Session
Poster Session 52
Better depth-width trade-offs for neural networks through the lens of dynamical systems
Evangelos Chatziafratis · Sai Ganesh Nagarajan · Ioannis Panageas
The expressivity of neural networks as a function of their depth, width and type of activation units has been an important question in deep learning theory. Recently, depth separation results for ReLU networks were obtained via a new connection with dynamical systems, using a generalized notion of fixed points of a continuous map $f$, called periodic points. In this work, we strengthen the connection with dynamical systems and we improve the existing width lower bounds along several aspects. Our first main result is period-specific width lower bounds that hold under the stronger notion of $L^1$-approximation error, instead of the weaker classification error. Our second contribution is that we provide sharper width lower bounds, still yielding meaningful exponential depth-width separations, in regimes where previous results wouldn't apply. A byproduct of our results is that there exists a universal constant characterizing the depth-width trade-offs, as long as $f$ has odd periods. Technically, our results follow by unveiling a tighter connection between the following three quantities of a given function: its period, its Lipschitz constant and the growth rate of the number of oscillations arising under compositions of the function $f$ with itself.
Breaking the Curse of Many Agents: Provable Mean Embedding Q-Iteration for Mean-Field Reinforcement Learning
Lingxiao Wang · Zhuoran Yang · Zhaoran Wang
Multi-agent reinforcement learning (MARL) achieves significant empirical successes. However, MARL suffers from the curse of many agents. In this paper, we exploit the symmetry of agents in MARL. In the most generic form, we study a mean-field MARL problem. Such a mean-field MARL is defined on mean-field states, which are distributions that are supported on continuous space. Based on the mean embedding of the distributions, we propose MF-FQI algorithm, which solves the mean-field MARL and establishes a non-asymptotic analysis for MF-FQI algorithm. We highlight that MF-FQI algorithm enjoys a ``blessing of many agents'' property in the sense that a larger number of observed agents improves the performance of MF-FQI algorithm.
Converging to Team-Maxmin Equilibria in Zero-Sum Multiplayer Games
Youzhi Zhang · Bo An
Efficiently computing equilibria for multiplayer games is still an open challenge in computational game theory. This paper focuses on computing Team-Maxmin Equilibria (TMEs), which is an important solution concept for zero-sum multiplayer games where players in a team having the same utility function play against an adversary independently. Existing algorithms are inefficient to compute TMEs in large games, especially when the strategy space is too large to be represented due to limited memory. In two-player games, the Incremental Strategy Generation (ISG) algorithm is an efficient approach to avoid enumerating all pure strategies. However, the study of ISG for computing TMEs is completely unexplored. To fill this gap, we first study the properties of ISG for multiplayer games, showing that ISG converges to a Nash equilibrium (NE) but may not converge to a TME. Second, we design an ISG variant for TMEs (ISGT) by exploiting that a TME is an NE maximizing the team’s utility and show that ISGT converges to a TME and the impossibility of relaxing conditions in ISGT. Third, to further improve the scalability, we design an ISGT variant (CISGT) by using the strategy space for computing an equilibrium that is close to a TME but is easier to be computed as the initial strategy space of ISGT. Finally, extensive experimental results show that CISGT is orders of magnitude faster than ISGT and the state-of-the-art algorithm to compute TMEs in large games.
Doubly robust off-policy evaluation with shrinkage
Yi Su · Maria Dimakopoulou · Akshay Krishnamurthy · Miroslav Dudik
We propose a new framework for designing estimators for off-policy evaluation in contextual bandits. Our approach is based on the asymptotically optimal doubly robust estimator, but we shrink the importance weights to minimize a bound on the mean squared error, which results in a better bias-variance tradeoff in finite samples. We use this optimization-based framework to obtain three estimators: (a) a weight-clipping estimator, (b) a new weight-shrinkage estimator, and (c) the first shrinkage-based estimator for combinatorial action sets. Extensive experiments in both standard and combinatorial bandit benchmark problems show that our estimators are highly adaptive and typically outperform state-of-the-art methods.
Goodness-of-Fit Tests for Inhomogeneous Random Graphs
Soham Dan · Bhaswar B. Bhattacharya
Hypothesis testing of random networks is an emerging area of modern research, especially in the high-dimensional regime, where the number of samples is smaller or comparable to the size of the graph. In this paper we consider the goodness-of-fit testing problem for large inhomogeneous random (IER) graphs, where given a (known) reference symmetric matrix $Q \in [0, 1]^{n \times n}$ and $m$ independent samples from an IER graph given by an unknown symmetric matrix $P \in [0, 1]^{n \times n}$, the goal is to test the hypothesis $P=Q$ versus $||P-Q|| \geq \varepsilon$, where $||\cdot||$ is some specified norm on symmetric matrices. Building on recent related work on two-sample testing for IER graphs, we derive the optimal minimax sample complexities for the goodness-of-fit problem in various natural norms, such as the Frobenius norm and the operator norm. We also propose practical implementations of natural test statistics, using their asymptotic distributions and through the parametric bootstrap. We compare the performances of the different tests in simulations, and show that the proposed tests outperform the baseline tests across various natural random graphs models.
Graph Structure of Neural Networks
Jiaxuan You · Jure Leskovec · Kaiming He · Saining Xie
Neural networks are often represented as graphs of connections between neurons. However, despite their wide use, there is currently little understanding of the relationship between the graph structure of the neural network and its predictive performance. Here we systematically investigate how does the graph structure of neural networks affect their predictive performance. To this end, we develop a novel graph-based representation of neural networks called relational graph, where layers of neural network computation correspond to rounds of message exchange along the graph structure. Using this representation we show that: (1) graph structure of neural networks matters; (2) a “sweet spot” of relational graphs lead to neural networks with significantly improved predictive performance; (3) neural network’s performance is approximately a smooth function of the clustering coefficient and average path length of its relational graph; (4) our findings are consistent across many different tasks and datasets; (5) top architectures can be identified efficiently; (6) well-performing neural networks have graph structure surprisingly similar to those of real biological neural networks. Our work opens new directions for the design of neural architectures and the understanding on neural networks in general.
Kinematic State Abstraction and Provably Efficient Rich-Observation Reinforcement Learning
Dipendra Kumar Misra · Mikael Henaff · Akshay Krishnamurthy · John Langford
We present an algorithm, HOMER, for exploration and reinforcement learning in rich observation environments that are summarizable by an unknown latent state space. The algorithm interleaves representation learning to identify a new notion of kinematic state abstraction with strategic exploration to reach new states using the learned abstraction. The algorithm provably explores the environment with sample complexity scaling polynomially in the number of latent states and the time horizon, and, crucially, with no dependence on the size of the observation space, which could be infinitely large. This exploration guarantee further enables sample-efficient global policy optimization for any reward function. On the computational side, we show that the algorithm can be implemented efficiently whenever certain supervised learning problems are tractable. Empirically, we evaluate HOMER on a challenging exploration problem, where we show that the algorithm is more sample efficient than standard reinforcement learning baselines.
Lorentz Group Equivariant Neural Network for Particle Physics
Alexander Bogatskiy · Brandon Anderson · Jan T Offermann · Marwah Roussi · David Miller · Risi Kondor
We present a neural network architecture that is fully equivariant with respect to transformations under the Lorentz group, a fundamental symmetry of space and time in physics. The architecture is based on the theory of the finite-dimensional representations of the Lorentz group and the equivariant nonlinearity involves the tensor product. For classification tasks in particle physics, we show that such an equivariant architecture leads to drastically simpler models that have relatively few learnable parameters and are much more physically interpretable than leading approaches that use CNNs and point cloud approaches. The performance of the network is tested on a public classification dataset [https://zenodo.org/record/2603256] for tagging top quark decays given energy-momenta of jet constituents produced in proton-proton collisions.
Normalized Loss Functions for Deep Learning with Noisy Labels
Xingjun Ma · Hanxun Huang · Yisen Wang · Simone Romano · Sarah Erfani · James Bailey
Robust loss functions are essential for training accurate deep neural networks (DNNs) in the presence of noisy (incorrect) labels. It has been shown that the commonly used Cross Entropy (CE) loss is not robust to noisy labels. Whilst new loss functions have been designed, they are only partially robust. In this paper, we theoretically show by applying a simple normalization that: \emph{any loss can be made robust to noisy labels}. However, in practice, simply being robust is not sufficient for a loss function to train accurate DNNs. By investigating several robust loss functions, we find that they suffer from a problem of {\em underfitting}. To address this, we propose a framework to build robust loss functions called \emph{Active Passive Loss} (APL). APL combines two robust loss functions that mutually boost each other. Experiments on benchmark datasets demonstrate that the family of new loss functions created by our APL framework can consistently outperform state-of-the-art methods by large margins, especially under large noise rates such as 60\% or 80\% incorrect labels.
Optimal Differential Privacy Composition for Exponential Mechanisms
Jinshuo Dong · David Durfee · Ryan Rogers
Composition is one of the most important properties of differential privacy (DP), as it allows algorithm designers to build complex private algorithms from DP primitives. We consider precise composition bounds of the overall privacy loss for exponential mechanisms, one of the fundamental classes of mechanisms in DP. Exponential mechanism has also become a fundamental building block in private machine learning, e.g. private PCA and hyper-parameter selection. We give explicit formulations of the optimal privacy loss for both the adaptive and non-adaptive composition of exponential mechanism. For the non-adaptive setting in which each mechanism has the same privacy parameter, we give an efficiently computable formulation of the optimal privacy loss. In the adaptive case, we derive a recursive formula and an efficiently computable upper bound. These precise understandings about the problem lead to a 40\% saving of the privacy budget in a practical application. Furthermore, the algorithm-specific analysis shows a difference in privacy parameters of adaptive and non-adaptive composition, which was widely believed to not exist based on the evidence from general analysis.
Perceptual Generative Autoencoders
Zijun Zhang · Ruixiang ZHANG · Zongpeng Li · Yoshua Bengio · Liam Paull
Modern generative models are usually designed to match target distributions directly in the data space, where the intrinsic dimension of data can be much lower than the ambient dimension. We argue that this discrepancy may contribute to the difficulties in training generative models. We therefore propose to map both the generated and target distributions to the latent space using the encoder of a standard autoencoder, and train the generator (or decoder) to match the target distribution in the latent space. Specifically, we enforce the consistency in both the data space and the latent space with theoretically justified data and latent reconstruction losses. The resulting generative model, which we call a perceptual generative autoencoder (PGA), is then trained with a maximum likelihood or variational autoencoder (VAE) objective. With maximum likelihood, PGAs generalize the idea of reversible generative models to unrestricted neural network architectures and arbitrary number of latent dimensions. When combined with VAEs, PGAs substantially improve over the baseline VAEs in terms of sample quality. Compared to other autoencoder-based generative models using simple priors, PGAs achieve state-of-the-art FID scores on CIFAR-10 and CelebA.
Semi-Supervised Learning with Normalizing Flows
Pavel Izmailov · Polina Kirichenko · Marc Finzi · Andrew Wilson
Normalizing flows transform a latent distribution through an invertible neural network for a flexible and pleasingly simple approach to generative modelling, while preserving an exact likelihood. We propose FlowGMM, an end-to-end approach to generative semi supervised learning with normalizing flows, using a latent Gaussian mixture model. FlowGMM is distinct in its simplicity, unified treatment of labelled and unlabelled data with an exact likelihood, interpretability, and broad applicability beyond image data. We show promising results on a wide range of applications, including AG-News and Yahoo Answers text data, tabular data, and semi-supervised image classification. We also show that FlowGMM can discover interpretable structure, provide real-time optimization-free feature visualizations, and specify well calibrated predictive distributions.
Semi-Supervised StyleGAN for Disentanglement Learning
Weili Nie · Tero Karras · Animesh Garg · Shoubhik Debnath · Anjul Patney · Ankit Patel · Anima Anandkumar
Disentanglement learning is crucial for obtaining disentangled representations and controllable generation. Current disentanglement methods face several inherent limitations: difficulty with high-resolution images, primarily focusing on learning disentangled representations, and non-identifiability due to the unsupervised setting. To alleviate these limitations, we design new architectures and loss functions based on StyleGAN (Karras et al., 2019), for semi-supervised high-resolution disentanglement learning. We create two complex high-resolution synthetic datasets for systematic testing. We investigate the impact of limited supervision and find that using only 0.25%~2.5% of labeled data is sufficient for good disentanglement on both synthetic and real datasets. We propose new metrics to quantify generator controllability, and observe there may exist a crucial trade-off between disentangled representation learning and controllable generation. We also consider semantic fine-grained image editing to achieve better generalization to unseen images.
Understanding and Stabilizing GANs' Training Dynamics Using Control Theory
Kun Xu · Chongxuan Li · Jun Zhu · Bo Zhang
Generative adversarial networks (GANs) are effective in generating realistic images but the training is often unstable. There are existing efforts that model the training dynamics of GANs in the parameter space but the analysis cannot directly motivate practically effective stabilizing methods. To this end, we present a conceptually novel perspective from control theory to directly model the dynamics of GANs in the frequency domain and provide simple yet effective methods to stabilize GAN's training. We first analyze the training dynamic of a prototypical Dirac GAN and adopt the widely-used closed-loop control (CLC) to improve its stability. We then extend CLC to stabilize the training dynamic of normal GANs, which can be implemented as an L2 regularizer on the output of the discriminator. Empirical results show that our method can effectively stabilize the training and obtain state-of-the-art performance on data generation tasks.
Variational Inference for Sequential Data with Future Likelihood Estimates
Geon-Hyeong Kim · Youngsoo Jang · Hongseok Yang · Kee-Eung Kim
The recent development of flexible and scalable variational inference algorithms has popularized the use of deep probabilistic models in a wide range of applications. However, learning and reasoning about high-dimensional models with nondifferentiable densities are still a challenge. For such a model, inference algorithms struggle to estimate the gradients of variational objectives accurately, due to high variance in their estimates. To tackle this challenge, we present a novel variational inference algorithm for sequential data, which performs well even when the density from the model is not differentiable, for instance, due to the use of discrete random variables. The key feature of our algorithm is that it estimates future likelihoods at all time steps. The estimated future likelihoods form the core of our new low-variance gradient estimator. We formally analyze our gradient estimator from the perspective of variational objective, and show the effectiveness of our algorithm with synthetic and real datasets.
When Demands Evolve Larger and Noisier: Learning and Earning in a Growing Environment
Feng Zhu · Zeyu Zheng
We consider a single-product dynamic pricing problem under a specific non-stationary setting, where the underlying demand process grows over time in expectation and also possibly in the level of random fluctuation. The decision maker sequentially sets price in each time period and learns the unknown demand model, with the goal of maximizing expected cumulative revenue over a time horizon $T$. We prove matching upper and lower bounds on regret and provide near-optimal pricing policies, showing how the growth rate of random fluctuation over time affects the best achievable regret order and the near-optimal policy design. In the analysis, we show that whether the seller knows the length of time horizon $T$ in advance or not surprisingly render different optimal regret orders. We then extend the demand model such that the optimal price may vary with time and present a novel and near-optimal policy for the extended model. Finally, we consider an analogous non-stationary setting in the canonical multi-armed bandit problem, and points out that knowing or not knowing the length of time horizon $T$ render the same optimal regret order, in contrast to the non-stationary dynamic pricing problem.
One Policy to Control Them All: Shared Modular Policies for Agent-Agnostic Control
Wenlong Huang · Igor Mordatch · Deepak Pathak
Reinforcement learning is typically concerned with learning control policies tailored to a particular agent. We investigate whether there exists a single policy that generalizes to controlling a wide variety of agent morphologies -- ones in which even dimensionality of state and action spaces changes. Such a policy would distill general and modular sensorimotor patterns that can be applied to control arbitrary agents. We propose a policy expressed as a collection of identical modular neural networks for each of the agent's actuators. Every module is only responsible for controlling its own actuator and receives information from its local sensors. In addition, messages are passed between modules, propagating information between distant modules. A single modular policy can successfully generate locomotion behaviors for over 20 planar agents with different skeletal structures such as monopod hoppers, quadrupeds, bipeds, and generalize to variants not seen during training -- a process that would normally require training and manual hyperparameter tuning for each morphology. We observe a wide variety of drastically diverse locomotion styles across morphologies as well as centralized coordination emerging via message passing between decentralized modules purely from the reinforcement learning objective. Video and code: https://huangwl18.github.io/modular-rl/
Provably Convergent Two-Timescale Off-Policy Actor-Critic with Function Approximation
Shangtong Zhang · Bo Liu · Hengshuai Yao · Shimon Whiteson
We present the first provably convergent two-timescale off-policy actor-critic algorithm (COF-PAC) with function approximation. Key to COF-PAC is the introduction of a new critic, the emphasis critic, which is trained via Gradient Emphasis Learning (GEM), a novel combination of the key ideas of Gradient Temporal Difference Learning and Emphatic Temporal Difference Learning. With the help of the emphasis critic and the canonical value function critic, we show convergence for COF-PAC, where the critics are linear and the actor can be nonlinear.
Model Fusion with Kullback--Leibler Divergence
Sebastian Claici · Mikhail Yurochkin · Soumya Ghosh · Justin Solomon
We propose a method to fuse posterior distributions learned from heterogeneous datasets. Our algorithm relies on a mean field assumption for both the fused model and the individual dataset posteriors and proceeds using a simple assign-and-average approach. The components of the dataset posteriors are assigned to the proposed global model components by solving a regularized variant of the assignment problem. The global components are then updated based on these assignments by their mean under a KL divergence. For exponential family variational distributions, our formulation leads to an efficient non-parametric algorithm for computing the fused model. Our algorithm is easy to describe and implement, efficient, and competitive with state-of-the-art on motion capture analysis, topic modeling, and federated learning of Bayesian neural networks.
Parameter-free, Dynamic, and Strongly-Adaptive Online Learning
Ashok Cutkosky
We provide a new online learning algorithm that for the first time combines several disparate notions of adaptivity. First, our algorithm obtains a ``parameter-free'' regret bound that adapts to the norm of the comparator and the squared norm of the size of the gradients it observes. Second, it obtains a ``strongly-adaptive'' regret bound, so that for any given interval of length $N$, the regret over the interval is $\tilde O(\sqrt{N})$. Finally, our algorithm obtains an optimal ``dynamic'' regret bound: for any sequence of comparators with path-length $P$, our algorithm obtains regret $\tilde O(\sqrt{PN})$ over intervals of length $N$. Our primary technique for achieving these goals is a new method of combining constrained online learning regret bounds that does not rely on an expert meta-algorithm to aggregate learners.
Decentralized Reinforcement Learning: Global Decision-Making via Local Economic Transactions
Michael Chang · Sid Kaushik · S. Matthew Weinberg · Thomas Griffiths · Sergey Levine
This paper seeks to establish a framework for directing a society of simple, specialized, self-interested agents to solve what traditionally are posed as monolithic single-agent sequential decision problems. What makes it challenging to use a decentralized approach to collectively optimize a central objective is the difficulty in characterizing the equilibrium strategy profile of non-cooperative games. To overcome this challenge, we design a mechanism for defining the learning environment of each agent for which we know that the optimal solution for the global objective coincides with a Nash equilibrium strategy profile of the agents optimizing their own local objectives. The society functions as an economy of agents that learn the credit assignment process itself by buying and selling to each other the right to operate on the environment state. We derive a class of decentralized reinforcement learning algorithms that are broadly applicable not only to standard reinforcement learning but also for selecting options in semi-MDPs and dynamically composing computation graphs. Lastly, we demonstrate the potential advantages of a society's inherent modular structure for more efficient transfer learning.
On the Global Convergence Rates of Softmax Policy Gradient Methods
Jincheng Mei · Chenjun Xiao · Csaba Szepesvari · Dale Schuurmans
We make three contributions toward better understanding policy gradient methods in the tabular setting. First, we show that with the true gradient, policy gradient with a softmax parametrization converges at a $O(1/t)$ rate, with constants depending on the problem and initialization. This result significantly expands the recent asymptotic convergence results. The analysis relies on two findings: that the softmax policy gradient satisfies a \L{}ojasiewicz inequality, and the minimum probability of an optimal action during optimization can be bounded in terms of its initial value. Second, we analyze entropy regularized policy gradient and show that it enjoys a significantly faster linear convergence rate $O(e^{-t})$ toward softmax optimal policy. This result resolves an open question in the recent literature. Finally, combining the above two results and additional new $\Omega(1/t)$ lower bound results, we explain how entropy regularization improves policy optimization, even with the true gradient, from the perspective of convergence rate. The separation of rates is further explained using the notion of non-uniform \L{}ojasiewicz degree. These results provide a theoretical understanding of the impact of entropy and corroborate existing empirical studies.
ROMA: Multi-Agent Reinforcement Learning with Emergent Roles
Tonghan Wang · Heng Dong · Victor Lesser · Chongjie Zhang
The role concept provides a useful tool to design and understand complex multi-agent systems, which allows agents with a similar role to share similar behaviors. However, existing role-based methods use prior domain knowledge and predefine role structures and behaviors. In contrast, multi-agent reinforcement learning (MARL) provides flexibility and adaptability, but less efficiency in complex tasks. In this paper, we synergize these two paradigms and propose a role-oriented MARL framework (ROMA). In this framework, roles are emergent, and agents with similar roles tend to share their learning and to be specialized on certain sub-tasks. To this end, we construct a stochastic role embedding space by introducing two novel regularizers and conditioning individual policies on roles. Experiments show that our method can learn specialized, dynamic, and identifiable roles, which help our method push forward the state of the art on the StarCraft II micromanagement benchmark. Demonstrative videos are available at https://sites.google.com/view/romarl/.
The Implicit Regularization of Stochastic Gradient Flow for Least Squares
Alnur Ali · Edgar Dobriban · Ryan Tibshirani
We study the implicit regularization of mini-batch stochastic gradient descent, when applied to the fundamental problem of least squares regression. We leverage a continuous-time stochastic differential equation having the same moments as stochastic gradient descent, which we call stochastic gradient flow. We give a bound on the excess risk of stochastic gradient flow at time $t$, over ridge regression with tuning parameter $\lambda = 1/t$. The bound may be computed from explicit constants (e.g., the mini-batch size, step size, number of iterations), revealing precisely how these quantities drive the excess risk. Numerical examples show the bound can be small, indicating a tight relationship between the two estimators. We give a similar result relating the coefficients of stochastic gradient flow and ridge. These results hold under no conditions on the data matrix $X$, and across the entire optimization path (not just at convergence).
Accelerated Message Passing for Entropy-Regularized MAP Inference
Jonathan Lee · Aldo Pacchiano · Peter Bartlett · Michael Jordan
Maximum a posteriori (MAP) inference in discrete-valued Markov random fields is a fundamental problem in machine learning that involves identifying the most likely configuration of random variables given a distribution. Due to the difficulty of this combinatorial problem, linear programming (LP) relaxations are commonly used to derive specialized message passing algorithms that are often interpreted as coordinate descent on the dual LP. To achieve more desirable computational properties, a number of methods regularize the LP with an entropy term, leading to a class of smooth message passing algorithms with convergence guarantees. In this paper, we present randomized methods for accelerating these algorithms by leveraging techniques that underlie classical accelerated gradient methods. The proposed algorithms incorporate the familiar steps of standard smooth message passing algorithms, which can be viewed as coordinate minimization steps. We show that these accelerated variants achieve faster rates for finding $\epsilon$-optimal points of the unregularized problem, and, when the LP is tight, we prove that the proposed algorithms recover the true MAP solution in fewer iterations than standard message passing algorithms.
Aligned Cross Entropy for Non-Autoregressive Machine Translation
Marjan Ghazvininejad · Vladimir Karpukhin · Luke Zettlemoyer · Omer Levy
Non-autoregressive machine translation models significantly speed up decoding by allowing for parallel prediction of the entire target sequence. However, modeling word order is more challenging due to the lack of autoregressive factors in the model. This difficultly is compounded during training with cross entropy loss, which can highly penalize small shifts in word order. In this paper, we propose aligned cross entropy (AXE) as an alternative loss function for training of non-autoregressive models. AXE uses a differentiable dynamic program to assign loss based on the best possible monotonic alignment between target tokens and model predictions. AXE-based training of conditional masked language models (CMLMs) substantially improves performance on major WMT benchmarks, while setting a new state of the art for non-autoregressive models.
Bio-Inspired Hashing for Unsupervised Similarity Search
Chaitanya Ryali · John Hopfield · Leopold Grinberg · Dmitry Krotov
The fruit fly Drosophila's olfactory circuit has inspired a new locality sensitive hashing (LSH) algorithm, FlyHash. In contrast with classical LSH algorithms that produce low dimensional hash codes, FlyHash produces sparse high-dimensional hash codes and has also been shown to have superior empirical performance compared to classical LSH algorithms in similarity search. However, FlyHash uses random projections and cannot learn from data. Building on inspiration from FlyHash and the ubiquity of sparse expansive representations in neurobiology, our work proposes a novel hashing algorithm BioHash that produces sparse high dimensional hash codes in a data-driven manner. We show that BioHash outperforms previously published benchmarks for various hashing methods. Since our learning algorithm is based on a local and biologically plausible synaptic plasticity rule, our work provides evidence for the proposal that LSH might be a computational reason for the abundance of sparse expansive motifs in a variety of biological systems. We also propose a convolutional variant BioConvHash that further improves performance. From the perspective of computer science, BioHash and BioConvHash are fast, scalable and yield compressed binary representations that are useful for similarity search.
Concept Bottleneck Models
Pang Wei Koh · Thao Nguyen · Yew Siang Tang · Stephen Mussmann · Emma Pierson · Been Kim · Percy Liang
We seek to learn models that we can interact with using high-level concepts: would the model predict severe arthritis if it thinks there is a bone spur in the x-ray? State-of-the-art models today do not typically support the manipulation of concepts like "the existence of bone spurs'', as they are trained end-to-end to go directly from raw input (e.g., pixels) to output (e.g., arthritis severity). We revisit the classic idea of first predicting concepts that are provided at training time, and then using these concepts to predict the label. By construction, we can intervene on these concept bottleneck models by editing their predicted concept values and propagating these changes to the final prediction. On x-ray grading and bird identification, concept bottleneck models achieve competitive accuracy with standard end-to-end models, while enabling interpretation in terms of high-level clinical concepts ("bone spurs") or bird attributes ("wing color"). These models also allow for richer human-model interaction: accuracy improves significantly if we can correct model mistakes on concepts at test time.
CURL: Contrastive Unsupervised Representations for Reinforcement Learning
Michael Laskin · Aravind Srinivas · Pieter Abbeel
We present CURL: Contrastive Unsupervised Representations for Reinforcement Learning. CURL extracts high-level features from raw pixels using contrastive learning and performs off-policy control on top of the extracted features. CURL outperforms prior pixel-based methods, both model-based and model-free, on complex tasks in the DeepMind Control Suite and Atari Games showing 1.9x and 1.2x performance gains at the 100K environment and interaction steps benchmarks respectively. On the DeepMind Control Suite, CURL is the first image-based algorithm to nearly match the sample-efficiency of methods that use state-based features. Our code is open-sourced and available at https://www.github.com/MishaLaskin/curl.
Decision Trees for Decision-Making under the Predict-then-Optimize Framework
Adam Elmachtoub · Jason Cheuk Nam Liang · Ryan McNellis
We consider the use of decision trees for decision-making problems under the predict-then-optimize framework. That is, we would like to first use a decision tree to predict unknown input parameters of an optimization problem, and then make decisions by solving the optimization problem using the predicted parameters. A natural loss function in this framework is to measure the suboptimality of the decisions induced by the predicted input parameters, as opposed to measuring loss using input parameter prediction error. This natural loss function is known in the literature as the Smart Predict-then-Optimize (SPO) loss, and we propose a tractable methodology called SPO Trees (SPOTs) for training decision trees under this loss. SPOTs benefit from the interpretability of decision trees, providing an interpretable segmentation of contextual features into groups with distinct optimal solutions to the optimization problem of interest. We conduct several numerical experiments on synthetic and real data including the prediction of travel times for shortest path problems and predicting click probabilities for news article recommendation. We demonstrate on these datasets that SPOTs simultaneously provide higher quality decisions and significantly lower model complexity than other machine learning approaches (e.g., CART) trained to minimize prediction error.
Evaluating Machine Accuracy on ImageNet
Vaishaal Shankar · Rebecca Roelofs · Horia Mania · Alex Fang · Benjamin Recht · Ludwig Schmidt
We evaluate a wide range of ImageNet models with five trained human labelers. In our year-long experiment, trained humans first annotated 40,000 images from the ImageNet and ImageNetV2 test sets with multi-class labels to enable a semantically coherent evaluation. Then we measured the classification accuracy of the five trained humans on the full task with 1,000 classes. Only the latest models from 2020 are on par with our best human labeler, and human accuracy on the 590 object classes is still 4% and 10% higher than the best model on ImageNet and ImageNetV2, respectively. Moreover, humans achieve the same accuracy on ImageNet and ImageNetV2, while all models see a consistent accuracy drop. Overall, our results show that there is still substantial room for improvement on ImageNet and direct accuracy comparisons between humans and machines may overstate machine performance.
Generalization Error of Generalized Linear Models in High Dimensions
Melikasadat Emami · Mojtaba Sahraee-Ardakan · Parthe Pandit · Sundeep Rangan · Alyson Fletcher
At the heart of machine learning lies the question of generalizability of learned rules over previously unseen data.
While over-parameterized models based on neural networks are now ubiquitous in machine learning applications, our understanding of their generalization capabilities is incomplete and this task is made harder by the non-convexity of the underlying learning problems.
We provide a general framework to characterize the asymptotic generalization error for single-layer neural networks (i.e., generalized linear models) with arbitrary non-linearities,
making it applicable to regression as well as classification problems.
This framework enables analyzing the effect of (i) over-parameterization and non-linearity during modeling; (ii) choices of loss function, initialization, and regularizer during learning; and (iii) mismatch between training and test distributions. As examples, we analyze a few special cases, namely linear regression and logistic regression. We are also able to rigorously and analytically explain the \emph{double descent} phenomenon in generalized linear models.
Good Subnetworks Provably Exist: Pruning via Greedy Forward Selection
Mao Ye · Chengyue Gong · Lizhen Nie · Denny Zhou · Adam Klivans · Qiang Liu
Recent empirical works show that large deep neural networks are often highly redundant and one can find much smaller subnetworks without a significant drop of accuracy. However, most existing methods of network pruning are empirical and heuristic, leaving it open whether good subnetworks provably exist, how to find them efficiently, and if network pruning can be provably better than direct training using gradient descent. We answer these problems positively by proposing a simple greedy selection approach for finding good subnetworks, which starts from an empty network and greedily adds important neurons from the large network. This differs from the existing methods based on backward elimination, which remove redundant neurons from the large network. Theoretically, applying the greedy selection strategy on sufficiently large {pre-trained} networks guarantees to find small subnetworks with lower loss than networks directly trained with gradient descent. Our results also apply to pruning randomly weighted networks. Practically, we improve prior arts of network pruning on learning compact neural architectures on ImageNet, including ResNet, MobilenetV2/V3, and ProxylessNet. Our theory and empirical results on MobileNet suggest that we should fine-tune the pruned subnetworks to leverage the information from the large model, instead of re-training from new random initialization as suggested in \citet{liu2018rethinking}.
Implicit competitive regularization in GANs
Florian Schäfer · Hongkai Zheng · Anima Anandkumar
The success of GANs is usually attributed to properties of the divergence obtained by an optimal discriminator. In this work we show that this approach has a fundamental flaw:\ If we do not impose regularity of the discriminator, it can exploit visually imperceptible errors of the generator to always achieve the maximal generator loss. In practice, gradient penalties are used to regularize the discriminator. However, this needs a metric on the space of images that captures visual similarity. Such a metric is not known, which explains the limited success of gradient penalties in stabilizing GANs.\ Instead, we argue that the implicit competitive regularization (ICR) arising from the simultaneous optimization of generator and discriminator enables GANs performance. We show that opponent-aware modelling of generator and discriminator, as present in competitive gradient descent (CGD), can significantly strengthen ICR and thus stabilize GAN training without explicit regularization. In our experiments, we use an existing implementation of WGAN-GP and show that by training it with CGD without any explicit regularization, we can improve the inception score (IS) on CIFAR10, without any hyperparameter tuning.
Improving the Sample and Communication Complexity for Decentralized Non-Convex Optimization: Joint Gradient Estimation and Tracking
Haoran Sun · Songtao Lu · Mingyi Hong
Many modern large-scale machine learning problems benefit from decentralized and stochastic optimization. Recent works have shown that utilizing both decentralized computing and local stochastic gradient estimates can outperform state-of-the-art centralized algorithms, in applications involving highly non-convex problems, such as training deep neural networks. In this work, we propose a decentralized stochastic algorithm to deal with certain smooth non-convex problems where there are $m$ nodes in the system, and each node has a large number of samples (denoted as $n$). Differently from the majority of the existing decentralized learning algorithms for either stochastic or finite-sum problems, our focus is given to {\it both} reducing the total communication rounds among the nodes, while accessing the minimum number of local data samples. In particular, we propose an algorithm named D-GET (decentralized gradient estimation and tracking), which jointly performs decentralized gradient estimation (which estimates the local gradient using a subset of local samples) {\it and} gradient tracking (which tracks the global full gradient using local estimates). We show that to achieve certain $\epsilon$ stationary solution of the deterministic finite sum problem, the proposed algorithm achieves an $\mathcal{O}(mn^{1/2}\epsilon^{-1})$ sample complexity and an $\mathcal{O}(\epsilon^{-1})$ communication complexity. These bounds significantly improve upon the best existing bounds of $\mathcal{O}(mn\epsilon^{-1})$ and $\mathcal{O}(\epsilon^{-1})$, respectively. Similarly, for online problems, the proposed method achieves an $\mathcal{O}(m \epsilon^{-3/2})$ sample complexity and an $\mathcal{O}(\epsilon^{-1})$ communication complexity.
Inferring DQN structure for high-dimensional continuous control
Andrey Sakryukin · Chedy Raissi · Mohan Kankanhalli
Despite recent advancements in the field of Deep Reinforcement Learning, Deep Q-network (DQN) models still show lackluster performance on problems with high-dimensional action spaces. The problem is even more pronounced for cases with high-dimensional continuous action spaces due to a combinatorial increase in the number of the outputs. Recent works approach the problem by dividing the network into multiple parallel or sequential (action) modules responsible for different discretized actions. However, there are drawbacks to both the parallel and the sequential approaches. Parallel module architectures lack coordination between action modules, leading to extra complexity in the task, while a sequential structure can result in the vanishing gradients problem and exploding parameter space. In this work, we show that the compositional structure of the action modules has a significant impact on model performance. We propose a novel approach to infer the network structure for DQN models operating with high-dimensional continuous actions. Our method is based on the uncertainty estimation techniques introduced in the paper. Our approach achieves state-of-the-art performance on MuJoCo environments with high-dimensional continuous action spaces. Furthermore, we demonstrate the improvement of the introduced approach on a realistic AAA sailing simulator game.
Learning to Navigate The Synthetically Accessible Chemical Space Using Reinforcement Learning
Sai Krishna Gottipati · Boris Sattarov · Sufeng Niu · Yashaswi Pathak · Haoran Wei · Shengchao Liu · Shengchao Liu · Simon Blackburn · Karam Thomas · Connor Coley · Jian Tang · Sarath Chandar · Yoshua Bengio
Over the last decade, there has been significant progress in the field of machine learning for de novo drug design, particularly in generative modeling of novel chemical structures. However, current generative approaches exhibit a significant challenge: they do not ensure that the proposed molecular structures can be feasibly synthesized nor do they provide the synthesis routes of the proposed small molecules, thereby seriously limiting their practical applicability. In this work, we propose a novel reinforcement learning (RL) setup for de novo drug design: Policy Gradient for Forward Synthesis (PGFS), that addresses this challenge by embedding the concept of synthetic accessibility directly into the de novo drug design system. In this setup, the agent learns to navigate through the immense synthetically accessible chemical space by subjecting initial commercially available molecules to valid chemical reactions at every time step of the iterative virtual synthesis process. The proposed environment for drug discovery provides a highly challenging test-bed for RL algorithms owing to the large state space and high-dimensional continuous action space with hierarchical actions. PGFS achieves state-of-the-art performance in generating structures with high QED and logP. Moreover, we put to test PGFS in an in-silico proof-of-concept associated with three HIV targets, and the candidates generated with PGFS outperformed the existing benchmarks in optimizing the activity against the biological targets. Finally, we describe how the end-to-end training conceptualized in this study represents an important paradigm in radically expanding the synthesizable chemical space and automating the drug discovery process.
Video Prediction via Example Guidance
Jingwei Xu · Harry (Huazhe) Xu · Bingbing Ni · Xiaokang Yang · Trevor Darrell
In video prediction tasks, one major challenge is to capture the multi-modal nature of future contents and dynamics. In this work, we propose a simple yet effective framework that can efficiently predict plausible future states. The key insight is that the potential distribution of a sequence could be approximated with analogous ones in a repertoire of training pool, namely, expert examples. By further incorporating a novel optimization scheme into the training procedure, plausible predictions can be sampled efficiently from distribution constructed from the retrieved examples. Meanwhile, our method could be seamlessly integrated with existing stochastic predictive models; significant enhancement is observed with comprehensive experiments in both quantitative and qualitative aspects. We also demonstrate the generalization ability to predict the motion of unseen class, i.e., without access to corresponding data during training phase.
When Does Self-Supervision Help Graph Convolutional Networks?
Yuning You · Tianlong Chen · Zhangyang “Atlas” Wang · Yang Shen
Self-supervision as an emerging technique has been employed to train convolutional neural networks (CNNs) for more transferrable, generalizable, and robust representation learning of images. Its introduction to graph convolutional networks (GCNs) operating on graph data is however rarely explored. In this study, we report the first systematic exploration and assessment of incorporating self-supervision into GCNs. We first elaborate three mechanisms to incorporate self-supervision into GCNs, analyze the limitations of pretraining & finetuning and self-training, and proceed to focus on multi-task learning. Moreover, we propose to investigate three novel self-supervised learning tasks for GCNs with theoretical rationales and numerical comparisons. Lastly, we further integrate multi-task self-supervision into graph adversarial training. Our results show that, with properly designed task forms and incorporation mechanisms, self-supervision benefits GCNs in gaining more generalizability and robustness. Our codes are available at https://github.com/Shen-Lab/SS-GCNs.