Session
Poster Session 49
Active Learning on Attributed Graphs via Graph Cognizant Logistic Regression and Preemptive Query Generation
Florence Regol · Soumyasundar Pal · Yingxue Zhang · Mark Coates
Node classification in attributed graphs is an important task in multiple practical settings, but it can often be difficult or expensive to obtain labels. Active learning can improve the achieved classification performance for a given budget on the number of queried labels. The best existing methods are based on graph neural networks, but they often perform poorly unless a sizeable validation set of labelled nodes is available in order to choose good hyperparameters. We propose a novel graph-based active learning algorithm for the task of node classification in attributed graphs; our algorithm uses graph cognizant logistic regression, equivalent to a linearized graph-convolutional neural network (GCN), for the prediction phase and maximizes the expected error reduction in the query phase. To reduce the delay experienced by a labeller interacting with the system, we derive a preemptive querying system that calculates a new query during the labelling process, and to address the setting where learning starts with almost no labelled data, we also develop a hybrid algorithm that performs adaptive model averaging of label propagation and linearized GCN inference. We conduct experiments on five public benchmark datasets, demonstrating a significant improvement over state-of-the-art approaches and illustrate the practical value of the method by applying it to a private microwave link network dataset.
Adaptive Checkpoint Adjoint Method for Gradient Estimation in Neural ODE
Juntang Zhuang · Nicha Dvornek · Xiaoxiao Li · Sekhar Tatikonda · Xenophon Papademetris · James Duncan
The empirical performance of neural ordinary differential equations (NODEs) is significantly inferior to discrete-layer models on benchmark tasks (e.g. image classification). We demonstrate an explanation is the inaccuracy of existing gradient estimation methods: the adjoint method has numerical errors in reverse-mode integration; the naive method suffers from a redundantly deep computation graph. We propose the Adaptive Checkpoint Adjoint (ACA) method: ACA applies a trajectory checkpoint strategy which records the forward- mode trajectory as the reverse-mode trajectory to guarantee accuracy; ACA deletes redundant components for shallow computation graphs; and ACA supports adaptive solvers. On image classification tasks, compared with the adjoint and naive method, ACA achieves half the error rate in half the training time; NODE trained with ACA outperforms ResNet in both accuracy and test-retest reliability. On time-series modeling, ACA outperforms competing methods. Furthermore, NODE with ACA can incorporate physical knowledge to achieve better accuracy.
The use of machine learning algorithms in finance, medicine, and criminal justice can deeply impact human lives. As a consequence, research into interpretable machine learning has rapidly grown in an attempt to better control and fix possible sources of mistakes and biases. Tree ensembles, in particular, offer a good prediction quality in various domains, but the concurrent use of multiple trees reduces the interpretability of the ensemble. Against this background, we study born-again tree ensembles, i.e., the process of constructing a single decision tree of minimum size that reproduces the exact same behavior as a given tree ensemble in its entire feature space. To find such a tree, we develop a dynamic-programming based algorithm that exploits sophisticated pruning and bounding rules to reduce the number of recursive calls. This algorithm generates optimal born-again trees for many datasets of practical interest, leading to classifiers which are typically simpler and more interpretable without any other form of compromise.
Empirical Study of the Benefits of Overparameterization in Learning Latent Variable Models
Rares-Darius Buhai · Yoni Halpern · Yoon Kim · Andrej Risteski · David Sontag
One of the most surprising and exciting discoveries in supervised learning was the benefit of overparameterization (i.e. training a very large model) to improving the optimization landscape of a problem, with minimal effect on statistical performance (i.e. generalization). In contrast, unsupervised settings have been under-explored, despite the fact that it was observed that overparameterization can be helpful as early as Dasgupta & Schulman (2007). We perform an empirical study of different aspects of overparameterization in unsupervised learning of latent variable models via synthetic and semi-synthetic experiments. We discuss benefits to different metrics of success (recovering the parameters of the ground-truth model, held-out log-likelihood), sensitivity to variations of the training algorithm, and behavior as the amount of overparameterization increases. We find that across a variety of models (noisy-OR networks, sparse coding, probabilistic context-free grammars) and training algorithms (variational inference, alternating minimization, expectation-maximization), overparameterization can significantly increase the number of ground truth latent variables recovered.
Enhancing Simple Models by Exploiting What They Already Know
Amit Dhurandhar · Karthikeyan Shanmugam · Ronny Luss
There has been recent interest in improving performance of simple models for multiple reasons such as interpretability, robust learning from small data, deployment in memory constrained settings as well as environmental considerations. In this paper, we propose a novel method SRatio that can utilize information from high performing complex models (viz. deep neural networks, boosted trees, random forests) to reweight a training dataset for a potentially low performing simple model of much lower complexity such as a decision tree or a shallow network enhancing its performance. Our method also leverages the per sample hardness estimate of the simple model which is not the case with the prior works which primarily consider the complex model's confidences/predictions and is thus conceptually novel. Moreover, we generalize and formalize the concept of attaching probes to intermediate layers of a neural network to other commonly used classifiers and incorporate this into our method. The benefit of these contributions is witnessed in the experiments where on 6 UCI datasets and CIFAR-10 we outperform competitors in a majority (16 out of 27) of the cases and tie for best performance in the remaining cases. In fact, in a couple of cases, we even approach the complex model's performance. We also conduct further experiments to validate assertions and intuitively understand why our method works. Theoretically, we motivate our approach by showing that the weighted loss minimized by simple models using our weighting upper bounds the loss of the complex model.
Error-Bounded Correction of Noisy Labels
Songzhu Zheng · Pengxiang Wu · Aman Goswami · Mayank Goswami · Dimitris Metaxas · Chao Chen
To collect large scale annotated data, it is inevitable to introduce label noise, i.e., incorrect class labels. To be robust against label noise, many successful methods rely on the noisy classifiers (i.e., models trained on the noisy training data) to determine whether a label is trustworthy. However, it remains unknown why this heuristic works well in practice. In this paper, we provide the first theoretical explanation for these methods. We prove that the prediction of a noisy classifier can indeed be a good indicator of whether the label of a training data is clean. Based on the theoretical result, we propose a novel algorithm that corrects the labels based on the noisy classifier prediction. The corrected labels are consistent with the true Bayesian optimal classifier with high probability. We incorporate our label correction algorithm into the training of deep neural networks and train models that achieve superior testing performance on multiple public datasets.
FACT: A Diagnostic for Group Fairness Trade-offs
Joon Kim · Jiahao Chen · Ameet Talwalkar
Group fairness, a class of fairness notions that measure how different groups of individuals are treated differently according to their protected attributes, has been shown to conflict with one another, often with a necessary cost in loss of model's predictive performance. We propose a general diagnostic that enables systematic characterization of these trade-offs in group fairness. We observe that the majority of group fairness notions can be expressed via the fairness-confusion tensor, which is the confusion matrix split according to the protected attribute values. We frame several optimization problems that directly optimize both accuracy and fairness objectives over the elements of this tensor, which yield a general perspective for understanding multiple trade-offs including group fairness incompatibilities. It also suggests an alternate post-processing method for designing fair classifiers. On synthetic and real datasets, we demonstrate the use cases of our diagnostic, particularly on understanding the trade-off landscape between accuracy and fairness.
Improving Robustness of Deep-Learning-Based Image Reconstruction
Ankit Raj · Yoram Bresler · Bo Li
Deep-learning-based methods for various applications have been shown vulnerable to adversarial examples. Here we address the use of deep-learning networks as inverse problem solvers, which has generated much excitement and even adoption efforts by the main equipment vendors for medical imaging including computed tomography (CT) and MRI. However, the recent demonstration that such networks suffer from a similar vulnerability to adversarial attacks potentially undermines their future. We propose to modify the training strategy of end-to-end deep-learning-based inverse problem solvers to improve robustness. To this end, we introduce an auxiliary net-work to generate adversarial examples, which is used in a min-max formulation to build robust image reconstruction networks. Theoretically, we argue that for such inverse problem solvers, one should analyze and study the effect of adversaries in the measurement-space, instead of in the signal-space used in previous work. We show for a linear reconstruction scheme that our min-max formulation results in a singular-value filter regularized solution, which suppresses the effect of adversarial examples. Numerical experiments using the proposed min-max scheme confirm convergence to this solution. We complement the theory by experiments on non-linear Compressive Sensing(CS) reconstruction by a deep neural network on two standard datasets, and, using anonymized clinical data, on a state-of-the-art published algorithm for low-dose x-ray CT reconstruction. We show a significant improvement in robustness over other methods for deep network-based reconstruction, by using the proposed approach.
Learning Selection Strategies in Buchberger’s Algorithm
Dylan Peifer · Michael Stillman · Daniel Halpern-Leistner
Studying the set of exact solutions of a system of polynomial equations largely depends on a single iterative algorithm, known as Buchberger’s algorithm. Optimized versions of this algorithm are crucial for many computer algebra systems (e.g., Mathematica, Maple, Sage). We introduce a new approach to Buchberger’s algorithm that uses reinforcement learning agents to perform S-pair selection, a key step in the algorithm. We then study how the difficulty of the problem depends on the choices of domain and distribution of polynomials, about which little is known. Finally, we train a policy model using proximal policy optimization (PPO) to learn S-pair selection strategies for random systems of binomial equations. In certain domains, the trained model outperforms state-of-the-art selection heuristics in total number of polynomial additions performed, which provides a proof-of-concept that recent developments in machine learning have the potential to improve performance of algorithms in symbolic computation.
Learning the Valuations of a $k$-demand Agent
Hanrui Zhang · Vincent Conitzer
We study problems where a learner aims to learn the valuations of an agent by observing which goods he buys under varying price vectors. More specifically, we consider the case of a $k$-demand agent, whose valuation over the goods is additive when receiving up to $k$ goods, but who has no interest in receiving more than $k$ goods. We settle the query complexity for the active-learning (preference elicitation) version, where the learner chooses the prices to post, by giving a {\em biased binary search} algorithm, generalizing the classical binary search procedure. We complement our query complexity upper bounds by lower bounds that match up to lower-order terms. We also study the passive-learning version in which the learner does not control the prices, and instead they are sampled from some distribution. We show that in the PAC model for passive learning, any {\em empirical risk minimizer} has a sample complexity that is optimal up to a factor of $\widetilde{O}(k)$.
Linear Convergence of Randomized Primal-Dual Coordinate Method for Large-scale Linear Constrained Convex Programming
Daoli Zhu · Lei Zhao
Linear constrained convex programming (LCCP) has many practical applications, including support vector machine (SVM) and machine learning portfolio (MLP) problems. We propose the randomized primal-dual coordinate (RPDC) method, a randomized coordinate extension of the first-order primal-dual method by Cohen and Zhu, 1984 and Zhao and Zhu, 2019, to solve LCCP. We randomly choose a block of variables based on the uniform distribution and apply linearization and a Bregman-like function (core function) to the selected block to obtain simple parallel primal-dual decomposition for LCCP. We establish almost surely convergence and expected O(1/t) convergence rate. Under global strong metric subregularity, we establish the linear convergence of RPDC. Finally, we discuss the implementation details of RPDC and present numerical experiments on SVM and MLP problems to verify the linear convergence.
New Oracle-Efficient Algorithms for Private Synthetic Data Release
Giuseppe Vietri · Grace Tian · Mark Bun · Thomas Steinke · Steven Wu
We present three new algorithms for constructing differentially private synthetic data---a sanitized version of a sensitive dataset that approximately preserves the answers to a large collection of statistical queries. All three algorithms are \emph{oracle-efficient} in the sense that they are computationally efficient when given access to an optimization oracle. Such an oracle can be implemented using many existing (non-private) optimization tools such as sophisticated integer program solvers. While the accuracy of the synthetic data is contingent on the oracle's optimization performance, the algorithms satisfy differential privacy even in the worst case. For all three algorithms, we provide theoretical guarantees for both accuracy and privacy. Through empirical evaluation, we demonstrate that our methods scale well with both the dimensionality of the data and the number of queries. Compared to the state-of-the-art method High-Dimensional Matrix Mechanism (McKenna et al.~VLDB 2018), our algorithms provide better accuracy in the large workload and high privacy regime (corresponding to low privacy loss $\eps$).
p-Norm Flow Diffusion for Local Graph Clustering
Kimon Fountoulakis · Di Wang · Shenghao Yang
Local graph clustering and the closely related seed set expansion problem are primitives on graphs that are central to a wide range of analytic and learning tasks such as local clustering, community detection, semi-supervised learning, nodes ranking and feature inference. Prior work on local graph clustering mostly falls into two categories with numerical and combinatorial roots respectively, in this work we draw inspiration from both fields and propose a family of convex optimization formulations based on the idea of diffusion with $p$-norm network flow for $p\in (1,\infty)$. In the context of local clustering, we characterize the optimal solutions for these optimization problems and show their usefulness in finding low conductance cuts around input seed set. In particular, we achieve quadratic approximation of conductance in the case of $p=2$ similar to the Cheeger-type bounds of spectral methods, constant factor approximation when $p\rightarrow\infty$ similar to max-flow based methods, and a smooth transition for general $p$ values in between. Thus, our optimization formulation can be viewed as bridging the numerical and combinatorial approaches, and we can achieve the best of both worlds in terms of speed and noise robustness. We show that the proposed problem can be solved in strongly local running time for $p\ge 2$ and conduct empirical evaluations on both synthetic and real-world graphs to illustrate our approach compares favorably with existing methods.
Privately detecting changes in unknown distributions
Rachel Cummings · Sara Krehbiel · Yuliia Lut · Wanrong Zhang
The change-point detection problem seeks to identify distributional changes in streams of data. Increasingly, tools for change-point detection are applied in settings where data may be highly sensitive and formal privacy guarantees are required, such as identifying disease outbreaks based on hospital records, or IoT devices detecting activity within a home. Differential privacy has emerged as a powerful technique for enabling data analysis while preventing information leakage about individuals. Much of the prior work on change-point detection---including the only private algorithms for this problem---requires complete knowledge of the pre-change and post-change distributions, which is an unrealistic assumption for many practical applications of interest. This work develops differentially private algorithms for solving the change-point detection problem when the data distributions are unknown. Additionally, the data may be sampled from distributions that change smoothly over time, rather than fixed pre-change and post-change distributions. We apply our algorithms to detect changes in the linear trends of such data streams. Finally, we also provide experimental results to empirically validate the performance of our algorithms.
Robust Pricing in Dynamic Mechanism Design
Yuan Deng · Sébastien Lahaie · Vahab Mirrokni
Motivated by the repeated sale of online ads via auctions, optimal pricing in repeated auctions has attracted a large body of research. While dynamic mechanisms offer powerful techniques to improve on both revenue and efficiency by optimizing auctions across different items, their reliance on exact distributional information of buyers' valuations (present and future) limits their use in practice. In this paper, we propose robust dynamic mechanism design. We develop a new framework to design dynamic mechanisms that are robust to both estimation errors in value distributions and strategic behavior. We apply the framework in learning environments, leading to the first policy that achieves provably low regret against the optimal dynamic mechanism in contextual auctions, where the dynamic benchmark has full and accurate distributional information.
Stochastic Flows and Geometric Optimization on the Orthogonal Group
Krzysztof Choromanski · David Cheikhi · Jared Quincy Davis · Valerii Likhosherstov · Achille Nazaret · Achraf Bahamou · Xingyou Song · Mrugank Akarte · Jack Parker-Holder · Jacob Bergquist · Yuan Gao · Aldo Pacchiano · Tamas Sarlos · Adrian Weller · Vikas Sindhwani
We present a new class of stochastic, geometrically-driven optimization algorithms on the orthogonal group O(d) and naturally reductive homogeneous manifolds obtained from the action of the rotation group SO(d). We theoretically and experimentally demonstrate that our methods can be applied in various fields of machine learning including deep, convolutional and recurrent neural networks, reinforcement learning, normalizing flows and metric learning. We show an intriguing connection between efficient stochastic optimization on the orthogonal group and graph theory (e.g. matching problem, partition functions over graphs, graph-coloring). We leverage the theory of Lie groups and provide theoretical results for the designed class of algorithms. We demonstrate broad applicability of our methods by showing strong performance on the seemingly unrelated tasks of learning world models to obtain stable policies for the most difficult Humanoid agent from OpenAI Gym and improving convolutional neural networks.
A Flexible Framework for Nonparametric Graphical Modeling that Accommodates Machine Learning
Yunhua Xiang · Noah Simon
Graphical modeling has been broadly useful for exploring the dependence structure among features in a dataset. However, the strength of graphical modeling hinges on our ability to encode and estimate conditional dependencies. In particular, commonly used measures such as partial correlation are only meaningful under strongly parametric (in this case, multivariate Gaussian) assumptions. These assumptions are unverifiable, and there is often little reason to believe they hold in practice. In this paper, we instead consider 3 non-parametric measures of conditional dependence. These measures are meaningful without structural assumptions on the multivariate distribution of the data. In addition, we show that for 2 of these measures there are simple, strong plug-in estimators that require only the estimation of a conditional mean. These plug-in estimators (1) are asymptotically linear and non-parametrically efficient, (2) allow incorporation of flexible machine learning techniques for conditional mean estimation, and (3) enable the construction of valid Wald-type confidence intervals. In addition, by leveraging the influence function of these estimators, one can obtain intervals with simultaneous coverage guarantees for all pairs of features.
Almost Tune-Free Variance Reduction
Bingcong Li · Lingda Wang · Georgios B. Giannakis
The variance reduction class of algorithms including the representative ones, SVRG and SARAH, have well documented merits for empirical risk minimization problems. However, they require grid search to tune parameters (step size and the number of iterations per inner loop) for optimal performance. This work introduces almost tune-free' SVRG and SARAH schemes equipped with i) Barzilai-Borwein (BB) step sizes; ii) averaging; and, iii) the inner loop length adjusted to the BB step sizes. In particular, SVRG, SARAH, and their BB variants are first reexamined through an
estimate sequence' lens to enable new averaging methods that tighten their convergence rates theoretically, and improve their performance empirically when the step size or the inner loop length is chosen large. Then a simple yet effective means to adjust the number of iterations per inner loop is developed to enhance the merits of the proposed averaging schemes and BB step sizes. Numerical tests corroborate the proposed methods.
A Pairwise Fair and Community-preserving Approach to k-Center Clustering
Brian Brubach · Darshan Chakrabarti · John P Dickerson · Samir Khuller · Aravind Srinivasan · Leonidas Tsepenekas
Clustering is a foundational problem in machine learning with numerous applications. As machine learning increases in ubiquity as a backend for automated systems, concerns about fairness arise. Much of the current literature on fairness deals with discrimination against protected classes in supervised learning (group fairness). We define a different notion of fair clustering wherein the probability that two points (or a community of points) become separated is bounded by an increasing function of their pairwise distance (or community diameter). We capture the situation where data points represent people who gain some benefit from being clustered together. Unfairness arises when certain points are deterministically separated, either arbitrarily or by someone who intends to harm them as in the case of gerrymandering election districts. In response, we formally define two new types of fairness in the clustering setting, pairwise fairness and community preservation. To explore the practicality of our fairness goals, we devise an approach for extending existing $k$-center algorithms to satisfy these fairness constraints. Analysis of this approach proves that reasonable approximations can be achieved while maintaining fairness. In experiments, we compare the effectiveness of our approach to classical $k$-center algorithms/heuristics and explore the tradeoff between optimal clustering and fairness.
BINOCULARS for efficient, nonmyopic sequential experimental design
Shali Jiang · Henry Chai · Javier Gonzalez · Roman Garnett
Finite-horizon sequential experimental design (SED) arises naturally in many contexts, including hyperparameter tuning in machine learning among more traditional settings. Computing the optimal policy for such problems requires solving Bellman equations, which are generally intractable. Most existing work resorts to severely myopic approximations by limiting the decision horizon to only a single time-step, which can underweight exploration in favor of exploitation. We present BINOCULARS: Batch-Informed NOnmyopic Choices, Using Long-horizons for Adaptive, Rapid SED, a general framework for deriving efficient, nonmyopic approximations to the optimal experimental policy. Our key idea is simple and surprisingly effective: we first compute a one-step optimal batch of experiments, then select a single point from this batch to evaluate. We realize BINOCULARS for Bayesian optimization and Bayesian quadrature -- two notable example problems with radically different objectives -- and demonstrate that BINOCULARS significantly outperforms significantly outperforms myopic alternatives in real-world scenarios.
Black-Box Variational Inference as a Parametric Approximation to Langevin Dynamics
Matthew Hoffman · Yian Ma
Variational inference (VI) and Markov chain Monte Carlo (MCMC) are approximate posterior inference algorithms that are often said to have complementary strengths, with VI being fast but biased and MCMC being slower but asymptotically unbiased. In this paper, we analyze gradient-based MCMC and VI procedures and find theoretical and empirical evidence that these procedures are not as different as one might think. In particular, a close examination of the Fokker-Planck equation that governs the Langevin dynamics (LD) MCMC procedure reveals that LD implicitly follows a gradient flow that corresponds to an VI procedure based on optimizing a nonparametric normalizing flow. The evolution under gradient descent of real-world VI approximations that use tractable, parametric flows can thus be seen as an approximation to the evolution of a population of LD-MCMC chains. This result suggests that the transient bias of LD (due to the Markov chain not having burned in) may track that of VI (due to the optimizer not having converged), up to differences due to VI’s asymptotic bias and parameter geometry. Empirically, we find that the transient biases of these algorithms (and their momentum-accelerated counterparts) do evolve similarly. This suggests that practitioners with a limited time budget may get more accurate results by running an MCMC procedure (even if it is stopped before fully burning in) than a VI procedure, as long as the variance of the MCMC estimator can be dealt with (e.g., by running many parallel chains).
Calibration, Entropy Rates, and Memory in Language Models
Mark Braverman · Xinyi Chen · Sham Kakade · Karthik Narasimhan · Cyril Zhang · Yi Zhang
Building accurate language models that capture meaningful long-term dependencies is a core challenge in natural language processing. Towards this end, we present a calibration-based approach to measure long-term discrepancies between a generative sequence model and the true distribution, and use these discrepancies to improve the model. Empirically, we show that state-of-the-art language models, including LSTMs and Transformers, are miscalibrated: the entropy rates of their generations drift dramatically upward over time. We then provide provable methods to mitigate this phenomenon. Furthermore, we show how this calibration-based approach can also be used to measure the amount of memory that language models use for prediction.
CLUB: A Contrastive Log-ratio Upper Bound of Mutual Information
Pengyu Cheng · Weituo Hao · Shuyang Dai · Jiachang Liu · Zhe Gan · Lawrence Carin
There has been considerable recent interest in mutual information (MI) minimization for various machine learning tasks. However, estimating and minimizing MI in high-dimensional spaces remains a challenging problem, especially when only samples are accessible, rather than the underlying distribution forms. Previous works mainly focus on MI lower bound approximation, which is not applicable to MI minimization problems. In this paper, we propose a novel Contrastive Log-ratio Upper Bound (CLUB) of mutual information. We provide a theoretical analysis of the properties of CLUB and its variational approximation. Based on this upper bound, we introduce an accelerated MI minimization training scheme, that bridges MI minimization with negative sampling. Simulation studies on Gaussian distributions show that CLUB provides reliable estimates. Real-world MI minimization experiments, including domain adaptation and the information bottleneck, further demonstrate the effectiveness of the proposed method.
Concise Explanations of Neural Networks using Adversarial Training
Prasad Chalasani · Jiefeng Chen · Amrita Roy Chowdhury · Xi Wu · Somesh Jha
We show new connections between adversarial learning and explainability for deep neural networks (DNNs). One form of explanation of the output of a neural network model in terms of its input features, is a vector of feature-attributions, which can be generated by various techniques such as Integrated Gradients (IG), DeepSHAP, LIME, and CXPlain. Two desirable characteristics of an attribution-based explanation are: (1) \textit{sparseness}: the attributions of irrelevant or weakly relevant features should be negligible, thus resulting in \textit{concise} explanations in terms of the significant features, and (2) \textit{stability}: it should not vary significantly within a small local neighborhood of the input. Our first contribution is a theoretical exploration of how these two properties (when using IG-based attributions) are related to adversarial training, for a class of 1-layer networks (which includes logistic regression models for binary and multi-class classification); for these networks we show that (a) adversarial training using an $\ell_\infty$-bounded adversary produces models with sparse attribution vectors, and (b) natural model-training while encouraging stable explanations (via an extra term in the loss function), is equivalent to adversarial training. Our second contribution is an empirical verification of phenomenon (a), which we show, somewhat surprisingly, occurs \textit{not only in 1-layer networks, but also DNNs trained on standard image datasets}, and extends beyond IG-based attributions, to those based on DeepSHAP: adversarial training with $\linf$-bounded perturbations yields significantly sparser attribution vectors, with little degradation in performance on natural test data, compared to natural training. Moreover, the sparseness of the attribution vectors is significantly better than that achievable via $\ell_1$-regularized natural training.
Constrained Markov Decision Processes via Backward Value Functions
Harsh Satija · Philip Amortila · Joelle Pineau
Although Reinforcement Learning (RL) algorithms have found tremendous success in simulated domains, they often cannot directly be applied to physical systems, especially in cases where there are hard constraints to satisfy (e.g. on safety or resources). In standard RL, the agent is incentivized to explore any behavior as long as it maximizes rewards, but in the real world, undesired behavior can damage either the system or the agent in a way that breaks the learning process itself. In this work, we model the problem of learning with constraints as a Constrained Markov Decision Process and provide a new on-policy formulation for solving it. A key contribution of our approach is to translate cumulative cost constraints into state-based constraints. Through this, we define a safe policy improvement method which maximizes returns while ensuring that the constraints are satisfied at every step. We provide theoretical guarantees under which the agent converges while ensuring safety over the course of training. We also highlight the computational advantages of this approach. The effectiveness of our approach is demonstrated on safe navigation tasks and in safety-constrained versions of MuJoCo environments, with deep neural networks.
Continuous Graph Neural Networks
Louis-Pascal Xhonneux · Meng Qu · Jian Tang
This paper builds on the connection between graph neural networks and traditional dynamical systems. We propose continuous graph neural networks (CGNN), which generalise existing graph neural networks with discrete dynamics in that they can be viewed as a specific discretisation scheme. The key idea is how to characterise the continuous dynamics of node representations, i.e. the derivatives of node representations, w.r.t. time.Inspired by existing diffusion-based methods on graphs (e.g. PageRank and epidemic models on social networks), we define the derivatives as a combination of the current node representations,the representations of neighbors, and the initial values of the nodes. We propose and analyse two possible dynamics on graphs—including each dimension of node representations (a.k.a. the feature channel) change independently or interact with each other—both with theoretical justification. The proposed continuous graph neural net-works are robust to over-smoothing and hence allow us to build deeper networks, which in turn are able to capture the long-range dependencies between nodes. Experimental results on the task of node classification demonstrate the effectiveness of our proposed approach over competitive baselines.
Estimating Q(s,s') with Deep Deterministic Dynamics Gradients
Ashley Edwards · Himanshu Sahni · Rosanne Liu · Jane Hung · Ankit Jain · Rui Wang · Adrien Ecoffet · Thomas Miconi · Charles Isbell · Jason Yosinski
In this paper, we introduce a novel form of value function, $Q(s, s')$, that expresses the utility of transitioning from a state $s$ to a neighboring state $s'$ and then acting optimally thereafter. In order to derive an optimal policy, we develop a forward dynamics model that learns to make next-state predictions that maximize this value. This formulation decouples actions from values while still learning off-policy. We highlight the benefits of this approach in terms of value function transfer, learning within redundant action spaces, and learning off-policy from state observations generated by sub-optimal or completely random policies. Code and videos are available at http://sites.google.com/view/qss-paper.
Estimation of Bounds on Potential Outcomes For Decision Making
Maggie Makar · Fredrik Johansson · John Guttag · David Sontag
Estimation of individual treatment effects is commonly used as the basis for contextual decision making in fields such as healthcare, education, and economics. However, it is often sufficient for the decision maker to have estimates of upper and lower bounds on the potential outcomes of decision alternatives to assess risks and benefits. We show that, in such cases, we can improve sample efficiency by estimating simple functions that bound these outcomes instead of estimating their conditional expectations, which may be complex and hard to estimate. Our analysis highlights a trade-off between the complexity of the learning task and the confidence with which the learned bounds hold. Guided by these findings, we develop an algorithm for learning upper and lower bounds on potential outcomes which optimize an objective function defined by the decision maker, subject to the probability that bounds are violated being small. Using a clinical dataset and a well-known causality benchmark, we demonstrate that our algorithm outperforms baselines, providing tighter, more reliable bounds.
Fiedler Regularization: Learning Neural Networks with Graph Sparsity
Edric Tam · David Dunson
We introduce a novel regularization approach for deep learning that incorporates and respects the underlying graphical structure of the neural network. Existing regularization methods often focus on penalizing weights in a global/uniform manner that ignores the connectivity structure of the neural network. We propose to use the Fiedler value of the neural network's underlying graph as a tool for regularization. We provide theoretical support for this approach via spectral graph theory. We show several useful properties of the Fiedler value that makes it suitable for regularization. We provide an approximate, variational approach for faster computation during training. We provide bounds on such approximations. We provide an alternative formulation of this framework in the form of a structurally weighted L1 penalty, thus linking our approach to sparsity induction. We performed experiments on datasets that compare Fiedler regularization with traditional regularization methods such as Dropout and weight decay. Results demonstrate the efficacy of Fiedler regularization.
From ImageNet to Image Classification: Contextualizing Progress on Benchmarks
Dimitris Tsipras · Shibani Santurkar · Logan Engstrom · Andrew Ilyas · Aleksander Madry
Building rich machine learning datasets in a scalable manner often necessitates a crowd-sourced data collection pipeline. In this work, we use human studies to investigate the consequences of employing such a pipeline, focusing on the popular ImageNet dataset. We study how specific design choices in the ImageNet creation process impact the fidelity of the resulting dataset---including the introduction of biases that state-of-the-art models exploit. Our analysis pinpoints how a noisy data collection pipeline can lead to a systematic misalignment between the resulting benchmark and the real-world task it serves as a proxy for. Finally, our findings emphasize the need to augment our current model training and evaluation toolkit to take such misalignment into account.
In this paper, we study the graph classification problem from the graph homomorphism perspective. We consider the homomorphisms from $F$ to $G$, where $G$ is a graph of interest (e.g. molecules or social networks) and $F$ belongs to some family of graphs (e.g. paths or non-isomorphic trees). We show that graph homomorphism numbers provide a natural invariant (isomorphism invariant and $\mathcal{F}$-invariant) embedding maps which can be used for graph classification. Viewing the expressive power of a graph classifier by the $\mathcal{F}$-indistinguishable concept, we prove the universality property of graph homomorphism vectors in approximating $\mathcal{F}$-invariant functions. In practice, by choosing $\mathcal{F}$ whose elements have bounded tree-width, we show that the homomorphism method is efficient compared with other methods.
GraphOpt: Learning Optimization Models of Graph Formation
Rakshit Trivedi · Jiachen Yang · Hongyuan Zha
Formation mechanisms are fundamental to the study of complex networks, but learning them from observations is challenging. In real-world domains, one often has access only to the final constructed graph, instead of the full construction process, and observed graphs exhibit complex structural properties. In this work, we propose GraphOpt, an end-to-end framework that jointly learns an implicit model of graph structure formation and discovers an underlying optimization mechanism in the form of a latent objective function. The learned objective can serve as an explanation for the observed graph properties, thereby lending itself to transfer across different graphs within a domain. GraphOpt poses link formation in graphs as a sequential decision-making process and solves it using maximum entropy inverse reinforcement learning algorithm. Further, it employs a novel continuous latent action space that aids scalability. Empirically, we demonstrate that GraphOpt discovers a latent objective transferable across graphs with different characteristics. GraphOpt also learns a robust stochastic policy that achieves competitive link prediction performance without being explicitly trained on this task and further enables construction of graphs with properties similar to those of the observed graph.
History-Gradient Aided Batch Size Adaptation for Variance Reduced Algorithms
Kaiyi Ji · Zhe Wang · Bowen Weng · Yi Zhou · Wei Zhang · Yingbin LIANG
Variance-reduced algorithms, although achieve great theoretical performance, can run slowly in practice due to the periodic gradient estimation with a large batch of data. Batch-size adaptation thus arises as a promising approach to accelerate such algorithms. However, existing schemes either apply prescribed batch-size adaption rule or exploit the information along optimization path via additional backtracking and condition verification steps. In this paper, we propose a novel scheme, which eliminates backtracking line search but still exploits the information along optimization path by adapting the batch size via history stochastic gradients. We further theoretically show that such a scheme substantially reduces the overall complexity for popular variance-reduced algorithms SVRG and SARAH/SPIDER for both conventional nonconvex optimization and reinforcement learning problems. To this end, we develop a new convergence analysis framework to handle the dependence of the batch size on history stochastic gradients. Extensive experiments validate the effectiveness of the proposed batch-size adaptation scheme.
How to Train Your Neural ODE: the World of Jacobian and Kinetic Regularization
Chris Finlay · Joern-Henrik Jacobsen · Levon Nurbekyan · Adam Oberman
Training neural ODEs on large datasets has not been tractable due to the necessity of allowing the adaptive numerical ODE solver to refine its step size to very small values. In practice this leads to dynamics equivalent to many hundreds or even thousands of layers. In this paper, we overcome this apparent difficulty by introducing a theoretically-grounded combination of both optimal transport and stability regularizations which encourage neural ODEs to prefer simpler dynamics out of all the dynamics that solve a problem well. Simpler dynamics lead to faster convergence and to fewer discretizations of the solver, considerably decreasing wall-clock time without loss in performance. Our approach allows us to train neural ODE-based generative models to the same performance as the unregularized dynamics, with significant reductions in training time. This brings neural ODEs closer to practical relevance in large-scale applications.
Improved Bounds on Minimax Regret under Logarithmic Loss via Self-Concordance
Blair Bilodeau · Dylan Foster · Daniel Roy
We consider the classical problem of sequential probability assignment under logarithmic loss while competing against an arbitrary, potentially nonparametric class of experts. We obtain improved bounds on the minimax regret via a new approach that exploits the self-concordance property of the logarithmic loss. We show that for any expert class with (sequential) metric entropy $\mathcal{O}(\gamma^{-p})$ at scale $\gamma$, the minimax regret is $\mathcal{O}(n^{\frac{p}{p+1}})$, and that this rate cannot be improved without additional assumptions on the expert class under consideration. As an application of our techniques, we resolve the minimax regret for nonparametric Lipschitz classes of experts.
Interpreting Robust Optimization via Adversarial Influence Functions
Zhun Deng · Cynthia Dwork · Jialiang Wang · Linjun Zhang
Robust optimization has been widely used in nowadays data science, especially in adversarial training. However, little research has been done to quantify how robust optimization changes the optimizers and the prediction losses comparing to standard training. In this paper, inspired by the influence function in robust statistics, we introduce the Adversarial Influence Function (AIF) as a tool to investigate the solution produced by robust optimization. The proposed AIF enjoys a closed-form and can be calculated efficiently. To illustrate the usage of AIF, we apply it to study model sensitivity -- a quantity defined to capture the change of prediction losses on the natural data after implementing robust optimization. We use AIF to analyze how model complexity and randomized smoothing affect the model sensitivity with respect to specific models. We further derive AIF for kernel regressions, with a particular application to neural tangent kernels, and experimentally demonstrate the effectiveness of the proposed AIF. Lastly, the theories of AIF will be extended to distributional robust optimization.
Invariant Rationalization
Shiyu Chang · Yang Zhang · Mo Yu · Tommi Jaakkola
Selective rationalization improves neural network interpretability by identifying a small subset of input features — the rationale — that best explains or supports the prediction. A typical rationalization criterion, i.e. maximum mutual information (MMI), finds the rationale that maximizes the prediction performance based only on the rationale. However, MMI can be problematic because it picks up spurious correlations between the input features and the output. Instead, we introduce a game-theoretic invariant rationalization criterion where the rationales are constrained to enable the same predictor to be optimal across different environments. We show both theoretically and empirically that the proposed rationales can rule out spurious correlations and generalize better to different test scenarios. The resulting explanations also align better with human judgments. Our implementations are publicly available at https://github.com/code-terminator/invariant_rationalization.
Latent Variable Modelling with Hyperbolic Normalizing Flows
Joey Bose · Ariella Smofsky · Renjie Liao · Prakash Panangaden · Will Hamilton
The choice of approximate posterior distributions plays a central role in stochastic variational inference (SVI). One effective solution is the use of normalizing flows \cut{defined on Euclidean spaces} to construct flexible posterior distributions. However, one key limitation of existing normalizing flows is that they are restricted to the Euclidean space and are ill-equipped to model data with an underlying hierarchical structure. To address this fundamental limitation, we present the first extension of normalizing flows to hyperbolic spaces. We first elevate normalizing flows to hyperbolic spaces using coupling transforms defined on the tangent bundle, termed Tangent Coupling ($\mathcal{TC}$). We further introduce Wrapped Hyperboloid Coupling ($\mathcal{W}\mathbb{H}C$), a fully invertible and learnable transformation that explicitly utilizes the geometric structure of hyperbolic spaces, allowing for expressive posteriors while being efficient to sample from. We demonstrate the efficacy of our novel normalizing flow over hyperbolic VAEs and Euclidean normalizing flows. Our approach achieves improved performance on density estimation, as well as reconstruction of real-world graph data, which exhibit a hierarchical structure. Finally, we show that our approach can be used to power a generative model over hierarchical data using hyperbolic latent variables.
Learning Robot Skills with Temporal Variational Inference
Tanmay Shankar · Abhinav Gupta
In this paper, we address the discovery of robotic options from demonstrations in an unsupervised manner. Specifically, we present a framework to jointly learn low-level control policies and higher-level policies of how to use them from demonstrations of a robot performing various tasks. By representing options as continuous latent variables, we frame the problem of learning these options as latent variable inference. We then present a temporally causal variant of variational inference based on a temporal factorization of trajectory likelihoods, that allows us to infer options in an unsupervised manner. We demonstrate the ability of our framework to learn such options across three robotic demonstration datasets.
Learning with Bounded Instance- and Label-dependent Label Noise
Jiacheng Cheng · Tongliang Liu · Kotagiri Ramamohanarao · Dacheng Tao
Instance- and Label-dependent label Noise (ILN) widely exists in real-world datasets but has been rarely studied. In this paper, we focus on Bounded Instance- and Label-dependent label Noise (BILN), a particular case of ILN where the label noise rates---the probabilities that the true labels of examples flip into the corrupted ones---have upper bound less than $1$. Specifically, we introduce the concept of distilled examples, i.e. examples whose labels are identical with the labels assigned for them by the Bayes optimal classifier, and prove that under certain conditions classifiers learnt on distilled examples will converge to the Bayes optimal classifier. Inspired by the idea of learning with distilled examples, we then propose a learning algorithm with theoretical guarantees for its robustness to BILN. At last, empirical evaluations on both synthetic and real-world datasets show effectiveness of our algorithm in learning with BILN.
Low-Rank Bottleneck in Multi-head Attention Models
Srinadh Bhojanapalli · Chulhee Yun · Ankit Singh Rawat · Sashank Jakkam Reddi · Sanjiv Kumar
Attention based Transformer architecture has enabled significant advances in the field of natural language processing. In addition to new pre-training techniques, recent improvements crucially rely on working with a relatively larger embedding dimension for tokens. Unfortunately, this leads to models that are prohibitively large to be employed in the downstream tasks. In this paper we identify one of the important factors contributing to the large embedding size requirement. In particular, our analysis highlights that the scaling between the number of heads and the size of each head in the current architecture gives rise to a low-rank bottleneck in attention heads, causing this limitation. We further validate this in our experiments. As a solution we propose to set the head size of an attention unit to input sequence length, and independent of the number of heads, resulting in multi-head attention layers with provably more expressive power. We empirically show that this allows us to train models with a relatively smaller embedding dimension and with better performance scaling.
Maximum Entropy Gain Exploration for Long Horizon Multi-goal Reinforcement Learning
Silviu Pitis · Harris Chan · Stephen Zhao · Bradly Stadie · Jimmy Ba
What goals should a multi-goal reinforcement learning agent pursue during training in long-horizon tasks? When the desired (test time) goal distribution is too distant to offer a useful learning signal, we argue that the agent should not pursue unobtainable goals. Instead, it should set its own intrinsic goals that maximize the entropy of the historical achieved goal distribution. We propose to optimize this objective by having the agent pursue past achieved goals in sparsely explored areas of the goal space, which focuses exploration on the frontier of the achievable goal set. We show that our strategy achieves an order of magnitude better sample efficiency than the prior state of the art on long-horizon multi-goal tasks including maze navigation and block stacking.
Minimax-Optimal Off-Policy Evaluation with Linear Function Approximation
Yaqi Duan · Zeyu Jia · Mengdi Wang
This paper studies the statistical theory of off-policy evaluation with function approximation in batch data reinforcement learning problem. We consider a regression-based fitted Q-iteration method, show that it is equivalent to a model-based method that estimates a conditional mean embedding of the transition operator, and prove that this method is information-theoretically optimal and has nearly minimal estimation error. In particular, by leveraging contraction property of Markov processes and martingale concentration, we establish a finite-sample instance-dependent error upper bound and a nearly-matching minimax lower bound. The policy evaluation error depends sharply on a restricted $\chi^2$-divergence over the function class between the long-term distribution of target policy and the distribution of past data. This restricted $\chi^2$-divergence characterizes the statistical limit of off-policy evaluation and is both instance-dependent and function-class-dependent. Further, we provide an easily computable confidence bound for the policy evaluator, which may be useful for optimistic planning and safe policy improvement.
Multi-Agent Routing Value Iteration Network
Quinlan Sykora · Mengye Ren · Raquel Urtasun
In this paper we tackle the problem of routing multiple agents in a coordinated manner. This is a complex problem that has a wide range of applications in fleet management to achieve a common goal, such as mapping from a swarm of robots and ride sharing. Traditional methods are typically not designed for realistic environments which contain sparsely connected graphs and unknown traffic, and are often too slow in runtime to be practical. In contrast, we propose a graph neural network based model that is able to perform multi-agent routing based on learned value iteration in a sparsely connected graph with dynamically changing traffic conditions. Moreover, our learned communication module enables the agents to coordinate online and adapt to changes more effectively. We created a simulated environment to mimic realistic mapping performed by autonomous vehicles with unknown minimum edge coverage and traffic conditions; our approach significantly outperforms traditional solvers both in terms of total cost and runtime. We also show that our model trained with only two agents on graphs with a maximum of 25 nodes can easily generalize to situations with more agents and/or nodes.
Neural Datalog Through Time: Informed Temporal Modeling via Logical Specification
Hongyuan Mei · Guanghui Qin · Minjie Xu · Jason Eisner
Learning how to predict future events from patterns of past events is difficult when the set of possible event types is large. Training an unrestricted neural model might overfit to spurious patterns. To exploit domain-specific knowledge of how past events might affect an event's present probability, we propose using a temporal deductive database to track structured facts over time. Rules serve to prove facts from other facts and from past events. Each fact has a time-varying state---a vector computed by a neural net whose topology is determined by the fact's provenance, including its experience of past events. The possible event types at any time are given by special facts, whose probabilities are neurally modeled alongside their states. In both synthetic and real-world domains, we show that neural probabilistic models derived from concise Datalog programs improve prediction by encoding appropriate domain knowledge in their architecture.
Online Learning with Dependent Stochastic Feedback Graphs
Corinna Cortes · Giulia DeSalvo · Claudio Gentile · Mehryar Mohri · Ningshan Zhang
A general framework for online learning with partial information is one where feedback graphs specify which losses can be observed by the learner. We study a challenging scenario where feedback graphs vary stochastically with time and, more importantly, where graphs and losses are dependent. This scenario appears in several real-world applications that we describe where the outcome of actions are correlated. We devise a new algorithm for this setting that exploits the stochastic properties of the graphs and that benefits from favorable regret guarantees. We present a detailed theoretical analysis of this algorithm, and also report the result of a series of experiments on real-world datasets, which show that our algorithm outperforms standard baselines for online learning with feedback graphs.
On the Expressivity of Neural Networks for Deep Reinforcement Learning
Kefan Dong · Yuping Luo · Tianhe (Kevin) Yu · Chelsea Finn · Tengyu Ma
We compare the model-free reinforcement learning with the model-based approaches through the lens of the expressive power of neural networks for policies, Q-functions, and dynamics. We show, theoretically and empirically, that even for one-dimensional continuous state space, there are many MDPs whose optimal Q-functions and policies are much more complex than the dynamics. For these MDPs, model-based planning is a favorable algorithm, because the resulting policies can approximate the optimal policy significantly better than a neural network parameterization can, and model-free or model-based policy optimization rely on policy parameterization. Motivated by the theory, we apply a simple multi-step model-based bootstrapping planner (BOOTS) to bootstrap a weak Q-function into a stronger policy. Empirical results show that applying BOOTS on top of model-based or model-free policy optimization algorithms at the test time improves the performance on benchmark tasks.
Optimizing Dynamic Structures with Bayesian Generative Search
Minh Hoang · Carleton Kingsford
Kernel selection for kernel-based methods is prohibitively expensive due to the NP-hard nature of discrete optimization. Since gradient-based optimizers are not applicable due to the lack of a differentiable objective function, many state-of-the-art solutions resort to heuristic search or gradient-free optimization. These approaches, however, require imposing restrictive assumptions on the explorable space of structures such as limiting the active candidate pool, thus depending heavily on the intuition of domain experts. This paper instead proposes \textbf{DTERGENS}, a novel generative search framework that constructs and optimizes a high-performance composite kernel expressions generator. \textbf{DTERGENS} does not restrict the space of candidate kernels and is capable of obtaining flexible length expressions by jointly optimizing a generative termination criterion. We demonstrate that our framework explores more diverse kernels and obtains better performance than state-of-the-art approaches on many real-world predictive tasks.
Piecewise Linear Regression via a Difference of Convex Functions
Ali Siahkamari · Aditya Gangrade · Brian Kulis · Venkatesh Saligrama
We present a new piecewise linear regression methodology that utilises fitting a \emph{difference of convex} functions (DC functions) to the data. These are functions $f$ that may be represented as the difference $\phi_1 - \phi_2$ for a choice of \emph{convex} functions $\phi_1, \phi_2$. The method proceeds by estimating piecewise-liner convex functions, in a manner similar to max-affine regression, whose difference approximates the data. The choice of the function is regularised by a new seminorm over the class of DC functions that controls the $\ell_\infty$ Lipschitz constant of the estimate. The resulting methodology can be efficiently implemented via Quadratic programming \emph{even in high dimensions}, and is shown to have close to minimax statistical risk. We empirically validate the method, showing it to be practically implementable, and to outperform existing regression methods in accuracy on real-world datasets.
Reward-Free Exploration for Reinforcement Learning
Chi Jin · Akshay Krishnamurthy · Max Simchowitz · Tiancheng Yu
Exploration is widely regarded as one of the most challenging aspects of reinforcement learning (RL), with many naive approaches succumbing to exponential sample complexity. To isolate the challenges of exploration, we propose the following ``reward-free RL'' framework. In the exploration phase, the agent first collects trajectories from an MDP $M$ without a pre-specified reward function. After exploration, it is tasked with computing a near-policies under the transitions of $\mathcal{M}$ for a collection of given reward functions. This framework is particularly suitable where there are many reward functions of interest, or where the reward function is shaped by an external agent to elicit desired behavior. We give an efficient algorithm that conducts $\widetilde{O}(S^2A\mathrm{poly}(H)/\epsilon^2)$ episodes of exploration, and returns $\epsilon$-suboptimal policies for an arbitrary number of reward functions. We achieve this by finding exploratory policies that jointly visit each ``significant'' state with probability proportional to its maximum visitation probability under any possible policy. Moreover, our planning procedure can be instantiated by any black-box approximate planner, such as value iteration or natural policy gradient. Finally, we give a nearly-matching $\Omega(S^2AH^2/\epsilon^2)$ lower bound, demonstrating the near-optimality of our algorithm in this setting.
Rigging the Lottery: Making All Tickets Winners
Utku Evci · Trevor Gale · Jacob Menick · Pablo Samuel Castro · Erich Elsen
Many applications require sparse neural networks due to space or inference time restrictions. There is a large body of work on training dense networks to yield sparse networks for inference, but this limits the size of the largest trainable sparse model to that of the largest trainable dense model. In this paper we introduce a method to train sparse neural networks with a fixed parameter count and a fixed computational cost throughout training, without sacrificing accuracy relative to existing dense-to-sparse training methods. Our method updates the topology of the sparse network during training by using parameter magnitudes and infrequent gradient calculations. We show that this approach requires fewer floating-point operations (FLOPs) to achieve a given level of accuracy compared to prior techniques. We demonstrate state-of-the-art sparse training results on a variety of networks and datasets, including ResNet-50, MobileNets on Imagenet-2012, and RNNs on WikiText-103. Finally, we provide some insights into why allowing the topology to change during the optimization can overcome local minima encountered when the topology remains static.
Scalable Differentiable Physics for Learning and Control
Yi-Ling Qiao · Junbang Liang · Vladlen Koltun · Ming Lin
Differentiable physics is a powerful approach to learning and control problems that involve physical objects and environments. While notable progress has been made, the capabilities of differentiable physics solvers remain limited. We develop a scalable framework for differentiable physics that can support a large number of objects and their interactions. To accommodate objects with arbitrary geometry and topology, we adopt meshes as our representation and leverage the sparsity of contacts for scalable differentiable collision handling. Collisions are resolved in localized regions to minimize the number of optimization variables even when the number of simulated objects is high. We further accelerate implicit differentiation of optimization with nonlinear constraints. Experiments demonstrate that the presented framework requires up to two orders of magnitude less memory and computation in comparison to recent particle-based methods. We further validate the approach on inverse problems and control scenarios, where it outperforms derivative-free and model-free baselines by at least an order of magnitude.
Skew-Fit: State-Covering Self-Supervised Reinforcement Learning
Vitchyr Pong · Murtaza Dalal · Steven Lin · Ashvin Nair · Shikhar Bahl · Sergey Levine
Autonomous agents that must exhibit flexible and broad capabilities will need to be equipped with large repertoires of skills. Defining each skill with a manually-designed reward function limits this repertoire and imposes a manual engineering burden. Self-supervised agents that set their own goals can automate this process, but designing appropriate goal setting objectives can be difficult, and often involves heuristic design decisions. In this paper, we propose a formal exploration objective for goal-reaching policies that maximizes state coverage. We show that this objective is equivalent to maximizing goal reaching performance together with the entropy of the goal distribution, where goals correspond to full state observations. To instantiate this principle, we present an algorithm called Skew-Fit for learning a maximum-entropy goal distributions. We prove that, under regularity conditions, Skew-Fit converges to a uniform distribution over the set of valid states, even when we do not know this set beforehand. Our experiments show that combining Skew-Fit for learning goal distributions with existing goal-reaching methods outperforms a variety of prior methods on open-sourced visual goal-reaching tasks. Moreover, we demonstrate that Skew-Fit enables a real-world robot to learn to open a door, entirely from scratch, from pixels, and without any manually-designed reward function.
Sparse Convex Optimization via Adaptively Regularized Hard Thresholding
Kyriakos Axiotis · Maxim Sviridenko
The goal of Sparse Convex Optimization is to optimize a convex function $f$ under a sparsity constraint $s\leq s^*\gamma$, where $s^*$ is the target number of non-zero entries in a feasible solution (sparsity) and $\gamma\geq 1$ is an approximation factor. There has been a lot of work to analyze the sparsity guarantees of various algorithms (LASSO, Orthogonal Matching Pursuit (OMP), Iterative Hard Thresholding (IHT)) in terms of the Restricted Condition Number $\kappa$. The best known algorithms guarantee to find an approximate solution of value $f(x^*)+\epsilon$ with the sparsity bound of $\gamma = O\left(\kappa\min\left\{\log \frac{f(x^0)-f(x^*)}{\epsilon}, \kappa\right\}\right)$, where $x^*$ is the target solution. We present a new Adaptively Regularized Hard Thresholding (ARHT) algorithm that makes significant progress on this problem by bringing the bound down to $\gamma=O(\kappa)$, which has been shown to be tight for a general class of algorithms including LASSO, OMP, and IHT. This is achieved without significant sacrifice in the runtime efficiency compared to the fastest known algorithms. We also provide a new analysis of OMP with Replacement (OMPR) for general $f$, under the condition $s > s^* \frac{\kappa^2}{4}$, which yields Compressed Sensing bounds under the Restricted Isometry Property (RIP). When compared to other Compressed Sensing approaches, it has the advantage of providing a strong tradeoff between the RIP condition and the solution sparsity, while working for any general function $f$ that meets the RIP condition.
Spectrum Dependent Learning Curves in Kernel Regression and Wide Neural Networks
Blake Bordelon · Abdulkadir Canatar · Cengiz Pehlevan
We derive analytical expressions for the generalization performance of kernel regression as a function of the number of training samples using theoretical methods from Gaussian processes and statistical physics. Our expressions apply to wide neural networks due to an equivalence between training them and kernel regression with the Neural Tangent Kernel (NTK). By computing the decomposition of the total generalization error due to different spectral components of the kernel, we identify a new spectral principle: as the size of the training set grows, kernel machines and neural networks fit successively higher spectral modes of the target function. When data are sampled from a uniform distribution on a high-dimensional hypersphere, dot product kernels, including NTK, exhibit learning stages where different frequency modes of the target function are learned. We verify our theory with simulations on synthetic data and MNIST dataset.
Strategic Classification is Causal Modeling in Disguise
John Miller · Smitha Milli · Moritz Hardt
Consequential decision-making incentivizes individuals to strategically adapt their behavior to the specifics of the decision rule. While a long line of work has viewed strategic adaptation as gaming and attempted to mitigate its effects, recent work has instead sought to design classifiers that incentivize individuals to improve a desired quality. Key to both accounts is a cost function that dictates which adaptations are rational to undertake. In this work, we develop a causal framework for strategic adaptation. Our causal perspective clearly distinguishes between gaming and improvement and reveals an important obstacle to incentive design. We prove any procedure for designing classifiers that incentivize improvement must inevitably solve a non-trivial causal inference problem. We show a similar result holds for designing cost functions that satisfy the requirements of previous work. With the benefit of hindsight, our results show much of the prior work on strategic classification is causal modeling in disguise.
Transparency Promotion with Model-Agnostic Linear Competitors
Hassan Rafique · Tong Wang · Qihang Lin · Arshia Singhani
We propose a novel type of hybrid model for multi-class classification, which utilizes competing linear models to collaborate with an existing black-box model, promoting transparency in the decision-making process. Our proposed hybrid model, Model-Agnostic Linear Competitors (MALC), brings together the interpretable power of linear models and the good predictive performance of the state-of-the-art black-box models. We formulate the training of a MALC model as a convex optimization problem, optimizing the predictive accuracy and transparency (defined as the percentage of data captured by the linear models) in the objective function. Experiments show that MALC offers more model flexibility for users to balance transparency and accuracy, in contrast to the currently available choice of either a pure black-box model or a pure interpretable model. The human evaluation also shows that more users are likely to choose MALC for this model flexibility compared with interpretable models and black-box models.
Understanding Contrastive Representation Learning through Alignment and Uniformity on the Hypersphere
Tongzhou Wang · Phillip Isola
Contrastive representation learning has been outstandingly successful in practice. In this work, we identify two key properties related to the contrastive loss: (1) alignment (closeness) of features from positive pairs, and (2) uniformity of the induced distribution of the (normalized) features on the hypersphere. We prove that, asymptotically, the contrastive loss optimizes these properties, and analyze their positive effects on downstream tasks. Empirically, we introduce an optimizable metric to quantify each property. Extensive experiments on standard vision and language datasets confirm the strong agreement between both metrics and downstream task performance. Directly optimizing for these two metrics leads to representations with comparable or better performance at downstream tasks than contrastive learning.
Group invariant and equivariant Multilayer Perceptrons (MLP), also known as Equivariant Networks, have achieved remarkable success in learning on a variety of data structures, such as sequences, images, sets, and graphs. Using tools from group theory, this paper proves the universality of a broad class of equivariant MLPs with a single hidden layer. In particular, it is shown that having a hidden layer on which the group acts regularly is sufficient for universal equivariance (invariance). A corollary is unconditional universality of equivariant MLPs for Abelian groups, such as CNNs with a single hidden layer. A second corollary is the universality of equivariant MLPs with a high-order hidden layer, where we give both group-agnostic bounds and means for calculating group-specific bounds on the order of hidden layer that guarantees universal equivariance (invariance).
Upper bounds for Model-Free Row-Sparse Principal Component Analysis
Guanyi Wang · Santanu Dey
Sparse principal component analysis (PCA) is a widely-used dimensionality reduction tool in statistics and machine learning. Most methods mentioned in literature are either heuristics for good primal feasible solutions under statistical assumptions or ADMM-type algorithms with stationary/critical points convergence property for the regularized reformulation of sparse PCA. However, none of these methods can efficiently verify the quality of the solutions via comparing current objective values with their dual bounds, especially in model-free case. We propose a new framework that finds out upper (dual) bounds for the sparse PCA within polynomial time via solving a convex integer program (IP). We show that, in the worst-case, the dual bounds provided by the convex IP is within an affine function of the global optimal value. Moreover, in contrast to the semi-definition relaxation, this framework is much easier to scale on large cases. Numerical results on both artificial and real cases are reported to demonstrate the advantages of our method.
Projection-free Distributed Online Convex Optimization with $O(\sqrt{T})$ Communication Complexity
Yuanyu Wan · Wei-Wei Tu · Lijun Zhang
To deal with complicated constraints via locally light computation in distributed online learning, a recent study has presented a projection-free algorithm called distributed online conditional gradient (D-OCG), and achieved an $O(T^{3/4})$ regret bound, where $T$ is the number of prediction rounds. However, in each round, the local learners of D-OCG need to communicate with their neighbors to share the local gradients, which results in a high communication complexity of $O(T)$. In this paper, we first propose an improved variant of D-OCG, namely D-BOCG, which enjoys an $O(T^{3/4})$ regret bound with only $O(\sqrt{T})$ communication complexity. The key idea is to divide the total prediction rounds into $\sqrt{T}$ equally-sized blocks, and only update the local learners at the beginning of each block by performing iterative linear optimization steps. Furthermore, to handle the more challenging bandit setting, in which only the loss value is available, we incorporate the classical one-point gradient estimator into D-BOCG, and obtain similar theoretical guarantees.
Representation Learning via Adversarially-Contrastive Optimal Transport
Anoop Cherian · Shuchin Aeron
In this paper, we study the problem of learning compact (low-dimensional) representations for sequential data that captures its implicit spatio-temporal cues. To maximize extraction of such informative cues from the data, we set the problem within the context of contrastive representation learning and to that end propose a novel objective via optimal transport. Specifically, our formulation seeks a low-dimensional subspace representation of the data that jointly (i) maximizes the distance of the data (embedded in this subspace) from an adversarial data distribution under the optimal transport, a.k.a. the Wasserstein distance, (ii) captures the temporal order, and (iii) minimizes the data distortion. To generate the adversarial distribution, we propose a novel framework connecting Wasserstein GANs with a classifier, allowing a principled mechanism for producing good negative distributions for contrastive learning, which is currently a challenging problem. Our full objective is cast as a subspace learning problem on the Grassmann manifold and solved via Riemannian optimization. To empirically study our formulation, we provide experiments on the task of human action recognition in video sequences. Our results demonstrate competitive performance against challenging baselines.
A Graph to Graphs Framework for Retrosynthesis Prediction
Chence Shi · Minkai Xu · Hongyu Guo · Ming Zhang · Jian Tang
A fundamental problem in computational chemistry is to find a set of reactants to synthesize a target molecule, a.k.a. retrosynthesis prediction. Existing state-of-the-art methods rely on matching the target molecule with a large set of reaction templates, which are very computationally expensive and also suffer from the problem of coverage. In this paper, we propose a novel template-free approach called G2Gs by transforming a target molecular graph into a set of reactant molecular graphs. G2Gs first splits the target molecular graph into a set of synthons by identifying the reaction centers, and then translates the synthons to the final reactant graphs via a variational graph translation framework. Experimental results show that G2Gs significantly outperforms existing template-free approaches by up to 63% in terms of the top-1 accuracy and achieves a performance close to that of state-of-the-art template-based approaches, but does not require domain knowledge and is much more scalable.
A Tree-Structured Decoder for Image-to-Markup Generation
Jianshu Zhang · Jun Du · Yongxin Yang · Yi-Zhe Song · Si Wei · Lirong Dai
Recent encoder-decoder approaches typically employ string decoders to convert images into serialized strings for image-to-markup. However, for tree-structured representational markup, string representations can hardly cope with the structural complexity. In this work, we first show via a set of toy problems that string decoders struggle to decode tree structures, especially as structural complexity increases, we then propose a tree-structured decoder that specifically aims at generating a tree-structured markup. Our decoders works sequentially, where at each step a child node and its parent node are simultaneously generated to form a sub-tree. This sub-tree is consequently used to construct the final tree structure in a recurrent manner. Key to the success of our tree decoder is twofold, (i) it strictly respects the parent-child relationship of trees, and (ii) it explicitly outputs trees as oppose to a linear string. Evaluated on both math formula recognition and chemical formula recognition, the proposed tree decoder is shown to greatly outperform strong string decoder baselines.
Cost-effectively Identifying Causal Effects When Only Response Variable is Observable
Tian-Zuo Wang · Xi-Zhu Wu · Sheng-Jun Huang · Zhi-Hua Zhou
In many real tasks, we care about how to make decisions rather than mere predictions on an event, e.g. how to increase the revenue next month instead of merely knowing it will drop. The key is to identify the causal effects on the desired event. It is achievable with do-calculus if the causal structure is known; however, in many real tasks it is not easy to infer the whole causal structure with the observational data. Introducing external interventions is needed to achieve it. In this paper, we study the situation where only the response variable is observable under intervention. We propose a novel approach which is able to cost-effectively identify the causal effects, by an active strategy introducing limited interventions, and thus guide decision-making. Theoretical analysis and empirical studies validate the effectiveness of the proposed approach.
Does the Markov Decision Process Fit the Data: Testing for the Markov Property in Sequential Decision Making
Chengchun Shi · Runzhe Wan · Rui Song · Wenbin Lu · Ling Leng
The Markov assumption (MA) is fundamental to the empirical validity of reinforcement learning. In this paper, we propose a novel Forward-Backward Learning procedure to test MA in sequential decision making. The proposed test does not assume any parametric form on the joint distribution of the observed data and plays an important role for identifying the optimal policy in high-order Markov decision processes (MDPs) and partially observable MDPs. Theoretically, we establish the validity of our test. Empirically, we apply our test to both synthetic datasets and a real data example from mobile health studies to illustrate its usefulness.
Do We Need Zero Training Loss After Achieving Zero Training Error?
Takashi Ishida · Ikko Yamane · Tomoya Sakai · Gang Niu · Masashi Sugiyama
Overparameterized deep networks have the capacity to memorize training data with zero \emph{training error}. Even after memorization, the \emph{training loss} continues to approach zero, making the model overconfident and the test performance degraded. Since existing regularizers do not directly aim to avoid zero training loss, it is hard to tune their hyperparameters in order to maintain a fixed/preset level of training loss. We propose a direct solution called \emph{flooding} that intentionally prevents further reduction of the training loss when it reaches a reasonably small value, which we call the \emph{flood level}. Our approach makes the loss float around the flood level by doing mini-batched gradient descent as usual but gradient ascent if the training loss is below the flood level. This can be implemented with one line of code and is compatible with any stochastic optimizer and other regularizers. With flooding, the model will continue to ``random walk'' with the same non-zero training loss, and we expect it to drift into an area with a flat loss landscape that leads to better generalization. We experimentally show that flooding improves performance and, as a byproduct, induces a double descent curve of the test loss.
DropNet: Reducing Neural Network Complexity via Iterative Pruning
Chong Min John Tan · Mehul Motani
Modern deep neural networks require a significant amount of computing time and power to train and deploy, which limits their usage on edge devices. Inspired by the iterative weight pruning in the Lottery Ticket Hypothesis, we propose DropNet, an iterative pruning method which prunes nodes/filters to reduce network complexity. DropNet iteratively removes nodes/filters with the lowest average post-activation value across all training samples. Empirically, we show that DropNet is robust across a wide range of scenarios, including MLPs and CNNs using the MNIST and CIFAR datasets. We show that up to 90% of the nodes/filters can be removed without any significant loss of accuracy. The final pruned network performs well even with reinitialisation of the weights and biases. DropNet also achieves similar accuracy to an oracle which greedily removes nodes/filters one at a time to minimise training loss, highlighting its effectiveness.
Dual-Path Distillation: A Unified Framework to Improve Black-Box Attacks
Yonggang Zhang · Ya Li · Tongliang Liu · Xinmei Tian
We study the problem of constructing black-box adversarial attacks, where no model information is revealed except for the feedback knowledge of the given inputs. To obtain sufficient knowledge for crafting adversarial examples, previous methods query the target model with inputs that are perturbed with different searching directions. However, these methods suffer from poor query efficiency since the employed searching directions are sampled randomly. To mitigate this issue, we formulate the goal of mounting efficient attacks as an optimization problem in which the adversary tries to fool the target model with a limited number of queries. Under such settings, the adversary has to select appropriate searching directions to reduce the number of model queries. By solving the efficient-attack problem, we find that we need to distill the knowledge in both the path of the adversarial examples and the path of the searching directions. Therefore, we propose a novel framework, dual-path distillation, that utilizes the feedback knowledge not only to craft adversarial examples but also to alter the searching directions to achieve efficient attacks. Experimental results suggest that our framework can significantly increase the query efficiency.
Learning Autoencoders with Relational Regularization
Hongteng Xu · Dixin Luo · Ricardo Henao · Svati Shah · Lawrence Carin
We propose a new algorithmic framework for learning autoencoders of data distributions. In this framework, we minimize the discrepancy between the model distribution and the target one, with relational regularization on learnable latent prior. This regularization penalizes the fused Gromov-Wasserstein (FGW) distance between the latent prior and its corresponding posterior, which allows us to learn a structured prior distribution associated with the generative model in a flexible way. Moreover, it helps us co-train multiple autoencoders even if they are with heterogeneous architectures and incomparable latent spaces. We implement the framework with two scalable algorithms, making it applicable for both probabilistic and deterministic autoencoders. Our relational regularized autoencoder (RAE) outperforms existing methods, e.g., variational autoencoder, Wasserstein autoencoder, and their variants, on generating images. Additionally, our relational co-training strategy of autoencoders achieves encouraging results in both synthesis and real-world multi-view learning tasks.
Minimax Weight and Q-Function Learning for Off-Policy Evaluation
Masatoshi Uehara · Jiawei Huang · Nan Jiang
We provide theoretical investigations into off-policy evaluation in reinforcement learning using function approximators for (marginalized) importance weights and value functions. Our contributions include: (1) A new estimator, MWL, that directly estimates importance ratios over the state-action distributions, removing the reliance on knowledge of the behavior policy as in prior work (Liu et.al, 2018), (2) Another new estimator, MQL, obtained by swapping the roles of importance weights and value-functions in MWL. MQL has an intuitive interpretation of minimizing average Bellman errors and can be combined with MWL in a doubly robust manner, (3) Several additional results that offer further insights, including the sample complexities of MWL and MQL, their asymptotic optimality in the tabular setting, how the learned importance weights depend the choice of the discriminator class, and how our methods provide a unified view of some old and new algorithms in RL.
More Information Supervised Probabilistic Deep Face Embedding Learning
Ying Huang · Shangfeng Qiu · Wenwei Zhang · Xianghui Luo · Jinzhuo Wang
Researches using margin based comparison loss demonstrate the effectiveness of penalizing the distance between face feature and their corresponding class centers. Despite their popularity and excellent performance, they do not explicitly encourage the generic embedding learning for an open set recognition problem. In this paper, we analyse margin based softmax loss in probability view. With this perspective, we propose two general principles: 1) monotonically decreasing and 2) margin probability penalty, for designing new margin loss functions. Unlike methods optimized with single comparison metric, we provide a new perspective to treat open set face recognition as a problem of information transmission. And the generalization capability for face embedding is gained with more clean information. An auto-encoder architecture called Linear-Auto-TS-Encoder(LATSE) is proposed to corroborate this finding. Extensive experiments on several benchmarks demonstrate that LATSE help face embedding to gain more generalization capability and it boost the single model performance with open training dataset to more than 99% on MegaFace test.
Multinomial Logit Bandit with Low Switching Cost
Kefan Dong · Yingkai Li · Qin Zhang · Yuan Zhou
We study multinomial logit bandit with limited adaptivity, where the algorithms change their exploration actions as infrequently as possible when achieving almost optimal minimax regret. We propose two measures of adaptivity: the assortment switching cost and the more fine-grained item switching cost. We present an anytime algorithm (AT-DUCB) with $O(N \log T)$ assortment switches, almost matching the lower bound $\Omega(\frac{N \log T}{ \log \log T})$. In the fixed-horizon setting, our algorithm FH-DUCB incurs $O(N \log \log T)$ assortment switches, matching the asymptotic lower bound. We also present the ESUCB algorithm with item switching cost $O(N \log^2 T)$.
Multi-objective Bayesian Optimization using Pareto-frontier Entropy
Shinya Suzuki · Shion Takeno · Tomoyuki Tamura · Kazuki Shitara · Masayuki Karasuyama
This paper studies an entropy-based multi-objective Bayesian optimization (MBO). Existing entropy-based MBO methods need complicated approximations to evaluate entropy or employ over-simplification that ignores trade-off among objectives. We propose a novel entropy-based MBO called Pareto-frontier entropy search (PFES), which is based on the information gain of Pareto-frontier. We show that our entropy evaluation can be reduced to a closed form whose computation is quite simple while capturing the trade-off relation in Pareto-frontier. We further propose an extension for the ``decoupled'' setting, in which each objective function can be observed separately, and show that the PFES-based approach derives a natural extension of the original acquisition function which can also be evaluated simply. Our numerical experiments show effectiveness of PFES through several benchmark datasets, and real-word datasets from materials science.
Non-autoregressive Machine Translation with Disentangled Context Transformer
Jungo Kasai · James Cross · Marjan Ghazvininejad · Jiatao Gu
State-of-the-art neural machine translation models generate a translation from left to right and every step is conditioned on the previously generated tokens. The sequential nature of this generation process causes fundamental latency in inference since we cannot generate multiple tokens in each sentence in parallel. We propose an attention-masking based model, called Disentangled Context (DisCo) transformer, that simultaneously generates all tokens given different contexts. The DisCo transformer is trained to predict every output token given an arbitrary subset of the other reference tokens. We also develop the parallel easy-first inference algorithm, which iteratively refines every token in parallel and reduces the number of required iterations. Our extensive experiments on 7 translation directions with varying data sizes demonstrate that our model achieves competitive, if not better, performance compared to the state of the art in non-autoregressive machine translation while significantly reducing decoding time on average.
On the (In)tractability of Computing Normalizing Constants for the Product of Determinantal Point Processes
Naoto Ohsaka · Tatsuya Matsuoka
We consider the product of determinantal point processes (DPPs), a point process whose probability mass is proportional to the product of principal minors of multiple matrices as a natural, promising generalization of DPPs. We study the computational complexity of computing its normalizing constant, which is among the most essential probabilistic inference tasks. Our complexity-theoretic results (almost) rule out the existence of efficient algorithms for this task, unless input matrices are forced to have favorable structures. In particular, we prove the following: (1) Computing $\sum_{S} \det(\mat{A}_{S,S})^p$ exactly for every (fixed) positive even integer $p$ is UP-hard and Mod3P-hard, which gives a negative answer to an open question posed by Kulesza and Taskar (2012). (2) $\sum_{S} \det(\mat{A}_{S,S}) \det(\mat{B}_{S,S}) \det(\mat{C}_{S,S})$ is NP-hard to approximate within a factor of $ 2^{O(|I|^{1-\epsilon})} $ for any $\epsilon > 0$, where $|I|$ is the input size. This result is stronger than #P-hardness for the case of two matrices by Gillenwater (2014). (3) There exists a $ k^{O(k)} |I|^{O(1)} $-time algorithm for computing $\sum_{S} \det(\mat{A}_{S,S}) \det(\mat{B}_{S,S})$, where $k$ is ``the maximum rank of $\mat{A}$ and $\mat{B}$'' or ``the treewidth of the graph formed by nonzero entries of $\mat{A}$ and $\mat{B}$.'' Such parameterized algorithms are said to be fixed-parameter tractable.
On the Power of Compressed Sensing with Generative Models
Akshay Kamath · Eric Price · Sushrut Karmalkar
The goal of compressed sensing is to learn a structured signal $x$ from a limited number of noisy linear measurements $y \approx Ax$. In traditional compressed sensing, ``structure'' is represented by sparsity in some known basis. Inspired by the success of deep learning in modeling images, recent work starting with Bora-Jalal-Price-Dimakis'17 has instead considered structure to come from a generative model $G: \mathbb{R}^k \to \mathbb{R}^n$. We present two results establishing the difficulty and strength of this latter task, showing that existing bounds are tight: First, we provide a lower bound matching the Bora et.al upper bound for compressed sensing with $L$-Lipschitz generative models $G$ which holds even for the more relaxed goal of \emph{non-uniform} recovery. Second, we show that generative models generalize sparsity as a representation of structure by constructing a ReLU-based neural network with $2$ hidden layers and $O(n)$ activations per layer whose range is precisely the set of all $k$-sparse vectors.
Puzzle Mix: Exploiting Saliency and Local Statistics for Optimal Mixup
Jang-Hyun Kim · Wonho Choo · Hyun Oh Song
While deep neural networks achieve great performance on fitting the training distribution, the learned networks are prone to overfitting and are susceptible to adversarial attacks. In this regard, a number of mixup based augmentation methods have been recently proposed. However, these approaches mainly focus on creating previously unseen virtual examples and can sometimes provide misleading supervisory signal to the network. To this end, we propose Puzzle Mix, a mixup method for explicitly utilizing the saliency information and the underlying statistics of the natural examples. This leads to an interesting optimization problem alternating between the multi-label objective for optimal mixing mask and saliency discounted optimal transport objective. Our experiments show Puzzle Mix achieves the state of the art generalization and the adversarial robustness results compared to other mixup methods on CIFAR-100, Tiny-ImageNet, and ImageNet datasets, and the source code is available at https://github.com/snu-mllab/PuzzleMix.
Sample Complexity Bounds for 1-bit Compressive Sensing and Binary Stable Embeddings with Generative Priors
Zhaoqiang Liu · Selwyn Gomes · Avtansh Tiwari · Jonathan Scarlett
The goal of standard 1-bit compressive sensing is to accurately recover an unknown sparse vector from binary-valued measurements, each indicating the sign of a linear function of the vector. Motivated by recent advances in compressive sensing with generative models, where a generative modeling assumption replaces the usual sparsity assumption, we study the problem of 1-bit compressive sensing with generative models. We first consider noiseless 1-bit measurements, and provide sample complexity bounds for approximate recovery under i.i.d.~Gaussian measurements and a Lipschitz continuous generative prior, as well as a near-matching algorithm-independent lower bound. Moreover, we demonstrate that the Binary $\epsilon$-Stable Embedding property, which characterizes the robustness of the reconstruction to measurement errors and noise, also holds for 1-bit compressive sensing with Lipschitz continuous generative models with sufficiently many Gaussian measurements. In addition, we apply our results to neural network generative models, and provide a proof-of-concept numerical experiment demonstrating significant improvements over sparsity-based approaches.
Self-Attentive Associative Memory
Hung Le · Truyen Tran · Svetha Venkatesh
Heretofore, neural networks with external memory are restricted to single memory with lossy representations of memory interactions. A rich representation of relationships between memory pieces urges a high-order and segregated relational memory. In this paper, we propose to separate the storage of individual experiences (item memory) and their occurring relationships (relational memory). The idea is implemented through a novel Self-attentive Associative Memory (SAM) operator. Found upon outer product, SAM forms a set of associative memories that represent the hypothetical high-order relationships between arbitrary pairs of memory elements, through which a relational memory is constructed from an item memory. The two memories are wired into a single sequential model capable of both memorization and relational reasoning. We achieve competitive results with our proposed two-memory model in a diversity of machine learning tasks, from challenging synthetic problems to practical testbeds such as geometry, graph, reinforcement learning, and question answering.
In this paper, we provide an explicit theoretical connection between Sparse subspace clustering (SSC) and spectral clustering (SC) from the perspective of learning a data similarity matrix. We show that spectral clustering with Gaussian kernel can be viewed as sparse subspace clustering with entropy-norm (SSC+E). Compared to SSC, SSC+E can obtain an analytical, symmetrical, nonnegative and nonlinearly-representational similarity matrix. Besides, SSC+E makes use of Gaussian kernel to compute the sparse similarity matrix of objects, which can avoid the complex computation of the sparse optimization program of SSC. Finally, we provide the experimental analysis to compare the efficiency and effectiveness of sparse subspace clustering and spectral clustering on ten benchmark data sets. The theoretical and experimental analysis can well help users for the selection of high-dimensional data clustering algorithms.
Transformer Hawkes Process
Simiao Zuo · Haoming Jiang · Zichong Li · Tuo Zhao · Hongyuan Zha
Modern data acquisition routinely produce massive amounts of event sequence data in various domains, such as social media, healthcare, and financial markets. These data often exhibit complicated short-term and long-term temporal dependencies. However, most of the existing recurrent neural network based point process models fail to capture such dependencies, and yield unreliable prediction performance. To address this issue, we propose a Transformer Hawkes Process (THP) model, which leverages the self-attention mechanism to capture long-term dependencies and meanwhile enjoys computational efficiency. Numerical experiments on various datasets show that THP outperforms existing models in terms of both likelihood and event prediction accuracy by a notable margin. Moreover, THP is quite general and can incorporate additional structural knowledge. We provide a concrete example, where THP achieves improved prediction performance for learning multiple point processes when incorporating their relational information.