Session
Poster Session 25
We present a strikingly simple proof that two rules are sufficient to automate gradient descent: 1) don't increase the stepsize too fast and 2) don't overstep the local curvature. No need for functional values, no line search, no information about the function except for the gradients. By following these rules, you get a method adaptive to the local geometry, with convergence guarantees depending only on smoothness in a neighborhood of a solution. Given that the problem is convex, our method will converge even if the global smoothness constant is infinity. As an illustration, it can minimize arbitrary continuously twice-differentiable convex function. We examine its performance on a range of convex and nonconvex problems, including logistic regression and matrix factorization.
From Local SGD to Local Fixed-Point Methods for Federated Learning
Grigory Malinovsky · Dmitry Kovalev · Elnur Gasanov · Laurent CONDAT · Peter Richtarik
Most algorithms for solving optimization problems or finding saddle points of convex-concave functions are fixed-point algorithms. In this work we consider the generic problem of finding a fixed point of an average of operators, or an approximation thereof, in a distributed setting. Our work is motivated by the needs of federated learning. In this context, each local operator models the computations done locally on a mobile device. We investigate two strategies to achieve such a consensus: one based on a fixed number of local steps, and the other based on randomized computations. In both cases, the goal is to limit communication of the locally-computed variables, which is often the bottleneck in distributed frameworks. We perform convergence analysis of both methods and conduct a number of experiments highlighting the benefits of our approach.
On the Number of Linear Regions of Convolutional Neural Networks
Huan Xiong · Lei Huang · Mengyang Yu · Li Liu · Fan Zhu · Ling Shao
One fundamental problem in deep learning is understanding the outstanding performance of deep Neural Networks (NNs) in practice. One explanation for the superiority of NNs is that they can realize a large class of complicated functions, i.e., they have powerful expressivity. The expressivity of a ReLU NN can be quantified by the maximal number of linear regions it can separate its input space into. In this paper, we provide several mathematical results needed for studying the linear regions of CNNs, and use them to derive the maximal and average numbers of linear regions for one-layer ReLU CNNs. Furthermore, we obtain upper and lower bounds for the number of linear regions of multi-layer ReLU CNNs. Our results suggest that deeper CNNs have more powerful expressivity than their shallow counterparts, while CNNs have more expressivity than fully-connected NNs per parameter.
Option Discovery in the Absence of Rewards with Manifold Analysis
Amitay Bar · Ronen Talmon · Ron Meir
Options have been shown to be an effective tool in reinforcement learning, facilitating improved exploration and learning. In this paper, we present an approach based on spectral graph theory and derive an algorithm that systematically discovers options without access to a specific reward or task assignment. As opposed to the common practice used in previous methods, our algorithm makes full use of the spectrum of the graph Laplacian. Incorporating modes associated with higher graph frequencies unravels domain subtleties, which are shown to be useful for option discovery. Using geometric and manifold-based analysis, we present a theoretical justification for the algorithm. In addition, we showcase its performance in several domains, demonstrating clear improvements compared to competing methods.
Revisiting Fundamentals of Experience Replay
William Fedus · Prajit Ramachandran · Rishabh Agarwal · Yoshua Bengio · Hugo Larochelle · Mark Rowland · Will Dabney
Experience replay is central to off-policy algorithms in deep reinforcement learning (RL), but there remain significant gaps in our understanding. We therefore present a systematic and extensive analysis of experience replay in Q-learning methods, focusing on two fundamental properties: the replay capacity and the ratio of learning updates to experience collected (replay ratio). Our additive and ablative studies upend conventional wisdom around experience replay — greater capacity is found to substantially increase the performance of certain algorithms, while leaving others unaffected. Counterintuitively we show that theoretically ungrounded, uncorrected n-step returns are uniquely beneficial while other techniques confer limited benefit for sifting through larger memory. Separately, by directly controlling the replay ratio we contextualize previous observations in the literature and empirically measure its importance across a variety of deep RL algorithms. Finally, we conclude by testing a set of hypotheses on the nature of these performance benefits.
A Finite-Time Analysis of Q-Learning with Neural Network Function Approximation
Pan Xu · Quanquan Gu
Q-learning with neural network function approximation (neural Q-learning for short) is among the most prevalent deep reinforcement learning algorithms. Despite its empirical success, the non-asymptotic convergence rate of neural Q-learning remains virtually unknown. In this paper, we present a finite-time analysis of a neural Q-learning algorithm, where the data are generated from a Markov decision process, and the action-value function is approximated by a deep ReLU neural network. We prove that neural Q-learning finds the optimal policy with $O(1/\sqrt{T})$ convergence rate if the neural function approximator is sufficiently overparameterized, where $T$ is the number of iterations. To our best knowledge, our result is the first finite-time analysis of neural Q-learning under non-i.i.d. data assumption.
Archetypal analysis (AA) aims to extract patterns using self-expressive decomposition of data as convex combinations of extremal points (on the convex hull) of the data. This work presents a computationally efficient greedy AA (GAA) algorithm. GAA leverages the underlying geometry of AA, is scalable to larger datasets, and has significantly faster convergence rate. To achieve this, archetypes are learned via sparse projection of data. In the transformed space, GAA employs an iterative subset selection approach to identify archetypes based on the sparsity of convex representations. The work further presents the use of GAA algorithm for extended AA models such as robust and kernel AA. Experimental results show that GAA is considerably faster while performing comparable to existing methods for tasks such as classification, data visualization/categorization.
As machine learning algorithms are increasingly deployed for high-impact automated decision making, ethical and increasingly also legal standards demand that they treat all individuals fairly, without discrimination based on their age, gender, race or other sensitive traits. In recent years much progress has been made on ensuring fairness and reducing bias in standard machine learning settings. Yet, for network embedding, with applications in vulnerable domains ranging from social network analysis to recommender systems, current options remain limited both in number and performance. We thus propose DeBayes: a conceptually elegant Bayesian method that is capable of learning debiased embeddings by using a biased prior. Our experiments show that these representations can then be used to perform link prediction that is significantly more fair in terms of popular metrics such as demographic parity and equalized opportunity.
Gaussian Markov random fields (GMRFs) are probabilistic graphical models widely used in spatial statistics and related fields to model dependencies over spatial structures. We establish a formal connection between GMRFs and convolutional neural networks (CNNs). Common GMRFs are special cases of a generative model where the inverse mapping from data to latent variables is given by a 1-layer linear CNN. This connection allows us to generalize GMRFs to multi-layer CNN architectures, effectively increasing the order of the corresponding GMRF in a way which has favorable computational scaling. We describe how well-established tools, such as autodiff and variational inference, can be used for simple and efficient inference and learning of the deep GMRF. We demonstrate the flexibility of the proposed model and show that it outperforms the state-of-the-art on a dataset of satellite temperatures, in terms of prediction and predictive uncertainty.
Double Trouble in Double Descent: Bias and Variance(s) in the Lazy Regime
Stéphane d'Ascoli · Maria Refinetti · Giulio Biroli · Florent Krzakala
Deep neural networks can achieve remarkable generalization performances while interpolating the training data. Rather than the U-curve emblematic of the bias-variance trade-off, their test error often follows a ``double descent"---a mark of the beneficial role of overparametrization. In this work, we develop a quantitative theory for this phenomenon in the so-called lazy learning regime of neural networks, by considering the problem of learning a high-dimensional function with random features regression. We obtain a precise asymptotic expression for the bias-variance decomposition of the test error, and show that the bias displays a phase transition at the interpolation threshold, beyond it which it remains constant. We disentangle the variances stemming from the sampling of the dataset, from the additive noise corrupting the labels, and from the initialization of the weights. We demonstrate that the latter two contributions are the crux of the double descent: they lead to the overfitting peak at the interpolation threshold and to the decay of the test error upon overparametrization. We quantify how they are suppressed by ensembling the outputs of $K$ independently initialized estimators. For $K\rightarrow \infty$, the test error is monotonously decreasing and remains constant beyond the interpolation threshold. We further compare the effects of overparametrizing, ensembling and regularizing. Finally, we present numerical experiments on classic deep learning setups to show that our results hold qualitatively in realistic lazy learning scenarios.
Encoding Musical Style with Transformer Autoencoders
Kristy Choi · Curtis Hawthorne · Ian Simon · Monica Dinculescu · Jesse Engel
We consider the problem of learning high-level controls over the global structure of generated sequences, particularly in the context of symbolic music generation with complex language models. In this work, we present the Transformer autoencoder, which aggregates encodings of the input data across time to obtain a global representation of style from a given performance. We show it is possible to combine this global representation with other temporally distributed embeddings, enabling improved control over the separate aspects of performance style and melody. Empirically, we demonstrate the effectiveness of our method on various music generation tasks on the MAESTRO dataset and a YouTube dataset with 10,000+ hours of piano performances, where we achieve improvements in terms of log-likelihood and mean listening scores as compared to baselines.
Fairwashing explanations with off-manifold detergent
Christopher Anders · Plamen Pasliev · Ann-Kathrin Dombrowski · Klaus-robert Mueller · Pan Kessel
Explanation methods promise to make black-box classifiers more transparent. As a result, it is hoped that they can act as proof for a sensible, fair and trustworthy decision-making process of the algorithm and thereby increase its acceptance by the end-users. In this paper, we show both theoretically and experimentally that these hopes are presently unfounded. Specifically, we show that, for any classifier $g$, one can always construct another classifier $\tilde{g}$ which has the same behavior on the data (same train, validation, and test error) but has arbitrarily manipulated explanation maps. We derive this statement theoretically using differential geometry and demonstrate it experimentally for various explanation methods, architectures, and datasets. Motivated by our theoretical insights, we then propose a modification of existing explanation methods which makes them significantly more robust.
Feature Selection using Stochastic Gates
Yutaro Yamada · Ofir Lindenbaum · Sahand Negahban · Yuval Kluger
Feature selection problems have been extensively studied in the setting of linear estimation (e.g. LASSO), but less emphasis has been placed on feature selection for non-linear functions. In this study, we propose a method for feature selection in neural network estimation problems. The new procedure is based on probabilistic relaxation of the $\ell_0$ norm of features, or the count of the number of selected features. Our $\ell_0$-based regularization relies on a continuous relaxation of the Bernoulli distribution; such relaxation allows our model to learn the parameters of the approximate Bernoulli distributions via gradient descent. The proposed framework simultaneously learns either a nonlinear regression or classification function while selecting a small subset of features. We provide an information-theoretic justification for incorporating Bernoulli distribution into feature selection. Furthermore, we evaluate our method using synthetic and real-life data to demonstrate that our approach outperforms other commonly used methods in both predictive performance and feature selection.
Gamification of Pure Exploration for Linear Bandits
Rémy Degenne · Pierre Menard · Xuedong Shang · Michal Valko
We investigate an active \emph{pure-exploration} setting, that includes \emph{best-arm identification}, in the context of \emph{linear stochastic bandits}. While asymptotically optimal algorithms exist for standard \emph{multi-armed bandits}, the existence of such algorithms for the best-arm identification in linear bandits has been elusive despite several attempts to address it. First, we provide a thorough comparison and new insight over different notions of optimality in the linear case, including G-optimality, transductive optimality from optimal experimental design and asymptotic optimality. Second, we design the first asymptotically optimal algorithm for fixed-confidence pure exploration in linear bandits. As a consequence, our algorithm naturally bypasses the pitfall caused by a simple but difficult instance, that most prior algorithms had to be engineered to deal with explicitly. Finally, we avoid the need to fully solve an optimal design problem by providing an approach that entails an efficient implementation.
Learning Near Optimal Policies with Low Inherent Bellman Error
Andrea Zanette · Alessandro Lazaric · Mykel Kochenderfer · Emma Brunskill
We study the exploration problem with approximate linear action-value functions in episodic reinforcement learning under the notion of low inherent Bellman error, a condition normally employed to show convergence of approximate value iteration. First we relate this condition to other common frameworks and show that it is strictly more general than the low rank (or linear) MDP assumption of prior work. Second we provide an algorithm with a high probability regret bound $\widetilde O(\sum_{t=1}^H d_t \sqrt{K} + \sum_{t=1}^H \sqrt{d_t} \IBE K)$ where $H$ is the horizon, $K$ is the number of episodes, $\IBE$ is the value if the inherent Bellman error and $d_t$ is the feature dimension at timestep $t$. In addition, we show that the result is unimprovable beyond constants and logs by showing a matching lower bound. This has two important consequences: 1) it shows that exploration is possible using only \emph{batch assumptions} with an algorithm that achieves the optimal statistical rate for the setting we consider, which is more general than prior work on low-rank MDPs 2) the lack of closedness (measured by the inherent Bellman error) is only amplified by $\sqrt{d_t}$ despite working in the online setting. Finally, the algorithm reduces to the celebrated \textsc{LinUCB} when $H=1$ but with a different choice of the exploration parameter that allows handling misspecified contextual linear bandits. While computational tractability questions remain open for the MDP setting, this enriches the class of MDPs with a linear representation for the action-value function where statistically efficient reinforcement learning is possible.
Multidimensional Shape Constraints
Maya Gupta · Erez Louidor · Oleksandr Mangylov · Nobu Morioka · Taman Narayan · Sen Zhao
We propose new multi-input shape constraints across four intuitive categories: complements, diminishers, dominance, and unimodality constraints. We show these shape constraints can be checked and even enforced when training machine-learned models for linear models, generalized additive models, and the nonlinear function class of multi-layer lattice models. Toy examples and real-world experiments illustrate how the different shape constraints can be used to increase interpretability and better regularize machine-learned models.
Multilinear Latent Conditioning for Generating Unseen Attribute Combinations
Markos Georgopoulos · Grigorios Chrysos · Maja Pantic · Yannis Panagakis
Deep generative models rely on their inductive bias to facilitate generalization, especially for problems with high dimensional data, like images. However, empirical studies have shown that variational autoencoders (VAE) and generative adversarial networks (GAN) lack the generalization ability that occurs naturally in human perception. For example, humans can visualize a woman smiling after only seeing a smiling man. On the contrary, the standard conditional VAE (cVAE) is unable to generate unseen attribute combinations. To this end, we extend cVAE by introducing a multilinear latent conditioning framework that captures the multiplicative interactions between the attributes. We implement two variants of our model and demonstrate their efficacy on MNIST, Fashion-MNIST and CelebA. Altogether, we design a novel conditioning framework that can be used with any architecture to synthesize unseen attribute combinations.
“Other-Play” for Zero-Shot Coordination
Hengyuan Hu · Alexander Peysakhovich · Adam Lerer · Jakob Foerster
We consider the problem of zero-shot coordination - constructing AI agents that can coordinate with novel partners they have not seen before (e.g.humans). Standard Multi-Agent Reinforcement Learning (MARL) methods typically focus on the self-play (SP) setting where agents construct strategies by playing the game with themselves repeatedly. Unfortunately, applying SP naively to the zero-shot coordination problem can produce agents that establish highly specialized conventions that do not carry over to novel partners they have not been trained with. We introduce a novel learning algorithm called other-play (OP), that enhances self-play by looking for more robust strategies. We characterize OP theoretically as well as experimentally. We study the cooperative card game Hanabi and show that OP agents achieve higher scores when paired with independently trained agents as well as with human players than SP agents.
The ability to jointly understand the geometry of objects and plan actions for manipulating them is crucial for intelligent agents. We refer to this ability as geometric planning. Recently, many interactive environments have been proposed to evaluate intelligent agents on various skills, however, none of them cater to the needs of geometric planning. We present PackIt, a virtual environment to evaluate and potentially learn the ability to do geometric planning, where an agent needs to take a sequence of actions to pack a set of objects into a box with limited space. We also construct a set of challenging packing tasks using an evolutionary algorithm. Further, we study various baselines for the task that include model-free learning-based and heuristic-based methods, as well as search-based optimization methods that assume access to the model of the environment.
PolyGen: An Autoregressive Generative Model of 3D Meshes
Charlie Nash · Yaroslav Ganin · S. M. Ali Eslami · Peter Battaglia
Polygon meshes are an efficient representation of 3D geometry, and are of central importance in computer graphics, robotics and games development. Existing learning-based approaches for object synthesis have avoided the challenges of working with 3D meshes, instead using alternative object representations that are more compatible with neural architectures and training approaches. We present PolyGen, a generative model of 3D objects which models the mesh directly, predicting vertices and faces sequentially using a Transformer-based architecture. Our model can condition on a range of inputs, including object classes, voxels, and images, and because the model is probabilistic it can produce samples that capture uncertainty in ambiguous scenarios. We show that the model is capable of producing high-quality, usable meshes, and establish log-likelihood benchmarks for the mesh-modelling task. We also evaluate the conditional models on surface reconstruction metrics against alternative methods, and demonstrate competitive performance despite not training directly on this task.
Proving the Lottery Ticket Hypothesis: Pruning is All You Need
Eran Malach · Gilad Yehudai · Shai Shalev-Schwartz · Ohad Shamir
The lottery ticket hypothesis (Frankle and Carbin, 2018), states that a randomly-initialized network contains a small subnetwork such that, when trained in isolation, can compete with the performance of the original network. We prove an even stronger hypothesis (as was also conjectured in Ramanujan et al., 2019), showing that for every bounded distribution and every target network with bounded weights, a sufficiently over-parameterized neural network with random weights contains a subnetwork with roughly the same accuracy as the target network, without any further training.
Robust Graph Representation Learning via Neural Sparsification
Cheng Zheng · Bo Zong · Wei Cheng · Dongjin Song · Jingchao Ni · Wenchao Yu · Haifeng Chen · Wei Wang
Graph representation learning serves as the core of important prediction tasks, ranging from product recommendation to fraud detection. Real-life graphs usually have complex information in the local neighborhood, where each node is described by a rich set of features and connects to dozens or even hundreds of neighbors. Despite the success of neighborhood aggregation in graph neural networks, task-irrelevant information is mixed into nodes' neighborhood, making learned models suffer from sub-optimal generalization performance. In this paper, we present NeuralSparse, a supervised graph sparsification technique that improves generalization power by learning to remove potentially task-irrelevant edges from input graphs. Our method takes both structural and non-structural information as input, utilizes deep neural networks to parameterize sparsification processes, and optimizes the parameters by feedback signals from downstream tasks. Under the NeuralSparse framework, supervised graph sparsification could seamlessly connect with existing graph neural networks for more robust performance. Experimental results on both benchmark and private datasets show that NeuralSparse can yield up to 7.2% improvement in testing accuracy when working with existing graph neural networks on node classification tasks.
Statistically Preconditioned Accelerated Gradient Method for Distributed Optimization
Hadrien Hendrikx · Lin Xiao · Sebastien Bubeck · Francis Bach · Laurent Massoulié
We consider the setting of distributed empirical risk minimization where multiple machines compute the gradients in parallel and a centralized server updates the model parameters. In order to reduce the number of communications required to reach a given accuracy, we propose a preconditioned accelerated gradient method where the preconditioning is done by solving a local optimization problem over a subsampled dataset at the server. The convergence rate of the method depends on the square root of the relative condition number between the global and local loss functions. We estimate the relative condition number for linear prediction models by studying uniform concentration of the Hessians over a bounded domain, which allows us to derive improved convergence rates for existing preconditioned gradient methods and our accelerated method. Experiments on real-world datasets illustrate the benefits of acceleration in the ill-conditioned regime.
Dropout is a widely-used regularization technique, often required to obtain state-of-the-art for a number of architectures. This work demonstrates that dropout introduces two distinct but entangled regularization effects: an explicit effect (also studied in prior work) which occurs since dropout modifies the expected training objective, and, perhaps surprisingly, an additional implicit effect from the stochasticity in the dropout training update. This implicit regularization effect is analogous to the effect of stochasticity in small mini-batch stochastic gradient descent. We disentangle these two effects through controlled experiments. We then derive analytic simplifications which characterize each effect in terms of the derivatives of the model and the loss, for deep neural networks. We demonstrate these simplified, analytic regularizers accurately capture the important aspects of dropout, showing they faithfully replace dropout in practice.
The attribution problem, that is the problem of attributing a model's prediction to its base features, is well-studied. We extend the notion of attribution to also apply to feature interactions. The Shapley value is a commonly used method to attribute a model's prediction to its base features. We propose a generalization of the Shapley value called Shapley-Taylor index that attributes the model's prediction to interactions of subsets of features up to some size $k$. The method is analogous to how the truncated Taylor Series decomposes the function value at a certain point using its derivatives at a different point. In fact, we show that the Shapley Taylor index is equal to the Taylor Series of the multilinear extension of the set-theoretic behavior of the model. We axiomatize this method using the standard Shapley axioms---linearity, dummy, symmetry and efficiency---and an additional axiom that we call the interaction distribution axiom. This new axiom explicitly characterizes how interactions are distributed for a class of functions that model pure interaction. We contrast the Shapley-Taylor index against the previously proposed Shapley Interaction index from the cooperative game theory literature. We also apply the Shapley Taylor index to three models and identify interesting qualitative insights.