Session
Poster Session 20
Invertible generative models for inverse problems: mitigating representation error and dataset bias
Muhammad Asim · Grady Daniels · Oscar Leong · Ali Ahmed · Paul Hand
Trained generative models have shown remarkable performance as priors for inverse problems in imaging -- for example, Generative Adversarial Network priors permit recovery of test images from 5-10x fewer measurements than sparsity priors. Unfortunately, these models may be unable to represent any particular image because of architectural choices, mode collapse, and bias in the training dataset. In this paper, we demonstrate that invertible neural networks, which have zero representation error by design, can be effective natural signal priors at inverse problems such as denoising, compressive sensing, and inpainting. Given a trained generative model, we study the empirical risk formulation of the desired inverse problem under a regularization that promotes high likelihood images, either directly by penalization or algorithmically by initialization. For compressive sensing, invertible priors can yield higher accuracy than sparsity priors across almost all undersampling ratios, and due to their lack of representation error, invertible priors can yield better reconstructions than GAN priors for images that have rare features of variation within the biased training set, including out-of-distribution natural images. We additionally compare performance for compressive sensing to unlearned methods, such as the deep decoder, and we establish theoretical bounds on expected recovery error in the case of a linear invertible model.
Thompson Sampling Algorithms for Mean-Variance Bandits
Qiuyu Zhu · Vincent Tan
The multi-armed bandit (MAB) problem is a classical learning task that exemplifies the exploration-exploitation tradeoff. However, standard formulations do not take into account risk. In online decision making systems, risk is a primary concern. In this regard, the mean-variance risk measure is one of the most common objective functions. Existing algorithms for mean-variance optimization in the context of MAB problems have unrealistic assumptions on the reward distributions. We develop Thompson Sampling-style algorithms for mean-variance MAB and provide comprehensive regret analyses for Gaussian and Bernoulli bandits with fewer assumptions. Our algorithms achieve the best known regret bounds for mean-variance MABs and also attain the information-theoretic bounds in some parameter regimes. Empirical simulations show that our algorithms significantly outperform existing LCB-based algorithms for all risk tolerances.
Double Reinforcement Learning for Efficient and Robust Off-Policy Evaluation
Nathan Kallus · Masatoshi Uehara
Off-policy evaluation (OPE) in reinforcement learning allows one to evaluate novel decision policies without needing to conduct exploration, which is often costly or otherwise infeasible. We consider for the first time the semiparametric efficiency limits of OPE in Markov decision processes (MDPs), where actions, rewards, and states are memoryless. We show existing OPE estimators may fail to be efficient in this setting. We develop a new estimator based on cross-fold estimation of $q$-functions and marginalized density ratios, which we term double reinforcement learning (DRL). We show that DRL is efficient when both components are estimated at fourth-root rates and is also doubly robust when only one component is consistent. We investigate these properties empirically and demonstrate the performance benefits due to harnessing memorylessness.
Estimating Generalization under Distribution Shifts via Domain-Invariant Representations
Ching-Yao Chuang · Antonio Torralba · Stefanie Jegelka
When machine learning models are deployed on a test distribution different from the training distribution, they can perform poorly, but overestimate their performance. In this work, we aim to better estimate a model's performance under distribution shift, without supervision. To do so, we use a set of domain-invariant predictors as a proxy for the unknown, true target labels. Since the error of the resulting risk estimate depends on the target risk of the proxy model, we study generalization of domain-invariant representations and show that the complexity of the latent representation has a significant influence on the target risk. Empirically, our approach (1) enables self-tuning of domain adaptation models, and (2) accurately estimates the target error of given models under distribution shift. Other applications include model selection, deciding early stopping and error detection.
Interferometric Graph Transform: a Deep Unsupervised Graph Representation
Edouard Oyallon
We propose the Interferometric Graph Transform (IGT), which is a new class of deep unsupervised graph convolutional neural network for building graph representations. Our first contribution is to propose a generic, complex-valued spectral graph architecture obtained from a generalization of the Euclidean Fourier transform. We show that our learned representation consists of both discriminative and invariant features, thanks to a novel greedy concave objective. From our experiments, we conclude that our learning procedure exploits the topology of the spectral domain, which is normally a flaw of spectral methods, and in particular our method can recover an analytic operator for vision tasks. We test our algorithm on various and challenging tasks such as image classification (MNIST, CIFAR-10), community detection (Authorship, Facebook graph) and action recognition from 3D skeletons videos (SBU, NTU), exhibiting a new state-of-the-art in spectral graph unsupervised settings.
Invariant Causal Prediction for Block MDPs
Amy Zhang · Clare Lyle · Shagun Sodhani · Angelos Filos · Marta Kwiatkowska · Joelle Pineau · Yarin Gal · Doina Precup
Generalization across environments is critical to the successful application of reinforcement learning (RL) algorithms to real-world challenges. In this work we propose a method for learning state abstractions which generalize to novel observation distributions in the multi-environment RL setting. We prove that for certain classes of environments, this approach outputs, with high probability, a state abstraction corresponding to the causal feature set with respect to the return. We give empirical evidence that analogous methods for the nonlinear setting can also attain improved generalization over single- and multi-task baselines. Lastly, we provide bounds on model generalization error in the multi-environment setting, in the process showing a connection between causal variable identification and the state abstraction framework for MDPs.
Unsupervised Speech Decomposition via Triple Information Bottleneck
Kaizhi Qian · Yang Zhang · Shiyu Chang · Mark Hasegawa-Johnson · David Cox
Speech information can be roughly decomposed into four components: language content, timbre, pitch, and rhythm. Obtaining disentangled representations of these components is useful in many speech analysis and generation applications. Recently, state-of-the-art voice conversion systems have led to speech representations that can disentangle speaker-dependent and independent information. However, these systems can only disentangle timbre, while information about pitch, rhythm and content is still mixed together. Further disentangling the remaining speech components is an under-determined problem in the absence of explicit annotations for each component, which are difficult and expensive to obtain. In this paper, we propose SpeechSplit, which can blindly decompose speech into its four components by introducing three carefully designed information bottlenecks. SpeechSplit is among the first algorithms that can separately perform style transfer on timbre, pitch and rhythm without text labels. Our code is publicly available at https://github.com/auspicious3000/SpeechSplit.
When deep denoising meets iterative phase retrieval
Yaotian Wang · Xiaohang Sun · Jason Fleischer
Recovering a signal from its Fourier intensity underlies many important applications, including lensless imaging and imaging through scattering media. Conventional algorithms for retrieving the phase suffer when noise is present but display global convergence when given clean data. Neural networks have been used to improve algorithm robustness, but efforts to date are sensitive to initial conditions and give inconsistent performance. Here, we combine iterative methods from phase retrieval with image statistics from deep denoisers, via regularization-by-denoising. The resulting methods inherit the advantages of each approach and outperform other noise-robust phase retrieval algorithms. Our work paves the way for hybrid imaging methods that integrate machine-learned constraints in conventional algorithms.
Attacks Which Do Not Kill Training Make Adversarial Learning Stronger
Jingfeng Zhang · Xilie Xu · Bo Han · Gang Niu · Lizhen Cui · Masashi Sugiyama · Mohan Kankanhalli
Adversarial training based on the minimax formulation is necessary for obtaining adversarial robustness of trained models. However, it is conservative or even pessimistic so that it sometimes hurts the natural generalization. In this paper, we raise a fundamental question—do we have to trade off natural generalization for adversarial robustness? We argue that adversarial training is to employ confident adversarial data for updating the current model. We propose a novel formulation of friendly adversarial training (FAT): rather than employing most adversarial data maximizing the loss, we search for least adversarial data (i.e., friendly adversarial data) minimizing the loss, among the adversarial data that are confidently misclassified. Our novel formulation is easy to implement by just stopping the most adversarial data searching algorithms such as PGD (projected gradient descent) early, which we call early-stopped PGD. Theoretically, FAT is justified by an upper bound of the adversarial risk. Empirically, early-stopped PGD allows us to answer the earlier question negatively—adversarial robustness can indeed be achieved without compromising the natural generalization.
Can Increasing Input Dimensionality Improve Deep Reinforcement Learning?
Kei Ota · Tomoaki Oiki · Devesh Jha · Toshisada Mariyama · Daniel Nikovski
Deep reinforcement learning (RL) algorithms have recently achieved remarkable successes in various sequential decision making tasks, leveraging advances in methods for training large deep networks. However, these methods usually require large amounts of training data, which is often a big problem for real-world applications. One natural question to ask is whether learning good representations for states and using larger networks helps in learning better policies. In this paper, we try to study if increasing input dimensionality helps improve performance and sample efficiency of model-free deep RL algorithms. To do so, we propose an online feature extractor network (OFENet) that uses neural nets to produce \textit{good} representations to be used as inputs to an off-policy RL algorithm. Even though the high dimensionality of input is usually thought to make learning of RL agents more difficult, we show that the RL agents in fact learn more efficiently with the high-dimensional representation than with the lower-dimensional state observations. We believe that stronger feature propagation together with larger networks allows RL agents to learn more complex functions of states and thus improves the sample efficiency. Through numerical experiments, we show that the proposed method achieves much higher sample efficiency and better performance. Codes for the proposed method are available at http://www.merl.com/research/license/OFENet
Learning to Learn Kernels with Variational Random Features
Xiantong Zhen · Haoliang Sun · Yingjun Du · Jun Xu · Yilong Yin · Ling Shao · Cees Snoek
We introduce kernels with random Fourier features in the meta-learning framework for few-shot learning. We propose meta variational random features (MetaVRF) to learn adaptive kernels for the base-learner, which is developed in a latent variable model by treating the random feature basis as the latent variable. We formulate the optimization of MetaVRF as a variational inference problem by deriving an evidence lower bound under the meta-learning framework. To incorporate shared knowledge from related tasks, we propose a context inference of the posterior, which is established by an LSTM architecture. The LSTM-based inference network can effectively integrate the context information of previous tasks with task-specific information, generating informative and adaptive features. The learned MetaVRF can produce kernels of high representational power with a relatively low spectral sampling rate and also enables fast adaptation to new tasks. Experimental results on a variety of few-shot regression and classification tasks demonstrate that MetaVRF delivers much better, or at least competitive, performance compared to existing meta-learning alternatives.
Striving for Simplicity and Performance in Off-Policy DRL: Output Normalization and Non-Uniform Sampling
Che Wang · Yanqiu Wu · Quan Vuong · Keith Ross
We aim to develop off-policy DRL algorithms that not only exceed state-of-the-art performance but are also simple and minimalistic. For standard continuous control benchmarks, Soft Actor-Critic (SAC), which employs entropy maximization, currently provides state-of-the-art performance. We first demonstrate that the entropy term in SAC addresses action saturation due to the bounded nature of the action spaces, with this insight, we propose a streamlined algorithm with a simple normalization scheme or with inverted gradients. We show that both approaches can match SAC's sample efficiency performance without the need of entropy maximization, we then propose a simple non-uniform sampling method for selecting transitions from the replay buffer during training. Extensive experimental results demonstrate that our proposed sampling scheme leads to state of the art sample efficiency on challenging continuous control tasks. We combine all of our findings into one simple algorithm, which we call Streamlined Off Policy with Emphasizing Recent Experience, for which we provide robust public-domain code.
Tuning-free Plug-and-Play Proximal Algorithm for Inverse Imaging Problems
Kaixuan Wei · Angelica I Aviles-Rivero · Jingwei Liang · Ying Fu · Carola-Bibiane Schönlieb · Hua Huang
Plug-and-play (PnP) is a non-convex framework that combines ADMM or other proximal algorithms with advanced denoiser priors. Recently, PnP has achieved great empirical success, especially with the integration of deep learning-based denoisers. However, a key problem of PnP based approaches is that they require manual parameter tweaking. It is necessary to obtain high-quality results across the high discrepancy in terms of imaging conditions and varying scene content. In this work, we present a tuning-free PnP proximal algorithm, which can automatically determine the internal parameters including the penalty parameter, the denoising strength and the terminal time. A key part of our approach is to develop a policy network for automatic search of parameters, which can be effectively learned via mixed model-free and model-based deep reinforcement learning. We demonstrate, through numerical and visual experiments, that the learned policy can customize different parameters for different states, and often more efficient and effective than existing handcrafted criteria. Moreover, we discuss the practical considerations of the plugged denoisers, which together with our learned policy yield state-of-the-art results. This is prevalent on both linear and nonlinear exemplary inverse imaging problems, and in particular, we show promising results on Compressed Sensing MRI and phase retrieval.
Accelerating the diffusion-based ensemble sampling by non-reversible dynamics
Futoshi Futami · Issei Sato · Masashi Sugiyama
Posterior distribution approximation is a central task in Bayesian inference. Stochastic gradient Langevin dynamics (SGLD) and its extensions have been practically used and theoretically studied. While SGLD updates a single particle at a time, ensemble methods that update multiple particles simultaneously have been recently gathering attention. Compared with the naive parallel-chain SGLD that updates multiple particles independently, ensemble methods update particles with their interactions. Thus, these methods are expected to be more particle-efficient than the naive parallel-chain SGLD because particles can be aware of other particles' behavior through their interactions. Although ensemble methods numerically demonstrated their superior performance, no theoretical guarantee exists to assure such particle-efficiency and it is unclear whether those ensemble methods are really superior to the naive parallel-chain SGLD in the non-asymptotic settings. To cope with this problem, we propose a novel ensemble method that uses a non-reversible Markov chain for the interaction, and we present a non-asymptotic theoretical analysis for our method. Our analysis shows that, for the first time, the interaction causes a faster convergence rate than the naive parallel-chain SGLD in the non-asymptotic setting if the discretization error is appropriately controlled. Numerical experiments show that we can control the discretization error by tuning the interaction appropriately.
Efficiently Learning Adversarially Robust Halfspaces with Noise
Omar Montasser · Surbhi Goel · Ilias Diakonikolas · Nati Srebro
We study the problem of learning adversarially robust halfspaces in the distribution-independent setting. In the realizable setting, we provide necessary and sufficient conditions on the adversarial perturbation sets under which halfspaces are efficiently robustly learnable. In the presence of random label noise, we give a simple computationally efficient algorithm for this problem with respect to any $\ell_p$-perturbation.
Hybrid Stochastic-Deterministic Minibatch Proximal Gradient: Less-Than-Single-Pass Optimization with Nearly Optimal Generalization
Pan Zhou · Xiao-Tong Yuan
Stochastic variance-reduced gradient (SVRG) algorithms have been shown to work favorably in solving large-scale learning problems. Despite the remarkable success, the stochastic gradient complexity of SVRG-type algorithms usually scales linearly with data size and thus could still be expensive for huge data. To address this deficiency, we propose a hybrid stochastic-deterministic minibatch proximal gradient (HSDMPG) algorithm for strongly-convex problems that enjoys provably improved data-size-independent complexity guarantees. More precisely, for quadratic loss $F(\wm)$ of $n$ components, we prove that HSDMPG can attain an $\epsilon$-optimization-error $E[F(\theta)-F(\theta^*)] \leq \epsilon$ within $\mathcal{O}\Big(\!\frac{\kappa^{1.5}}{\epsilon^{0.25}}\! \log^{\!1.5}\!\!\big(\frac{1}{\epsilon}\big) \wedge \Big(\!\kappa \sqrt{n} \log^2\!\!\big(\frac{1}{\epsilon}\big) \!+\! \frac{\kappa^3}{n^{1.5}\epsilon} \!\Big)\!\Big)$ stochastic gradient evaluations, where $\kappa$ is condition number. For generic strongly convex loss functions, we prove a nearly identical complexity bound though at the cost of slightly increased logarithmic factors. For large-scale learning problems, our complexity bounds are superior to those of the prior state-of-the-art SVRG algorithms with or without dependence on data size. Particularly, in the case of $\epsilon\!=\!\mathcal{O}\big(1/\sqrt{n}\big)$ which is at the order of intrinsic excess error bound of a learning model and thus sufficient for generalization, the stochastic gradient complexity bounds of HSDMPG~for quadratic and generic loss functions are respectively $\mathcal{O} (n^{0.875}\log^{1.5}(n))$ and $\mathcal{O} (n^{0.875}\log^{2.25}(n))$, which to our best knowledge, for the first time achieve optimal generalization in less than a single pass over data. Extensive numerical results demonstrate the computational advantages of our algorithm over the prior ones.
Intrinsic Reward Driven Imitation Learning via Generative Model
Xingrui Yu · Yueming LYU · Ivor Tsang
Imitation learning in a high-dimensional environment is challenging. Most inverse reinforcement learning (IRL) methods fail to outperform the demonstrator in such a high-dimensional environment, e.g., Atari domain. To address this challenge, we propose a novel reward learning module to generate intrinsic reward signals via a generative model. Our generative method can perform better forward state transition and backward action encoding, which improves the module's dynamics modeling ability in the environment. Thus, our module provides the imitation agent both the intrinsic intention of the demonstrator and a better exploration ability, which is critical for the agent to outperform the demonstrator. Empirical results show that our method outperforms state-of-the-art IRL methods on multiple Atari games, even with one-life demonstration. Remarkably, our method achieves performance that is up to 5 times the performance of the demonstration.
Learning De-biased Representations with Biased Representations
Hyojin Bahng · SANGHYUK CHUN · Sangdoo Yun · Jaegul Choo · Seong Joon Oh
Many machine learning algorithms are trained and evaluated by splitting data from a single source into training and test sets. While such focus on in-distribution learning scenarios has led to interesting advancement, it has not been able to tell if models are relying on dataset biases as shortcuts for successful prediction (e.g., using snow cues for recognising snowmobiles), resulting in biased models that fail to generalise when the bias shifts to a different class. The cross-bias generalisation problem has been addressed by de-biasing training data through augmentation or re-sampling, which are often prohibitive due to the data collection cost (e.g., collecting images of a snowmobile on a desert) and the difficulty of quantifying or expressing biases in the first place. In this work, we propose a novel framework to train a de-biased representation by encouraging it to be different from a set of representations that are biased by design. This tactic is feasible in many scenarios where it is much easier to define a set of biased representations than to define and quantify bias. We demonstrate the efficacy of our method across a variety of synthetic and real-world biases; our experiments show that the method discourages models from taking bias shortcuts, resulting in improved generalisation. Source code is available at https://github.com/clovaai/rebias.
Learning with Feature and Distribution Evolvable Streams
Zhen-Yu Zhang · Peng Zhao · Yuan Jiang · Zhi-Hua Zhou
In many real-world applications, data are collected in the form of a stream, whose feature space can evolve over time. For instance, in the environmental monitoring task, features can be dynamically vanished or augmented due to the existence of expired old sensors and deployed new sensors. Furthermore, besides the evolvable feature space, the data distribution is usually changing in the streaming scenario. When both feature space and data distribution are evolvable, it is quite challenging to design algorithms with guarantees, particularly theoretical understandings of generalization ability. To address this difficulty, we propose a novel discrepancy measure for data with evolving feature space and data distribution, named the \emph{evolving discrepancy}. Based on that, we present the generalization error analysis, and the theory motivates the design of a learning algorithm which is further implemented by deep neural networks. Empirical studies on synthetic data verify the rationale of our proposed discrepancy measure, and extensive experiments on real-world tasks validate the effectiveness of our algorithm.
This paper studies binary logistic regression for rare events data, or imbalanced data, where the number of events (observations in one class, often called cases) is significantly smaller than the number of nonevents (observations in the other class, often called controls). We first derive the asymptotic distribution of the maximum likelihood estimator (MLE) of the unknown parameter, which shows that the asymptotic variance convergences to zero in a rate of the inverse of the number of the events instead of the inverse of the full data sample size, indicating that the available information in rare events data is at the scale of the number of events instead of the full data sample size. Furthermore, we prove that under-sampling a small proportion of the nonevents, the resulting under-sampled estimator may have identical asymptotic distribution to the full data MLE. This demonstrates the advantage of under-sampling nonevents for rare events data, because this procedure may significantly reduce the computation and/or data collection costs. Another common practice in analyzing rare events data is to over-sample (replicate) the events, which has a higher computational cost. We show that this procedure may even result in efficiency loss in terms of parameter estimation.
Multi-fidelity Bayesian Optimization with Max-value Entropy Search and its Parallelization
Shion Takeno · Hitoshi Fukuoka · Yuhki Tsukada · Toshiyuki Koyama · Motoki Shiga · Ichiro Takeuchi · Masayuki Karasuyama
In a standard setting of Bayesian optimization (BO), the objective function evaluation is assumed to be highly expensive. Multi-fidelity Bayesian optimization (MFBO) accelerates BO by incorporating lower fidelity observations available with a lower sampling cost. We propose a novel information-theoretic approach to MFBO, called multi-fidelity max-value entropy search (MF-MES), that enables us to obtain a more reliable evaluation of the information gain compared with existing information-based methods for MFBO. Further, we also propose a parallelization of MF-MES mainly for the asynchronous setting because queries typically occur asynchronously in MFBO due to a variety of sampling costs. We show that most of computations in our acquisition functions can be derived analytically, except for at most only two dimensional numerical integration that can be performed efficiently by simple approximations. We demonstrate effectiveness of our approach by using benchmark datasets and a real-world application to materials science data.
On the Relation between Quality-Diversity Evaluation and Distribution-Fitting Goal in Text Generation
Jianing Li · Yanyan Lan · Jiafeng Guo · Xueqi Cheng
The goal of text generation models is to fit the underlying real probability distribution of text. For performance evaluation, quality and diversity metrics are usually applied. However, it is still not clear to what extend can the quality-diversity evaluation reflect the distribution-fitting goal. In this paper, we try to reveal such relation in a theoretical approach. We prove that under certain conditions, a linear combination of quality and diversity constitutes a divergence metric between the generated distribution and the real distribution. We also show that the commonly used BLEU/Self-BLEU metric pair fails to match any divergence metric, thus propose CR/NRR as a substitute for quality/diversity metric pair.
Rate-distortion optimization guided autoencoder for isometric embedding in Euclidean latent space
Keizo Kato · Jing Zhou · Tomotake Sasaki · Akira Nakagawa
To analyze high-dimensional and complex data in the real world, deep generative models such as variational autoencoder (VAE) embed data in a reduced dimensional latent space and learn the probabilistic model in the latent space. However, they struggle to reproduce the probability distribution function (PDF) in the input space from that of the latent space accurately. If the embedding were isometric, this problem can be solved since PDFs in both spaces become proportional. To achieve isometric property, we propose Rate-Distortion Optimization guided autoencoder inspired by orthonormal transform coding. We show our method has the following properties: (i) the columns of the Jacobian matrix between two spaces is constantly-scaled orthonormal system and enable to embed data in latent space isometrically; (ii) the PDF of the latent space is proportional to that of the data observation space. Furthermore, our method outperforms state-of-the-art methods in unsupervised anomaly detection with four public datasets.
DessiLBI: Exploring Structural Sparsity of Deep Networks via Differential Inclusion Paths
Yanwei Fu · Chen Liu · Donghao Li · Xinwei Sun · Jinshan ZENG · Yuan Yao
Over-parameterization is ubiquitous nowadays in training neural networks to benefit both optimization in seeking global optima and generalization in reducing prediction error. However, compressive networks are desired in many real world ap- plications and direct training of small networks may be trapped in local optima. In this paper, in- stead of pruning or distilling over-parameterized models to compressive ones, we propose a new approach based on differential inclusions of in- verse scale spaces. Specifically, it generates a family of models from simple to complex ones that couples a pair of parameters to simultaneously train over-parameterized deep models and structural sparsity on weights of fully connected and convolutional layers. Such a differential inclusion scheme has a simple discretization, pro- posed as Deep structurally splitting Linearized Bregman Iteration (DessiLBI), whose global convergence analysis in deep learning is established that from any initializations, algorithmic iterations converge to a critical point of empirical risks. Experimental evidence shows that DessiLBI achieve comparable and even better performance than the competitive optimizers in exploring the structural sparsity of several widely used backbones on the benchmark datasets. Remarkably, with early stopping, DessiLBI unveils “winning tickets” in early epochs: the effective sparse structure with comparable test accuracy to fully trained over- parameterized models.
Unbiased Risk Estimators Can Mislead: A Case Study of Learning with Complementary Labels
Yu-Ting Chou · Gang Niu · Hsuan-Tien Lin · Masashi Sugiyama
In weakly supervised learning, unbiased risk estimator(URE) is a powerful tool for training classifiers when training and test data are drawn from different distributions. Nevertheless, UREs lead to overfitting in many problem settings when the models are complex like deep networks. In this paper, we investigate reasons for such overfitting by studying a weakly supervised problem called learning with complementary labels. We argue the quality of gradient estimation matters more in risk minimization. Theoretically, we show that a URE gives an unbiased gradient estimator(UGE). Practically, however, UGEs may suffer from huge variance, which causes empirical gradients to be usually far away from true gradients during minimization. To this end, we propose a novel surrogate complementary loss(SCL) framework that trades zero bias with reduced variance and makes empirical gradients more aligned with true gradients in the direction. Thanks to this characteristic, SCL successfully mitigates the overfitting issue and improves URE-based methods.