Skip to yearly menu bar Skip to main content


Session

Poster Session 26

Abstract:
Chat is not available.


Acceleration for Compressed Gradient Descent in Distributed and Federated Optimization

Zhize Li · Dmitry Kovalev · Xun Qian · Peter Richtarik

Due to the high communication cost in distributed and federated learning problems, methods relying on compression of communicated messages are becoming increasingly popular. While in other contexts the best performing gradient-type methods invariably rely on some form of acceleration/momentum to reduce the number of iterations, there are no methods which combine the benefits of both gradient compression and acceleration. In this paper, we remedy this situation and propose the first {\em accelerated compressed gradient descent (ACGD)} methods. In the single machine regime, we prove that ACGD enjoys the rate $O\Big((1+\omega)\sqrt{\frac{L}{\mu}}\log \frac{1}{\epsilon}\Big)$ for $\mu$-strongly convex problems and $O\Big((1+\omega)\sqrt{\frac{L}{\epsilon}}\Big)$ for convex problems, respectively, where $\omega$ is the compression parameter. Our results improve upon the existing non-accelerated rates $O\Big((1+\omega)\frac{L}{\mu}\log \frac{1}{\epsilon}\Big)$ and $O\Big((1+\omega)\frac{L}{\epsilon}\Big)$, respectively, and recover the optimal rates of accelerated gradient descent as a special case when no compression ($\omega=0$) is applied. We further propose a distributed variant of ACGD (called ADIANA) and prove the convergence rate $\widetilde{O}\Big(\omega+\sqrt{\frac{L}{\mu}}+\sqrt{\big(\frac{\omega}{n}+\sqrt{\frac{\omega}{n}}\big)\frac{\omega L}{\mu}}\Big)$, where $n$ is the number of devices/workers and $\widetilde{O}$ hides the logarithmic factor $\log \frac{1}{\epsilon}$. This improves upon the previous best result $\widetilde{O}\Big(\omega + \frac{L}{\mu}+\frac{\omega L}{n\mu} \Big)$ achieved by the DIANA method. Finally, we conduct several experiments on real-world datasets which corroborate our theoretical results and confirm the practical superiority of our accelerated methods.


Adaptive Sketching for Fast and Convergent Canonical Polyadic Decomposition

Alex Gittens · Kareem Aggour · Bülent Yener

This work considers the canonical polyadic decomposition (CPD) of tensors using proximally regularized sketched alternating least squares algorithms. First, it establishes a sublinear rate of convergence for proximally regularized sketched CPD algorithms under two natural conditions that are known to be satisfied by many popular forms of sketching. Second, it demonstrates that the iterative nature of CPD algorithms can be exploited algorithmically to choose more performant sketching rates. This is accomplished by introducing CPD-MWU, a proximally-regularized sketched alternating least squares algorithm that adaptively selects the sketching rate at each iteration. On both synthetic and real data we observe that for noisy tensors CPD-MWU produces decompositions of comparable accuracy to the standard CPD decomposition in less time, often half the time; for ill-conditioned tensors, given the same time budget, CPD-MWU produces decompositions with an order-of-magnitude lower relative error. For a representative real-world dataset CPD-MWU produces residual errors on average 20% lower than CPRAND-MIX and 44% lower than SPALS, two recent sketched CPD algorithms.


Adversarial Nonnegative Matrix Factorization

lei luo · yanfu Zhang · Heng Huang

Nonnegative Matrix Factorization (NMF) has become an increasingly important research topic in machine learning. Despite all the practical success, most of existing NMF models are still vulnerable to adversarial attacks. To overcome this limitation, we propose a novel Adversarial NMF (ANMF) approach in which an adversary can exercise some control over the perturbed data generation process. Different from the traditional NMF models which focus on either the regular input or certain types of noise, our model considers potential test adversaries that are beyond the pre-defined constraints, which can cope with various noises (or perturbations). We formulate the proposed model as a bilevel optimization problem and use Alternating Direction Method of Multipliers (ADMM) to solve it with convergence analysis. Theoretically, the robustness analysis of ANMF is established under mild conditions dedicating asymptotically unbiased prediction. Extensive experiments verify that ANMF is robust to a broad categories of perturbations, and achieves state-of-the-art performances on distinct real-world benchmark datasets.


Dissecting Non-Vacuous Generalization Bounds based on the Mean-Field Approximation

Konstantinos Pitas

Explaining how overparametrized neural networks simultaneously achieve low risk and zero empirical risk on benchmark datasets is an open problem. PAC-Bayes bounds optimized using variational inference (VI) have been recently proposed as a promising direction in obtaining non-vacuous bounds. We show empirically that this approach gives negligible gains when modelling the posterior as a Gaussian with diagonal covariance---known as the mean-field approximation. We investigate common explanations, such as the failure of VI due to problems in optimization or choosing a suboptimal prior. Our results suggest that investigating richer posteriors is the most promising direction forward.


Doubly Stochastic Variational Inference for Neural Processes with Hierarchical Latent Variables

Qi Wang · Herke van Hoof

Neural processes (NPs) constitute a family of variational approximate models for stochastic processes with promising properties in computational efficiency and uncertainty quantification. These processes use neural networks with latent variable inputs to induce a predictive distribution. However, the expressiveness of vanilla NPs is limited as they only use a global latent variable, while target-specific local variation may be crucial sometimes. To address this challenge, we investigate NPs systematically and present a new variant of NP model that we call Doubly Stochastic Variational Neural Process (DSVNP). This model combines the global latent variable and local latent variables for prediction. We evaluate this model in several experiments, and our results demonstrate competitive prediction performance in multi-output regression and uncertainty estimation in classification.


Einsum Networks: Fast and Scalable Learning of Tractable Probabilistic Circuits

Robert Peharz · Steven Lang · Antonio Vergari · Karl Stelzner · Alejandro Molina · Martin Trapp · Guy Van den Broeck · Kristian Kersting · Zoubin Ghahramani

Probabilistic circuits (PCs) are a promising avenue for probabilistic modeling, as they permit a wide range of exact and efficient inference routines. Recent ``deep-learning-style'' implementations of PCs strive for a better scalability, but are still difficult to train on real-world data, due to their sparsely connected computational graphs. In this paper, we propose Einsum Networks (EiNets), a novel implementation design for PCs, improving prior art in several regards. At their core, EiNets combine a large number of arithmetic operations in a single monolithic einsum-operation, leading to speedups and memory savings of up to two orders of magnitude, in comparison to previous implementations. As an algorithmic contribution, we show that the implementation of Expectation-Maximization (EM) can be simplified for PCs, by leveraging automatic differentiation. Furthermore, we demonstrate that EiNets scale well to datasets which were previously out of reach, such as SVHN and CelebA, and that they can be used as faithful generative image models.


k-means++: few more steps yield constant approximation

Davin Choo · Christoph Grunau · Julian Portmann · Vaclav Rozhon

The k-means++ algorithm of Arthur and Vassilvitskii (SODA 2007) is a state-of-the-art algorithm for solving the k-means clustering problem and is known to give an O(log k) approximation. Recently, Lattanzi and Sohler (ICML 2019) proposed augmenting k-means++ with O(k log log k) local search steps to yield a constant approximation (in expectation) to the k-means clustering problem. In this paper, we improve their analysis to show that, for any arbitrarily small constant epsilon > 0, with only epsilon * k additional local search steps, one can achieve a constant approximation guarantee (with high probability in k), resolving an open problem in their paper.


Neuro-Symbolic Visual Reasoning: Disentangling "Visual" from "Reasoning"

Saeed Amizadeh · Hamid Palangi · Alex Polozov · Yichen Huang · Kazuhito Koishida

Visual reasoning tasks such as visual question answering (VQA) require an interplay of visual perception with reasoning about the question semantics grounded in perception. However, recent advances in this area are still primarily driven by perception improvements (e.g. scene graph generation) rather than reasoning. Neuro-symbolic models such as Neural Module Networks bring the benefits of compositional reasoning to VQA, but they are still entangled with visual representation learning, and thus neural reasoning is hard to improve and assess on its own. To address this, we propose (1) a framework to isolate and evaluate the reasoning aspect of VQA separately from its perception, and (2) a novel top-down calibration technique that allows the model to answer reasoning questions even with imperfect perception. To this end, we introduce a Differentiable First-Order Logic formalism for VQA that explicitly decouples question answering from visual perception. On the challenging GQA dataset, this framework is used to perform in-depth, disentangled comparisons between well-known VQA models leading to informative insights regarding the participating models as well as the task.


Relaxing Bijectivity Constraints with Continuously Indexed Normalising Flows

Rob Cornish · Anthony Caterini · George Deligiannidis · Arnaud Doucet

We show that normalising flows become pathological when used to model targets whose supports have complicated topologies. In this scenario, we prove that a flow must become arbitrarily numerically noninvertible in order to approximate the target closely. This result has implications for all flow-based models, and especially residual flows (ResFlows), which explicitly control the Lipschitz constant of the bijection used. To address this, we propose continuously indexed flows (CIFs), which replace the single bijection used by normalising flows with a continuously indexed family of bijections, and which can intuitively "clean up" mass that would otherwise be misplaced by a single bijection. We show theoretically that CIFs are not subject to the same topological limitations as normalising flows, and obtain better empirical performance on a variety of models and benchmarks.


Reserve Pricing in Repeated Second-Price Auctions with Strategic Bidders

Alexey Drutsa

We study revenue optimization learning algorithms for repeated second-price auctions with reserve where a seller interacts with multiple strategic bidders each of which holds a fixed private valuation for a good and seeks to maximize his expected future cumulative discounted surplus. We propose a novel algorithm that has strategic regret upper bound of $O(\log\log T)$ for worst-case valuations. This pricing is based on our novel transformation that upgrades an algorithm designed for the setup with a single buyer to the multi-buyer case. We provide theoretical guarantees on the ability of a transformed algorithm to learn the valuation of a strategic buyer, which has uncertainty about the future due to the presence of rivals.


Scalable Differential Privacy with Certified Robustness in Adversarial Learning

Hai Phan · My T. Thai · Han Hu · Ruoming Jin · Tong Sun · Dejing Dou

In this paper, we aim to develop a scalable algorithm to preserve differential privacy (DP) in adversarial learning for deep neural networks (DNNs), with certified robustness to adversarial examples. By leveraging the sequential composition theory in DP, we randomize both input and latent spaces to strengthen our certified robustness bounds. To address the trade-off among model utility, privacy loss, and robustness, we design an original adversarial objective function, based on the post-processing property in DP, to tighten the sensitivity of our model. A new stochastic batch training is proposed to apply our mechanism on large DNNs and datasets, by bypassing the vanilla iterative batch-by-batch training in DP DNNs. An end-to-end theoretical analysis and evaluations show that our mechanism notably improves the robustness and scalability of DP DNNs.


Scalable Exact Inference in Multi-Output Gaussian Processes

Wessel Bruinsma · Eric Perim Martins · William Tebbutt · Scott Hosking · Arno Solin · Richard E Turner

Multi-output Gaussian processes (MOGPs) leverage the flexibility and interpretability of GPs while capturing structure across outputs, which is desirable, for example, in spatio-temporal modelling. The key problem with MOGPs is their computational scaling $O(n^3 p^3)$, which is cubic in the number of both inputs $n$ (e.g., time points or locations) and outputs $p$. For this reason, a popular class of MOGPs assumes that the data live around a low-dimensional linear subspace, reducing the complexity to $O(n^3 m^3)$. However, this cost is still cubic in the dimensionality of the subspace $m$, which is still prohibitively expensive for many applications. We propose the use of a sufficient statistic of the data to accelerate inference and learning in MOGPs with orthogonal bases. The method achieves linear scaling in $m$ in practice, allowing these models to scale to large $m$ without sacrificing significant expressivity or requiring approximation. This advance opens up a wide range of real-world tasks and can be combined with existing GP approximations in a plug-and-play way. We demonstrate the efficacy of the method on various synthetic and real-world data sets.


Too Relaxed to Be Fair

Michael Lohaus · Michaël Perrot · Ulrike von Luxburg

We address the problem of classification under fairness constraints. Given a notion of fairness, the goal is to learn a classifier that is not discriminatory against a group of individuals. In the literature, this problem is often formulated as a constrained optimization problem and solved using relaxations of the fairness constraints. We show that many existing relaxations are unsatisfactory: even if a model satisfies the relaxed constraint, it can be surprisingly unfair. We propose a principled framework to solve this problem. This new approach uses a strongly convex formulation and comes with theoretical guarantees on the fairness of its solution. In practice, we show that this method gives promising results on real data.


A new regret analysis for Adam-type algorithms

Ahmet Alacaoglu · Yura Malitsky · Panayotis Mertikopoulos · Volkan Cevher

In this paper, we focus on a theory-practice gap for Adam and its variants (AMSGrad, AdamNC, etc.). In practice, these algorithms are used with a constant first-order moment parameter $\beta_{1}$ (typically between $0.9$ and $0.99$). In theory, regret guarantees for online convex optimization require a rapidly decaying $\beta_{1}\to0$ schedule. We show that this is an artifact of the standard analysis, and we propose a novel framework that allows us to derive optimal, data-dependent regret bounds with a constant $\beta_{1}$, without further assumptions. We also demonstrate the flexibility of our analysis on a wide range of different algorithms and settings.


Automatic Reparameterisation of Probabilistic Programs

Maria Gorinova · Dave Moore · Matthew Hoffman

Probabilistic programming has emerged as a powerful paradigm in statistics, applied science, and machine learning: by decoupling modelling from inference, it promises to allow modellers to directly reason about the processes generating data. However, the performance of inference algorithms can be dramatically affected by the parameterisation used to express a model, requiring users to transform their programs in non-intuitive ways. We argue for automating these transformations, and demonstrate that mechanisms available in recent modelling frameworks can implement non-centring and related reparameterisations. This enables new inference algorithms, and we propose two: a simple approach using interleaved sampling and a novel variational formulation that searches over a continuous space of parameterisations. We show that these approaches enable robust inference across a range of models, and can yield more efficient samplers than the best fixed parameterisation.


CoMic: Complementary Task Learning & Mimicry for Reusable Skills

Leonard Hasenclever · Fabio Pardo · Raia Hadsell · Nicolas Heess · Josh Merel

Learning to control complex bodies and reuse learned behaviors is a longstanding challenge in continuous control. We study the problem of learning reusable humanoid skills by imitating motion capture data and joint training with complementary tasks. We show that it is possible to learn reusable skills through reinforcement learning on 50 times more motion capture data than prior work. We systematically compare a variety of different network architectures across different data regimes both in terms of imitation performance as well as transfer to challenging locomotion tasks. Finally we show that it is possible to interleave the motion capture tracking with training on complementary tasks, enriching the resulting skill space, and enabling the reuse of skills not well covered by the motion capture data such as getting up from the ground or catching a ball.


Convergence Rates of Variational Inference in Sparse Deep Learning

Badr-Eddine Chérief-Abdellatif

Variational inference is becoming more and more popular for approximating intractable posterior distributions in Bayesian statistics and machine learning. Meanwhile, a few recent works have provided theoretical justification and new insights on deep neural networks for estimating smooth functions in usual settings such as nonparametric regression. In this paper, we show that variational inference for sparse deep learning retains precisely the same generalization properties than exact Bayesian inference. In particular, we show that a wise choice of the neural network architecture leads to near-minimax rates of convergence for H\"older smooth functions. Additionally, we show that the model selection framework over the architecture of the network via ELBO maximization does not overfit and adaptively achieves the optimal rate of convergence.


Curvature-corrected learning dynamics in deep neural networks

Dongsung Huh

Deep neural networks exhibit complex learning dynamics due to the non-convexity of loss landscapes. Second-order optimization methods facilitate learning dynamics by compensating for ill-conditioned curvature. We provide analytical description of how curvature-correction changes the learning dynamics in deep linear neural networks. It reveals that curvature-correction preserves the path of parameter dynamics, and thus only modifies the temporal profile along the path. This accelerates the convergence dynamics by reducing the nonlinear effect of depth on the learning dynamics of the input-output map. Our analysis also reveals an undesirable effect of curvature correction that compromises stability of parameters dynamics during learning, especially with block-diagonal approximation of natural gradient. We introduce fractional curvature-correction, which resolves the vanishing/exploding update problem while exhibiting most of the acceleration benefit of full curvature correction.


Deep Coordination Graphs

Wendelin Boehmer · Vitaly Kurin · Shimon Whiteson

This paper introduces the deep coordination graph (DCG) for collaborative multi-agent reinforcement learning. DCG strikes a flexible trade-off between representational capacity and generalization by factoring the joint value function of all agents according to a coordination graph into payoffs between pairs of agents. The value can be maximized by local message passing along the graph, which allows training of the value function end-to-end with Q-learning. Payoff functions are approximated with deep neural networks that employ parameter sharing and low-rank approximations to significantly improve sample efficiency. We show that DCG can solve predator-prey tasks that highlight the relative overgeneralization pathology, as well as challenging StarCraft II micromanagement tasks.


DeepMatch: Balancing Deep Covariate Representations for Causal Inference Using Adversarial Training

Nathan Kallus

We study optimal covariate balance for causal inferences from observational data when rich covariates and complex relationships necessitate flexible modeling with neural networks. Standard approaches such as propensity weighting and matching/balancing fail in such settings due to miscalibrated propensity nets and inappropriate covariate representations, respectively. We propose a new method based on adversarial training of a weighting and a discriminator network that effectively addresses this methodological gap. This is demonstrated through new theoretical characterizations and empirical results on both synthetic and clinical data showing how causal analyses can be salvaged in such challenging settings.


Divide, Conquer, and Combine: a New Inference Strategy for Probabilistic Programs with Stochastic Support

Yuan Zhou · Hongseok Yang · Yee-Whye Teh · Tom Rainforth

Universal probabilistic programming systems (PPSs) provide a powerful framework for specifying rich probabilistic models. They further attempt to automate the process of drawing inferences from these models, but doing this successfully is severely hampered by the wide range of non--standard models they can express. As a result, although one can specify complex models in a universal PPS, the provided inference engines often fall far short of what is required. In particular, we show that they produce surprisingly unsatisfactory performance for models where the support varies between executions, often doing no better than importance sampling from the prior. To address this, we introduce a new inference framework: Divide, Conquer, and Combine, which remains efficient for such models, and show how it can be implemented as an automated and generic PPS inference engine. We empirically demonstrate substantial performance improvements over existing approaches on three examples.


Efficient Optimistic Exploration in Linear-Quadratic Regulators via Lagrangian Relaxation

Marc Abeille · Alessandro Lazaric

We study the exploration-exploitation dilemma in the linear quadratic regulator (LQR) setting. Inspired by the extended value iteration algorithm used in optimistic algorithms for finite MDPs, we propose to relax the optimistic optimization of \ofulq and cast it into a constrained \textit{extended} LQR problem, where an additional control variable implicitly selects the system dynamics within a confidence interval. We then move to the corresponding Lagrangian formulation for which we prove strong duality. As a result, we show that an $\epsilon$-optimistic controller can be computed efficiently by solving at most $O\big(\log(1/\epsilon)\big)$ Riccati equations. Finally, we prove that relaxing the original \ofu problem does not impact the learning performance, thus recovering the $\wt O(\sqrt{T})$ regret of \ofulq. To the best of our knowledge, this is the first computationally efficient confidence-based algorithm for LQR with worst-case optimal regret guarantees.


Equivariant Neural Rendering

Emilien Dupont · Miguel Angel Bautista Martin · Alex Colburn · Aditya Sankar · Joshua M Susskind · Qi Shan

We propose a framework for learning neural scene representations directly from images, without 3D supervision. Our key insight is that 3D structure can be imposed by ensuring that the learned representation transforms like a real 3D scene. Specifically, we introduce a loss which enforces equivariance of the scene representation with respect to 3D transformations. Our formulation allows us to infer and render scenes in real time while achieving comparable results to models requiring minutes for inference. In addition, we introduce two challenging new datasets for scene representation and neural rendering, including scenes with complex lighting and backgrounds. Through experiments, we show that our model achieves compelling results on these datasets as well as on standard ShapeNet benchmarks.


Estimating Model Uncertainty of Neural Networks in Sparse Information Form

Jongseok Lee · Matthias Humt · Jianxiang Feng · Rudolph Triebel

We present a sparse representation of model uncertainty for Deep Neural Networks (DNNs) where the parameter posterior is approximated with an inverse formulation of the Multivariate Normal Distribution (MND), also known as the information form. The key insight of our work is that the information matrix, i.e. the inverse of the covariance matrix tends to be sparse in its spectrum. Therefore, dimensionality reduction techniques such as low rank approximations (LRA) can be effectively exploited. To achieve this, we develop a novel sparsification algorithm and derive a cost-effective analytical sampler. As a result, we show that the information form can be scalably applied to represent model uncertainty in DNNs. Our exhaustive theoretical analysis and empirical evaluations on various benchmarks show the competitiveness of our approach over the current methods.


Implicit Regularization of Random Feature Models

Arthur Jacot · Berfin Simsek · Francesco Spadaro · Clement Hongler · Franck Gabriel

Random Features (RF) models are used as efficient parametric approximations of kernel methods. We investigate, by means of random matrix theory, the connection between Gaussian RF models and Kernel Ridge Regression (KRR). For a Gaussian RF model with $P$ features, $N$ data points, and a ridge $\lambda$, we show that the average (i.e. expected) RF predictor is close to a KRR predictor with an \textit{effective ridge} $\tilde{\lambda}$. We show that $\tilde{\lambda} > \lambda$ and $\tilde{\lambda} \searrow \lambda$ monotonically as $P$ grows, thus revealing the \textit{implicit regularization effect} of finite RF sampling. We then compare the risk (i.e. test error) of the $\tilde{\lambda}$-KRR predictor with the average risk of the $\lambda$-RF predictor and obtain a precise and explicit bound on their difference. Finally, we empirically find an extremely good agreement between the test errors of the average $\lambda$-RF predictor and $\tilde{\lambda}$-KRR predictor.


Inductive-bias-driven Reinforcement Learning For Efficient Schedules in Heterogeneous Clusters

Subho Banerjee · Saurabh Jha · Zbigniew Kalbarczyk · Ravishankar Iyer

The problem of scheduling of workloads onto heterogeneous processors (e.g., CPUs, GPUs, FPGAs) is of fundamental importance in modern data centers. Current system schedulers rely on application/system-specific heuristics that have to be built on a case-by-case basis. Recent work has demonstrated ML techniques for automating the heuristic search by using black-box approaches which require significant training data and time, which make them challenging to use in practice. This paper presents Symphony, a scheduling framework that addresses the challenge in two ways: (i) a domain-driven Bayesian reinforcement learning (RL) model for scheduling, which inherently models the resource dependencies identified from the system architecture; and (ii) a sampling-based technique to compute the gradients of a Bayesian model without performing full probabilistic inference. Together, these techniques reduce both the amount of training data and the time required to produce scheduling policies that significantly outperform black-box approaches by up to 2.2×.


Interpretable Off-Policy Evaluation in Reinforcement Learning by Highlighting Influential Transitions

Omer Gottesman · Joseph Futoma · Yao Liu · Sonali Parbhoo · Leo Celi · Emma Brunskill · Finale Doshi-Velez

Off-policy evaluation in reinforcement learning offers the chance of using observational data to improve future outcomes in domains such as healthcare and education, but safe deployment in high stakes settings requires ways of assessing its validity. Traditional measures such as confidence intervals may be insufficient due to noise, limited data and confounding. In this paper we develop a method that could serve as a hybrid human-AI system, to enable human experts to analyze the validity of policy evaluation estimates. This is accomplished by highlighting observations in the data whose removal will have a large effect on the OPE estimate, and formulating a set of rules for choosing which ones to present to domain experts for validation. We develop methods to compute exactly the influence functions for fitted Q-evaluation with two different function classes: kernel-based and linear least squares, as well as importance sampling methods. Experiments on medical simulations and real-world intensive care unit data demonstrate that our method can be used to identify limitations in the evaluation process and make evaluation more robust.


Learning to Encode Position for Transformer with Continuous Dynamical Model

Xuanqing Liu · Hsiang-Fu Yu · Inderjit Dhillon · Cho-Jui Hsieh

We introduce a new way of learning to encode position information for non-recurrent models, such as Transformer models. Unlike RNN and LSTM, which contain inductive bias by loading the input tokens sequentially, non-recurrent models are less sensitive to position. The main reason is that position information among input units is not encoded inherently, i.e., they are permutation equivalent, this problem justifies why all of the existing models are accompanied by position encoding/embedding layer at the input. However, this solution has clear limitations: the sinusoidal position encoding is not flexible enough as it is manually designed and does not contain any learnable parameters, whereas the position embedding restricts the maximum length of input sequences. It is thus desirable to design a new position layer that contains learnable parameters to adjust to different datasets and different architectures. At the same time, we would also like it to extrapolate in accordance with the variable length of inputs. In our proposed solution, we borrow from the recent Neural ODE approach, which may be viewed as a versatile continuous version of a ResNet. This model is capable of modeling many kinds of dynamical systems. We model the evolution of encoded results along position index by such a dynamical system, thereby overcoming the above limitations of existing methods. We evaluate our new position layers on a variety of neural machine translation and language understanding tasks, the experimental results show consistent improvements over the baselines.


My Fair Bandit: Distributed Learning of Max-Min Fairness with Multi-player Bandits

Ilai Bistritz · Tavor Z Baharav · Amir Leshem · Nicholas Bambos

Consider N cooperative but non-communicating players where each plays one out of M arms for T turns. Players have different utilities for each arm, representable as an NxM matrix. These utilities are unknown to the players. In each turn players receive noisy observations of their utility for their selected arm. However, if any other players selected the same arm that turn, they will all receive zero utility due to the conflict. No other communication or coordination between the players is possible. Our goal is to design a distributed algorithm that learns the matching between players and arms that achieves max-min fairness while minimizing the regret. We present an algorithm and prove that it is regret optimal up to a \log\log T factor. This is the first max-min fairness multi-player bandit algorithm with (near) order optimal regret.


No-Regret Exploration in Goal-Oriented Reinforcement Learning

Jean Tarbouriech · Evrard Garcelon · Michal Valko · Matteo Pirotta · Alessandro Lazaric

Many popular reinforcement learning problems (e.g., navigation in a maze, some Atari games, mountain car) are instances of the episodic setting under its stochastic shortest path (SSP) formulation, where an agent has to achieve a goal state while minimizing the cumulative cost. Despite the popularity of this setting, the exploration-exploitation dilemma has been sparsely studied in general SSP problems, with most of the theoretical literature focusing on different problems (i.e., fixed-horizon and infinite-horizon) or making the restrictive loop-free SSP assumption (i.e., no state can be visited twice during an episode). In this paper, we study the general SSP problem with no assumption on its dynamics (some policies may actually never reach the goal). We introduce UC-SSP, the first no-regret algorithm in this setting, and prove a regret bound scaling as $\widetilde{\mathcal{O}}( D S \sqrt{ A D K})$ after $K$ episodes for any unknown SSP with $S$ states, $A$ actions, positive costs and SSP-diameter $D$, defined as the smallest expected hitting time from any starting state to the goal. We achieve this result by crafting a novel stopping rule, such that UC-SSP may interrupt the current policy if it is taking too long to achieve the goal and switch to alternative policies that are designed to rapidly terminate the episode.


On Convergence-Diagnostic based Step Sizes for Stochastic Gradient Descent

Scott Pesme · Aymeric Dieuleveut · Nicolas Flammarion

Constant step-size Stochastic Gradient Descent exhibits two phases: a transient phase during which iterates make fast progress towards the optimum, followed by a stationary phase during which iterates oscillate around the optimal point. In this paper, we show that efficiently detecting this transition and appropriately decreasing the step size can lead to fast convergence rates. We analyse the classical statistical test proposed by Pflug (1983), based on the inner product between consecutive stochastic gradients. Even in the simple case where the objective function is quadratic we show that this test cannot lead to an adequate convergence diagnostic. We then propose a novel and simple statistical procedure that accurately detects stationarity and we provide experimental results showing state-of-the-art performance on synthetic and real-word datasets.


Optimal Continual Learning has Perfect Memory and is NP-hard

Jeremias Knoblauch · Hisham Husain · Tom Diethe

Continual Learning (CL) algorithms incrementally learn a predictor or representation across multiple sequentially observed tasks. Designing CL algorithms that perform reliably and avoid so-called catastrophic forgetting has proven a persistent challenge. The current paper develops a theoretical approach that explains why. In particular, we derive the computational properties which CL algorithms would have to possess in order to avoid catastrophic forgetting. Our main finding is that such optimal CL algorithms generally solve an NP-hard problem and will require perfect memory to do so. The findings are of theoretical interest, but also explain the excellent performance of CL algorithms using experience replay, episodic memory and core sets relative to regularization-based approaches.


Private Counting from Anonymous Messages: Near-Optimal Accuracy with Vanishing Communication Overhead

Badih Ghazi · Ravi Kumar · Pasin Manurangsi · Rasmus Pagh

Differential privacy (DP) is a formal notion for quantifying the privacy loss of algorithms. Algorithms in the central model of DP achieve high accuracy but make the strongest trust assumptions whereas those in the local DP model make the weakest trust assumptions but incur substantial accuracy loss. The shuffled DP model [Bittau et al 2017, Erlingsson et al 2019, Cheu et al 19] has recently emerged as a feasible middle ground between the central and local models, providing stronger trust assumptions than the former while promising higher accuracies than the latter. In this paper, we obtain practical communication-efficient algorithms in the shuffled DP model for two basic aggregation primitives used in machine learning: 1) binary summation, and 2) histograms over a moderate number of buckets. Our algorithms achieve accuracy that is arbitrarily close to that of central DP algorithms with an expected communication per user essentially matching what is needed without any privacy constraints! We demonstrate the practicality of our algorithms by experimentally evaluating them and comparing their performance to several widely-used protocols such as Randomized Response [Warner 1965] and RAPPOR [Erlingsson et al. 2014].


Radioactive data: tracing through training

Alexandre Sablayrolles · Douze Matthijs · Cordelia Schmid · Herve Jegou

Data tracing determines whether a particular image dataset has been used to train a model. We propose a new technique, radioactive data, that makes imperceptible changes to this dataset such that any model trained on it will bear an identifiable mark. Given a trained model, our technique detects the use of radioactive data and provides a level of confidence (p-value). Experiments on large-scale benchmarks (Imagenet), with standard architectures (Resnet-18, VGG-16, Densenet-121) and training procedures, show that we detect radioactive data with high confidence (p<0.0001) when only 1% of the data used to trained a model is radioactive. Our radioactive mark is resilient to strong data augmentations and variations of the model architecture. As a result, it offers a much higher signal-to-noise ratio than data poisoning and backdoor methods.


Subspace Fitting Meets Regression: The Effects of Supervision and Orthonormality Constraints on Double Descent of Generalization Errors

Yehuda Dar · Paul Mayer · Lorenzo Luzi · Richard Baraniuk

We study the linear subspace fitting problem in the overparameterized setting, where the estimated subspace can perfectly interpolate the training examples. Our scope includes the least-squares solutions to subspace fitting tasks with varying levels of supervision in the training data (i.e., the proportion of input-output examples of the desired low-dimensional mapping) and orthonormality of the vectors defining the learned operator. This flexible family of problems connects standard, unsupervised subspace fitting that enforces strict orthonormality with a corresponding regression task that is fully supervised and does not constrain the linear operator structure. This class of problems is defined over a supervision-orthonormality plane, where each coordinate induces a problem instance with a unique pair of supervision level and softness of orthonormality constraints. We explore this plane and show that the generalization errors of the corresponding subspace fitting problems follow double descent trends as the settings become more supervised and less orthonormally constrained.


T-Basis: a Compact Representation for Neural Networks

Anton Obukhov · Maxim Rakhuba · Stamatios Georgoulis · Menelaos Kanakis · Dengxin Dai · Luc Van Gool

We introduce T-Basis, a novel concept for a compact representation of a set of tensors, each of an arbitrary shape, which is often seen in Neural Networks. Each of the tensors in the set is modeled using Tensor Rings, though the concept applies to other Tensor Networks. Owing its name to the T-shape of nodes in diagram notation of Tensor Rings, T-Basis is simply a list of equally shaped three-dimensional tensors, used to represent Tensor Ring nodes. Such representation allows us to parameterize the tensor set with a small number of parameters (coefficients of the T-Basis tensors), scaling logarithmically with each tensor's size in the set and linearly with the dimensionality of T-Basis. We evaluate the proposed approach on the task of neural network compression and demonstrate that it reaches high compression rates at acceptable performance drops. Finally, we analyze memory and operation requirements of the compressed networks and conclude that T-Basis networks are equally well suited for training and inference in resource-constrained environments and usage on the edge devices. Project website: obukhov.io/tbasis.


Towards a General Theory of Infinite-Width Limits of Neural Classifiers

Eugene Golikov

Obtaining theoretical guarantees for neural networks training appears to be a hard problem in a general case. Recent research has been focused on studying this problem in the limit of infinite width and two different theories have been developed: a mean-field (MF) and a constant kernel (NTK) limit theories. We propose a general framework that provides a link between these seemingly distinct theories. Our framework out of the box gives rise to a discrete-time MF limit which was not previously explored in the literature. We prove a convergence theorem for it, and show that it provides a more reasonable approximation for finite-width nets compared to the NTK limit if learning rates are not very small. Also, our framework suggests a limit model that coincides neither with the MF limit nor with the NTK one. We show that for networks with more than two hidden layers RMSProp training has a non-trivial MF limit but GD training does not have one. Overall, our framework demonstrates that both MF and NTK limits have considerable limitations in approximating finite-sized neural nets, indicating the need for designing more accurate infinite-width approximations for them.


Training Linear Neural Networks: Non-Local Convergence and Complexity Results

Armin Eftekhari

Linear networks provide valuable insights into the workings of neural networks in general. This paper identifies conditions under which the gradient flow provably trains a linear network, in spite of the non-strict saddle points present in the optimization landscape. This paper also provides the computational complexity of training linear networks with gradient flow. To achieve these results, this work develops a machinery to provably identify the stable set of gradient flow, which then enables us to improve over the state of the art in the literature of linear networks (Bah et al., 2019;Arora et al., 2018a). Crucially, our results appear to be the first to break away from the lazy training regime which has dominated the literature of neural networks. This work requires the network to have a layer with one neuron, which subsumes the networks with a scalar output, but extending the results of this theoretical work to all linear networks remains a challenging open problem.


Transformation of ReLU-based recurrent neural networks from discrete-time to continuous-time

Zahra Monfared · Daniel Durstewitz

Recurrent neural networks (RNN) as used in machine learning are commonly formulated in discrete time, i.e. as recursive maps. This brings a lot of advantages for training models on data, e.g. for the purpose of time series prediction or dynamical systems identification, as powerful and efficient inference algorithms exist for discrete time systems and numerical integration of differential equations is not necessary. On the other hand, mathematical analysis of dynamical systems inferred from data is often more convenient and enables additional insights if these are formulated in continuous time, i.e. as systems of ordinary (or partial) differential equations (ODE). Here we show how to perform such a translation from discrete to continuous time for a particular class of ReLU-based RNN. We prove three theorems on the mathematical equivalence between the discrete and continuous time formulations under a variety of conditions, and illustrate how to use our mathematical results on different machine learning and nonlinear dynamical systems examples.


Unique Properties of Flat Minima in Deep Networks

Rotem Mulayoff · Tomer Michaeli

It is well known that (stochastic) gradient descent has an implicit bias towards flat minima. In deep neural network training, this mechanism serves to screen out minima. However, the precise effect that this has on the trained network is not yet fully understood. In this paper, we characterize the flat minima in linear neural networks trained with a quadratic loss. First, we show that linear ResNets with zero initialization necessarily converge to the flattest of all minima. We then prove that these minima correspond to nearly balanced networks whereby the gain from the input to any intermediate representation does not change drastically from one layer to the next. Finally, we show that consecutive layers in flat minima solutions are coupled. That is, one of the left singular vectors of each weight matrix, equals one of the right singular vectors of the next matrix. This forms a distinct path from input to output, that, as we show, is dedicated to the signal that experiences the largest gain end-to-end. Experiments indicate that these properties are characteristic of both linear and nonlinear models trained in practice.