Skip to yearly menu bar Skip to main content


Oral Sessions

Oral 2E Optimal Transport

West Ballroom D

Moderator: Marco Cuturi

Tue 15 Jul 3:30 p.m. PDT — 4:30 p.m. PDT
Abstract:
Chat is not available.

Tue 15 July 15:30 - 15:45 PDT

Hierarchical Refinement: Optimal Transport to Infinity and Beyond

Peter Halmos · Julian Gold · Xinhao Liu · Benjamin Raphael

Optimal transport (OT) has enjoyed great success in machine learning as a principled way to align datasets via a least-cost correspondence, driven in large part by the runtime efficiency of the Sinkhorn algorithm (Cuturi, 2013). However, Sinkhorn has quadratic space complexity in the number of points, limiting scalability to larger datasets. Low-rank OT achieves linear-space complexity, but by definition, cannot compute a one-to-one correspondence between points. When the optimal transport problem is an assignment problem between datasets then an optimal mapping, known as the Monge map, is guaranteed to be a bijection. In this setting, we show that the factors of an optimal low-rank coupling co-cluster each point with its image under the Monge map. We leverage this invariant to derive an algorithm, Hierarchical Refinement (HiRef), that dynamically constructs a multiscale partition of each dataset using low-rank OT subproblems, culminating in a bijective coupling. Hierarchical Refinement uses linear space and has log-linear runtime, retaining the space advantage of low-rank OT while overcoming its limited resolution. We demonstrate the advantages of Hierarchical Refinement on several datasets, including ones containing over a million points, scaling full-rank OT to problems previously beyond Sinkhorn's reach.

Tue 15 July 15:45 - 16:00 PDT

Fully Dynamic Euclidean Bi-Chromatic Matching in Sublinear Update Time

Gramoz Goranci · Peter Kiss · Neel Patel · Martin Seybold · Eva Szilagyi · Da Wei Zheng

We consider the Euclidean bi-chromatic matching problem in the dynamic setting, where the goal is to efficiently process point insertions and deletions while maintaining a high-quality solution. Computing the minimum cost bi-chromatic matching is one of the core problems in geometric optimization that has found many applications, most notably in estimating Wasserstein distance between two distributions. In this work, we present the first fully dynamic algorithm for Euclidean bi-chromatic matching with sublinear update time. For any fixed $\varepsilon > 0$, our algorithm achieves $O(1/\varepsilon)$-approximation and handles updates in $O(n^{\varepsilon})$ time. Our experiments show that our algorithm enables effective monitoring of the distributional drift in the Wasserstein distance on real and synthetic data sets, while outperforming the runtime of baseline approximations by orders of magnitudes.

Tue 15 July 16:00 - 16:15 PDT

Flowing Datasets with Wasserstein over Wasserstein Gradient Flows

Clément Bonet · Christophe Vauthier · Anna Korba

Many applications in machine learning involve data represented as probability distributions. The emergence of such data requires radically novel techniques to design tractable gradient flows on probability distributions over this type of (infinite-dimensional) objects. For instance, being able to flow labeled datasets is a core task for applications ranging from domain adaptation to transfer learning or dataset distillation. In this setting, we propose to represent each class by the associated conditional distribution of features, and to model the dataset as a mixture distribution supported on these classes (which are themselves probability distributions), meaning that labeled datasets can be seen as probability distributions over probability distributions. We endow this space with a metric structure from optimal transport, namely the Wasserstein over Wasserstein (WoW) distance, derive a differential structure on this space, and define WoW gradient flows. The latter enables to design dynamics over this space that decrease a given objective functional. We apply our framework to transfer learning and dataset distillation tasks, leveraging our gradient flow construction as well as novel tractable functionals that take the form of Maximum Mean Discrepancies with Sliced-Wasserstein based kernels between probability distributions.

Tue 15 July 16:15 - 16:30 PDT

Addressing Misspecification in Simulation-based Inference through Data-driven Calibration

Antoine Wehenkel · Juan L. Gamella · Ozan Sener · Jens Behrmann · Guillermo Sapiro · Jörn Jacobsen · Marco Cuturi

Driven by steady progress in deep generative modeling, simulation-based inference (SBI) has emerged as the workhorse for inferring the parameters of stochastic simulators. However, recent work has demonstrated that model misspecification can harm SBI's reliability, preventing its adoption in important applications where only misspecified simulators are available.This work introduces robust posterior estimation (RoPE), a framework that overcomes model misspecification with a small real-world calibration set of ground truth parameter measurements.We formalize the misspecification gap as the solution of an optimal transport (OT) problem between learned representations of real-world and simulated observations, allowing RoPE to learn a model of the misspecification without placing additional assumptions on its nature. RoPE shows how the calibration set and OT together offer a controllable balance between calibrated uncertainty and informative inference even under severely misspecified simulators. Results on four synthetic tasks and two real-world problems with ground-truth labels demonstrate that RoPE outperforms baselines and consistently returns informative and calibrated credible intervals.