Poster
Online Sparsification of Bipartite-Like Clusters in Graphs
Joyentanuj Das · Suranjan De · He Sun
East Exhibition Hall A-B #E-2005
Graph clustering is an important algorithmic technique for analysing massive graphs, and has been widely applied in many research fields of data science. While the objective of most graph clustering algorithms is to find a vertex set of low conductance, there has been a sequence of recent studies that highlight the importance of the inter-connection between clusters when analysing real-world datasets. Following this line of research, in this work we study bipartite-like clusters and present efficient and online algorithms that find such clusters in both undirected graphs and directed ones. We conduct experimental studies on both synthetic and real-world datasets, and show that our algorithms significantly speedup the running time of existing clustering algorithms while preserving their effectiveness.