Skip to yearly menu bar Skip to main content


Oral Sessions

Oral 2C Reinforcement Learning

West Ballroom B

Moderators: Aleksandra Faust · Alekh Agarwal

Tue 15 Jul 3:30 p.m. PDT — 4:30 p.m. PDT
Abstract:
Chat is not available.

Tue 15 July 15:30 - 15:45 PDT

Controlling Underestimation Bias in Constrained Reinforcement Learning for Safe Exploration

Shiqing Gao · Jiaxin Ding · Luoyi Fu · Xinbing Wang

Constrained Reinforcement Learning (CRL) aims to maximize cumulative rewards while satisfying constraints. However, existing CRL algorithms often encounter significant constraint violations during training, limiting their applicability in safety-critical scenarios. In this paper, we identify the underestimation of the cost value function as a key factor contributing to these violations. To address this issue, we propose the Memory-driven Intrinsic Cost Estimation (MICE) method, which introduces intrinsic costs to mitigate underestimation and control bias to promote safer exploration. Inspired by flashbulb memory, where humans vividly recall dangerous experiences to avoid risks, MICE constructs a memory module that stores previously explored unsafe states to identify high-cost regions. The intrinsic cost is formulated as the pseudo-count of the current state visiting these risk regions. Furthermore, we propose an extrinsic-intrinsic cost value function that incorporates intrinsic costs and adopts a bias correction strategy. Using this function, we formulate an optimization objective within the trust region, along with corresponding optimization methods. Theoretically, we provide convergence guarantees for the proposed cost value function and establish the worst-case constraint violation for the MICE update. Extensive experiments demonstrate that MICE significantly reduces constraint violations while preserving policy performance comparable to baselines.

Tue 15 July 15:45 - 16:00 PDT

Temporal Difference Flows

Jesse Farebrother · Matteo Pirotta · Andrea Tirinzoni · REMI MUNOS · Alessandro Lazaric · Ahmed Touati

Predictive models of the future are fundamental for an agent's ability to reason and plan. A common strategy learns a world model and unrolls it step-by-step at inference, where small errors can rapidly compound. Geometric Horizon Models (GHMs) offer a compelling alternative by directly making predictions of future states, avoiding cumulative inference errors. While GHMs can be conveniently learned by a generative analog to temporal difference (TD) learning, existing methods are negatively affected by bootstrapping predictions at train time and struggle to generate high-quality predictions at long horizons. This paper introduces Temporal Difference Flows (TD-Flow), which leverages the structure of a novel Bellman equation on probability paths alongside flow-matching techniques to learn accurate GHMs at over 5x the horizon length of prior methods. Theoretically, we establish a new convergence result and primarily attribute TD-Flow's efficacy to reduced gradient variance during training. We further show that similar arguments can be extended to diffusion-based methods. Empirically, we validate TD-Flow across a diverse set of domains on both generative metrics and downstream tasks, including policy evaluation. Moreover, integrating TD-Flow with recent behavior foundation models for planning over policies demonstrates substantial performance gains, underscoring its promise for long-horizon decision-making.

Tue 15 July 16:00 - 16:15 PDT

Network Sparsity Unlocks the Scaling Potential of Deep Reinforcement Learning

Guozheng Ma · Lu Li · Zilin Wang · Li Shen · Pierre-Luc Bacon · Dacheng Tao

Effectively scaling up deep reinforcement learning models has proven notoriously difficult due to network pathologies during training, motivating various targeted interventions such as periodic reset and architectural advances such as layer normalization. Instead of pursuing more complex modifications, we show that introducing static network sparsity alone can unlock further scaling potential beyond their dense counterparts with state-of-the-art architectures. This is achieved through simple one-shot random pruning, where a predetermined percentage of network weights are randomly removed once before training. Our analysis reveals that, in contrast to naively scaling up dense DRL networks, such sparse networks achieve both higher parameter efficiency for network expressivity and stronger resistance to optimization challenges like plasticity loss and gradient interference. We further extend our evaluation to visual and streaming RL scenarios, demonstrating the consistent benefits of network sparsity.

Tue 15 July 16:15 - 16:30 PDT

Cross-environment Cooperation Enables Zero-shot Multi-agent Coordination

Kunal Jha · Wilka Carvalho · Yancheng Liang · Simon Du · Max Kleiman-Weiner · Natasha Jaques

Zero-shot coordination (ZSC), the ability to adapt to a new partner in a cooperative task, is a critical component of human-compatible AI. While prior work has focused on training agents to cooperate on a single task, these specialized models do not generalize to new tasks, even if they are highly similar. Here, we study how reinforcement learning on a distribution of environments with a single partner enables learning general cooperative skills that support ZSC with many new partners on many new problems. We introduce two Jax-based, procedural generators that create billions of solvable coordination challenges. We develop a new paradigm called Cross-Environment Cooperation (CEC), and show that it outperforms competitive baselines quantitatively and qualitatively when collaborating with real people. Our findings suggest that learning to collaborate across many unique scenarios encourages agents to develop general norms, which prove effective for collaboration with different partners. Together, our results suggest a new route toward designing generalist cooperative agents capable of interacting with humans without requiring human data.