Skip to yearly menu bar Skip to main content


Poster
in
Affinity Workshop: New In ML

Financial sentiment analysis using FinBERT with application in predicting stock movement


Abstract:

In this study, we integrate sentiment analysis within a financial framework by leveraging FinBERT, a fine-tuned BERT model specialized for financial text, to construct an advanced deep learning model based on Long Short-Term Memory (LSTM) networks. Our objective is to forecast financial market trends with greater accuracy. To evaluate our model's predictive capabilities, we apply it to a comprehensive dataset of stock market news and perform a comparative analysis against standard BERT, standalone LSTM, and the traditional ARIMA models. Our findings indicate that incorporating sentiment analysis significantly enhances the model's ability to anticipate market fluctuations. Furthermore, we propose a suite of optimization techniques aimed at refining the model's performance, paving the way for more robust and reliable market prediction tools in the field of AI-driven finance.

Chat is not available.