight reparameterization, easing initialization and improving training stability. Experimental evaluation reinforce the validity of the theoretical results, showing that our novel approach compares favorably to traditional monotonic architectures.


Poster
#E-2101
Deep Linear Network Training Dynamics from Random Initialization: Data, Width, Depth, and Hyperparameter Transfer

Blake Bordelon · Cengiz Pehlevan

We theoretically characterize gradient descent dynamics in deep linear networks trained at large width from random initialization and on large quantities of random data. Our theory captures the ``wider is better" effect of mean-field/maximum-update parameterized networks as well as hyperparameter transfer effects, which can be contrasted with the neural-tangent parameterization where optimal learning rates shift with model width. We provide asymptotic descriptions of both non-residual and residual neural networks, the latter of which enables an infinite depth limit when branches are scaled as $1/\sqrt{\text{depth}}$. We also compare training with one-pass stochastic gradient descent to the dynamics when training data are repeated at each iteration. Lastly, we show that this model recovers the accelerated power law training dynamics for power law structured data in the rich regime observed in recent works.


Poster
#E-2102
Rethinking Benign Overfitting in Two-Layer Neural Networks

Ruichen Xu · Kexin Chen

Recent theoretical studies (Kou et al., 2023; Cao et al., 2022) revealed a sharp phase transition from benign to harmful overfitting when thenoise-to-feature ratio exceeds a threshold—a situation common in long-tailed data distributions where atypical data is prevalent. However, such harmful overfitting rarely happens in overparameterized neural networks. Further experimental results suggested that memorization is necessary for achieving near-optimal generalization error in long-tailed data distributions (Feldman & Zhang, 2020). We argue that this discrepancy between theoretical predictions and empirical observations arises because previous feature-noise data models overlook the heterogeneous nature of noise across different data classes. In this paper, we refine the feature-noise data model by incorporating class-dependent heterogeneous noise and re-examine the overfitting phenomenon in neural networks. Through a comprehensive analysis of the training dynamics, we establish test loss bounds for the refined model. Our findings reveal that neural networks can leverage "data noise" to learn implicit features that improve the classification accuracy for long-tailed data. Our analysis also provides a training-free metric for evaluating data influence on test performance. Experimental validation on both synthetic and real-world datasets supports our theoretical results.


Poster
#E-2103
Constrained Belief Updates Explain Geometric Structures in Transformer Representations

Mateusz Piotrowski · Paul Riechers · Daniel Filan · Adam Shai

What computational structures emerge in transformers trained on next-token prediction? In this work, we provide evidence that transformers implement constrained Bayesian belief updating---a parallelized version of partial Bayesian inference shaped by architectural constraints. We integrate the model-agnostic theory of optimal prediction with mechanistic interpretability to analyze transformers trained on a tractable family of hidden Markov models that generate rich geometric patterns in neural activations. Our primary analysis focuses on single-layer transformers, revealing how the first attention layer implements these constrained updates, with extensions to multi-layer architectures demonstrating how subsequent layers refine these representations. We find that attention carries out an algorithm with a natural interpretation in the probability simplex, and create representations with distinctive geometric structure. We show how both the algorithmic behavior and the underlying geometry of these representations can be theoretically predicted in detail---including the attention pattern, OV-vectors, and embedding vectors---by modifying the equations for optimal future token predictions to account for the architectural constraints of attention. Our approach provides a principled lens on how architectural constraints shape the implementation of optimal prediction, revealing why transformers develop specific intermediate geometric structures.


Poster
#E-2105
A Generalizable Physics-Enhanced State Space Model for Long-Term Dynamics Forecasting in Complex Environments

Yuchen Wang · Hongjue Zhao · Haohong Lin · Enze Xu · Lifang He · Huajie Shao

This work aims to address the problem of long-term dynamic forecasting in complex environments where data are noisy and irregularly sampled. While recent studies have introduced some methods to improve prediction performance, these approaches still face a significant challenge in handling long-term extrapolation tasks under such complex scenarios. To overcome this challenge, we propose Phy-SSM, a general-purpose framework that integrates partial physics knowledge into state space models (SSMs) for long-term dynamics forecasting in complex environments. Our motivation is that SSMs can effectively capture long-range dependencies in sequential data and model continuous dynamical systems, while the incorporation of physics knowledge improves generalization ability. The key challenge lies in how to seamlessly incorporate partially known physics into SSMs. To achieve this, we decompose partially known system dynamics into known and unknown state matrices, which are integrated into a Phy-SSM unit. To further enhance long-term prediction performance, we introduce a physics state regularization term to make the estimated latent states align with system dynamics. Besides, we theoretically analyze the uniqueness of the solutions for our method. Extensive experiments on three real-world applications, including vehicle motion prediction, drone state prediction, and COVID-19 epidemiology forecasting, demonstrate the superior performance of Phy-SSM over the baselines in both long-term interpolation and extrapolation tasks. The source code will be publicly available upon publication.


Poster
#E-2106
LSCD: Lomb--Scargle Conditioned Diffusion for Time series Imputation

Elizabeth M Fons Etcheverry · Alejandro Sztrajman · Yousef El-Laham · Luciana Ferrer · Svitlana Vyetrenko · Manuela Veloso

Time series with missing or irregularly sampled data are a persistent challenge in machine learning. Many methods operate on the frequency-domain, relying on the Fast Fourier Transform (FFT) which assumes uniform sampling, therefore requiring prior interpolation that can distort the spectra. To address this limitation, we introduce a differentiable Lomb--Scargle layer that enables a reliable computation of the power spectrum of irregularly sampled data.We integrate this layer into a novel score-based diffusion model (LSCD) for time series imputation conditioned on the entire signal spectrum. Experiments on synthetic and real-world benchmarks demonstrate that our method recovers missing data more accurately than purely time-domain baselines, while simultaneously producing consistent frequency estimates. Crucially, our method can be easily integrated into learning frameworks, enabling broader adoption of spectral guidance in machine learning approaches involving incomplete or irregular data.


Poster
#E-2107
Channel Normalization for Time Series Channel Identification

Seunghan Lee · Taeyoung Park · Kibok Lee

Channel identifiability (CID) refers to the ability to distinguish among individual channels in time series (TS) modeling. The absence of CID often results in producing identical outputs for identical inputs, disregarding channel-specific characteristics. In this paper, we highlight the importance of CID and propose Channel Normalization (CN), a simple yet effective normalization strategy that enhances CID by assigning distinct affine transformation parameters to each channel. We further extend CN in two ways: 1) Adaptive CN (ACN) dynamically adjusts parameters based on the input TS, improving adaptability in TS models, and 2) Prototypical CN (PCN) introduces a set of learnable prototypes instead of per-channel parameters, enabling applicability to datasets with unknown or varying number of channels and facilitating use in TS foundation models. We demonstrate the effectiveness of CN and its variants by applying them to various TS models, achieving significant performance gains for both non-CID and CID models. In addition, we analyze the success of our approach from an information theory perspective. Code is available at https://github.com/seunghan96/CN.


Poster
#E-2108
Efficient Time Series Processing for Transformers and State-Space Models through Token Merging

Leon Götz · Marcel Kollovieh · Stephan Günnemann · Leo Schwinn

Despite recent advances in subquadratic attention mechanisms or state-space models, processing long token sequences still imposes significant computational requirements. Token merging has emerged as a solution to increase computational efficiency in computer vision architectures. In this work, we perform the first investigations of token merging in time series analysis on both transformers and state-space models. We further introduce local merging, a domain-specific token merging algorithm that selectively combines tokens within a local neighborhood, achieving two major benefits: a) Local merging can adjust its computational complexity from quadratic to linear based on the neighborhood size to effectively scale to long sequences; b) Local merging is the first causal merging scheme enabling token merging in transformer decoders. Further, we identify spectral properties of the input data that reliably predict the potential benefits of local merging without requiring evaluation on downstream tasks. Our comprehensive empirical evaluation demonstrates that local merging offers substantial efficiency gains with minimal impact on accuracy, achieving up to 5400% acceleration on the recently proposed Chronos foundation model.


Poster
#E-2109
Quantifying Memory Utilization with Effective State-Size

Rom N. Parnichkun · Neehal Tumma · Armin Thomas · Alessandro Moro · Qi An · Taiji Suzuki · Atsushi Yamashita · Michael Poli · Stefano Massaroli

As the space of causal sequence modeling architectures continues to grow, the need to develop a general framework for their analysis becomes increasingly important. With this aim, we draw insights from classical signal processing and control theory, to develop a quantitative measure of memory utilization: the internal mechanisms through which a model stores past information to produce future outputs. This metric, which we call effective state-size (ESS), is tailored to the fundamental class of systems with input-invariant and input-varying linear operators, encompassing a variety of computational units such as variants of attention, convolutions, and recurrences. Unlike prior work on memory utilization, which either relies on raw operator visualizations (e.g. attention maps), or simply the total memory capacity (i.e. cache size) of a model, our metrics provide highly interpretable and actionable measurements. In particular, we show how ESS can be leveraged to improve initialization strategies, inform novel regularizers and advance the performance-efficiency frontier through model distillation. Furthermore, we demonstrate that the effect of context delimiters (such as end-of-speech tokens) on ESS highlights cross-architectural differences in how large language models utilize their available memory to recall information. Overall, we find that ESS provides valuable insights into the dynamics that dictate memory utilization, enabling the design of more efficient and effective sequence models.


Poster
#E-2110
In-Context Fine-Tuning for Time-Series Foundation Models

Matthew Faw · Rajat Sen · Yichen Zhou · Abhimanyu Das

Motivated by the recent success of time-series foundation models for zero-shot forecasting, we present a methodology for in-context fine-tuning of a time-series foundation model. In particular, we design a pretrained foundation model that can be prompted (at inference time) with multiple time-series examples, in order to forecast a target time-series into the future. Our foundation model is specifically trained to utilize examples from multiple related time-series in its context window (in addition to the history of the target time-series) to help it adapt to the specific distribution of the target domain at inference time. We show that such a foundation model that uses in-context examples at inference time can obtain much better performance on popular forecasting benchmarks compared to supervised deep learning methods, statistical models, and other time series foundation models. Interestingly, our in-context fine-tuning approach even matches the performance of a foundation model that is explicitly fine-tuned on the target domain.


Poster
#E-2111
Self-Supervised Learning of Intertwined Content and Positional Features for Object Detection

Kang-Jun Liu · Masanori Suganuma · Takayuki Okatani

We present a novel self-supervised feature learning method using Vision Transformers (ViT) as the backbone, specifically designed for object detection and instance segmentation. Our approach addresses the challenge of extracting features that capture both class and positional information, which are crucial for these tasks. The method introduces two key components: (1) a positional encoding tied to the cropping process in contrastive learning, which utilizes a novel vector field representation for positional embeddings; and (2) masking and prediction, similar to conventional Masked Image Modeling (MIM), applied in parallel to both content and positional embeddings of image patches. These components enable the effective learning of intertwined content and positional features. We evaluate our method against state-of-the-art approaches, pre-training on ImageNet-1K and fine-tuning on downstream tasks. Our method outperforms the state-of-the-art SSL methods on the COCO object detection benchmark, achieving significant improvements with fewer pre-training epochs. These results suggest that better integration of positional information into self-supervised learning can improve performance on the dense prediction tasks.


Poster
#E-2112
Non-Stationary Predictions May Be More Informative: Exploring Pseudo-Labels with a Two-Phase Pattern of Training Dynamics

Hongbin Pei · Jingxin Hai · Yu Li · Huiqi Deng · Denghao Ma · Jie Ma · Pinghui Wang · Jing Tao · Xiaohong Guan

Pseudo-labeling is a widely used strategy in semi-supervised learning. Existing methods typically select predicted labels with high confidence scores and high training stationarity, as pseudo-labels to augment training sets. In contrast, this paper explores the pseudo-labeling potential of predicted labels that do not exhibit these characteristics. We discover a new type of predicted labels suitable for pseudo-labeling, termed two-phase labels, which exhibit a two-phase pattern during training: they are initially predicted as one category in early training stages and switch to another category in subsequent epochs. Case studies show the two-phase labels are informative for decision boundaries. To effectively identify the two-phase labels, we design a 2-phasic metric that mathematically characterizes their spatial and temporal patterns. Furthermore, we propose a loss function tailored for two-phase pseudo-labeling learning, allowing models not only to learn correct correlations but also to eliminate false ones. Extensive experiments on eight datasets show that our proposed 2-phasic metric acts as a powerful booster for existing pseudo-labeling methods by additionally incorporating the two-phase labels, achieving an average classification accuracy gain of 1.73% on image datasets and 1.92% on graph datasets.


Poster
#E-2200
Contradiction Retrieval via Contrastive Learning with Sparsity

Haike Xu · Zongyu Lin · Kai-Wei Chang · Yizhou Sun · Piotr Indyk

Contradiction retrieval refers to identifying and extracting documents that explicitly disagree with or refute the content of a query, which is important to many downstream applications like fact checking and data cleaning. To retrieve contradiction argument to the query from large document corpora, existing methods such as similarity search and cross-encoder models exhibit different limitations.To address these challenges, we introduce a novel approach: SparseCL that leverages specially trained sentence embeddings designed to preserve subtle, contradictory nuances between sentences. Our method utilizes a combined metric of cosine similarity and a sparsity function to efficiently identify and retrieve documents that contradict a given query. This approach dramatically enhances the speed of contradiction detection by reducing the need for exhaustive document comparisons to simple vector calculations. We conduct contradiction retrieval experiments on Arguana, MSMARCO, and HotpotQA, where our method produces an average improvement of $11.0\%$ across different models. We also validate our method on downstream tasks like natural language inference and cleaning corrupted corpora.This paper outlines a promising direction for non-similarity-based information retrieval which is currently underexplored.


Poster
#E-2201
From Local Details to Global Context: Advancing Vision-Language Models with Attention-Based Selection

Lincan Cai · Jingxuan Kang · Shuang Li · Wenxuan Ma · Binhui Xie · Zhida Qin · Jian Liang

Pretrained vision-language models (VLMs), e.g., CLIP, demonstrate impressive zero-shot capabilities on downstream tasks. Prior research highlights the crucial role of visual augmentation techniques, like random cropping, in alignment with fine-grained class descriptions generated by large language models (LLMs), significantly enhancing zero-shot performance by incorporating multi-view information. However, the inherent randomness of these augmentations can inevitably introduce background artifacts and cause models to overly focus on local details, compromising global semantic understanding. To address these issues, we propose an Attention-Based Selection (ABS) method from local details to global context, which applies attention-guided cropping in both raw images and feature space, supplement global semantic information through strategic feature selection. Additionally, we introduce a soft matching technique to effectively filter LLM descriptions for better alignment. ABS achieves state-of-the-art performance on out-of-distribution generalization and zero-shot classification tasks. Notably, ABS is training-free and even rivals few-shot and test-time adaptation methods.


Poster
#E-2202
Integrating Intermediate Layer Optimization and Projected Gradient Descent for Solving Inverse Problems with Diffusion Models

Yang Zheng · Wen Li · Zhaoqiang Liu

Inverse problems (IPs) involve reconstructing signals from noisy observations. Recently, diffusion models (DMs) have emerged as a powerful framework for solving IPs, achieving remarkable reconstruction performance. However, existing DM-based methods frequently encounter issues such as heavy computational demands and suboptimal convergence. In this work, building upon the idea of the recent work DMPlug, we propose two novel methods, DMILO and DMILO-PGD, to address these challenges. Our first method, DMILO, employs intermediate layer optimization (ILO) to alleviate the memory burden inherent in DMPlug. Additionally, by introducing sparse deviations, we expand the range of DMs, enabling the exploration of underlying signals that may lie outside the range of the diffusion model. We further propose DMILO-PGD, which integrates ILO with projected gradient descent (PGD), thereby reducing the risk of suboptimal convergence. We provide an intuitive theoretical analysis of our approaches under appropriate conditions and validate their superiority through extensive experiments on diverse image datasets, encompassing both linear and nonlinear IPs. Our results demonstrate significant performance gains over state-of-the-art methods, highlighting the effectiveness of DMILO and DMILO-PGD in addressing common challenges in DM-based IP solvers.


Poster
#E-2203
Learning Input Encodings for Kernel-Optimal Implicit Neural Representations

Zhemin Li · Liyuan Ma · Hongxia Wang · Yaoyun Zeng · 晓龙 韩

Implicit Neural Representations (INRs) rely heavily on architectural choices for good generalization. Developing theoretically grounded approaches for architecture design remains an active area of research. Via theoretical analysis of the infinite-width limit, we establish a methodology that characterizes INR's generalization by means of kernel alignment. We first formulate the optimal kernel that minimizes pointwise expected squared error, then demonstrate that the Neural Tangent Kernel of the composed function (INR with input encoding) can approximate any positive semidefinite dot-product kernels through input feature mapping adjustments. Building upon these insights, we propose a Kernel Alignment Regularizer (KAR) that naturally integrates with existing INR systems to enhance kernel alignment. We further develop Plug-in Encoding for Aligned Kernels (PEAK) to refine INR models with KAR using learnable input encoding. This work contributes to the ongoing research efforts in bridging theory and practice for principled INR architecture design. Code is available at https://github.com/lizhemin15/KAR.


Poster
#E-2204
Understanding the Emergence of Multimodal Representation Alignment

Megan Tjandrasuwita · Chanakya Ekbote · Liu Ziyin · Paul Pu Liang

Multimodal representation learning is fundamentally about transforming incomparable modalities into comparable representations. While prior research has primarily focused on explicitly aligning these representations through targeted learning objectives and model architectures, a recent line of work has found that independently trained unimodal models of increasing scale and performance can become implicitly aligned with each other. These findings raise fundamental questions regarding the emergence of aligned representations in multimodal learning. Specifically: (1) when and why does alignment emerge implicitly? and (2) is alignment a reliable indicator of performance? Through a comprehensive empirical investigation, we demonstrate that both the emergence of alignment and its relationship with task performance depend on several critical data characteristics. These include, but are not necessarily limited to, the degree of similarity between the modalities and the balance between redundant and unique information they provide for the task. Our findings suggest that alignment may not be universally beneficial; rather, its impact on performance varies depending on the dataset and task. These insights can help practitioners determine whether increasing alignment between modalities is advantageous or, in some cases, detrimental to achieving optimal performance.


Poster
#E-2205
One Stone, Two Birds: Enhancing Adversarial Defense Through the Lens of Distributional Discrepancy

Jiacheng Zhang · Benjamin Rubinstein · Jingfeng Zhang · Feng Liu

Statistical adversarial data detection (SADD) detects whether an upcoming batch contains adversarial examples (AEs) by measuring the distributional discrepancies between clean examples (CEs) and AEs. In this paper, we explore the strength of SADD-based methods by theoretically showing that minimizing distributional discrepancy can help reduce the expected loss on AEs. Despite these advantages, SADD-based methods have a potential limitation: they discard inputs that are detected as AEs, leading to the loss of clean information within those inputs. To address this limitation, we propose a two-pronged adversarial defense method, named Distributional-discrepancy-based Adversarial Defense (DAD). In the training phase, DAD first optimizes the test power of the maximum mean discrepancy (MMD) to derive MMD-OPT, which is a stone that kills two birds. MMD-OPT first serves as a guiding signal to minimize the distributional discrepancy between CEs and AEs to train a denoiser. Then, it serves as a discriminator to differentiate CEs and AEs during inference. Overall, in the inference stage, DAD consists of a two-pronged process: (1) directly feeding the detected CEs into the classifier, and (2) removing noise from the detected AEs by the distributional-discrepancy-based denoiser. Extensive experiments show that DAD outperforms current state-of-the-art (SOTA) defense methods by simultaneously improving clean and robust accuracy on CIFAR-10 and ImageNet-1K against adaptive white-box attacks. Codes are publicly available at: https://github.com/tmlr-group/DAD.


Poster
#E-2206
Average Certified Radius is a Poor Metric for Randomized Smoothing

Chenhao Sun · Yuhao Mao · Mark Müller · Martin Vechev

Randomized smoothing (RS) is popular for providing certified robustness guarantees against adversarial attacks. The average certified radius (ACR) has emerged as a widely used metric for tracking progress in RS. However, in this work, for the first time we show that ACR is a poor metric for evaluating robustness guarantees provided by RS. We theoretically prove not only that a trivial classifier can have arbitrarily large ACR, but also that ACR is extremely sensitive to improvements on easy samples. In addition, the comparison using ACR has a strong dependence on the certification budget. Empirically, we confirm that existing training strategies, though improving ACR, reduce the model's robustness on hard samples consistently. To strengthen our findings, we propose strategies, including explicitly discarding hard samples, reweighing the dataset with approximate certified radius, and extreme optimization for easy samples, to replicate the progress in RS training and even achieve the state-of-the-art ACR on CIFAR-10, without training for robustness on the full data distribution. Overall, our results suggest that ACR has introduced a strong undesired bias to the field, and its application should be discontinued in RS. Finally, we suggest using the empirical distribution of $p_A$, the accuracy of the base model on noisy data, as an alternative metric for RS.


Poster
#E-2207
REINFORCE Adversarial Attacks on Large Language Models: An Adaptive, Distributional, and Semantic Objective

Simon Geisler · Tom Wollschläger · M. Hesham Abdalla · Vincent Cohen-Addad · Johannes Gasteiger · Stephan Günnemann

To circumvent the alignment of large language models (LLMs), current optimization-based adversarial attacks usually craft adversarial prompts by maximizing the likelihood of a so-called affirmative response. An affirmative response is a manually designed start of a harmful answer to an inappropriate request. While it is often easy to craft prompts that yield a substantial likelihood for the affirmative response, the attacked model frequently does not complete the response in a harmful manner. Moreover, the affirmative objective is usually not adapted to model-specific preferences and essentially ignores the fact that LLMs output a distribution over responses. If low attack success under such an objective is taken as a measure of robustness, the true robustness might be grossly overestimated. To alleviate these flaws, we propose an adaptive and semantic optimization problem over the population of responses. We derive a generally applicable objective via the REINFORCE policy-gradient formalism and demonstrate its efficacy with the state-of-the-art jailbreak algorithms Greedy Coordinate Gradient (GCG) and Projected Gradient Descent (PGD). For example, our objective doubles the attack success rate (ASR) on Llama3 and increases the ASR from 2\% to 50\% with circuit breaker defense.


Spotlight Poster
#E-2208
When and How Does CLIP Enable Domain and Compositional Generalization?

Elias Kempf · Simon Schrodi · Max Argus · Thomas Brox

The remarkable generalization performance of contrastive vision-language models like CLIP is often attributed to the diversity of their training distributions. However, key questions remain unanswered: Can CLIP generalize to an entirely unseen domain when trained on a diverse mixture of domains (domain generalization)? Can it generalize to unseen classes within partially seen domains (compositional generalization)? What factors affect such generalization? To answer these questions, we trained CLIP models on systematically constructed training distributions with controlled domain diversity and object class exposure. Our experiments show that domain diversity is essential for both domain and compositional generalization, yet compositional generalization can be surprisingly weaker than domain generalization when the training distribution contains a suboptimal subset of the test domain. Through data-centric and mechanistic analyses, we find that successful generalization requires the learning of sufficiently shared representations in intermediate layers and circuits.


Poster
#E-2209
Phase and Amplitude-aware Prompting for Enhancing Adversarial Robustness

Yibo Xu · Dawei Zhou · Decheng Liu · Nannan Wang

Deep neural networks are found to be vulnerable to adversarial perturbations. The prompt-based defense has been increasingly studied due to its high efficiency. However, existing prompt-based defenses mainly exploited mixed prompt patterns, where critical patterns closely related to object semantics lack sufficient focus. The phase and amplitude spectra have been proven to be highly related to specific semantic patterns and crucial for robustness. To this end, in this paper, we propose a Phase and Amplitude-aware Prompting (PAP) defense. Specifically, we construct phase-level and amplitude-level prompts for each class, and adjust weights for prompting according to the model's robust performance under these prompts during training. During testing, we select prompts for each image using its predicted label to obtain the prompted image, which is inputted to the model to get the final prediction. Experimental results demonstrate the effectiveness of our method.


Poster
#E-2210
Long-Short Alignment for Effective Long-Context Modeling in LLMs

Tianqi Du · Haotian Huang · Yifei Wang · Yisen Wang

Large language models (LLMs) have exhibited impressive performance and surprising emergent properties. However, their effectiveness remains limited by the fixed context window of the transformer architecture, posing challenges for long-context modeling. Among these challenges, length generalization — the ability to generalize to sequences longer than those seen during training — is a classical and fundamental problem. In this work, we propose a fresh perspective on length generalization, shifting the focus from the conventional emphasis on input features such as positional encodings or data structures to the output distribution of the model. Specifically, through case studies on synthetic tasks, we highlight the critical role of long-short alignment — the consistency of output distributions across sequences of varying lengths. Extending this insight to natural language tasks, we propose a metric called Long-Short Misalignment to quantify this phenomenon, uncovering a strong correlation between the metric and length generalization performance. Building on these findings, we develop a regularization term that promotes long-short alignment during training. Extensive experiments validate the effectiveness of our approach, offering new insights for achieving more effective long-context modeling in LLMs. Code is available at https://github.com/PKU-ML/LongShortAlignment.


Poster
#E-2211
Simplifying DINO via Coding Rate Regularization

Ziyang Wu · Jingyuan Zhang · Druv Pai · XuDong Wang · Chandan Singh · Jianwei Yang · Jianfeng Gao · Yi Ma

DINO and DINOv2 are two model families being widely used to learn representations from unlabeled imagery data at large scales. Their learned representations often enable state-of-the-art performance for downstream tasks, such as image classification and segmentation. However, they employ many empirically motivated design choices and their training pipelines are highly complex and unstable --- many hyperparameters need to be carefully tuned to ensure that the representations do not collapse --- which poses considerable difficulty to improving them or adapting them to new domains. In this work, we posit that we can remove most such-motivated idiosyncrasies in the pre-training pipelines, and only need to add an explicit coding rate term in the loss function to avoid collapse of the representations. As a result, we obtain highly simplified variants of the DINO and DINOv2 which we call SimDINO and SimDINOv2, respectively. Remarkably, these simplified models are more robust to different design choices, such as network architecture and hyperparameters, and they learn even higher-quality representations, measured by performance on downstream tasks, offering a Pareto improvement over the corresponding DINO and DINOv2 models. This work highlights the potential of using simplifying design principles to improve the empirical practice of deep learning. Code and model checkpoints are available at https://github.com/RobinWu218/SimDINO.


Poster
#E-2212
On the Out-of-Distribution Generalization of Self-Supervised Learning

Wenwen Qiang · Jingyao Wang · Zeen Song · Jiangmeng Li · Changwen Zheng

In this paper, we focus on the out-of-distribution (OOD) generalization of self-supervised learning (SSL). By analyzing the mini-batch construction during the SSL training phase, we first give one plausible explanation for SSL having OOD generalization. Then, from the perspective of data generation and causal inference, we analyze and conclude that SSL learns spurious correlations during the training process, which leads to a reduction in OOD generalization. To address this issue, we propose a post-intervention distribution (PID) grounded in the Structural Causal Model. PID offers a scenario where the spurious variable and label variable is mutually independent. Besides, we demonstrate that if each mini-batch during SSL training satisfies PID, the resulting SSL model can achieve optimal worst-case OOD performance. This motivates us to develop a batch sampling strategy that enforces PID constraints through the learning of a latent variable model. Through theoretical analysis, we demonstrate the identifiability of the latent variable model and validate the effectiveness of the proposed sampling strategy. Experiments conducted on various downstream OOD tasks demonstrate the effectiveness of the proposed sampling strategy.


Spotlight Poster
#E-2300
Functional Alignment Can Mislead: Examining Model Stitching

Damian Smith · Harvey Mannering · Antonia Marcu

A common belief in the representational comparison literature is that if two representations can be functionally aligned, they must capture similar information. In this paper we focus on model stitching and show that models can be functionally aligned, but represent very different information. Firstly, we show that discriminative models with very different biases can be stitched together. We then show that models trained to solve entirely different tasks on different data modalities, and even clustered random noise, can be successfully stitched into MNIST or ImageNet-trained models. We end with a discussion of the wider impact of our results on the community's current beliefs. Overall, our paper draws attention to the need to correctly interpret the results of such functional similarity measures and highlights the need for approaches that capture informational similarity.


Poster
#E-2301
Think Smarter not Harder: Adaptive Reasoning with Inference Aware Optimization

Zishun Yu · Tengyu Xu · Di Jin · Karthik Abinav Sankararaman · Yun He · Wenxuan Zhou · Zhouhao Zeng · Eryk Helenowski · Chen Zhu · Sinong Wang · Hao Ma · Han Fang

Solving mathematics problems has been an intriguing capability of large language models, and many efforts have been made to improve reasoning by extending reasoning length, such as through self-correction and extensive long chain-of-thoughts. While promising in problem-solving, advanced long reasoning chain models exhibit an undesired single-modal behavior, where trivial questions require unnecessarily tedious long chains of thought. In this work, we propose a way to allow models to be aware of inference budgets by formulating it as utility maximization with respect to an inference budget constraint, hence naming our algorithm Inference Budget-Constrained Policy Optimization (IBPO). In a nutshell, models fine-tuned through IBPO learn to ``understand'' the difficulty of queries and allocate inference budgets to harder ones. With different inference budgets, our best models are able to have a $4.14$\% and $5.74$\% absolute improvement ($8.08$\% and $11.2$\% relative improvement) on MATH500 using $2.16$x and $4.32$x inference budgets respectively, relative to LLaMA3.1 8B Instruct. These improvements are approximately $2$x those of self-consistency under the same budgets.


Spotlight Poster
#E-2302
Taming Knowledge Conflicts in Language Models

Gaotang Li · Yuzhong Chen · Hanghang Tong

Language Models (LMs) often encounter knowledge conflicts when parametric memory contradicts contextual knowledge. Previous works attribute this conflict to the interplay between "memory heads" and "context heads", attention heads assumed to promote either memory or context exclusively. In this study, we go beyond this fundamental assumption by uncovering a critical phenomenon we term the superposition of contextual information and parametric memory, where highly influential attention heads simultaneously contribute to both memory and context. Building upon this insight, we propose Just Run Twice (JuICE), a test-time attention intervention method that steers LMs toward either parametric beliefs or contextual knowledge without requiring fine-tuning. JuICE identifies a set of reliable attention heads and leverages a dual-run approach to mitigate the superposition effects. Extensive experiments across 11 datasets and 6 model architectures demonstrate that JuICE sets the new state-of-the-art performance and robust generalization, achieving significant and consistent improvement across different domains under various conflict types. Finally, we theoretically analyze knowledge conflict and the superposition of contextual information and parametric memory in attention heads, which further elucidates the effectiveness of JuICE in these settings. Our code is available at https://github.com/GaotangLi/JUICE.


Poster
#E-2303
Reinforced Lifelong Editing for Language Models

Zherui Li · Houcheng Jiang · Hao Chen · Baolong Bi · Zhenhong Zhou · Fei Sun · Junfeng Fang · Xiang Wang

Large language models (LLMs) acquire information from pre-training corpora, but their stored knowledge can become inaccurate or outdated over time. Model editing addresses this challenge by modifying model parameters without retraining, and prevalent approaches leverage hypernetworks to generate these parameter updates. However, they face significant challenges in lifelong editing due to their incompatibility with LLM parameters that dynamically change during the editing process. To address this, we observed that hypernetwork-based lifelong editing aligns with reinforcement learning modeling and proposed RLEdit, an RL-based editing method. By treating editing losses as rewards and optimizing hypernetwork parameters at the full knowledge sequence level, we enable it to precisely capture LLM changes and generate appropriate parameter updates. Our extensive empirical evaluation across several LLMs demonstrates that RLEdit outperforms existing methods in lifelong editing with superior effectiveness and efficiency, achieving a 59.24% improvement while requiring only 2.11% of the time compared to most approaches.


Poster
#E-2304
Iterative Vectors: In-Context Gradient Steering without Backpropagation

Yiting Liu · Zhi-Hong Deng

In-context learning has become a standard approach for utilizing language models.However, selecting and processing suitable demonstration examples can be challenging and time-consuming, especially when dealing with large numbers of them.We propose Iterative Vectors (IVs), a technique that explores activation space to enhance in-context performance by simulating gradient updates during inference.IVs extract and iteratively refine activation-based meta-gradients, applying them during inference without requiring backpropagation at any stage.We evaluate IVs across various tasks using four popular models and observe significant improvements.Our findings suggest that in-context activation steering is a promising direction, opening new avenues for future research.


Poster
#E-2305
LLM Data Selection and Utilization via Dynamic Bi-level Optimization

Yang Yu · Kai Han · Hang Zhou · Yehui Tang · Kaiqi Huang · Yunhe Wang · Dacheng Tao

While large-scale training data is fundamental for developing capable large language models (LLMs), strategically selecting high-quality data has emerged as a critical approach to enhance training efficiency and reduce computational costs. Current data selection methodologies predominantly rely on static, training-agnostic criteria, failing to account for the dynamic model training and data interactions. In this paper, we propose a new Data Weighting Model (DWM) to adjust the weight of selected data within each batch to achieve a dynamic data utilization during LLM training. Specially, to better capture the dynamic data preference of the trained model, a bi-level optimization framework is implemented to update the weighting model. Our experiments demonstrate that DWM enhances the performance of models trained with randomly-selected data, and the learned weighting model can be transferred to enhance other data selection methods and models of different sizes. Moreover, we further analyze how a model’s data preferences evolve throughout training, providing new insights into the data preference of the model during training.


Poster
#E-2306
Compress then Serve: Serving Thousands of LoRA Adapters with Little Overhead

Rickard Gabrielsson · Jiacheng Zhu · Onkar Bhardwaj · Leshem Choshen · Kristjan Greenewald · Mikhail Yurochkin · Justin Solomon

Fine-tuning large language models (LLMs) with low-rank adaptations (LoRAs) has become common practice, often yielding numerous copies of the same LLM differing only in their LoRA updates. This paradigm presents challenges for systems that serve real-time responses to queries that each involve a different LoRA. Prior works optimize the design of such systems but still require continuous loading and offloading of LoRAs, as it is infeasible to store thousands of LoRAs in GPU memory. To mitigate this issue, we investigate the efficacy of compression when serving LoRAs. We propose a method for the joint compression of LoRAs into a shared basis paired with LoRA-specific scaling matrices. We extend our algorithm to learn clusters of LoRAs that are amenable to joint compression, allowing it to scale gracefully to large LoRA collections. Our experiments with up to 1000 LoRAs demonstrate that compressed LoRAs preserve performance while offering major throughput gains in realistic serving scenarios with over a thousand LoRAs, maintaining 80\% of the throughput of serving a single LoRA.


Spotlight Poster
#E-2307
An Analysis for Reasoning Bias of Language Models with Small Initialization

Junjie Yao · zhongwang zhang · Zhi-Qin John Xu

Transformer-based Large Language Models (LLMs) have revolutionized Natural Language Processing by demonstrating exceptional performance across diverse tasks. This study investigates the impact of the parameter initialization scale on the training behavior and task preferences of LLMs. We discover that smaller initialization scales encourage models to favor reasoning tasks, whereas larger initialization scales lead to a preference for memorization tasks. We validate this reasoning bias via real datasets and meticulously designed anchor functions. Further analysis of initial training dynamics suggests that specific model components, particularly the embedding space and self-attention mechanisms, play pivotal roles in shaping these learning biases. We provide a theoretical framework from the perspective of model training dynamics to explain these phenomena. Additionally, experiments on real-world language tasks corroborate our theoretical insights. This work enhances our understanding of how initialization strategies influence LLM performance on reasoning tasks and offers valuable guidelines for training models.


Poster
#E-2308
NestQuant: nested lattice quantization for matrix products and LLMs

Semyon Savkin · Eitan Porat · Or Ordentlich · Yury Polyanskiy

Post-training quantization (PTQ) has emerged as a critical technique for efficient deployment of large language models (LLMs). This work proposes NestQuant, a novel PTQ scheme for weights and activations that is based on self-similar nested lattices. Recent works have mathematically shown such quantizers to be information-theoretically optimal for low-precision matrix multiplication. We implement a practical low-complexity version of NestQuant based on Gosset lattice, making it a drop-in quantizer for any matrix multiplication step (e.g., in self-attention, MLP etc). For example, NestQuant quantizes weights, KV-cache, and activations of Llama-3-8B to 4 bits, achieving perplexity of 6.6 on wikitext2. This represents more than 55\% reduction in perplexity gap with respect to unquantized model (perplexity of 6.14) compared to state-of-the-art Meta's SpinQuant (perplexity 7.3), OstQuant (7.3) and QuaRot (8.2). Comparisons on bigger models (up to 70B) and on various LLM evaluation benchmarks confirm uniform superiority of NestQuant.


Poster
#E-2309
Revolve: Optimizing AI Systems by Tracking Response Evolution in Textual Optimization

Peiyan Zhang · Haibo Jin · Leyang Hu · Xinnuo Li · Liying Kang · Man Luo · Yangqiu Song · Haohan Wang

Recent advancements in large language models (LLMs) have significantly enhanced the ability of LLM-based systems to perform complex tasks through natural language processing and tool interaction. However, optimizing these LLM-based systems for specific tasks remains challenging, often requiring manual interventions like prompt engineering and hyperparameter tuning.Existing automatic optimization methods, such as textual feedback-based techniques (*e.g.*, TextGrad), tend to focus on immediate feedback, analogous to using immediate derivatives in traditional numerical gradient descent.However, relying solely on such feedback can be limited when the adjustments made in response to this feedback are either too small or fluctuate irregularly, potentially slowing down or even stalling the optimization process. In this paper, we introduce $\textbf{REVOLVE}$, an optimization method that tracks how $\textbf{R}$esponses $\textbf{EVOLVE}$across iterations in LLM systems. By focusing on the evolution of responses over time, REVOLVE enables more stable and effective optimization by making thoughtful, progressive adjustments at each step. Experiments across three tasks demonstrate the adaptability and efficiency of our proposal. Beyond its practical contributions, REVOLVE highlights a promising direction, where the rich knowledge from established optimization principles can be leveraged to enhance LLM systems, which paves the way for further advancements in this hybrid domain. Code is available at: https://llm-revolve.netlify.app.


Poster
#E-2310
ROPO: Robust Preference Optimization for Large Language Models

Xize Liang · Chao Chen · Shuang Qiu · Jie Wang · Yue Wu · Zhihang Fu · Hanzhu Chen · Feng Wu · Jieping Ye

The prevalent noise in the preference data unavoidably poses significant challenges to the preference alignment of large language models (LLMs). Existing efforts for this problem either marginally alleviate the impact of noise without noise reduction, or rely on external LLMs that incur substantial computational costs. To address these challenges, we propose RObust Preference Optimization (ROPO), an iterative alignment approach that integrates noise-tolerance and noise filtering without the aid of external models. Specifically, ROPO first formulates the training process with adaptive noise reduction as an optimization problem, which can be efficiently solved in an iterative paradigm. Then, to equip this solving process with noise-tolerance and noise-identification capabilities, we derive a robust loss that suppresses the gradients from samples with high uncertainty. We demonstrate both empirically and theoretically that the derived loss is key to the noise-tolerance and effective filtering of noisy samples. The derived loss further inspires a robustness-guided rejection sampling technique to compensate for the potential important information in discarded queries. Extensive experiments on several widely-used datasets and model architectures demonstrate that ROPO significantly outperforms all baselines under four practical noise settings and the random symmetric noise, with its advantage increasing as the noise rate increases.


Poster
#E-2311
Improving Your Model Ranking on Chatbot Arena by Vote Rigging

Rui Min · Tianyu Pang · Chao Du · Qian Liu · Minhao Cheng · Min Lin

Chatbot Arena is an open platform for evaluating LLMs by pairwise battles, in which users vote for their preferred response from two randomly sampled anonymous models. While Chatbot Arena is widely regarded as a reliable LLM ranking leaderboard, we show that crowdsourced voting can be *rigged* to improve (or decrease) the ranking of a target model $m\_{t}$. We first introduce a straightforward **target-only rigging** strategy that focuses on new battles involving $m\_{t}$, identifying it via watermarking or a binary classifier, and exclusively voting for $m\_{t}$ wins. However, this strategy is practically inefficient because there are over $190$ models on Chatbot Arena and on average only about 1% of new battles will involve $m\_{t}$. To overcome this, we propose an **omnipresent rigging** strategy, exploiting the Elo rating mechanism of Chatbot Arena that any new vote on a battle can influence the ranking of the target model $m\_{t}$, even if $m\_{t}$ is not directly involved in the battle. We conduct experiments on around *1.7 million* historical votes from the Chatbot Arena Notebook, showing that omnipresent rigging strategy can improve model rankings by rigging only *hundreds of* new votes. While we have evaluated several defense mechanisms, our findings highlight the importance of continued efforts to prevent vote rigging. [**Code**](https://github.com/sail-sg/Rigging-ChatbotArena) is publicly available to reproduce all experiments.


Poster
#E-2312
Exploiting Presentative Feature Distributions for Parameter-Efficient Continual Learning of Large Language Models

Xin Cheng · Jiabo Ye · Haiyang Xu · Ming Yan · Ji Zhang · Feng Liu · Fei Huang · Lei Feng

Endowing large language models (LLMs) with continual learning (CL) capacities is practically important, which enables them to dynamically acquire new knowledge over time. Although many effective methods have been proposed for CL of LLMs, they did not consider online scenarios, thereby sharing a common problem: information leakage (IL), where the task-related information of learned tasks is accessed or reused again. IL not only imposes potential risks on data privacy protection but also significantly hinders the deployment of LLMs in real-world scenarios. To avoid IL while maintaining outstanding CL performance, we propose a novel CL method for LLMs, which first characterizes a parameter-efficient fine-tuning (PEFT) block by a presentative feature distribution, and then dynamically selects the appropriate PEFT blocks for each instance based on its similarity with the presentative feature distributions. Extensive experiments validate the effectiveness of our method on the CL of LLM, showcasing its potential to enhance both privacy and adaptability in practical applications.


Poster
#E-2400
Reliable and Efficient Amortized Model-based Evaluation

Sang Truong · Yuheng Tu · Percy Liang · Bo Li · Sanmi Koyejo

Comprehensive evaluations of language models (LM) during both development and deployment phases are necessary because these models are thought to possess numerous capabilities as well as safety risks. The average score across a wide range of benchmarks provides a signal that helps guide the use of these LMs in practice. Currently, holistic evaluations are costly due to the large volume of benchmark questions, making frequent evaluations impractical. A popular attempt to lower the cost is to compute the average score on a subset of the benchmark. This approach, unfortunately, often renders an unreliable measure of LM performance because the average score is often confounded with the difficulty of the questions in the benchmark subset. Item response theory (IRT) was designed to address this challenge, providing a reliable measurement by careful controlling for question difficulty. Unfortunately, question difficulty is expensive to estimate. Facing this challenge, we train a model that predicts question difficulty from its content, enabling a reliable measurement at a fraction of the cost. In addition, we leverage this difficulty predictor to further improve the evaluation efficiency through training a question generator given a difficulty level. This question generator is essential in adaptive testing, where, instead of using a random subset of the benchmark questions, informative questions are adaptively chosen based on the current estimation of LLM performance. Experiments on 22 common natural language benchmarks and 183 LMs show that this approach is more reliable and efficient compared to the current common practice.


Poster
#E-2401
AuPair: Golden Example Pairs for Code Repair

Aditi Mavalankar · Hassan Mansoor · Zita Marinho · Mariia Samsikova · Tom Schaul

Scaling up inference-time compute has proven to be a valuable strategy in improving the performance of Large Language Models (LLMs) without fine-tuning. An important task that can benefit from additional inference-time compute is self-repair; given an initial flawed response or guess, the LLM corrects its own mistake and produces an improved response or fix. We leverage the in-context learning ability of LLMs to perform self-repair in the coding domain. The key contribution of our paper is an approach that synthesises and selects an ordered set of golden example pairs, or AuPairs, of these initial guesses and subsequent fixes for the corresponding problems. Each such AuPair is provided as a single in-context example at inference time to generate a repaired solution. For an inference-time compute budget of $N$ LLM calls per problem, $N$ AuPairs are used to generate $N$ repaired solutions, out of which the highest-scoring solution is the final answer. The underlying intuition is that if the LLM is given a different example of fixing an incorrect guess each time, it can subsequently generate a diverse set of repaired solutions. Our algorithm selects these AuPairs in a manner that maximises complementarity and usefulness. We demonstrate the results of our algorithm on 5 LLMs across 7 competitive programming datasets for the code repair task. Our algorithm yields a significant boost in performance compared to best-of-$N$ and self-repair, and also exhibits strong generalisation across datasets and models. Moreover, our approach shows stronger scaling with inference-time compute budget compared to baselines.


Poster
#E-2402
ProofAug: Efficient Neural Theorem Proving via Fine-grained Proof Structure Analysis

Haoxiong Liu · Jiacheng Sun · Zhenguo Li · Andrew Yao

The synergy between deep learning models and traditional automation tools, such as built-in tactics of the proof assistant and off-the-shelf automated theorem provers, plays a crucial role in developing robust and efficient neural theorem provers~(NTPs).However, for proof synthesis with LLMs, previous work applies automation tools either only when explicitly invoked by the model or at a single granularity level, failing to fully exploit their power. To solve this issue, we propose ProofAug, a procedure that equips LLMs with automation methods at various granularities through fine-grained structure analysis of model-generated proof proposals. ProofAug also serves as a versatile plug-and-play module that seamlessly integrates with any tree-search algorithm, enabling our construction of an efficient recursive proving (ERP) module to further enhance performance.The superiority of our method is validated on the miniF2F benchmark using the open-source deepseek-math-7b-base model and the Isabelle proof assistant.Notably, by additionally employing a mixed prompting strategy, we achieve a cumulative pass rate of 66.0% after curation of the dataset (61.9% for the original version) with 2100 queries to the model per problem (In contrast, the previous SOTA in Isabelle, Subgoal-XL, only achieves 56.1% using 16384 queries per problem).We also implement a Lean 4 version of ProofAug that can improve the pass@1 performance of Kimina-Prover-Preview-Distill-1.5B from 44.3% to 50.4% on miniF2F-test. Our code is available at https://github.com/haoxiongliu/ProofAug.


Poster
#E-2403
UGPhysics: A Comprehensive Benchmark for Undergraduate Physics Reasoning with Large Language Models

Xin Xu · Qiyun Xu · Tong Xiao · Tianhao Chen · Yuchen Yan · Jiaxin ZHANG · Shizhe Diao · Can Yang · Yang Wang

Large language models (LLMs) have demonstrated remarkable capabilities in solving complex reasoning tasks, particularly in mathematics. However, the domain of physics reasoning presents unique challenges that have received significantly less attention. Existing benchmarks often fall short in evaluating LLMs’ abilities on the breadth and depth of undergraduate-level physics, underscoring the need for a comprehensive evaluation. To fill this gap, we introduce UGPhysics, a large-scale and diverse benchmark specifically designed to evaluate UnderGraduate-level Physics (UGPhysics) reasoning with LLMs. UGPhysics includes 5,520 undergraduate-level physics problems in both English and Chinese across 13 subjects with seven different answer types and four distinct physics reasoning skills, all rigorously screened for data leakage. Additionally, we develop a Model-Assistant Rule-based Judgment (MARJ) pipeline specifically tailored for assessing physics problems, ensuring accurate evaluation. Our evaluation of 31 leading LLMs shows that the highest overall accuracy, 49.8% (achieved by OpenAI-o1-mini), emphasizes the need for models with stronger physics reasoning skills, beyond math abilities. We hope UGPhysics, along with MARJ, will drive future advancements in AI for physics reasoning. Codes and data are available at \href{https://github.com/YangLabHKUST/UGPhysics}{https://github.com/YangLabHKUST/UGPhysics}.


Poster
#E-2404
Unbiased Evaluation of Large Language Models from a Causal Perspective

Meilin Chen · Jian Tian · Liang Ma · Di Xie · Weijie Chen · Jiang Zhu

Benchmark contamination has become a significant concern in the LLM evaluation community. Previous Agents-as-an-Evaluator address this issue by involving agents in the generation of questions. Despite their success, the biases in Agents-as-an-Evaluator methods remain largely unexplored. In this paper, we present a theoretical formulation of evaluation bias, providing valuable insights into designing unbiased evaluation protocols. Furthermore, we identify two type of bias in Agents-as-an-Evaluator through carefully designed probing tasks on a minimal Agents-as-an-Evaluator setup. To address these issues, we propose the Unbiased Evaluator, an evaluation protocol that delivers a more comprehensive, unbiased, and interpretable assessment of LLMs. Extensive experiments reveal significant room for improvement in current LLMs. Additionally, we demonstrate that the Unbiased Evaluator not only offers strong evidence of benchmark contamination but also provides interpretable evaluation results.


Poster
#E-2405
Reward-Guided Prompt Evolving in Reinforcement Learning for LLMs

Ziyu Ye · Rishabh Agarwal · Tianqi Liu · Rishabh Joshi · Sarmishta Velury · Quoc Le · Qijun Tan · Yuan Liu

Existing reinforcement learning (RL) methods for large language models (LLMs) rely on static prompt sets, where prompts are curated a priori, and sampled in a fixed schedule for training, regardless of their usefulness to the RL process. We design eva, the first method that allows LLMs to prioritize and adaptively create useful prompts during RL training by reward signals. In principle, eva (Evolving via A symmetric Self-Play) casts language model training as a game between: (1) a creator, who samples and generates training prompts, and (2) a solver, who generates responses to the prompts. eva is simple, suits both offline and online RL for LLMs, and sets a new state-of-the-art on challenging benchmarks without extra human prompts: it improves gemma-2-9b-it’s win-rate on Arena-Hard from 51.6% to 60.1% by DPO and 52.6% to 62.4% by RLOO, surpassing claude-3-opus and nearing gemini-1.5-pro, both are orders of magnitude larger. Further ablation studies show eva can induce meaningful learning curriculum, and effectively scale RL for LLMs beyond static human prompts.


Poster
#E-2406
Teaching Transformers Causal Reasoning through Axiomatic Training

Aniket Vashishtha · Abhinav Kumar · Atharva Pandey · Abbavaram Gowtham Reddy · Kabir Ahuja · Vineeth N Balasubramanian · Amit Sharma

For text-based AI systems to interact in the real world, causal reasoning is an essential skill. Since interventional data is costly to generate, we study to what extent an agent can learn causal reasoning from passive data. Specifically, we consider an axiomatic training setup where an agent learns from multiple demonstrations of a causal axiom (or rule), rather than incorporating the axiom as an inductive bias or inferring it from data values. A key question is whether the agent would learn to generalize from the axiom demonstrations to new scenarios. For example, if a transformer model is trained on demonstrations of the causal transitivity axiom over small graphs, would it generalize to applying the transitivity axiom over large graphs? Our results, based on a novel axiomatic training scheme, indicate that such generalization is possible. We consider the task of inferring whether a variable causes another variable, given a causal graph structure. We find that a 67 million parameter transformer model, when trained on linear causal chains (along with some noisy variations) can generalize well to new kinds of graphs, including longer causal chains, causal chains with reversed order, and graphs with branching; even when it is not explicitly trained for such settings. Our model performs at par (or even better) than many larger language models such as GPT-4, Gemini Pro, and Phi-3. Overall, our axiomatic training framework provides a new paradigm of learning causal reasoning from passive data that can be used to learn arbitrary axioms, as long as sufficient demonstrations can be generated.


Poster
#E-2407
KABB: Knowledge-Aware Bayesian Bandits for Dynamic Expert Coordination in Multi-Agent Systems

Jusheng Zhang · Zimeng Huang · Yijia Fan · Ningyuan Liu · Mingyan Li · Zhuojie Yang · Jiawei Yao · Jian Wang · Keze Wang

As scaling large language models faces prohibitive costs, multi-agent systems emerge as a promising alternative, though challenged by static knowledge assumptions and coordination inefficiencies. We introduce Knowledge-Aware Bayesian Bandits (KABB), a novel framework that enhances multi-agent system coordination through semantic understanding and dynamic adaptation. The framework features three key innovations: a customized knowledge distance model for deep semantic understanding, a dual-adaptation mechanism for continuous expert optimization, and a knowledge-aware Thompson Sampling strategy for efficient expert selection. Extensive evaluation demonstrates KABB achieves an optimal cost-performance balance, maintaining high performance while keeping computational demands relatively low in multi-agent coordination.


Poster
#E-2408
Hi-Patch: Hierarchical Patch GNN for Irregular Multivariate Time Series

Yicheng Luo · Bowen Zhang · Zhen Liu · Qianli Ma

Multi-scale information is crucial for multivariate time series modeling. However, most existing time series multi-scale analysis methods treat all variables in the same manner, making them unsuitable for Irregular Multivariate Time Series (IMTS), where variables have distinct origin scales/sampling rates. To fill this gap, we propose Hi-Patch, a hierarchical patch graph network. Hi-Patch encodes each observation as a node, represents and captures local temporal and inter-variable dependencies of densely sampled variables through an intra-patch graph layer, and obtains patch-level nodes through aggregation. These nodes are then updated and re-aggregated through a stack of inter-patch graph layers, where several scale-specific graph networks progressively extract more global temporal and inter-variable features of both sparsely and densely sampled variables under specific scales. The output of the last layer is fed into task-specific decoders to adapt to different downstream tasks. Experiments on 8 datasets demonstrate that Hi-Patch outperforms state-of-the-art models in IMTS forecasting and classification tasks.


Poster
#E-2409
Learning Distribution-wise Control in Representation Space for Language Models

Deng · Ruidi Chang · Hanjie Chen

Interventions in language models (LMs) are applied strategically to steer model behavior during the forward pass. Learnable interventions, also known as representation fine-tuning, aim to apply pointwise control within the concept subspace and have proven effective in altering high-level behaviors. In this work, we extend this approach to the distribution level, enabling the model to learn not only pointwise transformations but also the surrounding regions of the concept subspace. We demonstrate that these methods perform effectively in early layers, with larger standard deviations correlating strongly with improved performance. Across eight commonsense reasoning and seven arithmetic reasoning benchmarks, our distribution-wise interventions consistently outperform pointwise interventions in controllability and robustness. These results illustrate that distribution-wise interventions provide a more comprehensive method for steering model behavior and enabling finer-grained control over language models. The code is at: https://github.com/chili-lab/D-Intervention.


Poster
#E-2410
Progressively Label Enhancement for Large Language Model Alignment

Biao Liu · Ning Xu · Xin Geng

Large Language Models (LLM) alignment aims to prevent models from producing content that misaligns with human expectations, which can lead to ethical and legal concerns. In the last few years, Reinforcement Learning from Human Feedback (RLHF) has been the most prominent method for achieving alignment. Due to challenges in stability and scalability with RLHF stages, which arise from the complex interactions between multiple models, researchers are exploring alternative methods to achieve effects comparable to those of RLHF. However, these methods often rely on large high-quality datasets. Despite some methods considering the generation of additional data to expand datasets, they often treat model training and data generation as separate and static processes, overlooking the fact that these processes are highly interdependent, leading to inefficient utilization of the generated data. To deal with this problem, we propose PLE, i.e., Progressively Label Enhancement for LLM Alignment, a framework that dynamically adjusts the model’s training process based on the evolving quality of the generated data. Specifically, we prompt the model to generate responses for both the original query and a set of carefully designed principle guided query, and then utilize a dynamic threshold to determine the appropriate training approach for both responses based on their corresponding reward scores. Experimental results demonstrate the effectiveness of PLE compared to existing LLM alignment methods.


Poster
#E-2411
The Geometry of Refusal in Large Language Models: Concept Cones and Representational Independence

Tom Wollschläger · Jannes Elstner · Simon Geisler · Vincent Cohen-Addad · Stephan Günnemann · Johannes Gasteiger

The safety alignment of large language models (LLMs) can be circumvented through adversarially crafted inputs, yet the mechanisms by which these attacks bypass safety barriers remain poorly understood. Prior work suggests that a single refusal direction in the model's activation space determines whether an LLM refuses a request. In this study, we propose a novel gradient-based approach to representation engineering and use it to identify refusal directions. Contrary to prior work, we uncover multiple independent directions and even multi-dimensional concept cones that mediate refusal. Moreover, we show that orthogonality alone does not imply independence under intervention, motivating the notion of representational independence that accounts for both linear and non-linear effects. Using this framework, we identify mechanistically independent refusal directions. We show that refusal mechanisms in LLMs are governed by complex spatial structures and identify functionally independent directions, confirming that multiple distinct mechanisms drive refusal behavior. Our gradient-based approach uncovers these mechanisms and can further serve as a foundation for future work on understanding LLMs.


Spotlight Poster
#E-2412
RAPID: Long-Context Inference with Retrieval-Augmented Speculative Decoding

Guanzheng Chen · Qilong Feng · Jinjie Ni · Xin Li · Michael Shieh

The emergence of long-context large language models (LLMs) offers a promising alternative to traditional retrieval-augmented generation (RAG) for processing extensive documents. However, the computational overhead of long-context inference presents significant efficiency challenges. While Speculative Decoding (SD) traditionally accelerates inference using smaller draft models, its effectiveness diminishes substantially in long-context scenarios due to memory-bound KV cache operations. We introduce Retrieval-Augmented Speculative Decoding (RAPID), which leverages RAG for both accelerating and enhancing generation quality in long-context inference. RAPID introduces the RAG drafter—a draft LLM operating on shortened retrieval contexts—to speculate on the generation of long-context target LLMs. Our approach enables a new paradigm where same-scale or even larger LLMs can serve as RAG drafters while maintaining computational efficiency. To fully leverage the potentially superior capabilities from stronger RAG drafters, we develop an inference-time knowledge transfer that enriches the target distribution by RAG. Extensive experiments on the LLaMA-3.1 and Qwen2.5 backbones demonstrate that RAPID effectively integrates the strengths of both RAG and long-context LLMs, achieving significant performance improvements (e.g., from 39.33 to 42.83 on InfiniteBench for LLaMA-3.1-8B) with more than 2$\times$ speedups for long-context inference. Our analyses also reveal the robustness of RAPID across various context lengths and retrieval quality.


Poster
#E-2500
LLMs on the Line: Data Determines Loss-to-Loss Scaling Laws

Prasanna Mayilvahanan · Thaddäus Wiedemer · Sayak Mallick · Matthias Bethge · Wieland Brendel

Scaling laws guide the development of large language models (LLMs) by offering estimates for the optimal balance of model size, tokens, and compute.More recently, loss-to-loss scaling laws that relate losses across pretraining datasets and downstream tasks have emerged as a powerful tool for understanding and improving LLM performance and generalization.In this work, we investigate which factors most strongly influence loss-to-loss scaling.Our experiments reveal that the pretraining data determines the scaling trend.In contrast, model size, optimization hyperparameters, tokenizer and even significant architectural differences, such as between transformer-based models like Llama and state-space models like Mamba, generally have limited impact.Consequently, practitioners should carefully curate pretraining datasets for optimal downstream performance, while architectures and other settings can be freely optimized for training efficiency.


Spotlight Poster
#E-2501
DPO Meets PPO: Reinforced Token Optimization for RLHF

Han Zhong · Zikang Shan · Guhao Feng · Wei Xiong · Xinle Cheng · Li Zhao · Di He · Jiang Bian · Liwei Wang

In the classical Reinforcement Learning from Human Feedback (RLHF) framework, Proximal Policy Optimization (PPO) is employed to learn from sparse, sentence-level rewards---a challenging scenario in traditional deep reinforcement learning. Despite the great successes of PPO in the alignment of state-of-the-art closed-source large language models (LLMs), its open-source implementation is still largely sub-optimal, as widely reported by numerous research studies. To address these issues, we introduce a framework that models RLHF problems as a Markov decision process (MDP), enabling the capture of fine-grained token-wise information. Furthermore, we provide theoretical insights that demonstrate the superiority of our MDP framework over the previous sentence-level bandit formulation. Under this framework, we introduce an algorithm, dubbed as Reinforced Token Optimization (\texttt{RTO}), which learns the token-wise reward function from preference data and performs policy optimization based on this learned token-wise reward signal. Theoretically, \texttt{RTO} is proven to have the capability of finding the near-optimal policy sample-efficiently. For its practical implementation, \texttt{RTO} innovatively integrates Direct Preference Optimization (DPO) and PPO. DPO, originally derived from sparse sentence rewards, surprisingly provides us with a token-wise characterization of response quality, which is seamlessly incorporated into our subsequent PPO training stage. We conduct extensive experiments to evaluate \texttt{RTO} against PPO and other direct preference learning algorithms. The results highlight the effectiveness of RTO, with the algorithm outperforming PPO by 7.5 points on the AlpacaEval 2 benchmark and by 4.1 points on Arena-Hard. Our code and models are available at \href{https://github.com/zkshan2002/RTO}{https://github.com/zkshan2002/RTO}.


Poster
#E-2502
polybasic Speculative Decoding Through a Theoretical Perspective

Ruilin Wang · Huixia Li · Yuexiao Ma · Xiawu Zheng · Fei Chao · Xuefeng Xiao · Rongrong Ji

Inference latency stands as a critical bottleneck in the large-scale deployment of Large Language Models (LLMs). Speculative decoding methods have recently shown promise in accelerating inference without compromising the output distribution. However, existing work typically relies on a dualistic draft-verify framework and lacks rigorous theoretical grounding. In this paper, we introduce a novel \emph{polybasic} speculative decoding framework, underpinned by a comprehensive theoretical analysis. Specifically, we prove a fundamental theorem that characterizes the optimal inference time for multi-model speculative decoding systems, shedding light on how to extend beyond the dualistic approach to a more general polybasic paradigm. Through our theoretical investigation of multi-model token generation, we expose and optimize the interplay between model capabilities, acceptance lengths, and overall computational cost. Our framework supports both standalone implementation and integration with existing speculative techniques, leading to accelerated performance in practice. Experimental results across multiple model families demonstrate that our approach yields speedup ratios ranging from $3.31\times$ to $4.01\times$ for LLaMA2-Chat 7B, up to $3.87 \times$ for LLaMA3-8B, up to $4.43 \times$ for Vicuna-7B and up to $3.85 \times$ for Qwen2-7B---all while preserving the original output distribution. We release our theoretical proofs and implementation code to facilitate further investigation into polybasic speculative decoding.


Poster
#E-2503
XAttention: Block Sparse Attention with Antidiagonal Scoring

Ruyi Xu · Guangxuan Xiao · Haofeng Huang · Junxian Guo · Song Han

Long-Context Transformer Models (LCTMs) are vital for real-world applications but suffer high computational costs due to attention's quadratic complexity. Block-sparse attention mitigates this by focusing computation on critical regions, yet existing methods struggle with balancing accuracy and efficiency due to costly block importance measurements.In this paper, we introduce XAttention, a plug-and-play framework that dramatically accelerates long-context inference in Transformers models using sparse attention. XAttention's key innovation is the insight that the sum of antidiagonal values (i.e., from the lower-left to upper-right) in the attention matrix provides a powerful proxy for block importance. This allows for precise identification and pruning of non-essential blocks, resulting in high sparsity and dramatically accelerated inference.Across comprehensive evaluations on demanding long-context benchmarks—including RULER and LongBench for language, VideoMME for video understanding, and VBench for video generation—XAttention achieves accuracy comparable to full attention while delivering substantial computational gains. We demonstrate up to 13.5x acceleration in attention computation. These results underscore XAttention's ability to unlock the practical potential of block sparse attention, paving the way for scalable and efficient deployment of LCTMs in real-world applications.


Poster
#E-2504
HyperIMTS: Hypergraph Neural Network for Irregular Multivariate Time Series Forecasting

Boyuan Li · Yicheng Luo · Zhen Liu · Junhao Zheng · Jianming Lv · Qianli Ma

Irregular multivariate time series (IMTS) are characterized by irregular time intervals within variables and unaligned observations across variables, posing challenges in learning temporal and variable dependencies. Many existing IMTS models either require padded samples to learn separately from temporal and variable dimensions, or represent original samples via bipartite graphs or sets.However, the former approaches often need to handle extra padding values affecting efficiency and disrupting original sampling patterns, while the latter ones have limitations in capturing dependencies among unaligned observations.To represent and learn both dependencies from original observations in a unified form, we propose HyperIMTS, a Hypergraph neural network for Irregular Multivariate Time Series forecasting.Observed values are converted as nodes in the hypergraph, interconnected by temporal and variable hyperedges to enable message passing among all observations.Through irregularity-aware message passing, HyperIMTS captures variable dependencies in a time-adaptive way to achieve accurate forecasting. Experiments demonstrate HyperIMTS's competitive performance among state-of-the-art models in IMTS forecasting with low computational cost.Our code is available at https://github.com/qianlima-lab/PyOmniTS.


Poster
#E-2505
Preference Adaptive and Sequential Text-to-Image Generation

Ofir Nabati · Guy Tennenholtz · Chih-wei Hsu · Moonkyung Ryu · Deepak Ramachandran · Yinlam Chow · Xiang Li · Craig Boutilier

We address the problem of interactive text-to-image (T2I) generation, designing a reinforcement learning (RL) agent which iteratively improves a set of generated images for a user through a sequence of prompt expansions. Using human raters, we create a novel dataset of sequential preferences, which we leverage, together with large-scale open-source (non-sequential) datasets. We construct user-preference and user-choice models using an EM strategy and identify varying user preference types. We then leverage a large multimodal language model (LMM) and a value-based RL approach to suggest an adaptive and diverse slate of prompt expansions to the user. Our Preference Adaptive and Sequential Text-to-image Agent (PASTA) extends T2I models with adaptive multi-turn capabilities, fostering collaborative co-creation and addressing uncertainty or underspecification in a user's intent. We evaluate PASTA using human raters, showing significant improvement compared to baseline methods. We also open-source our sequential rater dataset and simulated user-rater interactions to support future research in user-centric multi-turn T2I systems.


Poster
#E-2506
xLSTM 7B: A Recurrent LLM for Fast and Efficient Inference

Maximilian Beck · Korbinian Pöppel · Phillip Lippe · Richard Kurle · Patrick Blies · Günter Klambauer · Sebastian Böck · Sepp Hochreiter

Recent breakthroughs in solving reasoning, math and coding problems with Large Language Models (LLMs) have been enabled by investing substantial computation budgets at inference time. Therefore, inference speed is one of the most critical properties of LLM architectures, and there is a growing need for LLMs that are efficient and fast at inference. Recently, LLMs built on the xLSTM architecture have emerged as a powerful alternative to Transformers, offering linear compute scaling with sequence length and constant memory usage, both highly desirable properties for efficient inference. However, such xLSTM-based LLMs have yet to be scaled to larger models and assessed and compared with respect to inference speed and efficiency. In this work, we introduce xLSTM 7B, a 7-billion-parameter LLM that combines xLSTM’s architectural benefits with targeted optimizations for fast and efficient inference. Our experiments demonstrate that xLSTM 7B achieves performance on downstream tasks comparable to other similar-sized LLMs, while providing significantly faster inference speeds and greater efficiency compared to Llama- and Mamba-based LLMs. These results establish xLSTM 7B as the fastest and most efficient 7B LLM, offering a solution for tasks that require large amounts of test-time computation. Our work highlights xLSTM’s potential as a foundational architecture for methods building on heavy use of LLM inference. Our model weights, model code and training code are open-source.Model: https://huggingface.co/NX-AI/xLSTM-7bCode: https://github.com/NX-AI/xlstm andhttps://github.com/NX-AI/xlstm-jax.


Poster
#E-2507
Hyperband-based Bayesian Optimization for Black-box Prompt Selection

Lennart Schneider · Martin Wistuba · Aaron Klein · Jacek Golebiowski · Giovanni Zappella · Felice Antonio Merra

Optimal prompt selection is crucial for maximizing large language model (LLM) performance on downstream tasks, especially in black-box settings where models are only accessible via APIs.Black-box prompt selection is challenging due to potentially large, combinatorial search spaces, absence of gradient information, and high evaluation cost of prompts on a validation set.We propose HbBoPs, a novel method that combines a structural-aware deep kernel Gaussian Process with Hyperband as a multi-fidelity scheduler to efficiently select prompts.HbBoPs uses embeddings of instructions and few-shot exemplars, treating them as modular components within prompts.This enhances the surrogate model's ability to predict which prompt to evaluate next in a sample-efficient manner.Hyperband improves query-efficiency by adaptively allocating resources across different fidelity levels, reducing the number of validation instances required for evaluating prompts.Extensive experiments across ten diverse benchmarks and three LLMs demonstrate that HbBoPs outperforms state-of-the-art methods in both performance and efficiency.


Poster
#E-2508
SFT Memorizes, RL Generalizes: A Comparative Study of Foundation Model Post-training

Tianzhe Chu · Yuexiang Zhai · Jihan Yang · Shengbang Tong · Saining Xie · Dale Schuurmans · Quoc Le · Sergey Levine · Yi Ma

Supervised fine-tuning (SFT) and reinforcement learning (RL) are widely used post-training techniques for foundation models. However, their roles in enhancing model generalization capabilities remain unclear. This paper studies the difference between SFT and RL on generalization and memorization, focusing on text-based rule variants and visual variants. We introduce GeneralPoints, an arithmetic reasoning card game, and adopt V-IRL, a real-world navigation environment, to assess how models trained with SFT and RL generalize to unseen variants in both textual and visual domains. We show that RL, especially when trained with an outcome-based reward, generalizes across both rule-based textual and visual variants. SFT, in contrast, tends to memorize training data and struggles to generalize out-of-distribution scenarios. Further analysis reveals that RL improves the model's underlying visual recognition capabilities, contributing to its enhanced generalization in the visual domain. Despite RL's superior generalization, we show that SFT remains essential for effective RL training; SFT stabilizes the model's output format, enabling subsequent RL to achieve its performance gains. These findings demonstrates the capability of RL for acquiring generalizable knowledge in complex, multi-modal tasks.


Poster
#E-2509
BackSlash: Rate Constrained Optimized Training of Large Language Models

Jun Wu · jiangtao wen · Yuxing Han

The rapid advancement of large-language models (LLMs) has driven extensive research into parameter compression after training has been completed, yet compression during the training phase remains largely unexplored. In this work, we introduce Rate-Constrained Training (BackSlash), a novel training-time compression approach based on rate-distortion optimization (RDO). BackSlash enables a flexible trade-off between model accuracy and complexity, significantly reducing parameter redundancy while preserving performance. Experiments in various architectures and tasks demonstrate that BackSlash can reduce memory usage by 60\% - 90\% without accuracy loss and provides significant compression gain compared to compression after training. Moreover, BackSlash proves to be highly versatile: it enhances generalization with small Lagrange multipliers, improves model robustness to pruning (maintaining accuracy even at 80\% pruning rates), and enables network simplification for accelerated inference on edge devices.


Poster
#E-2510
Scaling Sparse Feature Circuits For Studying In-Context Learning

Dmitrii Kharlapenko · Stepan Shabalin · Arthur Conmy · Neel Nanda

Sparse autoencoders (SAEs) are a popular tool for interpreting large language model activations, but their utility in addressing open questions in interpretability remains unclear. In this work, we demonstrate their effectiveness by using SAEsto deepen our understanding of the mechanism behind in-context learning (ICL). We identify abstract SAE features that (i) encode the model’s knowledge of which task to execute and (ii) whose latent vectors causally induce the task zero-shot.This aligns with prior work showing that ICL is mediated by task vectors. We further demonstrate that these task vectors are well approximated by a sparse sum of SAE latents, including these task-execution features. To explore the ICL mechanism, we scale the sparse feature circuits methodology of Marks et al. (2024) to the Gemma 1 2B model for the more complex task of ICL. Through circuit finding, we discover task-detecting features with corresponding SAE latents that activate earlier in the prompt, that detect when tasks have been performed. They are causally linked with task-execution features through the attention and MLP sublayers.


Poster
#E-2511
Moirai-MoE: Empowering Time Series Foundation Models with Sparse Mixture of Experts

Xu Liu · Juncheng Liu · Gerald Woo · Taha Aksu · Yuxuan Liang · Roger Zimmermann · Chenghao Liu · Junnan Li · Silvio Savarese · Caiming Xiong · Doyen Sahoo

Achieving effective unified pretraining on large time series corpora remains an open challenge in developing time series foundation models. Existing methods, such as Moirai, introduce multiple projection layers for time series of different frequencies to account for high data heterogeneity. We identify major drawbacks to this human-imposed frequency-level model specialization. First, frequency is not a reliable indicator for grouping pretraining data. Second, time series can display varied distributions even within a short window. Frequency-level specialization overlooks the diversity at this granularity. To address these issues, this paper introduces Moirai-MoE, excluding human-defined data groupings while delegating the modeling of diverse time series patterns to the sparse mixture of experts (MoE) within Transformers. With this design, Moirai-MoE eliminates reliance on heuristics and enables automatic token-level specialization. Extensive evaluations on 39 datasets demonstrate the superiority of Moirai-MoE over state-of-the-art foundation models. This study also conducts comprehensive model analyses to explore the inner workings of time series MoE foundation models.


Poster
#E-2512
Improving Rationality in the Reasoning Process of Language Models through Self-playing Game

Pinzheng Wang · Juntao Li · Zecheng Tang · Haijia Gui · Min zhang

Large language models (LLMs) have demonstrated considerable reasoning abilities in various tasks such as mathematics and coding.However, recent studies indicate that even the best models lack true comprehension of their reasoning processes.In this paper, we explore how self-play can enhance the rationality of models in the reasoning process without supervision from humans or superior models.We design a $\textit{\textbf{C}ritic-\textbf{D}iscernment \textbf{G}ame}~(\textbf{CDG})$ in which a prover first provides a solution to a given problem and is subsequently challenged by critiques of its solution. These critiques either aim to assist or mislead the prover. The objective of the prover is to maintain the correct answer when faced with misleading comments, while correcting errors in response to constructive feedback.Our experiments on tasks involving mathematical reasoning, stepwise error detection, self-correction, and long-chain reasoning demonstrate that CDG training can significantly improve the ability of well-aligned LLMs to comprehend their reasoning process.


Spotlight Poster
#E-2600
Multi-Turn Code Generation Through Single-Step Rewards

Arnav Kumar Jain · Gonzalo Gonzalez-Pumariega · Wayne Chen · Alexander Rush · Wenting Zhao · Sanjiban Choudhury

We address the problem of code generation from multi-turn execution feedback. Existing methods either generate code without feedback or use complex, hierarchical reinforcement learning to optimize multi-turn rewards.We propose a simple yet scalable approach, $\mu$CODE, that solves multi-turn code generation using only single-step rewards.Our key insight is that code generation is a one-step recoverable MDP, where the correct code can be recovered from any intermediate code state in a single turn.$\mu$CODE iteratively trains both a generator to provide code solutions conditioned on multi-turn execution feedback and a verifier to score the newly generated code.Experimental evaluations show that our approach achieves significant improvements over state-of-the-art baselines. We provide analysis of the design choices of the reward models and policy, and show the efficacy of $\mu$CODE at utilizing the execution feedback.


Poster
#E-2601
AnyEdit: Edit Any Knowledge Encoded in Language Models

Houcheng Jiang · Junfeng Fang · Ningyu Zhang · Mingyang Wan · Guojun Ma · Xiang Wang · Xiangnan He · Tat-Seng Chua

Large language models (LLMs) often produce incorrect or outdated information, necessitating efficient and precise knowledge updates. Current model editing methods, however, struggle with long-form knowledge in diverse formats, such as poetry, code snippets, and mathematical derivations. These limitations arise from their reliance on editing a single token’s hidden state, a limitation we term as ``efficacy barrier''. To solve this, we propose \textbf{AnyEdit}, a new autoregressive editing paradigm. It decomposes long-form knowledge into sequential chunks and iteratively edits the key token in each chunk, ensuring consistent and accurate outputs. Theoretically, we ground AnyEdit in the Chain Rule of Mutual Information, showing its ability to update any knowledge within LLMs. Empirically, it outperforms strong baselines by 21.5\% on benchmarks including UnKEBench, AKEW, and our new \textbf{EditEverything} dataset for long-form diverse-formatted knowledge. Additionally, AnyEdit serves as a plug-and-play framework, enabling current editing methods to update knowledge with arbitrary length and format, significantly advancing the scope and practicality of LLM knowledge editing. Our code is available at: \url{https://github.com/jianghoucheng/AnyEdit}.


Poster
#E-2602
Parrot: Multilingual Visual Instruction Tuning

Hai-Long Sun · Da-Wei Zhou · Yang Li · Shiyin Lu · Chao Yi · Qing-Guo Chen · Zhao Xu · Weihua Luo · Kaifu Zhang · De-Chuan Zhan · Han-Jia Ye

The rapid development of Multimodal Large Language Models (MLLMs), such as GPT-4, marks a significant step toward artificial general intelligence. Existing methods typically align vision encoders with LLMs via supervised fine-tuning (SFT), but this often deteriorates their ability to handle multiple languages as training progresses. We empirically observe that imbalanced SFT datasets, largely English-centric, degrade performance on non-English languages due to the failure in multilingual token alignment. To address this, we propose Parrot, a novel approach that leverages textual guidance for visual token alignment at the language level. Parrot conditions visual tokens on diverse language inputs and uses Mixture-of-Experts (MoE) to align multilingual tokens. By computing cross-attention between initial visual features and textual embeddings, we select the most relevant experts, converting visual tokens into language-specific representations. Additionally, we introduce the Massive Multilingual Multimodal Benchmark (MMMB), a new benchmark comprising 6 languages, 15 categories, and 12,000 questions, to assess multilingual capabilities. Parrot achieves state-of-the-art performance on both the multilingual benchmarks and a wide range of multimodal tasks. Code and dataset are available at: \url{https://github.com/AIDC-AI/Parrot}.


Poster
#E-2603
FunBO: Discovering Acquisition Functions for Bayesian Optimization with FunSearch

Virginia Aglietti · Ira Ktena · Jessica Schrouff · Eleni Sgouritsa · Francisco Ruiz · Alan Malek · Alexis Bellot · Silvia Chiappa

The sample efficiency of Bayesian optimization algorithms depends on carefully crafted acquisition functions (AFs) guiding the sequential collection of function evaluations. The best-performing AFs can vary significantly across optimization problems, often requiring ad-hoc and problem-specific choices. This work tackles the challenge of designing novel AFs that perform well across a variety of experimental settings. Based on FunSearch, a recent work using Large Language Models (LLMs) for discovery in mathematical sciences, we propose FunBO, an LLM-based method that can be used to learn new AFs written in computer code by leveraging access to a number of evaluations for a limited set of objective functions. We provide the analytic expression of all discovered AFs and evaluate them on various global optimization benchmarks and hyperparameter optimization tasks. We show how FunBO identifies AFs that generalize well both in and out of the training distribution of functions, thus outperforming established general-purpose AFs and achieving competitive performance against AFs that are customized to specific function types and are learned via transfer-learning algorithms.


Poster
#E-2604
AdaptiveStep: Automatically Dividing Reasoning Step through Model Confidence

Yuliang Liu · Junjie Lu · Chaofeng Qu · Zhaoling Chen · Zefan Cai · Jason Liu · Chonghan Liu · Yunhui Xia · Li Zhao · Jiang Bian · Chuheng Zhang · Wei Shen · Zhouhan Lin

Current approaches for training Process Reward Models (PRMs) often involve deconposing responses into multiple reasoning steps using rule-based techniques, such as using predefined placeholder tokens or setting the reasoning step's length to a fixed size.These approaches overlook the fact that certain words don't usually indicate true decision points. To address this, we propose AdaptiveStep, a method that divides reasoning steps based on the model's confidence in predicting the next word, offering more information on decision-making at each step, improving downstream tasks like reward model training. Moreover, our method requires no manual annotation. Experiments with AdaptiveStep-trained PRMs in mathematical reasoning and code generation show that the outcome PRM achieves state-of-the-art Best-of-N performance, surpassing greedy search strategy with token-level value-guided decoding, while also reducing construction costs by over 30% compared to existing open-source PRMs. We also provide a thorough analysis and case study on its performance, transferability, and generalization capabilities. We provide our code on https://github.com/Lux0926/ASPRM.


Poster
#E-2605
Towards Lifelong Model Editing via Simulating Ideal Editor

Yaming Guo · Siyang Guo · Hengshu Zhu · Ying Sun

Model editing plays a crucial role in the cost-effective development of large language models, and the challenge of evolving knowledge facilitates its sequential extension, namely lifelong model editing. However, progress on standard and lifelong editing has historically followed separate tracks, overlooking the potential of generalizing standard methods to lifelong scenarios. By establishing this bridge, we can provide robust baselines in lifelong scenarios and ensure that lifelong editing benefits from the ongoing advancements in standard editing technologies. In response, this paper proposes a general framework, Simulating Ideal Editor (SimIE), which restores the strong performance of parameter-modifying methods from standard model editing in a lifelong context. SimIE formulates the ideal parameter shift as the minimum-norm solution to a linear system, constructed using the Moore-Penrose inverse, and subsequently enables recursive updates by truncating the limiting expression of the Moore-Penrose inverse under two mild assumptions. Theoretically, we demonstrate that if either assumption is not met, the solution provided by SimIE remains near-optimal in a statistical sense or stable against perturbations introduced by the sequential editing, but a trade-off between optimality and stability arises when both assumptions fail. Extensive experiments validate the effectiveness of SimIE, which allows standard algorithms to achieve performance comparable to specialized lifelong model editing methods. Our code is available at https://github.com/YamingGuo98/SimIE.


Poster
#E-2606
When Bad Data Leads to Good Models

Kenneth Li · Yida Chen · Fernanda Viégas · Martin Wattenberg

In large language model (LLM) pretraining, data quality is believed to determine model quality. In this paper, we re-examine the notion of "quality" from the perspective of pre- and post-training co-design. Specifically, we explore the possibility that pre-training on more toxic data can lead to better control in post-training, ultimately decreasing a model's output toxicity. First, we use a toy experiment to study how data composition affects the geometry of features in the representation space. Next, through controlled experiments with Olmo-1B models trained on varying ratios of clean and toxic data, we find that the concept of toxicity enjoys a less entangled linear representation as the proportion of toxic data increases. Furthermore, we show that although toxic data increases the generational toxicity of the base model, it also makes the toxicity easier to remove. Evaluations on Toxigen and Real Toxicity Prompts demonstrate that models trained on toxic data achieve a better trade-off between reducing generational toxicity and preserving general capabilities when detoxifying techniques such as inference-time intervention (ITI) are applied. Our findings suggest that, with post-training taken into account, bad data may lead to good models.


Poster
#E-2607
Boosting Multi-Domain Fine-Tuning of Large Language Models through Evolving Interactions between Samples

Xize Liang · Lin Yang · Jie Wang · Yiyang Lu · Runyu Wu · Hanzhu Chen · Jianye Hao

The multi-domain fine-tuning of large language models (LLMs) confronts a notorious trade-off among abilities across domains. Existing studies attribute this trade-off to the conflicts between samples rooted in inherent semantics. Recent approaches attempt to mitigate these conflicts through the empirical investigation or heuristic strategies. However, without a fundamental understanding of interactions between samples, they yield only marginal improvements, while incurring substantial trial-and-error costs. To address this challenge, we move beyond empirical studies by modeling interactions between samples as their influence on each other's loss, estimated using gradients. Intriguingly, we find that these interactions evolve throughout training rather than being purely determined by inherent semantics. Building on this insight, we propose EVolving Interaction-guided Curriculum (EVIC), which iteratively selects samples that positively influence the overall dataset for training. By dynamically adapting the training curriculum to prioritize samples that contribute the most to the model training, EVIC effectively mitigates conflicts and improves the sample efficiency. Extensive experiments on a mixed dataset covering coding, math, and general tasks with several model architectures show that EVIC significantly outperforms all baselines across diverse capabilities.


Poster
#E-2608
Fast Large Language Model Collaborative Decoding via Speculation

Jiale Fu · Yuchu Jiang · Junkai Chen · Jiaming Fan · Xin Geng · Xu Yang

Large Language Model (LLM) collaborative decoding techniques improve output quality by combining the outputs of multiple models at each generation step, but they incur high computational costs. In this paper, we introduce Collaborative decoding via Speculation (CoS), a novel framework that accelerates collaborative decoding without compromising performance. Inspired by Speculative Decoding—where a small proposal model generates tokens sequentially, and a larger target model verifies them in parallel, our approach builds on two key insights: (1) the verification distribution can be the combined distribution of both the proposal and target models, and (2) alternating each model as the proposer and verifier can further enhance efficiency. We generalize this method to collaboration among n models and theoretically prove that CoS is never slower than standard collaborative decoding, typically achieving faster speed. Extensive experiments demonstrate CoS is 1.11x–2.23x faster than standard collaborative decoding without compromising generation quality. Our code is available at https://github.com/Kamichanw/CoS/.


Poster
#E-2609
REG: Rectified Gradient Guidance for Conditional Diffusion Models

Zhengqi Gao · Kaiwen Zha · Tianyuan Zhang · Zihui Xue · Duane Boning

Guidance techniques are simple yet effective for improving conditional generation in diffusion models. Albeit their empirical success, the practical implementation of guidance diverges significantly from its theoretical motivation. In this paper, we reconcile this discrepancy by replacing the scaled marginal distribution target, which we prove theoretically invalid, with a valid scaled joint distribution objective. Additionally, we show that the established guidance implementations are approximations to the intractable optimal solution under no future foresight constraint. Building on these theoretical insights, we propose rectified gradient guidance (REG), a versatile enhancement designed to boost the performance of existing guidance methods. Experiments on 1D and 2D demonstrate that REG provides a better approximation to the optimal solution than prior guidance techniques, validating the proposed theoretical framework. Extensive experiments on class-conditional ImageNet and text-to-image generation tasks show that incorporating REG consistently improves FID and Inception/CLIP scores across various settings compared to its absence.


Poster
#E-2610
Sparsing Law: Towards Large Language Models with Greater Activation Sparsity

Yuqi Luo · Chenyang Song · Xu Han · Yingfa Chen · Chaojun Xiao · Xiaojun Meng · Liqun Deng · Jiansheng Wei · Zhiyuan Liu · Maosong Sun

Activation sparsity denotes the existence of substantial weakly-contributed neurons within feed-forward networks of large language models (LLMs), providing wide potential benefits such as computation acceleration. However, existing works lack thorough quantitative studies on this useful property, in terms of both its measurement and influential factors. In this paper, we address three underexplored research questions: (1) How can activation sparsity be measured more accurately? (2) How is activation sparsity affected by the model architecture and training process? (3) How can we build a more sparsely activated and efficient LLM? Specifically, we develop a generalizable and performance-friendly metric, named CETT-PPL-1\%, to measure activation sparsity. Based on CETT-PPL-1\%, we quantitatively study the influence of various factors and observe several important phenomena, such as the convergent power-law relationship between sparsity and training data amount, the higher competence of ReLU activation than mainstream SiLU activation, the potential sparsity merit of a small width-depth ratio, and the scale insensitivity of activation sparsity. Finally, we provide implications for building sparse and effective LLMs, and demonstrate the reliability of our findings by training a 2.4B model with a sparsity ratio of 93.52\%, showing 4.1$\times$ speedup compared with its dense version. The codes and checkpoints are available at https://github.com/thunlp/SparsingLaw/.


Poster
#E-2611
MASS: Mathematical Data Selection via Skill Graphs for Pretraining Large Language Models

Jiazheng Li · Lu Yu · Qing Cui · Zhiqiang Zhang · JUN ZHOU · Yanfang Ye · Chuxu Zhang

High-quality data plays a critical role in the pretraining and fine-tuning of large language models (LLMs), even determining their performance ceiling to some degree. Consequently, numerous data selection methods have been proposed to identify subsets of data that can effectively and efficiently enhance model performance. However, most of these methods focus on general data selection and tend to overlook the specific nuances of domain-related data. In this paper, we introduce MASS, a Mathematical data Selection framework using the Skill graph for pretraining LLMs in the mathematical reasoning domain. By taking into account the unique characteristics of mathematics and reasoning, we construct a skill graph that captures the mathematical skills and their interrelations from a reference dataset. This skill graph guides us in assigning quality scores to the target dataset, enabling us to select the top-ranked subset which is further used to pretrain LLMs. Experimental results demonstrate the efficiency and effectiveness of MASS across different model sizes (1B and 7B) and pretraining datasets (web data and synthetic data). Specifically, in terms of efficiency, models trained on subsets selected by MASS can achieve similar performance to models trained on the original datasets, with a significant reduction in the number of trained tokens - ranging from 50\% to 70\% fewer tokens. In terms of effectiveness, when trained on the same amount of tokens, models trained on the data selected by MASS outperform those trained on the original datasets by 3.3\% to 5.9\%. These results underscore the potential of MASS to improve both the efficiency and effectiveness of pretraining LLMs.


Poster
#E-2612
Hidden No More: Attacking and Defending Private Third-Party LLM Inference

Rahul Thomas · Louai Zahran · Erica Choi · Akilesh Potti · Micah Goldblum · Arka Pal

Recent advances in Large Language Models (LLMs) have led to widespread adoption of third-party inference services, raising critical privacy concerns. In this work, we introduce a novel reconstruction technique that can recover original prompts from hidden states with nearly perfect accuracy across multiple state-of-the-art LLMs in the increasingly important open-weights setting. Although the attack is conceptually simple, it has not -- to the best of our knowledge -- previously been described nor shown to work practically. Furthermore, our attack remains effective against various permutation and noise-based defenses, challenging assumptions about the security of previously proposed schemes. To address these vulnerabilities, we propose Cascade, a multi-party inference scheme that leverages sharding in the sequence dimension to retain privacy of the user input. Through theoretical analysis and empirical evaluation, we demonstrate that Cascade is secure against both our attack as well as previous methods, while maintaining computational and communication efficiency. Our findings highlight the importance of rigorous security analysis in privacy-preserving LLM inference and offer practical solutions for secure deployment.


Poster
#E-2700
Discriminative Policy Optimization for Token-Level Reward Models

Hongzhan Chen · Tao Yang · Shiping Gao · Ruijun Chen · Xiaojun Quan · Hongtao Tian · Ting Yao

Process reward models (PRMs) provide more nuanced supervision compared to outcome reward models (ORMs) for optimizing policy models, positioning them as a promising approach to enhancing the capabilities of LLMs in complex reasoning tasks. Recent efforts have advanced PRMs from step-level to token-level granularity by integrating reward modeling into the training of generative models, with reward scores derived from token generation probabilities. However, the conflict between generative language modeling and reward modeling may introduce instability and lead to inaccurate credit assignments. To address this challenge, we revisit token-level reward assignment by decoupling reward modeling from language generation and derive a token-level reward model through the optimization of a discriminative policy, termed the Q-function Reward Model (Q-RM). We theoretically demonstrate that Q-RM explicitly learns token-level Q-functions from preference data without relying on fine-grained annotations. In our experiments, Q-RM consistently outperforms all baseline methods across various benchmarks. For example, when integrated into PPO/REINFORCE algorithms, Q-RM enhances the average Pass@1 score by 5.85/4.70 points on mathematical reasoning tasks compared to the ORM baseline, and by 4.56/5.73 points compared to the token-level PRM counterpart. Moreover, reinforcement learning with Q-RM significantly enhances training efficiency, achieving convergence 12× faster than ORM on GSM8K and 11× faster than step-level PRM on MATH. Code and data are available at https://github.com/homzer/Q-RM.


Poster
#E-2701
Benchmarking Abstract and Reasoning Abilities Through A Theoretical Perspective

Qingchuan Ma · Yuhang Wu · Xiawu Zheng · Rongrong Ji

In this paper, we aim to establish a simple, effective, and theoretically grounded benchmark for rigorously probing abstract reasoning in Large Language Models (LLMs). To achieve this, we first develop a mathematic framework that defines abstract reasoning as the ability to: (i) extract essential patterns independent of surface representations, and (ii) apply consistent rules to these abstract patterns. Based on this framework, we introduce two novel complementary metrics: Γ measures basic reasoning accuracy, while ∆ quantifies a model's reliance on specific symbols rather than underlying patterns - a key indicator of true abstraction versus mere memorization. To implement this measurement, we design a benchmark: systematic symbol remapping in rule-based tasks, which forces models to demonstrate genuine pattern recognition beyond superficial token matching. Extensive LLM evaluations using this benchmark (commercial API models, 7B-70B, multi-agent) reveal:1) critical limitations in non-decimal arithmetic and symbolic reasoning; 2) persistent abstraction gaps despite chain-of-thought prompting; and 3) ∆'s effectiveness in robustly measuring memory dependence by quantifying performance degradation under symbol remapping, particularly highlighting operand-specific memorization. These findings underscore that current LLMs, despite domain-specific strengths, still lack robust abstract reasoning, highlighting key areas for future improvement.


Poster
#E-2702
Leveraging Online Olympiad-Level Math Problems for LLMs Training and Contamination-Resistant Evaluation

Sadegh Mahdavi · Muchen Li · Kaiwen Liu · Christos Thrampoulidis · Leonid Sigal · Renjie Liao

Advances in Large Language Models (LLMs) have sparked interest in their ability to solve Olympiad-level math problems. However, the training and evaluation of these models are constrained by the limited size and quality of available datasets, as creating large-scale data for such advanced problems requires extensive effort from human experts.In addition, current benchmarks are prone to contamination, leading to unreliable evaluations.In this paper, we present an automated pipeline that leverages the rich resources of the Art of Problem Solving (AoPS) forum, which predominantly features Olympiad-level problems and community-driven solutions.Using open-source LLMs, we develop a method to extract question-answer pairs from the forum, resulting in AoPS-Instruct, a dataset of more than 600,000 high-quality QA pairs.Our experiments demonstrate that fine-tuning LLMs on AoPS-Instruct improves their reasoning abilities across various benchmarks. Moreover, we build an automatic pipeline that introduces LiveAoPSBench, an evolving evaluation set with timestamps, derived from the latest forum data, providing a contamination-resistant benchmark for assessing LLM performance.Notably, we observe a significant decline in LLM performance over time, suggesting their success on older examples may stem from pre-training exposure rather than true reasoning ability. Our work presents a scalable approach to creating and maintaining large-scale, high-quality datasets for advanced math reasoning, offering valuable insights into the capabilities and limitations of LLMs in this domain.


Poster
#E-2703
SkipGPT: Each Token is One of a Kind

Anhao Zhao · Fanghua Ye · Yingqi Fan · Junlong Tong · Jing Xiong · Zhiwei Fei · Hui Su · Anhao Zhao

Large language models (LLMs) achieve remarkable performance across tasks but incur substantial computational costs due to their deep, multi-layered architectures. Layer pruning has emerged as a strategy to alleviate these inefficiencies, but conventional static pruning methods overlook two critical dynamics inherent to LLM inference: (1) horizontal dynamics, where token-level heterogeneity demands context-aware pruning decisions, and (2) vertical dynamics, where the distinct functional roles of MLP and self-attention layers necessitate component-specific pruning policies. We introduce SkipGPT, a dynamic layer pruning framework designed to optimize computational resource allocation through two core innovations: (1) global token-aware routing to prioritize critical tokens and (2) decoupled pruning policies for MLP and self-attention components. To mitigate training instability, we propose a two-stage optimization paradigm: first, a disentangled training phase that learns routing strategies via soft parameterization to avoid premature pruning decisions, followed by parameter-efficient LoRA fine-tuning to restore performance impacted by layer removal. Extensive experiments demonstrate that SkipGPT reduces over 40% model parameters while matching or exceeding the performance of the original dense model across benchmarks. By harmonizing dynamic efficiency with preserved expressivity, SkipGPT advances the practical deployment of scalable, resource-aware LLMs. Our code is publicly available at: https://github.com/EIT-NLP/SkipGPT.


Poster
#E-2704
Binary Hypothesis Testing for Softmax Models and Leverage Score Models

Yuzhou Gu · Zhao Song · Junze Yin

Softmax distributions are widely used in machine learning, including Large Language Models (LLMs), where the attention unit uses softmax distributions. We abstract the attention unit as the softmax model, where given a vector input, the model produces an output drawn from the softmax distribution (which depends on the vector input). We consider the fundamental problem of binary hypothesis testing in the setting of softmax models. That is, given an unknown softmax model, which is known to be one of the two given softmax models, how many queries are needed to determine which one is the truth? We show that the sample complexity is asymptotically $O(\epsilon^{-2})$ where $\epsilon$ is a certain distance between the parameters of the models. Furthermore, we draw an analogy between the softmax model and the leverage score model, an important tool for algorithm design in linear algebra and graph theory. The leverage score model, on a high level, is a model which, given a vector input, produces an output drawn from a distribution dependent on the input. We obtain similar results for the binary hypothesis testing problem for leverage score models.


Poster
#E-2705
Structure-Guided Large Language Models for Text-to-SQL Generation

Qinggang Zhang · Hao Chen · Junnan Dong · Shengyuan Chen · Feiran Huang · Xiao Huang

Recent advancements in large language models (LLMs) have shown promise in bridging the gap between natural language queries and database management systems, enabling users to interact with databases without the background of SQL. However, LLMs often struggle to fully exploit and comprehend the user intention and complex structures of databases. Decomposition-based methods have been proposed to enhance the performance of LLMs on complex tasks, but decomposing SQL generation into subtasks is non-trivial due to the declarative structure of SQL syntax and the intricate connections between query concepts and database elements. In this paper, we propose a novel Structure GUided text-to-SQL framework ( SGU-SQL) that incorporates syntax-based prompting to enhance the SQL generation capabilities of LLMs. Specifically, SGU-SQL establishes structure-aware links between user queries and database schema and recursively decomposes the complex generation task using syntax-based prompting to guide LLMs in incrementally constructing target SQLs. Extensive experiments on two benchmark datasets demonstrate that SGU-SQL consistently outperforms state-of-the-art text-to-SQL baselines.


Poster
#E-2706
Over-Tokenized Transformer: Vocabulary is Generally Worth Scaling

Hongzhi Huang · Defa Zhu · Banggu Wu · Zeng · Ya Wang · Qiyang Min · zhou Xun

Tokenization is a fundamental component of large language models (LLMs), yet its influence on model scaling and performance is not fully explored. In this paper, we introduce Over-Tokenized Transformers, a novel framework that decouples input and output vocabularies to improve language modeling performance. Specifically, our approach scales up input vocabularies to leverage multi-gram tokens. Through extensive experiments, we uncover a log-linear relationship between input vocabulary size and training loss, demonstrating that larger input vocabularies consistently enhance model performance, regardless of model size. Using a large input vocabulary, we achieve performance comparable to double-sized baselines with no additional cost. Our findings highlight the importance of tokenization in scaling laws and provide practical insight for tokenizer design, paving the way for more efficient and powerful LLMs.


Poster
#E-2707
BanditSpec: Adaptive Speculative Decoding via Bandit Algorithms

Yunlong Hou · Fengzhuo Zhang · Cunxiao Du · Xuan Zhang · Jiachun Pan · Tianyu Pang · Chao Du · Vincent Tan · Zhuoran Yang

Speculative decoding has emerged as a popular method to accelerate the inference of Large Language Models (LLMs) while retaining their superior text generation performance. Previous methods either adopt a fixed speculative decoding configuration regardless of the prefix tokens, or train draft models in an offline or online manner to align them with the context. This paper proposes a training-free online learning framework to adaptively choose the configuration of the hyperparameters for speculative decoding as text is being generated. We first formulate this hyperparameter selection problem as a Multi-Armed Bandit problem and provide a general speculative decoding framework BanditSpec. Furthermore, two bandit-based hyperparameter selection algorithms, UCBSpec and EXP3Spec, are designed and analyzed in terms of a novel quantity, the stopping time regret. We upper bound this regret under both stochastic and adversarial reward settings. By deriving an information-theoretic impossibility result, it is shown that the regret performance of UCBSpec is optimal up to universal constants. Finally, extensive empirical experiments with LLaMA3 and Qwen2 demonstrate that our algorithms are effective compared to existing methods, and the throughput is close to the oracle best hyperparameter in simulated real-life LLM serving scenarios with diverse input prompts.


Poster
#E-2708
R.I.P.: Better Models by Survival of the Fittest Prompts

Ping Yu · Weizhe Yuan · Olga Golovneva · Tianhao Wu · Sainbayar Sukhbaatar · JASON WESTON · Jing Xu

Training data quality is one of the most important drivers of final model quality. In this work, we introduce a method for evaluating data integrity based on the assumption that low-quality input prompts result in high variance and low quality responses. This is achieved by measuring the rejected response quality and the reward gap between the chosen and rejected preference pair. Our method, Rejecting Instruction Preferences (RIP) can be used to filter prompts from existing training sets, or to make high quality synthetic datasets, yielding large performance gains across various benchmarks compared to unfiltered data. Using Llama 3.1-8B-Instruct, RIP improves AlpacaEval2 LC Win Rate by 9.4%, Arena-Hard by 8.7%, and WildBench by 9.9%. Using Llama 3.3-70B-Instruct, RIP improves Arena-Hard from 67.5 to 82.9, from 18th place to 6th overall in the leaderboard.


Poster
#E-2710
MMInference: Accelerating Pre-filling for Long-Context Visual Language Models via Modality-Aware Permutation Sparse Attention

Yucheng Li · Huiqiang Jiang · Chengruidong Zhang · Qianhui Wu · Xufang Luo · Surin Ahn · Amir Abdi · Dongsheng Li · Jianfeng Gao · Yuqing Yang · Lili Qiu

The integration of long-context capabilities with visual understanding unlocks unprecedented potential for Vision Language Models (VLMs). However, the quadratic attention complexity during the pre-filling phase remains a significant obstacle to real-world deployment. To overcome this limitation, we introduce MMInference (Multimodality Million tokens Inference), a dynamic sparse attention method that accelerates the prefilling stage for long-context multi-modal inputs. First, our analysis reveals that the temporal and spatial locality of video input leads to a unique sparse pattern, the Grid pattern. Simultaneously, VLMs exhibit markedly different sparse distributions across different modalities. We introduce a permutation-based method to leverage the unique Grid pattern and handle modality boundary issues. By offline search the optimal sparse patterns for each head, MMInference constructs the sparse distribution dynamically based on the input. We also provide optimized GPU kernels for efficient sparse computations. Notably, MMInference integrates seamlessly into existing VLM pipelines without any model modifications or fine-tuning. Experiments on multi-modal benchmarks-including Video QA, Captioning, VisionNIAH, and Mixed-Modality NIAH-with state-of-the-art long-context VLMs (LongVila, LlavaVideo, VideoChat-Flash, Qwen2.5-VL) show that MMInference accelerates the pre-filling stage by up to 8.3x at 1M tokens while maintaining accuracy. Our code is available at https://ama.ms/MMInference.


Poster
#E-2711
Ferret: Federated Full-Parameter Tuning at Scale for Large Language Models

Yao Shu · Wenyang Hu · See-Kiong Ng · Bryan Kian Hsiang Low · Fei Yu

Large Language Models (LLMs) have become indispensable in numerous real-world applications. However, fine-tuning these models at scale, especially in federated settings where data privacy and communication efficiency are critical, presents significant challenges. Existing approaches often resort to parameter-efficient fine-tuning (PEFT) to mitigate communication overhead, but this typically comes at the cost of model accuracy. To this end, we propose federated full-parameter tuning at scale for LLMs (Ferret), the first first-order method with shared randomness to enable scalable full-parameter tuning of LLMs across decentralized data sources while maintaining competitive model accuracy. Ferret accomplishes this through three aspects: (i) it employs widely used first-order methods for efficient local updates; (ii) it projects these updates into a low-dimensional space to considerably reduce communication overhead; and (iii) it reconstructs local updates from this low-dimensional space with shared randomness to facilitate effective full-parameter global aggregation, ensuring fast convergence and competitive final performance. Our rigorous theoretical analyses and insights along with extensive experiments, show that Ferret significantly enhances the scalability of existing federated full-parameter tuning approaches by achieving high computational efficiency, reduced communication overhead, and fast convergence, all while maintaining competitive model accuracy. Our implementation is available at https://github.com/allen4747/Ferret.


Poster
#E-2712
On the Duality between Gradient Transformations and Adapters

Lucas Torroba Hennigen · Hunter Lang · Han Guo · Yoon Kim

We study memory-efficient optimization of neural networks (in particular language models) with linear gradient transformations, where the gradients are linearly mapped to a lower dimensional space than the full parameter space, thus saving memory required for gradient accumulation and optimizer state persistence. The model parameters are updated by first performing an optimization step in the lower dimensional space and then going back into the original parameter space via the linear map's transpose. We show that optimizing the model in this transformed space is equivalent to reparameterizing the original model through a linear adapter that additively modifies the model parameters, and then only optimizing the adapter's parameters. When the transformation is Kronecker-factored, this establishes an equivalence between GaLore and one-sided LoRA. We show that this duality between gradient transformations and adapter-based reparameterizations unifies existing approaches to memory-efficient training and suggests new techniques for improving training efficiency and memory use.


Poster
#E-2800
EduLLM: Leveraging Large Language Models and Framelet-Based Signed Hypergraph Neural Networks for Student Performance Prediction

Ming Li · Yukang Cheng · Lu Bai · Feilong Cao · Ke Lv · Jiye Liang · Pietro Lió

The growing demand for personalized learning underscores the importance of accurately predicting students' future performance to support tailored education and optimize instructional strategies. Traditional approaches predominantly focus on temporal modeling using historical response records and learning trajectories. While effective, these methods often fall short in capturing the intricate interactions between students and learning content, as well as the subtle semantics of these interactions. To address these gaps, we present EduLLM, the first framework to leverage large language models in combination with hypergraph learning for student performance prediction. The framework incorporates FraS-HNN ($\underline{\mbox{Fra}}$melet-based $\underline{\mbox{S}}$igned $\underline{\mbox{H}}$ypergraph $\underline{\mbox{N}}$eural $\underline{\mbox{N}}$etworks), a novel spectral-based model for signed hypergraph learning, designed to model interactions between students and multiple-choice questions. In this setup, students and questions are represented as nodes, while response records are encoded as positive and negative signed hyperedges, effectively capturing both structural and semantic intricacies of personalized learning behaviors. FraS-HNN employs framelet-based low-pass and high-pass filters to extract multi-frequency features. EduLLM integrates fine-grained semantic features derived from LLMs, synergizing with signed hypergraph representations to enhance prediction accuracy. Extensive experiments conducted on multiple educational datasets demonstrate that EduLLM significantly outperforms state-of-the-art baselines, validating the novel integration of LLMs with FraS-HNN for signed hypergraph learning.


Poster
#E-2801
Topology-Aware Dynamic Reweighting for Distribution Shifts on Graph

Weihuang Zheng · Jiashuo Liu · Jiaxing Li · Jiayun Wu · Peng Cui · Youyong Kong

Graph Neural Networks (GNNs) are widely used for node classification tasks but often fail to generalize when training and test nodes come from different distributions, limiting their practicality. To address this challenge, recent approaches have adopted invariant learning and sample reweighting techniques from the out-of-distribution (OOD) generalization field. However, invariant learning-based methods face difficulties when applied to graph data, as they rely on the impractical assumption of obtaining real environment labels and strict invariance, which may not hold in real-world graph structures. Moreover, current sample reweighting methods tend to overlook topological information, potentially leading to suboptimal results. In this work, we introduce the Topology-Aware Dynamic Reweighting (TAR) framework to address distribution shifts by leveraging the inherent graph structure. TAR dynamically adjusts sample weights through gradient flow on the graph edges during training. Instead of relying on strict invariance assumptions, we theoretically prove that our method is able to provide distributional robustness, thereby enhancing the out-of-distribution generalization performance on graph data. Our framework's superiority is demonstrated through standard testing on extensive node classification OOD datasets, exhibiting marked improvements over existing methods.


Poster
#E-2802
On Measuring Long-Range Interactions in Graph Neural Networks

Jacob Bamberger · Benjamin Gutteridge · Scott le Roux · Michael Bronstein · Xiaowen Dong

Long-range graph tasks --- those dependent on interactions between `distant' nodes --- are an open problem in graph neural network research. Real-world benchmark tasks, especially the Long Range Graph Benchmark, have become popular for validating the long-range capability of proposed architectures. However, this is an empirical approach that lacks both robustness and theoretical underpinning; a more principled characterization of the long-range problem is required. To bridge this gap, we formalize long-range interactions in graph tasks, introduce a range measure for operators on graphs, and validate it with synthetic experiments. We then leverage our measure to examine commonly used tasks and architectures, and discuss to what extent they are, in fact, long-range.We believe our work advances efforts to define and address the long-range problem on graphs, and that our range measure will aid evaluation of new datasets and architectures.


Poster
#E-2803
Towards LLM Unlearning Resilient to Relearning Attacks: A Sharpness-Aware Minimization Perspective and Beyond

Chongyu Fan · jinghan jia · Yihua Zhang · Anil Ramakrishna · Mingyi Hong · Sijia Liu

The LLM unlearning technique has recently been introduced to comply with data regulations and address the safety and ethical concerns of LLMs by removing the undesired data-model influence. However, state-of-the-art unlearning methods face a critical vulnerability: they are susceptible to ``relearning'' the removed information from a small number of forget data points, known as relearning attacks. In this paper, we systematically investigate how to make unlearned models robust against such attacks. For the first time, we establish a connection between robust unlearning and sharpness-aware minimization (SAM) through a unified robust optimization framework, in an analogy to adversarial training designed to defend against adversarial attacks. Our analysis for SAM reveals that smoothness optimization plays a pivotal role in mitigating relearning attacks. Thus, we further explore diverse smoothing strategies to enhance unlearning robustness. Extensive experiments on benchmark datasets, including WMDP and MUSE, demonstrate that SAM and other smoothness optimization approaches consistently improve the resistance of LLM unlearning to relearning attacks. Notably, smoothness-enhanced unlearning also helps defend against (input-level) jailbreaking attacks, broadening our proposal's impact in robustifying LLM unlearning. Codes are available at https://github.com/OPTML-Group/Unlearn-Smooth.


Poster
#E-2804
Generalists vs. Specialists: Evaluating LLMs on Highly-Constrained Biophysical Sequence Optimization Tasks

Angelica Chen · Samuel Stanton · Frances Ding · Robert Alberstein · Andrew Watkins · Richard Bonneau · Vladimir Gligorijevic · Kyunghyun Cho · Nathan Frey

Although large language models (LLMs) have shown promise in biomolecule optimization problems, they incur heavy computational costs and struggle to satisfy precise constraints. On the other hand, specialized solvers like LaMBO-2 offer efficiency and fine-grained control but require more domain expertise. Comparing these approaches is challenging due to expensive laboratory validation and inadequate synthetic benchmarks. We address this by introducing Ehrlich functions, a synthetic test suite that captures the geometric structure of biophysical sequence optimization problems. With prompting alone, off-the-shelf LLMs struggle to optimize Ehrlich functions. In response, we propose LLOME (Language Model Optimization with Margin Expectation), a bilevel optimization routine for online black-box optimization.When combined with a novel preference learning loss, we find LLOME can not only learn to solve some Ehrlich functions, but can even perform as well as or better than LaMBO-2 on moderately difficult Ehrlich variants. However, LLMs also exhibit some likelihood-reward miscalibration and struggle without explicit rewards. Our results indicate LLMs can occasionally provide significant benefits, but specialized solvers are still competitive and incur less overhead.


Poster
#E-2805
Audio Flamingo 2: An Audio-Language Model with Long-Audio Understanding and Expert Reasoning Abilities

Sreyan Ghosh · Zhifeng Kong · Sonal Kumar · S Sakshi · Jaehyeon Kim · Wei Ping · Rafael Valle · Dinesh Manocha · Bryan Catanzaro

Understanding and reasoning over non-speech sounds and music are crucial for both humans and AI agents to interact effectively with their environments. In this paper, we introduce Audio Flamingo 2 (AF2), an Audio-Language Model (ALM) with advanced audio understanding and reasoning capabilities. AF2 leverages (i) a custom CLAP model, (ii) synthetic Audio QA data for fine-grained audio reasoning, and (iii) a multi-stage curriculum learning strategy. AF2 achieves state-of-the-art performance with only a 3B parameter small language model, surpassing large open-source and proprietary models across over 20 benchmarks. Next, for the first time, we extend audio understanding to long audio segments (30 secs to 5 mins) and propose LongAudio, a large and novel dataset for training ALMs on long audio captioning and question-answering tasks. Fine-tuning AF2 on LongAudio leads to exceptional performance on our proposed LongAudioBench, an expert-annotated benchmark for evaluating ALMs on long audio understanding capabilities. We conduct extensive ablation studies to confirm the efficacy of our approach.


Poster
#E-2806
Oracle-MoE: Locality-preserving Routing in the Oracle Space for Memory-constrained Large Language Model Inference

Jixian Zhou · Fang DONG(董方) · Ruijun Huang · Hengjie Cao · Mengyi Chen · Yifeng Yang · Anrui Chen · Mingzhi Dong · Yujiang Wang · Dongsheng Li · David Clifton · Qin Lv · Rui Zhu · Chun Zhang · Fan Yang · Tun Lu · Ning Gu · Li Shang

Mixture-of-Experts (MoE) is widely adopted to deploy Large Language Models (LLMs) on edge devices with limited memory budgets.Although MoE is, in theory, an inborn memory-friendly architecture requiring only a few activated experts to reside in the memory for inference, current MoE architectures cannot effectively fulfill this advantage and will yield intolerable inference latencies of LLMs on memory-constrained devices. Our investigation pinpoints the essential cause as the remarkable temporal inconsistencies of inter-token expert activations, which generate overly frequent expert swapping demands dominating the latencies. To this end, we propose a novel MoE architecture, Oracle-MoE, to fulfill the real on-device potential of MoE-based LLMs. Oracle-MoE route tokens in a highly compact space suggested by attention scores, termed the oracle space, to effectively maintain the semantic locality across consecutive tokens to reduce expert activation variations, eliminating massive swapping demands. Theoretical analysis proves that Oracle-MoE is bound to provide routing decisions with better semantic locality and, therefore, better expert activation consistencies. Experiments on the pretrained GPT-2 architectures of different sizes (200M, 350M, 790M, and 2B) and downstream tasks demonstrate that without compromising task performance, our Oracle-MoE has achieved state-of-the-art inference speeds across varying memory budgets, revealing its substantial potential for LLM deployments in industry.


Poster
#E-2807
Revisiting Chain-of-Thought in Code Generation: Do Language Models Need to Learn Reasoning before Coding?

Ren-Biao Liu · Anqi Li · ChaodingYang · Hui Sun · Ming Li

Large Language Models (LLMs) have demonstrated exceptional performance in code generation, becoming increasingly vital for software engineering and development. Recently, Chain-of-Thought (CoT) has proven effective for complex tasks by prompting LLMs to reason step-by-step and provide a final answer.However, research on how LLMs learn to reason with CoT data for code generation remains limited.In this work, we revisit classic CoT training, which typically learns reasoning steps before the final answer.We synthesize a dataset to separate the CoT process from code solutions and then conduct extensive experiments to study how CoT works in code generation empirically.We observe counterintuitive phenomena, suggesting that the traditional training paradigm may not yield benefits for code generation. Instead, training LLMs to generate code first and then output the CoT to explain reasoning steps for code generation is more effective.Specifically, our results indicate that a 9.86% relative performance improvement can be achieved simply by changing the order between CoT and code. Our findings provide valuable insights into leveraging CoT to enhance the reasoning capabilities of CodeLLMs and improve code generation.


Poster
#E-2808
Calibrated Language Models and How to Find Them with Label Smoothing

Jerry Huang · Peng Lu · QIUHAO Zeng

Recent advances in natural language processing (NLP) have opened up greater opportunities to enable fine-tuned large language models (LLMs) to behave as more powerful interactive agents through improved instruction-following ability. However, understanding how this impacts confidence calibration for reliable model output has not been researched in full. In this work, we examine various open-sourced LLMs, identifying significant calibration degradation after instruction tuning in each. Seeking a practical solution, we look towards label smoothing, which has been shown as an effective method to regularize for overconfident predictions but has yet to be widely adopted in the supervised fine-tuning (SFT) of LLMs. We first provide insight as to why label smoothing is sufficient to maintain calibration throughout the SFT process. However, settings remain where the effectiveness of smoothing is severely diminished, in particular the case of large vocabulary LLMs (LV-LLMs). We posit the cause to stem from the ability to become over-confident, which has a direct relationship with the hidden size and vocabulary size, and justify this theoretically and experimentally. Finally, we address an outstanding issue regarding the memory footprint of the cross-entropy loss computation in the label smoothed loss setting, designing a customized kernel to dramatically reduce memory consumption without sacrificing speed or performance in comparison to existing solutions for non-smoothed losses.


Poster
#E-2810
Efficient Long Context Fine-tuning with Chunk Flow

Xiulong Yuan · Hongtao Xu · Wenting Shen · Ang Wang · Xiafei Qiu · Jie Zhang · Yuqiong Liu · Bowen Yu · Junyang Lin · Mingzhen Li · Weile Jia · Yong Li · Wei Lin

Long context fine-tuning of large language models(LLMs) involves training on datasets that are predominantly composed of short sequences and a small proportion of longer sequences. However, existing approaches overlook this long-tail distribution and employ training strategies designed specifically for long sequences. Moreover, these approaches also fail to address the challenges posed by variable sequence lengths during distributed training, such as load imbalance in data parallelism and severe pipeline bubbles in pipeline parallelism. These issues lead to suboptimal training performance and poor GPU resource utilization.To tackle these problems, we propose a chunk-centric training method named ChunkFlow. ChunkFlow reorganizes input sequences into uniformly sized chunks by consolidating short sequences and splitting longer ones. This approach achieves optimal computational efficiency and balance among training inputs. Additionally, ChunkFlow incorporates a state-aware chunk scheduling mechanism to ensure that the peak memory usage during training is primarily determined by the chunk size rather than the maximum sequence length in the dataset. Integrating this scheduling mechanism with existing pipeline scheduling algorithms further enhances the performance of distributed training.Experimental results demonstrate that, compared with Megatron-LM, ChunkFlow can be up to 4.53x faster in the long context fine-tuning of LLMs. Furthermore, we believe that ChunkFlow serves as an effective solution for a broader range of scenarios, such as long context continual pre-training, where datasets contain variable-length sequences.


Poster
#E-2812
Persistent Topological Features in Large Language Models

Yuri Gardinazzi · Karthik Viswanathan · Giada Panerai · Alessio Ansuini · Alberto Cazzaniga · Matteo Biagetti

Understanding the decision-making processes of large language models is critical given their widespread applications. To achieve this, we aim to connect a formal mathematical framework—zigzag persistence from topological data analysis —with practical and easily applicable algorithms. Zigzag persistence is particularly effective for characterizing data as it dynamically transforms across model layers. Within this framework, we introduce topological descriptors that measure how topological features, $p$-dimensional holes, persist and evolve throughout the layers. Unlike methods that assess each layer individually and then aggregate the results, our approach directly tracks the full evolutionary path of these features. This offers a statistical perspective on how prompts are rearranged and their relative positions changed in the representation space, providing insights into the system’s operation as an integrated whole. To demonstrate the expressivity and applicability of our framework, we highlight how sensitive these descriptors are to different models and a variety of datasets. As a showcase application to a downstream task, we use zigzag persistence to establish a criterion for layer pruning, achieving results comparable to state-of-the-art methods while preserving the system-level perspective.


Poster
#E-2900
Weisfeiler and Leman Go Gambling: Why Expressive Lottery Tickets Win

Lorenz Kummer · Samir Moustafa · Anatol Ehrlich · Franka Bause · Nikolaus Suess · Wilfried Gansterer · Nils M. Kriege

The lottery ticket hypothesis (LTH) is well-studied for convolutional neural networks but has been validated only empirically for graph neural networks (GNNs), for which theoretical findings are largely lacking. In this paper, we identify the expressivity of sparse subnetworks, i.e. their ability to distinguish non-isomorphic graphs, as crucial for finding winning tickets that preserve the predictive performance.We establish conditions under which the expressivity of a sparsely initialized GNN matches that of the full network, particularly when compared to the Weisfeiler-Leman test, and in that context put forward and prove a Strong Expressive Lottery Ticket Hypothesis. We subsequently show that an increased expressivity in the initialization potentially accelerates model convergence and improves generalization. Our findings establish novel theoretical foundations for both LTH and GNN research, highlighting the importance of maintaining expressivity in sparsely initialized GNNs. We illustrate our results using examples from drug discovery.


Poster
#E-2901
Disentangled Graph Spectral Domain Adaptation

Liang Yang · Xin Chen · Jiaming Zhuo · Di Jin · Chuan Wang · Xiaochun Cao · Zhen Wang · Yuanfang Guo

The distribution shifts and the scarcity of labels prevent graph learning methods, especially graph neural networks (GNNs), from generalizing across domains. Compared to Unsupervised Domain Adaptation (UDA) with embedding alignment, Unsupervised Graph Domain Adaptation (UGDA) becomes more challenging in light of the attribute and topology entanglement in the representation. Beyond embedding alignment, UGDA turns to topology alignment but is limited by the ability of the employed topology model and the estimation of pseudo labels. To alleviate this issue, this paper proposed a Disentangled Graph Spectral Domain adaptation (DGSDA) by disentangling attribute and topology alignments and directly aligning flexible graph spectral filters beyond topology. Specifically, Bernstein polynomial approximation, which mimics the behavior of the function to be approximated to a remarkable degree, is employed to capture complicated topology characteristics and avoid the expensive eigenvalue decomposition. Theoretical analysis reveals the tight GDA bound of DGSDA and the rationality of polynomial coefficient regularization. Quantitative and qualitative experiments justify the superiority of the proposed DGSDA.


Poster
#E-2902
Graph4MM: Weaving Multimodal Learning with Structural Information

Xuying Ning · Dongqi Fu · Tianxin Wei · Wujiang Xu · Jingrui He

Real-world multimodal data usually exhibit complex structural relationships beyond traditional one-to-one mappings like image-caption pairs. Entities across modalities interact in intricate ways, with images and text forming diverse interconnections through contextual dependencies and co-references. Graphs provide powerful structural information for modeling intra-modal and inter-modal relationships. However, previous works fail to distinguish multi-hop neighbors and treat the graph as a standalone modality, which fragments the overall understanding. This limitation presents two key challenges in multimodal learning: (1) integrating structural information from multi-hop neighbors into foundational models, and (2) fusing modality-specific information in a principled manner. To address these challenges, we revisit the role of graphs in multimodal learning within the era of foundation models and propose Graph4MM, a graph-based multimodal learning framework. To be specific, we introduce Hop-Diffused Attention, which integrates multi-hop structural information into self-attention through causal masking and hop diffusion. Furthermore, we design MM-QFormer, a multi-mapping querying transformer for cross-modal fusion. Through theoretical and empirical analysis, we show that leveraging structures to integrate both intra- and inter-modal interactions improves multimodal understanding beyond treating them as a standalone modality. Experiments on both generative and discriminative tasks show that Graph4MM outperforms larger VLMs, LLMs, and multimodal graph baselines, achieving a 6.93% average improvement.


Poster
#E-2903
Best of Both Worlds: Advantages of Hybrid Graph Sequence Models

Ali Behrouz · Ali Parviz · Mahdi Karami · Clayton Sanford · Bryan Perozzi · Vahab Mirrokni

Modern sequence models (e.g., Transformers and linear RNNs) emerged as dominant backbones of recent deep learning frameworks, mainly due to their efficiency, representational power, and/or ability to capture long-range dependencies. Recently, adopting these sequence models for graph-structured data has gained popularity as the alternative to Message Passing Neural Networks (MPNNs). There is, however, a lack of a common foundation about what constitutes a good graph sequence model, and a mathematical description of the benefits and deficiencies in adopting different sequence models for learning on graphs. To this end, we introduce the Graph Sequence Model (GSM), a unifying framework for applying sequence models to graph data. The GSM framework allows us to understand, evaluate, and compare the power of different sequence model backbones in graph tasks. Building on this insight, we propose GSM++, a fast hybrid model that hierarchically tokenizes the graph using Hierarchical Affinity Clustering (HAC) and then encodes these sequences via a hybrid architecture. The theoretical and experimental findings confirm that GSM++ outperforms baseline models on most benchmarks.


Poster
#E-2904
Graph Neural Network Generalization With Gaussian Mixture Model Based Augmentation

Yassine Abbahaddou · Fragkiskos Malliaros · Johannes Lutzeyer · Amine Aboussalah · Michalis Vazirgiannis

Graph Neural Networks (GNNs) have shown great promise in tasks like node and graph classification, but they often struggle to generalize, particularly to unseen or out-of-distribution (OOD) data. These challenges are exacerbated when training data is limited in size or diversity. To address these issues, we introduce a theoretical framework using Rademacher complexity to compute a regret bound on the generalization error and then characterize the effect of data augmentation. This framework informs the design of GRATIN, an efficient graph data augmentation algorithm leveraging the capability of Gaussian Mixture Models (GMMs) to approximate any distribution. Our approach not only outperforms existing augmentation techniques in terms of generalization but also offers improved time complexity, making it highly suitable for real-world applications.


Spotlight Poster
#E-2905
Do We Really Need Message Passing in Brain Network Modeling?

Liang Yang · Yuwei Liu · Jiaming Zhuo · Di Jin · Chuan Wang · Zhen Wang · Xiaochun Cao

Brain network analysis plays a critical role in brain disease prediction and diagnosis. Graph mining tools have made remarkable progress. Graph neural networks (GNNs) and Transformers, which rely on the message-passing scheme, recently dominated this field due to their powerful expressive ability on graph data. Unfortunately, by considering brain network construction using pairwise Pearson’s coefficients between any pairs of ROIs, model analysis and experimental verification reveal that the message-passing under both GNNs and Transformers can NOT be fully explored and exploited. Surprisingly, this paper observes the significant performance and efficiency enhancements of the Hadamard product compared to the matrix product, which is the matrix form of message passing, in processing the brain network. Inspired by this finding, a novel Brain Quadratic Network (BQN) is proposed by incorporating quadratic networks, which possess better universal approximation properties. Moreover, theoretical analysis demonstrates that BQN implicitly performs community detection along with representation learning. Extensive evaluations verify the superiority of the proposed BQN compared to the message-passing-based brain network modeling. Source code is available at https://github.com/LYWJUN/BQN-demo.


Spotlight Poster
#E-2906
G-Designer: Architecting Multi-agent Communication Topologies via Graph Neural Networks

Guibin Zhang · Yanwei Yue · Xiangguo Sun · Guancheng Wan · Miao Yu · Junfeng Fang · Kun Wang · Tianlong Chen · Dawei Cheng

Recent advancements in large language model (LLM)-based agents have demonstrated that collective intelligence can significantly surpass the capabilities of individual agents, primarily due to well-crafted inter-agent communication topologies. Despite the diverse and high-performing designs available, practitioners often face confusion when selecting the most effective pipeline for their specific task: \textit{Which topology is the best choice for my task, avoiding unnecessary communication token overhead while ensuring high-quality solution?} In response to this dilemma, we introduce G-Designer, an adaptive, efficient, and robust solution for multi-agent deployment, which dynamically designs task-aware, customized communication topologies. Specifically, G-Designer models the multi-agent system as a multi-agent network, leveraging a variational graph auto-encoder to encode both the nodes (agents) and a task-specific virtual node, and decodes a task-adaptive and high-performing communication topology. Extensive experiments on six benchmarks showcase that G-Designer is: \textbf{(1) high-performing}, achieving superior results on MMLU with accuracy at $84.50\\%$ and on HumanEval with pass@1 at $89.90\\%$; \textbf{(2) task-adaptive}, architecting communication protocols tailored to task difficulty, reducing token consumption by up to $95.33\\%$ on HumanEval; and \textbf{(3) adversarially robust}, defending against agent adversarial attacks with merely $0.3\\%$ accuracy drop.


Poster
#E-2907
Stability and Generalization Capability of Subgraph Reasoning Models for Inductive Knowledge Graph Completion

Minsung Hwang · Jaejun Lee · Joyce Whang

Inductive knowledge graph completion aims to predict missing triplets in an incomplete knowledge graph that differs from the one observed during training. While subgraph reasoning models have demonstrated empirical success in this task, their theoretical properties, such as stability and generalization capability, remain unexplored. In this work, we present the first theoretical analysis of the relationship between the stability and the generalization capability for subgraph reasoning models. Specifically, we define stability as the degree of consistency in a subgraph reasoning model's outputs in response to differences in input subgraphs and introduce the Relational Tree Mover’s Distance as a metric to quantify the differences between the subgraphs. We then show that the generalization capability of subgraph reasoning models, defined as the discrepancy between the performance on training data and test data, is proportional to their stability. Furthermore, we empirically analyze the impact of stability on generalization capability using real-world datasets, validating our theoretical findings.


Poster
#E-2909
Large Language-Geometry Model: When LLM meets Equivariance

Zongzhao Li · Jiacheng Cen · Bing Su · Tingyang Xu · Yu Rong · Deli Zhao · Wenbing Huang

Accurately predicting 3D structures and dynamics of physical systems is crucial in scientific applications. Existing approaches that rely on geometric Graph Neural Networks (GNNs) effectively enforce $\mathrm{E}(3)$-equivariance, but they often fail in leveraging extensive broader information. While direct application of Large Language Models (LLMs) can incorporate external knowledge, they lack the capability for spatial reasoning with guaranteed equivariance. In this paper, we propose EquiLLM, a novel framework for representing 3D physical systems that seamlessly integrates $\mathrm{E}(3)$-equivariance with LLM capabilities. Specifically, EquiLLM comprises four key components: geometry-aware prompting, an equivariant encoder, an LLM, and an equivariant adapter. Essentially, the LLM guided by the instructive prompt serves as a sophisticated invariant feature processor, while 3D directional information is exclusively handled by the equivariant encoder and adapter modules. Experimental results demonstrate that EquiLLM delivers significant improvements over previous methods across molecular dynamics simulation, human motion simulation, and antibody design, highlighting its promising generalizability.


Poster
#E-2910
Zero-Shot Generalization of GNNs over Distinct Attribute Domains

Yangyi Shen · Jincheng Zhou · Beatrice Bevilacqua · Joshua Robinson · Charilaos Kanatsoulis · Jure Leskovec · Bruno Ribeiro

Traditional Graph Neural Networks (GNNs) cannot generalize to new graphs with node attributes different from the training ones, making zero-shot generalization across different node attribute domains an open challenge in graph machine learning. In this paper, we propose STAGE, which encodes statistical dependencies between attributes rather than individual attribute values, which may differ in test graphs. By assuming these dependencies remain invariant under changes in node attributes, STAGE achieves provable generalization guarantees for a family of domain shifts. Empirically, STAGE demonstrates strong zero-shot performance on medium-sized datasets: when trained on multiple graph datasets with different attribute spaces (varying in types and number) and evaluated on graphs with entirely new attributes, STAGE achieves a relative improvement in Hits@1 between 40% to 103% in link prediction and a 10% improvement in node classification compared to state-of-the-art baselines.


Poster
#E-2911
Haste Makes Waste: A Simple Approach for Scaling Graph Neural Networks

Rui Xue · Tong Zhao · Neil Shah · Xiaorui Liu

Graph neural networks (GNNs) have demonstrated remarkable success in graph representation learning and various sampling approaches have been proposed to scale GNNs to applications with large-scale graphs. A class of promising GNN training algorithms take advantage of historical embeddings to reduce the computation and memory cost while maintaining the model expressiveness of GNNs. However, they incur significant computation bias due to the stale feature history. In this paper, we provide a comprehensive analysis of their staleness and inferior performance on large-scale problems. Motivated by our discoveries, we propose a simple yet highly effective training algorithm (REST) to effectively reduce feature staleness, which leads to significantly improved performance and convergence across varying batch sizes, especially when staleness is predominant. The proposed algorithm seamlessly integrates with existing solutions, boasting easy implementation, while comprehensive experiments underscore its superior performance and efficiency on large-scale benchmarks. Specifically, our improvements to state-of-the-art historical embedding methods result in a 2.7\% and 3.6\% performance enhancement on the ogbn-papers100M and ogbn-products dataset respectively, accompanied by notably accelerated convergence. The code can be found at https://github.com/RXPHD/REST.


Poster
#E-2912
A General Graph Spectral Wavelet Convolution via Chebyshev Order Decomposition

Nian Liu · Xiaoxin He · Thomas Laurent · Francesco Di Giovanni · Michael Bronstein · Xavier Bresson

Spectral graph convolution, an important tool of data filtering on graphs, relies on two essential decisions: selecting spectral bases for signal transformation and parameterizing the kernel for frequency analysis. While recent techniques mainly focus on standard Fourier transform and vector-valued spectral functions, they fall short in flexibility to model signal distributions over large spatial ranges, and capacity of spectral function. In this paper, we present a novel wavelet-based graph convolution network, namely WaveGC, which integrates multi-resolution spectral bases and a matrix-valued filter kernel. Theoretically, we establish that WaveGC can effectively capture and decouple short-range and long-range information, providing superior filtering flexibility, surpassing existing graph wavelet neural networks. To instantiate WaveGC, we introduce a novel technique for learning general graph wavelets by separately combining odd and even terms of Chebyshev polynomials. This approach strictly satisfies wavelet admissibility criteria. Our numerical experiments showcase the consistent improvements in both short-range and long-range tasks. This underscores the effectiveness of the proposed model in handling different scenarios.


Poster
#E-3000
SketchDNN: Joint Continuous-Discrete Diffusion for CAD Sketch Generation

Sathvik Chereddy · John Femiani

We present SketchDNN, a generative model for synthesizing CAD sketches that jointly models both continuous parameters and discrete class labels through a unified continuous-discrete diffusion process. Our core innovation is Gaussian-Softmax diffusion, where logits perturbed with Gaussian noise are projected onto the probability simplex via a softmax transformation, facilitating blended class labels for discrete variables. This formulation addresses 2 key challenges, namely, the heterogeneity of primitive parameterizations and the permutation invariance of primitives in CAD sketches. Our approach significantly improves generation quality, reducing Fréchet Inception Distance (FID) from 16.04 to 7.80 and negative log-likelihood (NLL) from 84.8 to 81.33, establishing a new state-of-the-art in CAD sketch generation on the SketchGraphs dataset.


Poster
#E-3001
Score-based Pullback Riemannian Geometry: Extracting the Data Manifold Geometry using Anisotropic Flows

Willem Diepeveen · Georgios Batzolis · Zakhar Shumaylov · Carola-Bibiane Schönlieb

Data-driven Riemannian geometry has emerged as a powerful tool for interpretable representation learning, offering improved efficiency in downstream tasks. Moving forward, it is crucial to balance cheap manifold mappings with efficient training algorithms. In this work, we integrate concepts from pullback Riemannian geometry and generative models to propose a framework for data-driven Riemannian geometry that is scalable in both geometry and learning: score-based pullback Riemannian geometry. Focusing on unimodal distributions as a first step, we propose a score-based Riemannian structure with closed-form geodesics that pass through the data probability density. With this structure, we construct a Riemannian autoencoder (RAE) with error bounds for discovering the correct data manifold dimension. This framework can naturally be used with anisotropic normalizing flows by adopting isometry regularization during training. Through numerical experiments on diverse datasets, including image data, we demonstrate that the proposed framework produces high-quality geodesics passing through the data support, reliably estimates the intrinsic dimension of the data manifold, and provides a global chart of the manifold. To the best of our knowledge, this is the first scalable framework for extracting the complete geometry of the data manifold.


Poster
#E-3002
TimeStep Master: Asymmetrical Mixture of Timestep LoRA Experts for Versatile and Efficient Diffusion Models in Vision

Shaobin Zhuang · Yiwei Guo · Yanbo Ding · Kunchang Li · Xinyuan Chen · Yaohui Wang · Fangyikang Wang · Ying Zhang · Chen Li · Yali Wang

Diffusion models have driven the advancement of vision generation over the past years. However, it is often difficult to apply these large models in downstream tasks, due to massive fine-tuning cost. Recently, Low-Rank Adaptation (LoRA) has been applied for efficient tuning of diffusion models. Unfortunately, the capabilities of LoRA-tuned diffusion models are limited, since the same LoRA is used for different timesteps of the diffusion process. To tackle this problem, we introduce a general and concise TimeStep Master (TSM) paradigm with two key fine-tuning stages. In the fostering stage (1-stage), we apply different LoRAs to fine-tune the diffusion model at different timestep intervals. This results in different TimeStep LoRA experts that can effectively capture different noise levels. In the assembling stage (2-stage), we design a novel asymmetrical mixture of TimeStep LoRA experts, via core-context collaboration of experts at multi-scale intervals. For each timestep, we leverage TimeStep LoRA expert within the smallest interval as the core expert without gating, and use experts within the bigger intervals as the context experts with time-dependent gating. Consequently, our TSM can effectively model the noise level via the expert in the finest interval, and adaptively integrate contexts from the experts of other scales, boosting the versatility of diffusion models. To show the effectiveness of our TSM paradigm, we conduct extensive experiments on three typical and popular LoRA-related tasks of diffusion models, including domain adaptation, post-pretraining, and model distillation. Our TSM achieves the state-of-the-art results on all these tasks, throughout various model structures (UNet, DiT and MM-DiT) and visual data modalities (Image, Video), showing its remarkable generalization capacity.


Poster
#E-3003
The Diffusion Duality

Subham Sekhar Sahoo · Justin Deschenaux · Aaron Gokaslan · Guanghan Wang · Justin Chiu · Volodymyr Kuleshov

Uniform-state discrete diffusion models hold the promise of fast text generation due to their inherent ability to self-correct. However, they are typically outperformed by autoregressive models and masked diffusion models. In this work, we narrow this performance gap by leveraging a key insight: Uniform-state diffusion processes naturally emerge from an underlying Gaussian diffusion. Our method, Duo, transfers powerful techniques from Gaussian diffusion to improve both training and sampling. First, we introduce a curriculum learning strategy guided by the Gaussian process, doubling training speed by reducing variance. Models trained with curriculum learning surpass autoregressive models in zero-shot perplexity on 3 of 7 benchmarks.Second, we present Discrete Consistency Distillation, which adapts consistency distillation from the continuous to the discrete setting. This algorithm unlocks few-step generation in diffusion language models by accelerating sampling by two orders of magnitude. We provide the code and model checkpoints on the project page: http://s-sahoo.github.io/duo


Poster
#E-3004
Privacy Attacks on Image AutoRegressive Models

Antoni Kowalczuk · Jan Dubiński · Franziska Boenisch · Adam Dziedzic

Image AutoRegressive generation has emerged as a new powerful paradigm with image autoregressive models (IARs) matching state-of-the-art diffusion models (DMs) in image quality (FID: 1.48 vs. 1.58) while allowing for a higher generation speed.However, the privacy risks associated with IARs remain unexplored, raising concerns regarding their responsible deployment. To address this gap, we conduct a comprehensive privacy analysis of IARs, comparing their privacy risks to the ones of DMs as reference points. Concretely, we develop a novel membership inference attack (MIA) that achieves a remarkably high success rate in detecting training images (with a True Positive Rate at False Positive Rate = 1% of 86.38% vs. 6.38% for DMs with comparable attacks). We leverage our novel MIA to provide dataset inference (DI) for IARs, and show that it requires as few as 6 samples to detect dataset membership (compared to 200 for DI in DMs), confirming a higher information leakage in IARs. Finally, we are able to extract hundreds of training data points from an IAR (e.g., 698 from VAR-d30). Our results suggest a fundamental privacy-utility trade-off: while IARs excel in image generation quality and speed, they are empirically significantly more vulnerable to privacy attacks compared to DMs that achieve similar performance. We release the code at https://github.com/sprintml/privacyattacksagainst_iars for reproducibility.


Poster
#E-3005
Graph World Model

Tao Feng · Yexin Wu · Guanyu Lin · Jiaxuan You

World models (WMs) demonstrate strong capabilities in prediction, generation, and planning tasks.Existing WMs primarily focus on unstructured data while cannot leverage the ubiquitous structured data, often represented as graphs, in the digital world. While multiple graph foundation models have been proposed, they focus on graph learning tasks and cannot extend to diverse multi-modal data and interdisciplinary tasks. To address these challenges, we propose the Graph World Model (GWM), a world model that supports both unstructured and graph-structured states with multi-modal information and represents diverse tasks as actions. The core of a GWM is a generic message-passing algorithm to aggregate structured information, either over a unified multi-modal token space by converting multi-modal data into text (GWM-T) or a unified multi-modal embedding space by modality-specific encoders (GWM-E). Notably, GWM introduces action nodes to support diverse tasks, where action nodes are linked to other nodes via direct reference or similarity computation. Extensive experiments on 6 tasks from diverse domains, including multi-modal generation and matching, recommendation, graph prediction, multi-agent, retrieval-augmented generation, and planning and optimization, show that the same GWM outperforms or matches domain-specific baselines' performance, benefits from multi-hop structures, and demonstrate strong zero-shot/few-shot capabilities on unseen new tasks. Our codes for GWM is released at https://github.com/ulab-uiuc/GWM.


Poster
#E-3006
GrokFormer: Graph Fourier Kolmogorov-Arnold Transformers

GUOGUO AI · Guansong Pang · Hezhe Qiao · YuanGao · Hui Yan

Graph Transformers (GTs) have demonstrated remarkable performance in graph representation learning over popular graph neural networks (GNNs). However, self-attention, the core module of GTs, preserves only low-frequency signals in graph features, leading to ineffectiveness in capturing other important signals like high-frequency ones. Some recent GT models help alleviate this issue, but their flexibility and expressiveness are still limited since the filters they learn are fixed on predefined graph spectrum or spectral order. To tackle this challenge, we propose a Graph Fourier Kolmogorov-Arnold Transformer (GrokFormer), a novel GT model that learns highly expressive spectral filters with adaptive graph spectrum and spectral order through a Fourier series modeling over learnable activation functions. We demonstrate theoretically and empirically that the proposed GrokFormer filter offers better expressiveness than other spectral methods. Comprehensive experiments on 10 real-world node classification datasets across various domains, scales, and graph properties, as well as 5 graph classification datasets, show that GrokFormer outperforms state-of-the-art GTs and GNNs. Our code is available at https://github.com/GGA23/GrokFormer.


Poster
#E-3007
TopInG: Topologically Interpretable Graph Learning via Persistent Rationale Filtration

Cheng Xin · Fan Xu · Xin Ding · Jie Gao · Jiaxin Ding

Graph Neural Networks (GNNs) have shown remarkable success across various scientific fields,yet their adoption in critical decision-making is often hindered by a lack of interpretability. Recently,intrinsic interpretable GNNs have been studied to provide insights into model predictions by identifying rationale substructures in graphs. However, existing methods face challenges when the underlying rationale subgraphs are complex and varied. In this work, we propose TopInG: Topologically Interpretable Graph Learning, a novel topological framework that leverages persistent homology to identify persistent rationale subgraphs. TopInG employs a rationale filtration learning approach to model an autoregressive generating process of rationale subgraphs, and introduces a self-adjusted topological constraint, termed topological discrepancy, to enforce a persistent topological distinction between rationale subgraphs and irrelevant counterparts. We provide theoretical guarantees that our loss function is uniquely optimized by the ground truth under specific conditions. Extensive experiments demonstrate TopInG's effectiveness in tackling key challenges, such as handling variform rationale subgraphs, balancing predictive performance with interpretability, and mitigating spurious correlations. Results show that our approach improves upon state-of-the-artmethods on both predictive accuracy and interpretation quality.


Poster
#E-3008
SPHINX: Structural Prediction using Hypergraph Inference Network

Iulia Duta · Pietro Lió

The importance of higher-order relations is widely recognized in numerous real-world systems. However, annotating them is a tedious and sometimes even impossible task. Consequently, current approaches for data modelling either ignore the higher-order interactions altogether or simplify them into pairwise connections. To facilitate higher-order processing, even when a hypergraph structure is not available, we introduce SPHINX, a model that learns to infer a latent hypergraph structure in an unsupervised way, solely from the final task-dependent signal. To ensure broad applicability, we design the model to be end-to-end differentiable, capable of generating a discrete hypergraph structure compatible with any modern hypergraph networks, and easily optimizable without requiring additional regularization losses.Through extensive ablation studies and experiments conducted on four challenging datasets, we demonstrate that our model is capable of inferring suitable latent hypergraphs in both transductive and inductive tasks. Moreover, the inferred latent hypergraphs are interpretable and contribute to enhancing the final performance, outperforming existing methods for hypergraph prediction.


Poster
#E-3009
Vision Graph Prompting via Semantic Low-Rank Decomposition

Zixiang Ai · Zichen Liu · Jiahuan Zhou

Vision GNN (ViG) demonstrates superior performance by representing images as graph structures, providing a more natural way to capture irregular semantic patterns beyond traditional grid or sequence-based representations. To efficiently adapt ViG to downstream tasks, parameter-efficient fine-tuning techniques like visual prompting become increasingly essential. However, existing prompting methods are primarily designed for Transformer-based models, neglecting the rich topological relationships among nodes and edges in graph-based representations, limiting their capacity to model complex semantics. In this paper, we propose Vision Graph Prompting (VGP), a novel framework tailored for vision graph structures. Our core insight reveals that semantically connected components in the graph exhibit low-rank properties. Building on this observation, we introduce a semantic low-rank prompting method that decomposes low-rank semantic features and integrates them with prompts on vision graph topologies, capturing both global structural patterns and fine-grained semantic dependencies. Extensive experiments demonstrate our method significantly improves ViG’s transfer performance on diverse downstream tasks, achieving results comparable to full fine-tuning while maintaining parameter efficiency.


Poster
#E-3010
N2GON: Neural Networks for Graph-of-Net with Position Awareness

Yejiang Wang · Yuhai Zhao · Zhengkui Wang · Wen Shan · Ling Li · Qian Li · Miaomiao Huang · Meixia Wang · Shirui Pan · Xingwei Wang

Graphs, fundamental in modeling various research subjects such as computing networks, consist of nodes linked by edges. However, they typically function as components within larger structures in real-world scenarios, such as in protein-protein interactions where each protein is a graph in a larger network. This study delves into the Graph-of-Net (GON), a structure that extends the concept of traditional graphs by representing each node as a graph itself. It provides a multi-level perspective on the relationships between objects, encapsulating both the detailed structure of individual nodes and the broader network of dependencies. To learn node representations within the GON, we propose a position-aware neural network for Graph-of-Net which processes both intra-graph and inter-graph connections and incorporates additional data like node labels. Our model employs dual encoders and graph constructors to build and refine a constraint network, where nodes are adaptively arranged based on their positions, as determined by the network's constraint system. Our model demonstrates significant improvements over baselines in empirical evaluations on various datasets.


Poster
#E-3011
How Expressive are Knowledge Graph Foundation Models?

Xingyue Huang · Pablo Barcelo · Michael Bronstein · Ismail Ceylan · Mikhail Galkin · Juan Reutter · Miguel Romero Orth

Knowledge Graph Foundation Models (KGFMs) are at the frontier for deep learning on knowledge graphs (KGs), as they can generalize to completely novel knowledge graphs with different relational vocabularies. Despite their empirical success, our theoretical understanding of KGFMs remains very limited. In this paper, we conduct a rigorous study of the expressive power of KGFMs. Specifically, we show that the expressive power of KGFMs directly depends on the motifs that are used to learn the relation representations. We then observe that the most typical motifs used in the existing literature are binary, as the representations are learned based on how pairs of relations interact, which limits the model's expressiveness. As part of our study, we design more expressive KGFMs using richer motifs, which necessitate learning relation representations based on, e.g., how triples of relations interact with each other. Finally, we empirically validate our theoretical findings, showing that the use of richer motifs results in better performance on a wide range of datasets drawn from different domains.


Spotlight Poster
#E-3012
Equivalence is All: A Unified View for Self-supervised Graph Learning

Yejiang Wang · Yuhai Zhao · Zhengkui Wang · Ling Li · Jiapu Wang · Fangting Li · Miaomiao Huang · Shirui Pan · Xingwei Wang

Node equivalence is common in graphs, such as computing networks, encompassing automorphic equivalence (preserving adjacency under node permutations) and attribute equivalence (nodes with identical attributes). Despite their importance for learning node representations, these equivalences are largely ignored by existing graph models. To bridge this gap, we propose a GrAph self-supervised Learning framework with Equivalence (GALE) and analyze its connections to existing techniques. Specifically, we: 1) unify automorphic and attribute equivalence into a single equivalence class; 2) enforce the equivalence principle to make representations within the same class more similar while separating those across classes; 3) introduce approximate equivalence classes with linear time complexity to address the NP-hardness of exact automorphism detection and handle node-feature variation; 4) analyze existing graph encoders, noting limitations in message passing neural networks and graph transformers regarding equivalence constraints; 5) show that graph contrastive learning are a degenerate form of equivalence constraint; and 6) demonstrate that GALE achieves superior performance over baselines.


Spotlight Poster
#E-3100
Towards a Mechanistic Explanation of Diffusion Model Generalization

Matthew Niedoba · Berend Zwartsenberg · Kevin Murphy · Frank Wood

We propose a simple, training-free mechanism which explains the generalization behaviour of diffusion models. By comparing pre-trained diffusion models to their theoretically optimal empirical counterparts, we identify a shared local inductive bias across a variety of network architectures. From this observation, we hypothesize that network denoisers generalize through localized denoising operations, as these operations approximate the training objective well over much of the training distribution. To validate our hypothesis, we introduce novel denoising algorithms which aggregate local empirical denoisers to replicate network behaviour. Comparing these algorithms to network denoisers across forward and reverse diffusion processes, our approach exhibits consistent visual similarity to neural network outputs, with lower mean squared error than previously proposed methods.


Poster
#E-3101
Wasserstein Flow Matching: Generative Modeling Over Families of Distributions

Doron Haviv · Aram-Alexandre Pooladian · Dana Pe'er · Brandon Amos

Generative modeling typically concerns transporting a single source distribution to a target distribution via simple probability flows. However, in fields like computer graphics and single-cell genomics, samples themselves can be viewed as distributions, where standard flow matching ignores their inherent geometry. We propose Wasserstein flow matching (WFM), which lifts flow matching onto families of distributions using the Wasserstein geometry. Notably, WFM is the first algorithm capable of generating distributions in high dimensions, whether represented analytically (as Gaussians) or empirically (as point-clouds). Our theoretical analysis establishes that Wasserstein geodesics constitute proper conditional flows over the space of distributions, making for a valid FM objective. Our algorithm leverages optimal transport theory and the attention mechanism, demonstrating versatility across computational regimes: exploiting closed-form optimal transport paths for Gaussian families, while using entropic estimates on point-clouds for general distributions. WFM successfully generates both 2D \& 3D shapes and high-dimensional cellular microenvironments from spatial transcriptomics data. Code is available at WassersteinFlowMatching.


Poster
#E-3102
RestoreGrad: Signal Restoration Using Conditional Denoising Diffusion Models with Jointly Learned Prior

Ching-Hua Lee · Chouchang Yang · Jaejin Cho · Yashas Malur Saidutta · Rakshith Sharma Srinivasa · Yilin Shen · Hongxia Jin

Denoising diffusion probabilistic models (DDPMs) can be utilized to recover a clean signal from its degraded observation(s) by conditioning the model on the degraded signal. The degraded signals are themselves contaminated versions of the clean signals; due to this correlation, they may encompass certain useful information about the target clean data distribution. However, existing adoption of the standard Gaussian as the prior distribution in turn discards such information when shaping the prior, resulting in sub-optimal performance. In this paper, we propose to improve conditional DDPMs for signal restoration by leveraging a more informative prior that is jointly learned with the diffusion model. The proposed framework, called RestoreGrad, seamlessly integrates DDPMs into the variational autoencoder (VAE) framework, taking advantage of the correlation between the degraded and clean signals to encode a better diffusion prior. On speech and image restoration tasks, we show that RestoreGrad demonstrates faster convergence (5-10 times fewer training steps) to achieve better quality of restored signals over existing DDPM baselines and improved robustness to using fewer sampling steps in inference time (2-2.5 times fewer), advocating the advantages of leveraging jointly learned prior for efficiency improvements in the diffusion process.


Poster
#E-3103
MDDM: Practical Message-Driven Generative Image Steganography Based on Diffusion Models

Zihao Xu · Dawei xu · Zihan Li · Chuan Zhang

Generative image steganography (GIS) is an emerging technique that conceals secret messages in the generation of images. Compared to GAN-based or flow-based GIS schemes, diffusion model-based solutions can provide high-quality and more diverse images, thus receiving considerable attention recently. However, previous GIS schemes still face challenges in terms of extraction accuracy, controllability, and practicality. To address the above issues, this paper proposes a practical message-driven GIS framework based on diffusion models, called MDDM. Specifically, by utilizing Cardan Grille, we encode messages into Gaussian noise, which serves as the initial input for image generation, enabling users to generate diverse images via controllable prompts without additional training. During the information extraction process, receivers only need to use the pre-shared Cardan Grille to perform exact diffusion inversion and recover the messages without requiring the image generation seeds or prompts. Experimental results demonstrate that MDDM offers notable advantages in terms of accuracy, controllability, practicality, and security. With flexible strategies, MDDM can always achieve almost 100\% accuracy. Additionally, MDDM demonstrates certain robustness and exhibits potential for application in watermarking tasks.


Poster
#E-3104
Smooth Interpolation for Improved Discrete Graph Generative Models

Yuxuan Song · Juntong Shi · Jingjing Gong · Minkai Xu · Stefano Ermon · Hao Zhou · Wei-Ying Ma

Though typically represented by the discrete node and edge attributes, the graph topological information can be sufficiently captured by the graph spectrum in a continuous space. It is believed that incorporating the continuity of graph topological information into the generative process design could establish a superior paradigm for graph generative modeling. Motivated by such prior and recent advancements in the generative paradigm, we propose Graph Bayesian Flow Networks (GraphBFN) in this paper, a principled generative framework that designs an alternative generative process emphasizing the dynamics of topological information. Unlike recent discrete-diffusion-based methods, GraphBFNemploys the continuous counts derived from sampling infinite times from a categorical distribution as latent to facilitate a smooth decomposition of topological information, demonstrating enhanced effectiveness. To effectively realize the concept, we further develop an advanced sampling strategy and new time-scheduling techniques to overcome practical barriers and boost performance. Through extensive experimental validation on both generic graph and molecular graph generation tasks, GraphBFN could consistently achieve superior or competitive performance with significantly higher training and sampling efficiency.


Poster
#E-3105
Mechanisms of Projective Composition of Diffusion Models

Arwen Bradley · Preetum Nakkiran · David Berthelot · James Thornton · Joshua M Susskind

We study the theoretical foundations of composition in diffusion models, with a particular focus on out-of-distribution extrapolation and length-generalization. Prior work has shown that composing distributions via linear score combination can achieve promising results, including length-generalization in some cases (Du et al., 2023; Liu et al., 2022). However, our theoretical understanding of how and why such compositions work remains incomplete. In fact, it is not even entirely clear what it means for composition to "work". This paper starts to address these fundamental gaps. We begin by precisely defining one possible desired result of composition, which we call projective composition. Then, we investigate: (1) when linear score combinations provably achieve projective composition, (2) whether reverse-diffusion sampling can generate the desired composition, and (3) the conditions under which composition fails. We connect our theoretical analysis to prior empirical observations where composition has either worked or failed, for reasons that were unclear at the time. Finally, we propose a simple heuristic to help predict the success or failure of new compositions.


Poster
#E-3106
RocketKV: Accelerating Long-Context LLM Inference via Two-Stage KV Cache Compression

Payman Behnam · Yaosheng Fu · Ritchie Zhao · Po-An Tsai · Zhiding Yu · Alexey Tumanov

Transformer-based Large Language Models rely critically on the KV cache to efficiently handle extended contexts during the decode phase. Yet, the size of the KV cache grows proportionally with the input length, burdening both memory bandwidth and capacity as decoding progresses. To address this challenge, we present RocketKV, a training-free KV cache compression strategy containing two consecutive stages. In the first stage, it performs coarse-grain permanent KV cache eviction on the input sequence tokens. In the second stage, it adopts a hybrid sparse attention method to conduct fine-grain top-k sparse attention, approximating the attention scores by leveraging both head and sequence dimensionality reductions. We show that RocketKV provides a compression ratio of up to 400×, end-to-end speedup of up to 3.7× as well as peak memory reduction of up to 32.6% in the decode phase on an NVIDIA A100 GPU compared to the full KV cache baseline, while achieving negligible accuracy loss on a variety of long-context tasks. We also propose a variant of RocketKV for multi-turn scenarios, which consistently outperforms other existing methods and achieves accuracy nearly on par with an oracle top-k attention scheme.


Poster
#E-3107
Simultaneous Multi-Robot Motion Planning with Projected Diffusion Models

JINHAO LIANG · Jacob Christopher · Sven Koenig · Ferdinando Fioretto

Recent advances in diffusion models hold significant potential in robotics, enabling the generation of diverse and smooth trajectories directly from raw representations of the environment. Despite this promise, applying diffusion models to motion planning remains challenging due to their difficulty in enforcing critical constraints, such as collision avoidance and kinematic feasibility. These limitations become even more pronounced in Multi-Robot Motion Planning (MRMP), where multiple robots must coordinate in shared spaces. To address these challenges, this work proposes Simultaneous MRMP Diffusion (SMD), a novel approach integrating constrained optimization into the diffusion sampling process to produce collision-free, kinematically feasible trajectories. Additionally, the paper introduces a comprehensive MRMP benchmark to evaluate trajectory planning algorithms across scenarios with varying robot densities, obstacle complexities, and motion constraints. Experimental results show SMD consistently outperforms classical and other learning-based motion planners, achieving higher success rates and efficiency in complex multi-robot environments. The code and implementation are available at https://github.com/RAISELab-atUVA/Diffusion-MRMP.


Poster
#E-3108
Generative Audio Language Modeling with Continuous-valued Tokens and Masked Next-Token Prediction

Shu-wen Yang · Byeonggeun Kim · Kuan Po Huang · Qingming Tang · Huy Phan · Bo-Ru Lu · Harshavardhan Sundar · Shalini Ghosh · Hung-yi Lee · Chieh-Chi Kao · Chao Wang

Autoregressive next-token prediction with the Transformer decoder has become a de facto standard in large language models (LLMs), achieving remarkable success in Natural Language Processing (NLP) at scale. Extending this paradigm to audio poses unique challenges due to its inherently continuous nature. We research audio generation with a causal language model (LM) without discrete tokens. We leverage token-wise diffusion to model the continuous distribution of the next continuous-valued token. Our approach delivers significant improvements over previous discrete solution, AudioGen, achieving 20% and 40% relative gains on AudioCaps in Frechet Audio Distance (FAD) and Kullback-Leibler (KL) divergence, respectively. Additionally, we propose a novel masked next-token prediction task that incorporates masked prediction into the causal LM framework. On AudioCaps, the innovation yields 41% and 33% relative FAD improvements over AudioGen Base (285M) and AudioGen Large (1B) models, respectively, and is on par with the state-of-the-art (SOTA) diffusion models. Furthermore, we achieve these results with significantly fewer parameters—193M for our Base and 462M for our Large models.


Spotlight Poster
#E-3109
Feynman-Kac Correctors in Diffusion: Annealing, Guidance, and Product of Experts

Marta Skreta · Tara Akhound-Sadegh · Viktor Ohanesian · Roberto Bondesan · Alan Aspuru-Guzik · Arnaud Doucet · Rob Brekelmans · Alexander Tong · Kirill Neklyudov

While score-based generative models are the model of choice across diverse domains, there are limited tools available for controlling inference-time behavior in a principled manner, e.g. for composing multiple pretrained models. Existing classifier-free guidance methods use a simple heuristic to mix conditional and unconditional scores to approximately sample from conditional distributions. However, such methods do not approximate the intermediate distributions, necessitating additional `corrector' steps. In this work, we provide an efficient and principled method for sampling from a sequence of annealed, geometric-averaged, or product distributions derived from pretrained score-based models. We derive a weighted simulation scheme which we call Feynman-Kac Correctors (FKCs) based on the celebrated Feynman-Kac formula by carefully accounting for terms in the appropriate partial differential equations (PDEs). To simulate these PDEs, we propose Sequential Monte Carlo (SMC) resampling algorithms that leverage inference-time scaling to improve sampling quality. We empirically demonstrate the utility of our methods by proposing amortized sampling via inference-time temperature annealing, improving multi-objective molecule generation using pretrained models, and improving classifier-free guidance for text-to-image generation.


Poster
#E-3110
TabNAT: A Continuous-Discrete Joint Generative Framework for Tabular Data

Hengrui Zhang · Liancheng Fang · Qitian Wu · Philip Yu

While autoregressive models dominate natural language generation, their application to tabular data remains limited due to two challenges: 1) tabular data contains heterogeneous types, whereas autoregressive next-token (distribution) prediction is designed for discrete data, and 2) tabular data is column permutation-invariant, requiring flexible generation orders. Traditional autoregressive models, with their fixed generation order, struggle with tasks like missing data imputation, where the target and conditioning columns vary. To address these issues, we propose Diffusion-nested Non-autoregressive Transformer (TabNAT), a hybrid model combining diffusion processes and masked generative modeling. For continuous columns, TabNAT uses a diffusion model to parameterize their conditional distributions, while for discrete columns, it employs next-token prediction with KL divergence minimization. A masked Transformer with bi-directional attention enables order-agnostic generation, allowing it to learn the distribution of target columns conditioned on arbitrary observed columns. Extensive experiments on ten datasets with diverse properties demonstrate TabNAT's superiority in both unconditional tabular data generation and conditional missing data imputation tasks.


Poster
#E-3112
Hyper-Transforming Latent Diffusion Models

Ignacio Peis · Batuhan Koyuncu · Isabel Valera · Jes Frellsen

We introduce a novel generative framework for functions by integrating Implicit Neural Representations (INRs) and Transformer-based hypernetworks into latent variable models. Unlike prior approaches that rely on MLP-based hypernetworks with scalability limitations, our method employs a Transformer-based decoder to generate INR parameters from latent variables, addressing both representation capacity and computational efficiency. Our framework extends latent diffusion models (LDMs) to INR generation by replacing standard decoders with a Transformer-based hypernetwork, which can be trained either from scratch or via hyper-transforming—a strategy that fine-tunes only the decoder while freezing the pre-trained latent space. This enables efficient adaptation of existing generative models to INR-based representations without requiring full retraining. We validate our approach across multiple modalities, demonstrating improved scalability, expressiveness, and generalization over existing INR-based generative models. Our findings establish a unified and flexible framework for learning structured function representations.


Poster
#E-3200
Cross-regularization: Adaptive Model Complexity through Validation Gradients

Carlos Stein Naves de Brito

Model regularization requires extensive manual tuning to balance complexity against overfitting. Cross-regularization resolves this tradeoff by computing validation gradients that directly adapt regularization parameters during training. The method splits parameter optimization - training data guides feature learning while validation data shapes complexity controls - converging provably to cross-validation optima with computational cost scaling only in regularization dimension. When implemented through noise injection in neural networks, this approach reveals striking patterns: unexpectedly high noise tolerance and architecture-specific regularization that emerges organically during training. Beyond complexity control, the framework integrates seamlessly with data augmentation and uncertainty calibration while maintaining single-run efficiency through a simple gradient-based approach.


Poster
#E-3201
RZ-NAS: Enhancing LLM-guided Neural Architecture Search via Reflective Zero-Cost Strategy

Zipeng Ji · Guanghui Zhu · Chunfeng Yuan · Yihua Huang

LLM-to-NAS is a promising field at the intersection of Large Language Models (LLMs) and Neural Architecture Search (NAS), as recent research has explored the potential of architecture generation leveraging LLMs on multiple search spaces. However, the existing LLM-to-NAS methods face the challenges of limited search spaces, time-cost search efficiency, and uncompetitive performance across standard NAS benchmarks and multiple downstream tasks. In this work, we propose the Reflective Zero-cost NAS (RZ-NAS) method that can search NAS architectures with humanoid reflections and training-free metrics to elicit the power of LLMs. We rethink LLMs’ roles in NAS in current work and design a structured, prompt-based to comprehensively understand the search tasks and architectures from both text and code levels. By integrating LLM reflection modules, we use LLM-generated feedback to provide linguistic guidance within architecture optimization. RZ-NAS enables effective search within both micro and macro search spaces without extensive time cost, achieving SOTA performance across multiple downstream tasks.


Poster
#E-3202
SparseVLM: Visual Token Sparsification for Efficient Vision-Language Model Inference

Yuan Zhang · Chun-Kai Fan · Junpeng Ma · Wenzhao Zheng · Tao Huang · Kuan Cheng · Denis Gudovskiy · Tomoyuki Okuno · Yohei Nakata · Kurt Keutzer · Shanghang Zhang

In vision-language models (VLMs), visual tokens usually consume a significant amount of computational overhead, despite their sparser information density compared to text tokens. To address this, most existing methods learn a network to prune redundant visual tokens and require additional training data. Differently, we propose an efficient training-free token optimization mechanism dubbed SparseVLM without extra parameters or fine-tuning costs. Concretely, given that visual tokens complement text tokens in VLMs for linguistic reasoning, we select visual-relevant text tokens to rate the significance of vision tokens within the self-attention matrix extracted from the VLMs. Then we progressively prune irrelevant tokens. To maximize sparsity while retaining essential information, we introduce a rank-based strategy to adaptively determine the sparsification ratio for each layer, alongside a token recycling method that compresses pruned tokens into more compact representations. Experimental results show that our SparseVLM improves the efficiency of various VLMs across a range of image and video understanding tasks. In particular, when LLaVA is equipped with SparseVLM, it achieves a 54\% reduction in FLOPs, lowers CUDA time by 37\%, and maintains an accuracy rate of 97\%. Our code is available at https://github.com/Gumpest/SparseVLMs.


Spotlight Poster
#E-3203
Implicit Language Models are RNNs: Balancing Parallelization and Expressivity

Mark Schoene · Babak Rahmani · Heiner Kremer · Fabian Falck · Hitesh Ballani · Jannes Gladrow

State-space models (SSMs) and transformers dominate the language modeling landscape. However, they are constrained to a lower computational complexity than classical recurrent neural networks (RNNs), limiting their expressivity. In contrast, RNNs lack parallelization during training, raising fundamental questions about the trade off between parallelization and expressivity. We propose implicit SSMs, which iterate a transformation until convergence to a fixed point. Theoretically, we show that implicit SSMs implement the non-linear state-transitions of RNNs. Empirically, we find that only approximate fixed-point convergence suffices, enabling the design of a scalable training curriculum that largely retains parallelization, with full convergence required only for a small subset of tokens. Our approach demonstrates superior state-tracking capabilities on regular languages, surpassing transformers and SSMs. We further scale implicit SSMs to natural language reasoning tasks and pretraining of large-scale language models up to 1.3B parameters on 207B tokens - representing, to our knowledge, the largest implicit model trained to date. Notably, our implicit models outperform their explicit counterparts on standard benchmarks. Our code is publicly available at github.com/microsoft/implicit_languagemodels


Poster
#E-3204
$\infty$-Video: A Training-Free Approach to Long Video Understanding via Continuous-Time Memory Consolidation

Saúl Santos · António Farinhas · Daniel McNamee · Andre Martins

Current video-language models struggle with long-video understanding due to limited context lengths and reliance on sparse frame subsampling, which often leads to information loss. In this paper, we introduce $\infty$-Video, which is able to process arbitrarily long videos through a continuous-time long-term memory (LTM) consolidation mechanism. Our framework augments video Q-formers by making them able to process unbounded video contexts efficiently and without requiring additional training. Through continuous attention, our approach dynamically allocates higher granularity to the most relevant video segments, forming "sticky" memories which evolve over time. Experiments with Video-LLaMA and VideoChat2 demonstrate improved performance in video question-answering tasks, showcasing the potential of continuous-time LTM mechanisms to enable scalable and training-free comprehension of long videos.


Poster
#E-3206
ParallelComp: Parallel Long-Context Compressor for Length Extrapolation

Jing Xiong · Jianghan Shen · Chuanyang Zheng · Zhongwei Wan · Chenyang Zhao · Chiwun Yang · Fanghua Ye · Hongxia Yang · Lingpeng Kong · Ngai Wong

Extrapolating ultra-long contexts (text length >128K) remains a major challenge for large language models (LLMs), as most training-free extrapolation methods are not only severely limited by memory bottlenecks, but also suffer from the attention sink, which restricts their scalability and effectiveness in practice. In this work, we propose ParallelComp, a parallel long-context compression method that effectively overcomes the memory bottleneck, enabling 8B-parameter LLMs to extrapolate from 8K to 128K tokens on a single A100 80GB GPU in a training-free setting. ParallelComp splits the input into chunks, dynamically evicting redundant chunks and irrelevant tokens, supported by a parallel KV cache eviction mechanism. Importantly, we present a systematic theoretical and empirical analysis of attention biases in parallel attention—including the attention sink, recency bias, and middle bias—and reveal that these biases exhibit distinctive patterns under ultra-long context settings. We further design a KV cache eviction technique to mitigate this phenomenon. Experimental results show that ParallelComp enables an 8B model (trained on 8K context) to achieve 91.17% of GPT-4's performance under ultra-long contexts, outperforming closed-source models such as Claude-2 and Kimi-Chat. We achieve a 1.76x improvement in chunk throughput, thereby achieving a 23.50x acceleration in the prefill stage with negligible performance loss and pave the way for scalable and robust ultra-long contexts extrapolation in LLMs. We release the code at https://github.com/menik1126/ParallelComp.


Poster
#E-3207
Efficient Length-Generalizable Attention via Causal Retrieval for Long-Context Language Modeling

Xiang Hu · Zhihao Teng · Jun Zhao · Wei Wu · Kewei Tu

Despite the success of Transformers, handling longer contexts remains challenging due to the limited length generalization and quadratic complexity of self-attention, which often requires post-training with a larger attention window, significantly increasing computational and memory costs. In this paper, we propose a novel attention mechanism based on dynamic context, Grouped Cross Attention (GCA), which can generalize to 1000 $\times$ the pre-training context length while maintaining the ability to access distant information with a constant attention window size. For a given input sequence, we split it into chunks and use each chunk to retrieve top-$k$ relevant past chunks for subsequent text generation. Specifically, unlike most previous works that use an off-the-shelf retriever, our key innovation allows the retriever to learn how to retrieve past chunks that better minimize the auto-regressive loss of subsequent tokens in an end-to-end manner, which adapts better to causal language models.Such a mechanism accommodates retrieved chunks with a fixed-size attention window to achieve long-range information access, significantly reducing computational and memory costs during training and inference. Experiments show that GCA-based models achieve near-perfect accuracy in passkey retrieval for 16M context lengths, which is $1000 \times$ the training length.


Poster
#E-3208
Rethinking the Bias of Foundation Model under Long-tailed Distribution

Jiahao Chen · Bin Qin · Jiangmeng Li · Hao Chen · Bing Su

Long-tailed learning has garnered increasing attention due to its practical significance. Among the various approaches, the fine-tuning paradigm has gained considerable interest with the advent of foundation models. However, most existing methods primarily focus on leveraging knowledge from these models, overlooking the inherent biases introduced by the imbalanced training data they rely on. In this paper, we examine how such imbalances from pre-training affect long-tailed downstream tasks. Specifically, we find the imbalance biases inherited in foundation models on downstream task as parameter imbalance and data imbalance. During fine-tuning, we observe that parameter imbalance plays a more critical role, while data imbalance can be mitigated using existing re-balancing strategies. Moreover, we find that parameter imbalance cannot be effectively addressed by current re-balancing techniques, such as adjusting the logits, during training, unlike data imbalance. To tackle both imbalances simultaneously, we build our method on causal learning and view the incomplete semantic factor as the confounder, which brings spurious correlations between input samples and labels. To resolve the negative effects of this, we propose a novel backdoor adjustment method that learns the true causal effect between input samples and labels, rather than merely fitting the correlations in the data. Notably, we achieve an average performance increase of about 1.67% on each dataset.


Poster
#E-3209
MM-RLHF: The Next Step Forward in Multimodal LLM Alignment

Yi-Fan Zhang · Tao Yu · Haochen Tian · Chaoyou Fu · Peiyan Li · Jianshu Zeng · Wulin Xie · Yang Shi · Huanyu Zhang · Junkang Wu · xue wang · Yibo Hu · Bin Wen · Tingting Gao · Zhang Zhang · Fan Yang · Di ZHANG · Liang Wang · Rong Jin

Existing efforts to align multimodal large language models (MLLMs) with human preferences have only achieved progress in narrow areas, such as hallucination reduction, but remain limited in practical applicability and generalizability. To this end, we introduce MM-RLHF, a dataset containing 120k fine-grained, human-annotated preference comparison pairs. This dataset represents a substantial advancement over existing resources, offering superior size, diversity, annotation granularity, and quality. Leveraging this dataset, we propose several key innovations to improve both the quality of reward models and the efficiency of alignment algorithms. Notably, we introduce the Critique-Based Reward Model, which generates critiques of model outputs before assigning scores, offering enhanced interpretability and more informative feedback compared to traditional scalar reward mechanisms. Additionally, we propose Dynamic Reward Scaling, a method that adjusts the loss weight of each sample according to the reward signal, thereby optimizing the use of high-quality comparison pairs. Our approach is rigorously evaluated across 10 distinct dimensions, encompassing 27 benchmarks, with results demonstrating significant and consistent improvements in model performance (Figure.1).


Poster
#E-3211
Towards Graph Foundation Models: Learning Generalities Across Graphs via Task-Trees

Zehong Wang · Zheyuan Zhang · Tianyi MA · Nitesh Chawla · Chuxu Zhang · Yanfang Ye

Foundation models are pretrained on large-scale corpora to learn generalizable patterns across domains and tasks---such as contours, textures, and edges in images, or tokens and sentences in text. In contrast, discovering such generalities in graph-structured data, especially across heterogeneous graph tasks, remains an open challenge. To address this, we propose a novel approach to cross-task generalization in graphs via task-trees, which serve as unified learning instances aligning node-, edge-, and graph-level tasks. We theoretically analyze the stability, transferability, and generalization properties of task-trees, showing that pretraining a graph neural network (GNN) on diverse task-trees with a reconstruction objective induces transferable knowledge. This enables efficient adaptation to downstream tasks with minimal fine-tuning. To validate our framework, we introduce Graph Generality Identifier on Task-Trees (GIT), a graph foundation model that demonstrates strong performance on over 30 graphs across five domains via fine-tuning, in-context learning, and zero-shot generalization. Code and data are available at https://github.com/Zehong-Wang/GIT.


Poster
#E-3300
PEAKS: Selecting Key Training Examples Incrementally via Prediction Error Anchored by Kernel Similarity

Mustafa Burak Gurbuz · Xingyu Zheng · Constantine Dovrolis

As deep learning continues to be driven by ever-larger datasets, understanding which examples are most important for generalization has become a critical question. While progress in data selection continues, emerging applications require studying this problem in dynamic contexts. To bridge this gap, we pose the Incremental Data Selection (IDS) problem, where examples arrive as a continuous stream, and need to be selected without access to the full data source. In this setting, the learner must incrementally build a training dataset of predefined size while simultaneously learning the underlying task. We find that in IDS, the impact of a new sample on the model state depends fundamentally on both its geometric relationship in the feature space and its prediction error. Leveraging this insight, we propose PEAKS (Prediction Error Anchored by Kernel Similarity), an efficient data selection method tailored for IDS. Our comprehensive evaluations demonstrate that PEAKS consistently outperforms existing selection strategies. Furthermore, PEAKS yields increasingly better performance returns than random selection as training data size grows on real-world datasets. The code is available at https://github.com/BurakGurbuz97/PEAKS.


Poster
#E-3301
Learngene Tells You How to Customize: Task-Aware Parameter Initialization at Flexible Scales

Jiaze Xu · Shiyu Xia · Xu Yang · JIAQI LYU · Xin Geng

Appropriate parameter initialization strategies are essential for reducing the high computational costs of training large pretrained models in various task scenarios. Graph HyperNetwork (GHN), a parameter initialization method, has recently demonstrated strong performance in initializing models.However, GHN still faces several challenges, including limited effectiveness in initializing larger models, poor performance on smaller datasets, and the requirement of task-specific GHN training, where each new task necessitates retraining the GHN model, leading to increased computational and storage overhead.To overcome these challenges, motivated by the recently proposed Learngene framework, we propose a novel method called Task-Aware Learngene (TAL). Briefly, our approach pretrains a TAL model under the guidance of a well-trained model and then performs multi-task tuning to obtain a shared TAL model that enables parameter prediction based on both model architectures and task-specific characteristics.Extensive experiments show the superiority of TAL.Models initialized with TAL outperform those initialized using GHN method by an average of 24.39\% in terms of accuracy across Decathlon datasets.


Poster
#E-3302
CSTrack: Enhancing RGB-X Tracking via Compact Spatiotemporal Features

xiaokun Feng · Dailing Zhang · Shiyu Hu · Xuchen Li · Meiqi Wu · Jing Zhang · Xiaotang Chen · Kaiqi Huang

Effectively modeling and utilizing spatiotemporal features from RGB and other modalities (e.g., depth, thermal, and event data, denoted as X) is the core of RGB-X tracker design. Existing methods often employ two parallel branches to separately process the RGB and X input streams, requiring the model to simultaneously handle two dispersed feature spaces, which complicates both the model structure and computation process. More critically, intra-modality spatial modeling within each dispersed space incurs substantial computational overhead, limiting resources for inter-modality spatial modeling and temporal modeling.To address this, we propose a novel tracker, CSTrack, which focuses on modeling Compact Spatiotemporal features to achieve simple yet effective tracking.Specifically, we first introduce an innovative Spatial Compact Module that integrates the RGB-X dual input streams into a compact spatial feature, enabling thorough intra- and inter-modality spatial modeling. Additionally, we design an efficient Temporal Compact Module that compactly represents temporal features by constructing the refined target distribution heatmap. Extensive experiments validate the effectiveness of our compact spatiotemporal modeling method, with CSTrack achieving new SOTA results on mainstream RGB-X benchmarks. The code and models will be released at: https://github.com/XiaokunFeng/CSTrack.


Poster
#E-3303
Accelerating PDE-Constrained Optimization by the Derivative of Neural Operators

Ze Cheng · Zhuoyu Li · Wang Xiaoqiang · Jianing Huang · Zhizhou Zhang · Zhongkai Hao · Hang Su

PDE-Constrained Optimization (PDECO) problems can be accelerated significantly by employing gradient-based methods with surrogate models like neural operators compared to traditional numerical solvers. However, this approach faces two key challenges:(1) Data inefficiency: Lack of efficient data sampling and effective training for neural operators, particularly for optimization purpose.(2) Instability: High risk of optimization derailment due to inaccurate neural operator predictions and gradients.To address these challenges, we propose a novel framework: (1) Optimization-oriented training: we leverage data from full steps of traditional optimization algorithms and employ a specialized training method for neural operators. (2) Enhanced derivative learning: We introduce a Virtual-Fourier layer to enhance derivative learning within the neural operator, a crucial aspect for gradient-based optimization. (3) Hybrid optimization: We implement a hybrid approach that integrates neural operators with numerical solvers, providing robust regularization for the optimization process.Our extensive experimental results demonstrate the effectiveness of our model in accurately learning operators and their derivatives. Furthermore, our hybrid optimization approach exhibits robust convergence.


Poster
#E-3304
Scalable Meta-Learning via Mixed-Mode Differentiation

Iurii Kemaev · Dan Andrei Calian · Luisa Zintgraf · Gregory Farquhar · Hado van Hasselt

Gradient-based bilevel optimisation is a powerful technique with applications in hyperparameter optimisation, task adaptation, algorithm discovery, meta-learning more broadly, and beyond. It often requires differentiating through the gradient-based optimisation process itself, leading to "gradient-of-a-gradient" calculations with computationally expensive second-order and mixed derivatives. While modern automatic differentiation libraries provide a convenient way to write programs for calculating these derivatives, they oftentimes cannot fully exploit the specific structure of these problems out-of-the-box, leading to suboptimal performance. In this paper, we analyse such cases and propose Mixed-Flow Meta-Gradients, or MixFlow-MG -- a practical algorithm that uses mixed-mode differentiation to construct more efficient and scalable computational graphs yielding over 10x memory and up to 25\% wall-clock time improvements over standard implementations in modern meta-learning setups.


Poster
#E-3305
An Efficient Matrix Multiplication Algorithm for Accelerating Inference in Binary and Ternary Neural Networks

Mohsen Dehghankar · Mahdi Erfanian · Abolfazl Asudeh

Despite their tremendous success and versatility, Deep Neural Networks (DNNs) such as Large Language Models (LLMs) suffer from inference inefficiency and rely on advanced computational infrastructure.To address these challenges and make these models more accessible and cost-effective, in this paper, we propose algorithms to improve the inference time and memory efficiency of DNNs with binary and ternary weight matrices.Particularly focusing on matrix multiplication as the bottleneck operation of inference, we observe that, once trained, the weight matrices of a model no longer change. This allows us to preprocess these matrices and create indices that help reduce the storage requirements by a logarithmic factor while enabling our efficient inference algorithms.Specifically, for a $n\times n$ weight matrix, our efficient algorithm guarantees a time complexity of $O(\frac{n^2}{\log n})$, a logarithmic factor improvement over the standard vector-matrix multiplication.Besides theoretical analysis, we conduct extensive experiments to evaluate the practical efficiency of our algorithms. Our results confirm the superiority of our approach both with respect to time and memory, as we observed a reduction in the multiplication time up to 29x and memory usage up to 6x. When applied to LLMs, our experiments show up to a 5.24x speedup in the inference time.


Poster
#E-3306
MERGE$^3$: Efficient Evolutionary Merging on Consumer-grade GPUs

Tommaso Mencattini · Adrian Robert Minut · Donato Crisostomi · Andrea Santilli · Emanuele Rodola

Evolutionary model merging enables the creation of high-performing multi-task models but remains computationally prohibitive for consumer hardware. We introduce MERGE$^3$, an efficient framework that makes evolutionary merging of Large Language Models (LLMs) feasible on a single GPU by reducing fitness computation costs 50× while retaining a large fraction of the original performance. MERGE$^3$ achieves this by **E**xtracting a reduced dataset for evaluation, **E**stimating model abilities using Item Response Theory (IRT), and **E**volving optimal merges via IRT-based performance estimators. Our method enables state-of-the-art multilingual and cross-lingual merging, transferring knowledge across languages with significantly lower computational overhead. We provide theoretical guarantees and an open-source library, democratizing high-quality model merging.


Poster
#E-3307
SLiM: One-shot Quantization and Sparsity with Low-rank Approximation for LLM Weight Compression

Mohammad Mozaffari · Amir Yazdanbakhsh · Maryam Mehri Dehnavi

Conventional model compression techniques for LLMs address high memory consumption and slow inference challenges but typically require computationally expensive retraining to preserve accuracy. In contrast, one-shot compression methods eliminate retraining cost, but struggle to achieve accuracy comparable to dense models. This paper presents SLIM, a new one-shot compression framework that holistically integrates hardware-friendly quantization, sparsity, and low-rank approximation into a unified process. First, we formulate the quantization process using a probabilistic approach (SLIM-Quant) that enables us to apply uniform quantization. Then, we use an existing one-shot pruning method to apply semi-structured sparsity on top of the quantized weights. Finally, to compensate for the introduced aggregated quantization and sparsity error, we use a novel saliency function with unique invertible and additive features that enables us tomathematically compute the value of low-rank adapters. SLIM improves model accuracy by up to 5.66% (LLaMA-2-7B) for 2:4 sparsity with 4-bit weight quantization, outperforming prior methods. Models compressed with SLIM achieve up to 4.3× and 3.8× on Nvidia RTX3060 and A100 GPUs, respectively. Additionally, they achieve up to 0.23× end-to-end memory reduction in comparison to their dense counterparts. We also propose an optional PEFT recipe that further improves accuracyby up to 1.66% (LLaMA-2-13B) compared to SLIM without fine-tuning.


Poster
#E-3308
A Closer Look at Backdoor Attacks on CLIP

Shuo He · Zhifang Zhang · Feng Liu · Roy Lee · Bo An · Lei Feng

We present a comprehensive empirical study on how backdoor attacks affect CLIP by analyzing the representations of backdoor images. Specifically, based on the methodology of representation decomposing, image representations can be decomposed into a sum of representations across individual image patches, attention heads (AHs), and multi-layer perceptrons (MLPs) in different model layers. By examining the effect of backdoor attacks on model components, we have the following empirical findings. (1) Different backdoor attacks would infect different model components, i.e., local patch-based backdoor attacks mainly affect AHs, while global perturbation-based backdoor attacks mainly affect MLPs. (2) Infected AHs are centered on the last layer, while infected MLPs are decentralized on several late layers. (3) Not all AHs in the last layer are infected and even some AHs could still maintain the original property-specific roles (e.g., ''color" and ''location''). These observations motivate us to defend against backdoor attacks by detecting infected AHs, repairing their representations, or filtering backdoor samples with too many infected AHs, in the inference stage. Experimental results validate our empirical findings and demonstrate the effectiveness of the defense methods.


Poster
#E-3309
SBGD: Improving Graph Diffusion Generative Model via Stochastic Block Diffusion

Junwei Su · shan Wu

Graph diffusion generative models (GDGMs) have emerged as powerful tools for generating high-quality graphs. However, their broader adoption faces challenges in \emph{scalability and size generalization}. GDGMs struggle to scale to large graphs due to their high memory requirements, as they typically operate in the full graph space, requiring the entire graph to be stored in memory during training and inference. This constraint limits their feasibility for large-scale real-world graphs. GDGMs also exhibit poor size generalization, with limited ability to generate graphs of sizes different from those in the training data, restricting their adaptability across diverse applications. To address these challenges, we propose the stochastic block graph diffusion (SBGD) model, which refines graph representations into a block graph space. This space incorporates structural priors based on real-world graph patterns, significantly reducing memory complexity and enabling scalability to large graphs. The block representation also improves size generalization by capturing fundamental graph structures. Empirical results show that SBGD achieves significant memory improvements (up to 6$\times$) while maintaining comparable or even superior graph generation performance relative to state-of-the-art methods. Furthermore, experiments demonstrate that SBGD better generalizes to unseen graph sizes. The significance of SBGD extends beyond being a scalable and effective GDGM; \emph{it also exemplifies the principle of modularization in generative modelling, offering a new avenue for exploring generative models by decomposing complex tasks into more manageable components.}


Poster
#E-3310
GLGENN: A Novel Parameter-Light Equivariant Neural Networks Architecture Based on Clifford Geometric Algebras

Ekaterina Filimoshina · Dmitry Shirokov

We propose, implement, and compare with competitors a new architecture of equivariant neural networks based on geometric (Clifford) algebras: Generalized Lipschitz Group Equivariant Neural Networks (GLGENN). These networks are equivariant to all pseudo-orthogonal transformations, including rotations and reflections, of a vector space with any non-degenerate or degenerate symmetric bilinear form. We propose a weight-sharing parametrization technique that takes into account the fundamental structures and operations of geometric algebras. Due to this technique, GLGENN architecture is parameter-light and has less tendency to overfitting than baseline equivariant models. GLGENN outperforms or matches competitors on several benchmarking equivariant tasks, including estimation of an equivariant function and a convex hull experiment, while using significantly fewer optimizable parameters.


Poster
#E-3311
OW-VAP: Visual Attribute Parsing for Open World Object Detection

Xing Xi · Xing Fu · Weiqiang Wang · Ronghua Luo

Open World Object Detection (OWOD) requires the detector to continuously identify and learn new categories. Existing methods rely on the large language model (LLM) to describe the visual attributes of known categories and use these attributes to mark potential objects. The performance of such methods is influenced by the accuracy of LLM descriptions, and selecting appropriate attributes during incremental learning remains a challenge. In this paper, we propose a novel OWOD framework, termed OW-VAP, which operates independently of LLM and requires only minimal object descriptions to detect unknown objects. Specifically, we propose a Visual Attribute Parser (VAP) that parses the attributes of visual regions and assesses object potential based on the similarity between these attributes and the object descriptions. To enable the VAP to recognize objects in unlabeled areas, we exploit potential objects within background regions. Finally, we propose Probabilistic Soft Label Assignment (PSLA) to prevent optimization conflicts from misidentifying background as foreground. Comparative results on the OWOD benchmark demonstrate that our approach surpasses existing state-of-the-art methods with a +13 improvement in U-Recall and a +8 increase in U-AP for unknown detection capabilities. Furthermore, OW-VAP approaches the unknown recall upper limit of the detector.


Poster
#E-3312
Taming Diffusion for Dataset Distillation with High Representativeness

Lin Zhao · Yushu Wu · Xinru Jiang · Jianyang Gu · Yanzhi Wang · Xiaolin Xu · Pu Zhao · Xue Lin

Recent deep learning models demand larger datasets, driving the need for dataset distillation to create compact, cost-efficient datasets while maintaining performance. Due to the powerful image generation capability of diffusion, it has been introduced to this field for generating distilled images. In this paper, we systematically investigate issues present in current diffusion-based dataset distillation methods, including inaccurate distribution matching, distribution deviation with random noise, and separate sampling. Building on this, we propose D$^3$HR, a novel diffusion-based framework to generate distilled datasets with high representativeness. Specifically, we adopt DDIM inversion to map the latents of the full dataset from a low-normality latent domain to a high-normality Gaussian domain, preserving information and ensuring structural consistency to generate representative latents for the distilled dataset. Furthermore, we propose an efficient sampling scheme to better align the representative latents with the high-normality Gaussian distribution. Our comprehensive experiments demonstrate that D$^3$HR can achieve higher accuracy across different model architectures compared with state-of-the-art baselines in dataset distillation. Source code: https://github.com/lin-zhao-resoLve/D3HR.


Poster
#E-3410
GS-Bias: Global-Spatial Bias Learner for Single-Image Test-Time Adaptation of Vision-Language Models

Zhaohong Huang · Yuxin Zhang · JingJing Xie · Fei Chao · Rongrong Ji

Recent advances in test-time adaptation (TTA) for Vision-Language Models (VLMs) have garnered increasing attention, particularly through the use of multiple augmented views of a single image to boost zero-shot generalization. Unfortunately, existing methods fail to strike a satisfactory balance between performance and efficiency, either due to excessive overhead of tuning text prompts or unstable benefits from handcrafted, training-free visual feature enhancement. In this paper, we present Global-Spatial Bias Learner (GS-Bias), an efficient and effective TTA paradigm that incorporates two learnable biases during TTA, unfolded as the global bias and spatial bias. Particularly, the global bias captures the global semantic features of a test image by learning consistency across augmented views, while spatial bias learns the semantic coherence between regions in the image’s spatial visual representation. It is worth highlighting that these two sets of biases are directly added to the logits outputed by the pretrained VLMs, which circumvent the full backpropagation through VLM that hinders the efficiency of existing TTA methods. This endows GS-Bias with extremely high efficiency while achieving state-of-the-art performance on 15 benchmark datasets. For example, it achieves a 2.23% improvement over TPT in cross-dataset generalization and a 2.72% improvement in domain generalization, while requiring only 6.5% of TPT's memory usage on ImageNet.


Poster
#E-3411
Open-Det: An Efficient Learning Framework for Open-Ended Detection

Guiping Cao · Tao Wang · Wenjian Huang · Xiangyuan Lan · Jianguo Zhang · Dongmei Jiang

Open-Ended object Detection (OED) is a novel and challenging task that detects objects and generates their category names in a free-form manner, without requiring additional vocabularies during inference. However, the existing OED models, such as GenerateU, require large-scale datasets for training, suffer from slow convergence, and exhibit limited performance. To address these issues, we present a novel and efficient Open-Det framework, consisting of four collaborative parts. Specifically, Open-Det accelerates model training in both the bounding box and object name generation process by reconstructing the Object Detector and the Object Name Generator. To bridge the semantic gap between Vision and Language modalities, we propose a Vision-Language Aligner with V-to-L and L-to-V alignment mechanisms, incorporating with the Prompts Distiller to transfer knowledge from the VLM into VL-prompts, enabling accurate object name generation for the LLM. In addition, we design a Masked Alignment Loss to eliminate contradictory supervision and introduce a Joint Loss to enhance classification, resulting in more efficient training. Compared to GenerateU, Open-Det, using only 1.5% of the training data (0.077M vs. 5.077M), 20.8% of the training epochs (31 vs. 149), and fewer GPU resources (4 V100 vs. 16 A100), achieves even higher performance (+1.0% in APr). The source codes are available at: https://github.com/Med-Process/Open-Det.


Spotlight Poster
#E-500
Position: We Can’t Understand AI Using our Existing Vocabulary

John Hewitt · Robert Geirhos · Been Kim

This position paper argues that, in order to understand AI, we cannot rely on our existing vocabulary of human words. Instead, we shouldstrive to develop neologisms: new words thatrepresent precise human concepts that we wantto teach machines, or machine concepts that weneed to learn. We start from the premise thathumans and machines have differing concepts.This means interpretability can be framed as acommunication problem: humans must be able toreference and control machine concepts, and communicate human concepts to machines. Creatinga shared human-machine language through developing neologisms, we believe, could solve thiscommunication problem. Successful neologismsachieve a useful amount of abstraction: not toodetailed, so they’re reusable in many contexts, andnot too high-level, so they convey precise information. As a proof of concept, we demonstrate howa “length neologism” enables controlling LLMresponse length, while a “diversity neologism” allows sampling more variable responses. Takentogether, we argue that we cannot understand AIusing our existing vocabulary, and expanding itthrough neologisms creates opportunities for bothcontrolling and understanding machines better.


Poster
#E-501
Position: Rethinking Explainable Machine Learning as Applied Statistics

Sebastian Bordt · Eric Raidl · Ulrike Luxburg

In the rapidly growing literature on explanation algorithms, it often remains unclear what precisely these algorithms are for and how they should be used. In this position paper, we argue for a novel and pragmatic perspective: Explainable machine learning needs to recognize its parallels with applied statistics. Concretely, explanations are statistics of high-dimensional functions, and we should think about them analogously to traditional statistical quantities. Among others, this implies that we must think carefully about the matter of interpretation, or how the explanations relate to intuitive questions that humans have about the world. The fact that this is scarcely being discussed in research papers is one of the main drawbacks of the current literature. Moving forward, the analogy between explainable machine learning and applied statistics provides a fruitful way for how research practices can be improved.


Oral Poster
#E-502
Position: Principles of Animal Cognition to Improve LLM Evaluations

Sunayana Rane · Cyrus Kirkman · Graham Todd · Amanda Royka · Ryan Law · Erica Cartmill · Jacob Foster

It has become increasingly challenging to understand and evaluate LLM capabilities as these models exhibit a broader range of behaviors. In this position paper, we argue that LLM researchers should draw on the lessons from another field which has developed a rich set of experimental paradigms and design practices for probing the behavior of complex intelligent systems: animal cognition. We present five core principles of evaluation drawn from animal cognition research, and explain how they provide invaluable guidance for understanding LLM capabilities and behavior. We ground these principles in an empirical case study, and show how they can already provide a richer picture of one particular reasoning capability: transitive inference.


Poster
#E-503
Position: The Most Expensive Part of an LLM *should* be its Training Data

Nikhil Kandpal · Colin Raffel

Training a state-of-the-art Large Language Model (LLM) is an increasingly expensive endeavor due to growing computational, hardware, energy, and engineering demands. Yet, an often-overlooked (and seldom paid) expense is the human labor behind these models' training data. Every LLM is built on an unfathomable amount of human effort: trillions of carefully written words sourced from books, academic papers, codebases, social media, and more. This position paper aims to assign a monetary value to this labor and argues that the most expensive part of producing an LLM \emph{should} be the compensation provided to training data producers for their work. To support this position, we study 64 LLMs released between 2016 and 2024, estimating what it would cost to pay people to produce their training datasets from scratch. Even under highly conservative estimates of wage rates, the costs of these models' training datasets are $10$-$1000$ times larger than the costs to train the models themselves, representing a significant financial liability for LLM providers. In the face of the massive gap between the value of training data and the lack of compensation for its creation, we highlight and discuss research directions that could enable fairer practices in the future.


Oral Poster
#E-504
Position: Political Neutrality in AI Is Impossible — But Here Is How to Approximate It

Jillian Fisher · Ruth Elisabeth Appel · Chan Young Park · Yujin Potter · Liwei Jiang · Taylor Sorensen · Shangbin Feng · Yulia Tsvetkov · Margaret Roberts · Jennifer Pan · Dawn Song · Yejin Choi

AI systems often exhibit political bias, influencing users' opinions and decisions. While political neutrality—defined as the absence of bias—is often seen as an ideal solution for fairness and safety, this position paper argues that true political neutrality is neither feasible nor universally desirable due to its subjective nature and the biases inherent in AI training data, algorithms, and user interactions. However, inspired by Joseph Raz's philosophical insight that "neutrality [...] can be a matter of degree" (Raz, 1986), we argue that striving for some neutrality remains essential for promoting balanced AI interactions and mitigating user manipulation. Therefore, we use the term "approximation" of political neutrality to shift the focus from unattainable absolutes to achievable, practical proxies. We propose eight techniques for approximating neutrality across three levels of conceptualizing AI, examining their trade-offs and implementation strategies. In addition, we explore two concrete applications of these approximations to illustrate their practicality. Finally, we assess our framework on current large language models (LLMs) at the output level, providing a demonstration of how it can be evaluated. This work seeks to advance nuanced discussions of political neutrality in AI and promote the development of responsible, aligned language models.


Poster
#E-505
Position: Iterative Online-Offline Joint Optimization is Needed to Manage Complex LLM Copyright Risks

Yanzhou Pan · Jiayi Chen · Jiamin Chen · Zhaozhuo Xu · Denghui Zhang

The infringement risks of LLMs have raised significant copyright concerns across different stages of the model lifecycle. While current methods often address these issues separately, this position paper argues that the LLM copyright challenges are inherently connected, and independent optimization of these solutions leads to theoretical bottlenecks. Building on this insight, we further argue that managing LLM copyright risks requires a systemic approach rather than fragmented solutions. In this paper, we analyze the limitations of existing methods in detail and introduce an iterative online-offline joint optimization framework to effectively manage complex LLM copyright risks. We demonstrate that this framework offers a scalable and practical solution to mitigate LLM infringement risks, and also outline new research directions that emerge from this perspective.


Poster
#E-506
Tree-Sliced Wasserstein Distance: A Geometric Perspective

Viet Hoang Tran · Trang Pham · Tho Tran Huu · Minh-Khoi Nguyen-Nhat · Thanh Chu · Tam Le · Tan Nguyen

Many variants of Optimal Transport (OT) have been developed to address its heavy computation. Among them, notably, Sliced Wasserstein (SW) is widely used for application domains by projecting the OT problem onto one-dimensional lines, and leveraging the closed-form expression of the univariate OT to reduce the computational burden. However, projecting measures onto low-dimensional spaces can lead to a loss of topological information. To mitigate this issue, in this work, we propose to replace one-dimensional lines with a more intricate structure, called \emph{tree systems}. This structure is metrizable by a tree metric, which yields a closed-form expression for OT problems on tree systems. We provide an extensive theoretical analysis to formally define tree systems with their topological properties, introduce the concept of splitting maps, which operate as the projection mechanism onto these structures, then finally propose a novel variant of Radon transform for tree systems and verify its injectivity. This framework leads to an efficient metric between measures, termed Tree-Sliced Wasserstein distance on Systems of Lines (TSW-SL). By conducting a variety of experiments on gradient flows, image style transfer, and generative models, we illustrate that our proposed approach performs favorably compared to SW and its variants.


Spotlight Poster
#E-600
Position: Human Baselines in Model Evaluations Need Rigor and Transparency (With Recommendations & Reporting Checklist)

Kevin Wei · Patricia Paskov · Sunishchal Dev · Michael Byun · Anka Reuel · Xavier Roberts-Gaal · Rachel Calcott · Evie Coxon · Chinmay Deshpande

In this position paper, we argue that human baselines in foundation model evaluations must be more rigorous and more transparent to enable meaningful comparisons of human vs. AI performance, and we provide recommendations and a reporting checklist towards this end. Human performance baselines are vital for the machine learning community, downstream users, and policymakers to interpret AI evaluations. Models are often claimed to achieve "super-human" performance, but existing baselining methods are neither sufficiently rigorous nor sufficiently well-documented to robustly measure and assess performance differences. Based on a meta-review of the measurement theory and AI evaluation literatures, we derive a framework with recommendations for designing, executing, and reporting human baselines. We synthesize our recommendations into a checklist that we use to systematically review 115 human baselines (studies) in foundation model evaluations and thus identify shortcomings in existing baselining methods; our checklist can also assist researchers in conducting human baselines and reporting results. We hope our work can advance more rigorous AI evaluation practices that can better serve both the research community and policymakers. Data is available at: https://github.com/kevinlwei/human-baselines.


Oral Poster
#E-601
Position: Medical Large Language Model Benchmarks Should Prioritize Construct Validity

Ahmed Alaa · Thomas Hartvigsen · Niloufar Golchini · Shiladitya Dutta · Frances Dean · Inioluwa Raji · Travis Zack

Medical large language models (LLMs) research often makes bold claims, from encoding clinical knowledge to reasoning like a physician. These claims are usually backed by evaluation on competitive benchmarks—a tradition inherited from mainstream machine learning. But how do we separate real progress from a leaderboard flex? Medical LLM benchmarks, much like those in other fields, are arbitrarily constructed using medical licensing exam questions. For these benchmarks to truly measure progress, they must accurately capture the real-world tasks they aim to represent. In this position paper, we argue that medical LLM benchmarks should—and indeed can—be empirically evaluated for their construct validity. In the psychological testing literature, “construct validity” refers to the ability of a test to measure an underlying “construct”, that is the actual conceptual target of evaluation. By drawing an analogy between LLM benchmarks and psychological tests, we explain how frameworks from this field can provide empirical foundations for validating benchmarks. To put these ideas into practice, we use real-world clinical data in proof-of-concept experiments to evaluate popular medical LLM benchmarks and report significant gaps in their construct validity. Finally, we outline a vision for a new ecosystem of medical LLM evaluation centered around the creation of valid benchmarks.


Oral Poster
#E-602
Position: AI Competitions Provide the Gold Standard for Empirical Rigor in GenAI Evaluation

D. Sculley · William Cukierski · Phil Culliton · Sohier Dane · Maggie Demkin · Ryan Holbrook · Addison Howard · Paul Mooney · Walter Reade · Meg Risdal · Nate Keating

In this position paper, we observe that empirical evaluation in Generative AI is at a crisis point since traditional ML evaluation and benchmarking strategies are insufficient to meet the needs of evaluating modern GenAI models and systems. There are many reasons for this, including the fact that these models typically have nearly unbounded input and output spaces, typically do not have a well defined ground truth target, and typically exhibit strong feedback loops and prediction dependence based on context of previous model outputs. On top of these critical issues, we argue that the problems of leakage and contamination are in fact the most important and difficult issues to address for GenAI evaluations. Interestingly, the field of AI Competitions has developed effective measures and practices to combat leakage for the purpose of counteracting cheating by bad actors within a competition setting. This makes AI Competitions an especially valuable (but underutilized) resource. Now is time for the field to view AI Competitions as the gold standard for empirical rigor in GenAI evaluation, and to harness and harvest their results with according value.


Poster
#E-603
Position: AI Should Not Be An Imitation Game: Centaur Evaluations

Andreas Haupt · Erik Brynjolfsson

Benchmarks and evaluations are central to machine learning methodology and direct research in the field. Current evaluations commonly test systems in the absence of humans. This position paper argues that the machine learning community should increasingly use centaur evaluations, in which humans and AI jointly solve tasks. Centaur Evaluations refocus machine learning development toward human augmentation instead of human replacement, they allow for direct evaluation of human-centered desiderata, such as interpretability and helpfulness, and they can be more challenging and realistic than existing evaluations. By shifting the focus from automation toward collaboration between humans and AI, centaur evaluations can drive progress toward more effective and human-augmenting machine learning systems.


Poster
#E-604
Position: All Current Generative Fidelity and Diversity Metrics are Flawed

Ossi Räisä · Boris van Breugel · Mihaela van der Schaar

Any method's development and practical application is limited by our ability to measure its reliability. The popularity of generative modeling emphasizes the importance of good synthetic data metrics. Unfortunately, previous works have found many failure cases in current metrics, for example lack of outlier robustness and unclear lower and upper bounds. We propose a list of desiderata for synthetic data metrics, and a suite of sanity checks: carefully chosen simple experiments that aim to detect specific and known generative modeling failure modes. Based on these desiderata and the results of our checks, we arrive at our position: all current generative fidelity and diversity metrics are flawed. This significantly hinders practical use of synthetic data. Our aim is to convince the research community to spend more effort in developing metrics, instead of models. Additionally, through analyzing how current metrics fail, we provide practitioners with guidelines on how these metrics should (not) be used.


Poster
#E-605
Position: Theory of Mind Benchmarks are Broken for Large Language Models

Matthew Riemer · Zahra Ashktorab · Djallel Bouneffouf · Payel Das · Miao Liu · Justin Weisz · Murray Campbell

Our paper argues that the majority of theory of mind benchmarks are broken because of their inability to directly test how large language models (LLMs) adapt to new partners. This problem stems from the fact that theory of mind benchmarks for LLMs are overwhelmingly inspired by the methods used to test theory of mind in humans and fall victim to a fallacy of attributing human-like qualities to AI agents. We expect that humans will engage in a consistent reasoning process across various questions about a situation, but this is known to not be the case for current LLMs. Most theory of mind benchmarks only measure what we call literal theory of mind: the ability to predict the behavior of others. However, this type of metric is only informative when agents exhibit self-consistent reasoning. Thus, we introduce the concept of functional theory of mind: the ability to adapt to agents in-context following a rational response to their behavior. We find that many open source LLMs are capable of displaying strong literal theory of mind capabilities, but seem to struggle with functional theory of mind -- even with exceedingly simple partner policies. Simply put, strong literal theory of mind performance does not necessarily imply strong functional theory of mind performance or vice versa. Achieving functional theory of mind, particularly over long interaction horizons with a partner, is a significant challenge deserving a prominent role in any meaningful LLM theory of mind evaluation.


Poster
#E-606
Position: The Future of Bayesian Prediction Is Prior-Fitted

Samuel Gabriel Müller · Arik Reuter · Noah Hollmann · David Rügamer · Frank Hutter

Training neural networks on randomly generated artificial datasets yields Bayesian models that capture the prior defined by the dataset-generating distribution.Prior-data Fitted Networks (PFNs) are a class of methods designed to leverage this insight.In an era of rapidly increasing computational resources for pre-training and a near stagnation in the generation of new real-world data in many applications, PFNs are poised to play a more important role across a wide range of applications.They enable the efficient allocation of pre-training compute to low-data scenarios.Originally applied to small Bayesian modeling tasks, the field of PFNs has significantly expanded to address more complex domains and larger datasets. This position paper argues that PFNs and other amortized inference approaches represent the future of Bayesian inference, leveraging amortized learning to tackle data-scarce problems. We thus believe they are a fruitful area of research. In this position paper, we explore their potential and directions to address their current limitations.


Poster
#E-700
Position: We Need Responsible, Application-Driven (RAD) AI Research

Sarah Hartman · Cheng Soon Ong · Julia Powles · Petra Kuhnert

This position paper argues that achieving meaningful scientific and societal advances with artificial intelligence (AI) requires a responsible, application-driven approach (RAD) to AI research. As AI is increasingly integrated into society, AI researchers must engage with the specific contexts where AI is being applied. This includes being responsive to ethical and legal considerations, technical and societal constraints, and public discourse. We present the case for RAD-AI to drive research through a three-staged approach: (1) building transdisciplinary teams and people-centred studies; (2) addressing context-specific methods, ethical commitments, assumptions, and metrics; and (3) testing and sustaining efficacy through staged testbeds and a community of practice. We present a vision for the future of application-driven AI research to unlock new value through technically feasible methods that are adaptive to the contextual needs and values of the communities they ultimately serve.


Poster
#E-701
Cowpox: Towards the Immunity of VLM-based Multi-Agent Systems

YUTONG WU · Jie Zhang · Yiming Li · Chao Zhang · Qing Guo · Han Qiu · Nils Lukas · Tianwei Zhang

Vision Language Model (VLM) Agents are stateful, autonomous entities capable of perceiving and interacting with their environments through vision and language.Multi-agent systems comprise specialized agents who collaborate to solve a (complex) task. A core security property is robustness, stating that the system maintains its integrity during adversarial attacks. Multi-agent systems lack robustness, as a successful exploit against one agent can spread and infect other agents to undermine the entire system's integrity. We propose a defense Cowpox to provably enhance the robustness of a multi-agent system by a distributed mechanism that improves the recovery rate of agents by limiting the expected number of infections to other agents.The core idea is to generate and distribute a special cure sample that immunizes an agent against the attack before exposure. We demonstrate the effectiveness of Cowpox empirically and provide theoretical robustness guarantees.


Poster
#E-702
PoisonedEye: Knowledge Poisoning Attack on Retrieval-Augmented Generation based Large Vision-Language Models

Chenyang Zhang · Xiaoyu Zhang · Jian Lou · KAI WU · Zilong Wang · Xiaofeng Chen

Vision-Language Retrieval-Augmented Generation (VLRAG) systems have been widely applied to Large Vision-Language Models (LVLMs) to enhance their generation ability. However, the reliance on external multimodal knowledge databases renders VLRAG systems vulnerable to malicious poisoning attacks. In this paper, we introduce PoisonedEye, the first knowledge poisoning attack designed for VLRAG systems. Our attack successfully manipulates the response of the VLRAG system for the target query by injecting only one poison sample into the knowledge database. To construct the poison sample, we follow two key properties for the retrieval and generation process, and identify the solution by satisfying these properties. Besides, we also introduce a class query targeted poisoning attack, a more generalized strategy that extends the poisoning effect to an entire class of target queries. Extensive experiments on multiple query datasets, retrievers, and LVLMs demonstrate that our attack is highly effective in compromising VLRAG systems.


Poster
#E-703
Omni-Angle Assault: An Invisible and Powerful Physical Adversarial Attack on Face Recognition

Shuai Yuan · Hongwei Li · Rui Zhang · Hangcheng Cao · Wenbo Jiang · Tao Ni · Wenshu Fan · Qingchuan Zhao · Guowen Xu

Deep learning models employed in face recognition (FR) systems have been shown to be vulnerable to physical adversarial attacks through various modalities, including patches, projections, and infrared radiation. However, existing adversarial examples targeting FR systems often suffer from issues such as conspicuousness, limited effectiveness, and insufficient robustness. To address these challenges, we propose a novel approach for adversarial face generation, UVHat, which utilizes ultraviolet (UV) emitters mounted on a hat to enable invisible and potent attacks in black-box settings. Specifically, UVHat simulates UV light sources via video interpolation and models the positions of these light sources on a curved surface, specifically the human head in our study. To optimize attack performance, UVHat integrates a reinforcement learning-based optimization strategy, which explores a vast parameter search space, encompassing factors such as shooting distance, power, and wavelength. Extensive experimental evaluations validate that UVHat substantially improves the attack success rate in black-box settings, enabling adversarial attacks from multiple angles with enhanced robustness.


Spotlight Poster
#E-704
Diffusion-based Adversarial Purification from the Perspective of the Frequency Domain

Gaozheng Pei · Ke Ma · Yingfei Sun · Qianqian Xu · Qingming Huang

The diffusion-based adversarial purification methods attempt to drown adversarial perturbations into a part of isotropic noise through the forward process, and then recover the clean images through the reverse process. Due to the lack of distribution information about adversarial perturbations in the pixel domain, it is often unavoidable to damage normal semantics. We turn to the frequency domain perspective, decomposing the image into amplitude spectrum and phase spectrum. We find that for both spectra, the damage caused by adversarial perturbations tends to increase monotonically with frequency. This means that we can extract the content and structural information of the original clean sample from the frequency components that are less damaged. Meanwhile, theoretical analysis indicates that existing purification methods indiscriminately damage all frequency components, leading to excessive damage to the image. Therefore, we propose a purification method that can eliminate adversarial perturbations while maximizing the preservation of the content and structure of the original image. Specifically, at each time step during the reverse process, for the amplitude spectrum, we replace the low-frequency components of the estimated image's amplitude spectrum with the corresponding parts of the adversarial image.For the phase spectrum, we project the phase of the estimated image into a designated range of the adversarial image's phase spectrum, focusing on the low frequencies. Empirical evidence from extensive experiments demonstrates that our method significantly outperforms most current defense methods.


Poster
#E-705
BiMark: Unbiased Multilayer Watermarking for Large Language Models

Xiaoyan Feng · He Zhang · Yanjun Zhang · Leo Yu Zhang · Shirui Pan

Recent advances in Large Language Models (LLMs) have raised urgent concerns about LLM-generated text authenticity, prompting regulatory demands for reliable identification mechanisms. Although watermarking offers a promising solution, existing approaches struggle to simultaneously achieve three critical requirements: text quality preservation, model-agnostic detection, and message embedding capacity, which are crucial for practical implementation.To achieve these goals, the key challenge lies in balancing the trade-off between text quality preservation and message embedding capacity.To address this challenge, we propose BiMark, a novel watermarking framework that achieves these requirements through three key innovations:(1) a bit-flip unbiased reweighting mechanism enabling model-agnostic detection, (2) a multilayer architecture enhancing detectability without compromising generation quality, and (3) an information encoding approach supporting multi-bit watermarking. Through theoretical analysis and extensive experiments, we validate that, compared to state-of-the-art multi-bit watermarking methods, BiMark achieves up to 30\% higher extraction rates for short texts while maintaining text quality indicated by lower perplexity, and performs comparably to non-watermarked text on downstream tasks such as summarization and translation.


Poster
#E-706
MELON: Provable Defense Against Indirect Prompt Injection Attacks in AI Agents

Kaijie Zhu · Xianjun Yang · Jindong Wang · Wenbo Guo · William Wang

Recent research has explored that LLM agents are vulnerable to indirect prompt injection (IPI) attacks, where malicious tasks embedded in tool-retrieved information can redirect the agent to take unauthorized actions. Existing defenses against IPI have significant limitations: either require essential model training resources, lack effectiveness against sophisticated attacks, or harm the normal utilities. We present MELON (Masked re-Execution and TooL comparisON), a novel IPI defense. Our approach builds on the observation that under a successful attack, the agent’s next action becomes less dependent on user tasks and more on malicious tasks. Following this, we design MELON to detect attacks by re-executing the agent’s trajectory with a masked user prompt modified through a masking function. We identify an attack if the actions generated in the original and masked executions are similar. We also include three key designs to reduce the potential false positives and false negatives. Extensive evaluation on the IPI benchmark AgentDojo demonstrates that MELON outperforms SOTA defenses in both attack prevention and utility preservation. Moreover, we show that combining MELON with a SOTA prompt augmentation defense (denoted as MELON-Aug) further improves its performance. We also conduct a detailed ablation study to validate our key designs. Code is available at https://github.com/kaijiezhu11/MELON.


Poster
#E-800
OR-Bench: An Over-Refusal Benchmark for Large Language Models

Jiaxing Cui · Wei-Lin Chiang · Ion Stoica · Cho-Jui Hsieh

Large Language Models (LLMs) require careful safety alignment to prevent malicious outputs. While significant research focuses on mitigating harmful content generation, the enhanced safety often come with the side effect of over-refusal, where LLMs may reject innocuous prompts and become less helpful.Although the issue of over-refusal has been empirically observed, a systematic measurement is challenging due to the difficulty of crafting prompts that can elicit the over-refusal behaviors of LLMs.This study proposes a novel method for automatically generating large-scale over-refusal datasets. Leveraging this technique, we introduce OR-Bench, the first large-scale over-refusal benchmark. OR-Bench comprises 80,000 over-refusal prompts across 10 common rejection categories, a subset of around 1,000 hard prompts that are challenging even for state-of-the-art LLMs, and an additional 600 toxic prompts to prevent indiscriminate responses.We then conduct a comprehensive study to measure the over-refusal of 32 popular LLMs across 8 model families. Our datasets are publicly available at https://huggingface.co/bench-llms and our codebase is open-sourced at https://github.com/justincui03/or-bench. We hope this benchmark can help the community develop better safety aligned models.


Poster
#E-801
Improving LLM Safety Alignment with Dual-Objective Optimization

Xuandong Zhao · Will Cai · Tianneng Shi · David Huang · Licong Lin · Song Mei · Dawn Song

Existing training-time safety alignment techniques for large language models (LLMs) remain vulnerable to jailbreak attacks. Direct preference optimization (DPO), a widely deployed alignment method, exhibits limitations in both experimental and theoretical contexts as its loss function proves suboptimal for refusal learning. Through gradient-based analysis, we identify these shortcomings and propose an improved safety alignment that disentangles DPO objectives into two components: (1) robust refusal training, which encourages refusal even when partial unsafe generations are produced, and (2) targeted unlearning of harmful knowledge. This approach significantly increases LLM robustness against a wide range of jailbreak attacks, including prefilling, suffix, and multi-turn attacks across both in-distribution and out-of-distribution scenarios. Furthermore, we introduce a method to emphasize critical refusal tokens by incorporating a reward-based token-level weighting mechanism for refusal learning, which further improves the robustness against adversarial exploits. Our research also suggests that robustness to jailbreak attacks is correlated with token distribution shifts in the training process and internal representations of refusal and harmful tokens, offering valuable directions for future research in LLM safety alignment. The code is available at https://github.com/wicai24/DOOR-Alignment.


Poster
#E-802
Safety Reasoning with Guidelines

Haoyu Wang · Zeyu Qin · Li Shen · Xueqian Wang · Dacheng Tao · Minhao Cheng

Training safe LLMs remains a critical challenge. The most widely used method, Refusal Training (RT), struggles to generalize against various Out-of-Distribution (OOD) jailbreaking attacks. Although various advanced methods have been proposed to address this issue, we instead question whether OOD attacks inherently surpass the capability of vanilla RT. Evaluations using Best-of-N (BoN) reveal significant safety improvements as N increases, indicating models possess adequate latent safety knowledge but RT fails to consistently elicit it under OOD scenarios. Further domain adaptation analysis reveals that direct RT causes reliance on superficial shortcuts, resulting in non-generalizable representation mappings. Inspired by our findings, we propose training model to perform safety reasoning for each query. Specifically, we synthesize reasoning supervision aligned with specified guidelines that reflect diverse perspectives on safety knowledge. This encourages model to engage in deeper reasoning, explicitly eliciting and utilizing latent safety knowledge for each query. Extensive experiments show that our method significantly improves model generalization against OOD attacks.


Spotlight Poster
#E-803
Optimizing Adaptive Attacks against Watermarks for Language Models

Abdulrahman Diaa · Toluwani Aremu · Nils Lukas

Large Language Models (LLMs) can be misused to spread unwanted content at scale. Content watermarking deters misuse by hiding messages in content, enabling its detection using a secret watermarking key. Robustness is a core security property, stating that evading detection requires (significant) degradation of the content's quality. Many LLM watermarking methods have been proposed, but robustness is tested only against non-adaptive attackers who lack knowledge of the watermarking method and can find only suboptimal attacks. We formulate watermark robustness as an objective function and use preference-based optimization to tune adaptive attacks against the specific watermarking method. Our evaluation shows that (i) adaptive attacks evade detection against all surveyed watermarks, (ii) training against any watermark succeeds in evading unseen watermarks, and (iii) optimization-based attacks are cost-effective. Our findings underscore the need to test robustness against adaptively tuned attacks. We release our adaptively tuned paraphrasers at https://github.com/nilslukas/ada-wm-evasion.


Poster
#E-804
Antidote: Post-fine-tuning Safety Alignment for Large Language Models against Harmful Fine-tuning Attack

Tiansheng Huang · Gautam Bhattacharya · Pratik Joshi · Joshua Kimball · Ling Liu

Safety aligned Large Language Models (LLMs) are vulnerable to harmful fine-tuning attacks -- a few harmful data mixed in the fine-tuning dataset can break the LLMs's safety alignment. While several defenses have been proposed, our evaluation shows that existing defenses fail \textit{when some specific training hyper-parameters are chosen} -- a large learning rate or a large number of training epochs in the fine-tuning stage can easily invalidate the defense. To this end, we propose Antidote, a post-fine-tuning stage solution, which remains \textbf{\textit{agnostic to the training hyper-parameters in the fine-tuning stage}}. Antidote relies on the philosophy that by removing the harmful parameters, the harmful model can be recovered from the harmful behaviors, regardless of how those harmful parameters are formed in the fine-tuning stage. With this philosophy, we introduce a one-shot pruning stage after harmful fine-tuning to remove the harmful weights that are responsible for the generation of harmful content. Despite its embarrassing simplicity, empirical results show that Antidote can reduce harmful score while maintaining accuracy on downstream tasks.


Poster
#E-805
Hardware and Software Platform Inference

Cheng Zhang · Hanna Foerster · Robert Mullins · Yiren Zhao · Ilia Shumailov

It is now a common business practice to buy access to large language model (LLM) inference rather than self-host, because of significant upfront hardware infrastructure and energy costs. However, as a buyer, there is no mechanism to verify the authenticity of the advertised service including the serving hardware platform, e.g. that it is actually being served using an NVIDIA H100. Furthermore, there are reports suggesting that model providers may deliver models that differ slightly from the advertised ones, often to make them run on less expensive hardware. That way, a client pays premium for a capable model access on more expensive hardware, yet ends up being served by a (potentially less capable) cheaper model on cheaper hardware. In this paper we introduce hardware and software platform inference (HSPI) -- a method for identifying the underlying GPU architecture and software stack of a (black-box) machine learning model solely based on its input-output behavior. Our method leverages the inherent differences of various GPU architectures and compilers to distinguish between different GPU types and software stacks. By analyzing the numerical patterns in the model's outputs, we propose a classification framework capable of accurately identifying the GPU used for model inference as well as the underlying software configuration. Our findings demonstrate the feasibility of inferring GPU type from black-box models. We evaluate HSPI against models served on different real hardware and find that in a white-box setting we can distinguish between different GPUs with between 83.9% and 100% accuracy. Even in a black-box setting we are able to achieve results that are up to three times higher than random guess accuracy.


Spotlight Poster
#E-806
BaxBench: Can LLMs Generate Correct and Secure Backends?

Mark Vero · Niels Mündler · Viktor Chibotaru · Veselin Raychev · Maximilian Baader · Nikola Jovanović · Jingxuan He · Martin Vechev

Automatic program generation has long been a fundamental challenge in computer science. Recent benchmarks have shown that large language models (LLMs) can effectively generate code at the function level, make code edits, and solve algorithmic coding tasks. However, to achieve full automation, LLMs should be able to generate production-quality, self-contained application modules. To evaluate the capabilities of LLMs in solving this challenge, we introduce BaxBench, a novel evaluation benchmark consisting of 392 tasks for the generation of backend applications. We focus on backends for three critical reasons: (i) they are practically relevant, building the core components of most modern web and cloud software, (ii) they are difficult to get right, requiring multiple functions and files to achieve the desired functionality, and (iii) they are security-critical, as they are exposed to untrusted third-parties, making secure solutions that prevent deployment-time attacks an imperative. BaxBench validates the functionality of the generated applications with comprehensive test cases, and assesses their security exposure by executing end-to-end exploits. Our experiments reveal key limitations of current LLMs in both functionality and security: (i) even the best model, OpenAI o1, achieves a mere 62% on code correctness; (ii) on average, we could successfully execute security exploits on around half of the correct programs generated by each LLM; and (iii) in less popular backend frameworks, models further struggle to generate correct and secure applications. Progress on BaxBench signifies important steps towards autonomous and secure software development with LLMs.


Poster
#E-900
DIS-CO: Discovering Copyrighted Content in VLMs Training Data

André Duarte · Xuandong Zhao · Arlindo Oliveira · Lei Li

How can we verify whether copyrighted content was used to train a large vision-language model (VLM) without direct access to its training data? Motivated by the hypothesis that a VLM is able to recognize images from its training corpus, we propose DIS-CO, a novel approach to infer the inclusion of copyrighted content during the model's development. By repeatedly querying a VLM with specific frames from targeted copyrighted material, DIS-CO extracts the content's identity through free-form text completions. To assess its effectiveness, we introduce MovieTection, a benchmark comprising 14,000 frames paired with detailed captions, drawn from films released both before and after a model’s training cutoff. Our results show that DIS-CO significantly improves detection performance, nearly doubling the average AUC of the best prior method on models with logits available. Our findings also highlight a broader concern: all tested models appear to have been exposed to some extent to copyrighted content. We provide the code in the supplementary materials.


Poster
#E-901
Quantifying Prediction Consistency Under Fine-tuning Multiplicity in Tabular LLMs

Faisal Hamman · Sachindra P Dissanayake · Saumitra Mishra · Freddy Lecue · Sanghamitra Dutta

Fine-tuning LLMs on tabular classification tasks can lead to the phenomenon of fine-tuning multiplicity where equally well-performing models make conflicting predictions on the same input. Fine-tuning multiplicity can arise due to variations in the training process, e.g., seed, weight initialization, minor changes to training data, etc., raising concerns about the reliability of Tabular LLMs in high-stakes applications such as finance, hiring, education, healthcare. Our work formalizes this unique challenge of fine-tuning multiplicity in Tabular LLMs and proposes a novel measure to quantify the consistency of individual predictions without expensive model retraining. Our measure quantifies a prediction's consistency by analyzing (sampling) the model's local behavior around that input in the embedding space. Interestingly, we show that sampling in the local neighborhood can be leveraged to provide probabilistic guarantees on prediction consistency under a broad class of fine-tuned models, i.e., inputs with sufficiently high local stability (as defined by our measure) also remain consistent across several fine-tuned models with high probability. We perform experiments on multiple real-world datasets to show that our local stability measure preemptively captures consistency under actual multiplicity across several fine-tuned models, outperforming competing measures.


Poster
#E-902
"Who experiences large model decay and why?" A Hierarchical Framework for Diagnosing Heterogeneous Performance Drift

Harvineet Singh · Fan Xia · Alexej Gossmann · Andrew Chuang · Julian Hong · Jean Feng

Machine learning (ML) models frequently experience performance degradation when deployed in new contexts. Such degradation is rarely uniform: some subgroups may suffer large performance decay while others may not. Understanding where and how large differences in performance arise is critical for designing targeted corrective actions that mitigate decay for the most affected subgroups while minimizing any unintended effects. Current approaches do not provide such detailed insight, as they either (i) explain how average performance shifts arise or (ii) identify adversely affected subgroups without insight into how this occurred. To this end, we introduce a Subgroup-scanning Hierarchical Inference Framework for performance drifT (SHIFT). SHIFT first asks "Is there any subgroup with unacceptably large performance decay due to covariate/outcome shifts?" (Where?) and, if so, dives deeper to ask "Can we explain this using more detailed variable(subset)-specific shifts?" (How?). In real-world experiments, we find that SHIFT identifies interpretable subgroups affected by performance decay, and suggests targeted actions that effectively mitigate the decay.


Poster
#E-903
SCISSOR: Mitigating Semantic Bias through Cluster-Aware Siamese Networks for Robust Classification

Shuo Yang · Bardh Prenkaj · Gjergji Kasneci

Shortcut learning undermines model generalization to out-of-distribution data. While the literature attributes shortcuts to biases in superficial features, we show that imbalances in the semantic distribution of sample embeddings induce spurious semantic correlations, compromising model robustness. To address this issue, we propose SCISSOR (Semantic Cluster Intervention for Suppressing ShORtcut), a Siamese network-based debiasing approach that remaps the semantic space by discouraging latent clusters exploited as shortcuts. Unlike prior data-debiasing approaches, SCISSOR eliminates the need for data augmentation and rewriting. We evaluate SCISSOR on 6 models across 4 benchmarks: Chest-XRay and Not-MNIST in computer vision, and GYAFC and Yelp in NLP tasks. Compared to several baselines, SCISSOR reports +5.3 absolute points in F1 score on GYAFC, +7.3 on Yelp, +7.7 on Chest-XRay, and +1 on Not-MNIST. SCISSOR is also highly advantageous for lightweight models with ∼9.5% improvement on F1 for ViT on computer vision datasets and ∼11.9% for BERT on NLP. Our study redefines the landscape of model generalization by addressing overlooked semantic biases, establishing SCISSOR as a foundational framework for mitigating shortcut learning and fostering more robust, bias-resistant AI systems.


Poster
#E-904
Federated Disentangled Tuning with Textual Prior Decoupling and Visual Dynamic Adaptation

Yihao Yang · Wenke Huang · Guancheng Wan · Bin Yang · Mang Ye

Federated Parameter-Efficient Fine-Tuning aims to adapt Vision-Language Models for downstream tasks in distributed environments. However, data heterogeneity across participants hinders collaborative effectiveness, necessitating personalized adaptation to cover distinct data distributions. Current personalized methods suffer from two limitations. 1) Textual Property Loss: Existing methods facilitate the collaboration between decoupled prompts at the feature level, which potentially undermines the textual properties of the prompts. 2) Visual Feature Diversity: The diversity of visual features makes it challenging to leverage naive image features directly for image-text alignment in downstream tasks. In this work, we propose Federated Disentangled Tuning with Textual Prior Decoupling and Visual Dynamic Adaptation (FedDDA) to overcome the above limitations. Specifically, we encourage decoupling prompts in a way that maximizes the efficacy of prior knowledge, which is essential for maintaining a coherent linguistic context. Furthermore, we design a visual adaption model to reshape visual space to optimally align with the textual space. Extensive experiments on various image classification tasks show the effectiveness of our work in addressing data heterogeneity. The codes are released at https://github.com/MoratalYang/FedDDA.


Poster
#E-905
Going Deeper into Locally Differentially Private Graph Neural Networks

Longzhu He · Chaozhuo Li · Peng Tang · Sen Su

Graph Neural Networks (GNNs) have demonstrated superior performance in a variety of graph mining and learning tasks. However, when node representations involve sensitive personal information or variables related to individuals, learning from graph data can raise significant privacy concerns. Although recent studies have explored local differential privacy (LDP) to address these concerns, they often introduce significant distortions to graph data, severely degrading private learning utility (e.g., node classification accuracy). In this paper, we present UPGNET, an LDP-based privacy-preserving graph learning framework that enhances utility while protecting user data privacy. Specifically, we propose a three-stage pipeline that generalizes the LDP protocols for node features, targeting privacy-sensitive scenarios. Our analysis identifies two key factors that affect the utility of privacy-preserving graph learning: feature dimension and neighborhood size. Based on the above analysis, UPGNET enhances utility by introducing two core layers: High-Order Aggregator (HOA) layer and the Node Feature Regularization (NFR) layer. Extensive experiments on real-world datasets indicate that UPGNET significantly outperforms existing methods in terms of both privacy protection and learning utility.


Spotlight Poster
#E-906
Scaling Test-Time Compute Without Verification or RL is Suboptimal

Amrith Setlur · Nived Rajaraman · Sergey Levine · Aviral Kumar

Despite substantial advances in scaling test-time compute, an ongoing debate in the community is how it should be scaled up to enable continued and efficient improvements with scaling. There are largely two approaches: (i) distilling successful search or thinking traces; and (ii), using verification (e.g., 0/1 outcome rewards, or verifiers) to guide reinforcement learning (RL) and search algorithms. In this paper, we prove that finetuning LLMs with verifier-based (VB) methods based on RL or search is far superior to verifier-free (VF) approaches based on distilling or cloning search traces, given a fixed amount of compute/data budget. Further, we show that as we scale test-time compute (measured as the output token length) and training data, suboptimality of VF methods scales poorly compared to VB when the base pre-trained LLM presents a heterogeneous distribution over correct solution traces (e.g., different lengths, styles, etc.) and admits a non-sharp distribution over rewards on traces sampled from it. We formalize this condition using anti-concentration [Erdős 1945], implying a stronger result that VB methods scale better asymptotically, with the performance gap between VB and VF widening as test-time budget grows.We corroborate our theory empirically on didactic and math reasoning problems with 3/8/32B-sized pre-trained LLMs, where we find verification is crucial for scaling test-time compute.