Skip to yearly menu bar Skip to main content


Session

Poster Session 13

Abstract:
Chat is not available.

Tue 14 July 8:00 - 8:45 PDT

Adversarial Neural Pruning with Latent Vulnerability Suppression

Divyam Madaan · Jinwoo Shin · Sung Ju Hwang

Despite the remarkable performance of deep neural networks on various computer vision tasks, they are known to be susceptible to adversarial perturbations, which makes it challenging to deploy them in real-world safety-critical applications. In this paper, we conjecture that the leading cause of adversarial vulnerability is the distortion in the latent feature space, and provide methods to suppress them effectively. Explicitly, we define \emph{vulnerability} for each latent feature and then propose a new loss for adversarial learning, \emph{Vulnerability Suppression (VS)} loss, that aims to minimize the feature-level vulnerability during training. We further propose a Bayesian framework to prune features with high vulnerability to reduce both vulnerability and loss on adversarial samples. We validate our \emph{Adversarial Neural Pruning with Vulnerability Suppression (ANP-VS)} method on multiple benchmark datasets, on which it not only obtains state-of-the-art adversarial robustness but also improves the performance on clean examples, using only a fraction of the parameters used by the full network. Further qualitative analysis suggests that the improvements come from the suppression of feature-level vulnerability.

Tue 14 July 8:00 - 8:45 PDT

Closing the convergence gap of SGD without replacement

Shashank Rajput · Anant Gupta · Dimitris Papailiopoulos

Stochastic gradient descent without replacement sampling is widely used in practice for model training. However, the vast majority of SGD analyses assumes data is sampled with replacement, and when the function minimized is strongly convex, an $\mathcal{O}\left(\frac{1}{T}\right)$ rate can be established when SGD is run for $T$ iterations. A recent line of breakthrough works on SGD without replacement (SGDo) established an $\mathcal{O}\left(\frac{n}{T^2}\right)$ convergence rate when the function minimized is strongly convex and is a sum of $n$ smooth functions, and an $\mathcal{O}\left(\frac{1}{T^2}+\frac{n^3}{T^3}\right)$ rate for sums of quadratics. On the other hand, the tightest known lower bound postulates an $\Omega\left(\frac{1}{T^2}+\frac{n^2}{T^3}\right)$ rate, leaving open the possibility of better SGDo convergence rates in the general case. In this paper, we close this gap and show that SGD without replacement achieves a rate of $\mathcal{O}\left(\frac{1}{T^2}+\frac{n^2}{T^3}\right)$ when the sum of the functions is a quadratic, and offer a new lower bound of $\Omega\left(\frac{n}{T^2}\right)$ for strongly convex functions that are sums of smooth functions.

Tue 14 July 8:00 - 8:45 PDT

Discount Factor as a Regularizer in Reinforcement Learning

Ron Amit · Ron Meir · Kamil Ciosek

Specifying a Reinforcement Learning (RL) task involves choosing a suitable planning horizon, which is typically modeled by a discount factor. It is known that applying RL algorithms with a lower discount factor can act as a regularizer, improving performance in the limited data regime. Yet the exact nature of this regularizer has not been investigated. In this work, we fill in this gap. For several Temporal-Difference (TD) learning methods, we show an explicit equivalence between using a reduced discount factor and adding an explicit regularization term to the algorithm's loss. Motivated by the equivalence, we empirically study this technique compared to standard L2 regularization by extensive experiments in discrete and continuous domains, using tabular and functional representations. Our experiments suggest the regularization effectiveness is strongly related to properties of the available data, such as size, distribution, and mixing rate.

Tue 14 July 8:00 - 8:45 PDT

GradientDICE: Rethinking Generalized Offline Estimation of Stationary Values

Shangtong Zhang · Bo Liu · Shimon Whiteson

We present GradientDICE for estimating the density ratio between the state distribution of the target policy and the sampling distribution in off-policy reinforcement learning. GradientDICE fixes several problems of GenDICE (Zhang et al., 2020), the current state-of-the-art for estimating such density ratios. Namely, the optimization problem in GenDICE is not a convex-concave saddle-point problem once nonlinearity in optimization variable parameterization is introduced to ensure positivity, so primal-dual algorithms are not guaranteed to find the desired solution. However, such nonlinearity is essential to ensure the consistency of GenDICE even with a tabular representation. This is a fundamental contradiction, resulting from GenDICE's original formulation of the optimization problem. In GradientDICE, we optimize a different objective from GenDICE by using the Perron-Frobenius theorem and eliminating GenDICE's use of divergence, such that nonlinearity in parameterization is not necessary for GradientDICE, which is provably convergent under linear function approximation.

Tue 14 July 8:00 - 8:45 PDT

Learning Fair Policies in Multi-Objective (Deep) Reinforcement Learning with Average and Discounted Rewards

Umer Siddique · Paul Weng · Matthieu Zimmer

As the operations of autonomous systems generally affect simultaneously several users, it is crucial that their designs account for fairness considerations. In contrast to standard (deep) reinforcement learning (RL), we investigate the problem of learning a policy that treats its users equitably. In this paper, we formulate this novel RL problem, in which an objective function, which encodes a notion of fairness that we formally define, is optimized. For this problem, we provide a theoretical discussion where we examine the case of discounted rewards and that of average rewards. During this analysis, we notably derive a new result in the standard RL setting, which is of independent interest: it states a novel bound on the approximation error with respect to the optimal average reward of that of a policy optimal for the discounted reward. Since learning with discounted rewards is generally easier, this discussion further justifies finding a fair policy for the average reward by learning a fair policy for the discounted reward. Thus, we describe how several classic deep RL algorithms can be adapted to our fair optimization problem, and we validate our approach with extensive experiments in three different domains.

Tue 14 July 8:00 - 8:45 PDT

Oracle Efficient Private Non-Convex Optimization

Seth Neel · Aaron Roth · Giuseppe Vietri · Steven Wu

One of the most effective algorithms for differentially private learning and optimization is \emph{objective perturbation}. This technique augments a given optimization problem (e.g. deriving from an ERM problem) with a random linear term, and then exactly solves it. However, to date, analyses of this approach crucially rely on the convexity and smoothness of the objective function. We give two algorithms that extend this approach substantially. The first algorithm requires nothing except boundedness of the loss function, and operates over a discrete domain. Its privacy and accuracy guarantees hold even without assuming convexity. We are able to extend traditional analyses of objective perturbation by introducing a novel normalization step into the algorithm, which provides enough stability to be differentially private even without second-order conditions. The second algorithm operates over a continuous domain and requires only that the loss function be bounded and Lipschitz in its continuous parameter. Its privacy analysis does not even require convexity. Its accuracy analysis does require convexity, but does not require second order conditions like smoothness. We complement our theoretical results with an empirical evaluation of the non-convex case, in which we use an integer program solver as our optimization oracle. We find that for the problem of learning linear classifiers, directly optimizing for 0/1 loss using our approach can out-perform the more standard approach of privately optimizing a convex-surrogate loss function on the Adult dataset.

Tue 14 July 8:00 - 8:45 PDT

Associative Memory in Iterated Overparameterized Sigmoid Autoencoders

Yibo Jiang · Cengiz Pehlevan

Recent work showed that overparameterized autoencoders can be trained to implement associative memory via iterative maps, when the trained input-output Jacobian of the network has all of its eigenvalue norms strictly below one. Here, we theoretically analyze this phenomenon for sigmoid networks by leveraging recent developments in deep learning theory, especially the correspondence between training neural networks in the infinite-width limit and performing kernel regression with the Neural Tangent Kernel (NTK). We find that overparameterized sigmoid autoencoders can have attractors in the NTK limit for both training with a single example and multiple examples under certain conditions. In particular, for multiple training examples, we find that the norm of the largest Jacobian eigenvalue drops below one with increasing input norm, leading to associative memory.

Tue 14 July 8:00 - 8:45 PDT

AutoML-Zero: Evolving Machine Learning Algorithms From Scratch

Esteban Real · Chen Liang · David So · Quoc Le

Machine learning research has advanced in multiple aspects, including model structures and learning methods. The effort to automate such research, known as AutoML, has also made significant progress. However, this progress has largely focused on the architecture of neural networks, where it has relied on sophisticated expert-designed layers as building blocks---or similarly restrictive search spaces. Our goal is to show that AutoML can go further: it is possible today to automatically discover complete machine learning algorithms just using basic mathematical operations as building blocks. We demonstrate this by introducing a novel framework that significantly reduces human bias through a generic search space. Despite the vastness of this space, evolutionary search can still discover two-layer neural networks trained by backpropagation. These simple neural networks can then be surpassed by evolving directly on tasks of interest, e.g. CIFAR-10 variants, where modern techniques emerge in the top algorithms, such as bilinear interactions, normalized gradients, and weight averaging. Moreover, evolution adapts algorithms to different task types: e.g., dropout-like techniques appear when little data is available. We believe these preliminary successes in discovering machine learning algorithms from scratch indicate a promising new direction for the field.

Tue 14 July 8:00 - 8:45 PDT

DROCC: Deep Robust One-Class Classification

Sachin Goyal · Aditi Raghunathan · Moksh Jain · Harsha Vardhan Simhadri · Prateek Jain

Classical approaches for one-class problems such as one-class SVM and isolation forest require careful feature engineering when applied to structured domains like images. State-of-the-art methods aim to leverage deep learning to learn appropriate features via two main approaches. The first approach based on predicting transformations (Golan & El-Yaniv, 2018; Hendrycks et al., 2019a) while successful in some domains, crucially depends on an appropriate domain-specific set of transformations that are hard to obtain in general. The second approach of minimizing a classical one-class loss on the learned final layer representations, e.g., DeepSVDD (Ruff et al., 2018) suffers from the fundamental drawback of representation collapse. In this work, we propose Deep Robust One Class Classification (DROCC) that is both applicable to most standard domains without requiring any side-information and robust to representation collapse. DROCC is based on the assumption that the points from the class of interest lie on a well-sampled, locally linear low dimensional manifold. Empirical evaluation demonstrates that DROCC is highly effective in two different one-class problem settings and on a range of real-world datasets across different domains: tabular data, images (CIFAR and ImageNet), audio, and time-series, offering up to 20% increase in accuracy over the state-of-the-art in anomaly detection.

Tue 14 July 8:00 - 8:45 PDT

Meta-learning for Mixed Linear Regression

Weihao Kong · Raghav Somani · Zhao Song · Sham Kakade · Sewoong Oh

In modern supervised learning, there are a large number of tasks, but many of them are associated with only a small amount of labelled data. These include data from medical image processing and robotic interaction. Even though each individual task cannot be meaningfully trained in isolation, one seeks to meta-learn across the tasks from past experiences by exploiting some similarities. We study a fundamental question of interest: When can abundant tasks with small data compensate for lack of tasks with big data? We focus on a canonical scenario where each task is drawn from a mixture of $k$ linear regressions, and identify sufficient conditions for such a graceful exchange to hold; there is little loss in sample complexity even when we only have access to small data tasks. To this end, we introduce a novel spectral approach and show that we can efficiently utilize small data tasks with the help of $\tilde\Omega(k^{3/2})$ medium data tasks each with $\tilde\Omega(k^{1/2})$ examples.

Tue 14 July 8:00 - 8:45 PDT

Near-optimal sample complexity bounds for learning Latent $k-$polytopes and applications to Ad-Mixtures

Chiranjib Bhattacharyya · Ravindran Kannan

Deriving Optimal bounds on Sample Complexity of Latent Variable models is an active area of research. Recently such bounds were obtained for Mixture of Gaussians \cite{HSNCAY18}, no such results are known for Ad-mixtures, a generalization of Mixture distributions. In this paper we show that $O^*(dk/m)$ samples are sufficient to learn each of $k-$ topic vectors of LDA, a popular Ad-mixture model, with vocabulary size $d$ and $m\in \Omega(1)$ words per document, to any constant error in $L_1$ norm. The result is a corollary of the major contribution of this paper: the first sample complexity upper bound for the problem (introduced in \cite{BK20}) of learning the vertices of a Latent $k-$ Polytope in $\RR^d$, given perturbed points from it. The bound, $O^*(dk/\beta)$, is optimal and linear in number of parameters. It applies to many stochastic models including a broad class Ad-mixtures. To demonstrate the generality of the approach we specialize the setting to Mixed Membership Stochastic Block Models(MMSB) and show for the first time that if an MMSB has $k$ blocks, the sample complexity is $O^*(k^2)$ under usual assumptions.

Tue 14 July 8:00 - 8:45 PDT

Nonparametric Score Estimators

Yuhao Zhou · Jiaxin Shi · Jun Zhu

Estimating the score, i.e., the gradient of log density function, from a set of samples generated by an unknown distribution is a fundamental task in inference and learning of probabilistic models that involve flexible yet intractable densities. Kernel estimators based on Stein's methods or score matching have shown promise, however their theoretical properties and relationships have not been fully-understood. We provide a unifying view of these estimators under the framework of regularized nonparametric regression. It allows us to analyse existing estimators and construct new ones with desirable properties by choosing different hypothesis spaces and regularizers. A unified convergence analysis is provided for such estimators. Finally, we propose score estimators based on iterative regularization that enjoy computational benefits from curl-free kernels and fast convergence.

Tue 14 July 8:00 - 8:45 PDT

PoWER-BERT: Accelerating BERT Inference via Progressive Word-vector Elimination

Saurabh Goyal · Anamitra Roy Choudhury · Saurabh Raje · Venkatesan Chakaravarthy · Yogish Sabharwal · Ashish Verma

We develop a novel method, called PoWER-BERT, for improving the inference time of the popular BERT model, while maintaining the accuracy. It works by: a) exploiting redundancy pertaining to word-vectors (intermediate encoder outputs) and eliminating the redundant vectors. b) determining which word-vectors to eliminate by developing a strategy for measuring their significance, based on the self-attention mechanism. c) learning how many word-vectors to eliminate by augmenting the BERT model and the loss function. Experiments on the standard GLUE benchmark shows that PoWER-BERT achieves up to 4.5x reduction in inference time over BERT with < 1% loss in accuracy. We show that PoWER-BERT offers significantly better trade-off between accuracy and inference time compared to prior methods. We demonstrate that our method attains up to 6.8x reduction in inference time with < 1% loss in accuracy when applied over ALBERT, a highly compressed version of BERT. The code for PoWER-BERT is publicly available at https://github.com/IBM/PoWER-BERT.

Tue 14 July 8:00 - 8:45 PDT

RIFLE: Backpropagation in Depth for Deep Transfer Learning through Re-Initializing the Fully-connected LayEr

Xingjian Li · Haoyi Xiong · Haozhe An · Cheng-Zhong Xu · Dejing Dou

Fine-tuning the deep convolution neural network (CNN) using a pre-trained model helps transfer knowledge learned from larger datasets to the target task. While the accuracy could be largely improved even when the training dataset is small, the transfer learning outcome is similar with the pre-trained one with closed CNN weights[17], as the backpropagation here brings less updates to deeper CNN layers. In this work, we propose RIFLE - a simple yet effective strategy that deepens backpropagation in transfer learning settings, through periodically ReInitializing the Fully-connected LayEr with random scratch during the fine-tuning procedure. RIFLE brings significant perturbation to the backpropagation process and leads to deep CNN weights update, while the affects of perturbation can be easily converged throughout the overall learning procedure. The experiments show that the use of RIFLE significantly improves deep transfer learning accuracy on a wide range of datasets, outperforming known tricks for the similar purpose, such as dropout, dropconnect, stochastic depth, and cyclic learning rate, under the same settings with 0.5%-2% higher testing accuracy. Empirical cases and ablation studies further indicate RIFLE brings meaningful updates to deep CNN layers with accuracy improved.

Tue 14 July 8:00 - 8:45 PDT

Scalable Identification of Partially Observed Systems with Certainty-Equivalent EM

Kunal Menda · Jean de Becdelievre · Jayesh K. Gupta · Ilan Kroo · Mykel Kochenderfer · Zachary Manchester

System identification is a key step for model-based control, estimator design, and output prediction. This work considers the offline identification of partially observed nonlinear systems. We empirically show that the certainty-equivalent approximation to expectation-maximization can be a reliable and scalable approach for high-dimensional deterministic systems, which are common in robotics. We formulate certainty-equivalent expectation-maximization as block coordinate-ascent, and provide an efficient implementation. The algorithm is tested on a simulated system of coupled Lorenz attractors, demonstrating its ability to identify high-dimensional systems that can be intractable for particle-based approaches. Our approach is also used to identify the dynamics of an aerobatic helicopter. By augmenting the state with unobserved fluid states, a model is learned that predicts the acceleration of the helicopter better than state-of-the-art approaches. The codebase for this work is available at https://github.com/sisl/CEEM.

Tue 14 July 8:00 - 8:45 PDT

Working Memory Graphs

Ricky Loynd · Roland Fernandez · Asli Celikyilmaz · Adith Swaminathan · Matthew Hausknecht

Transformers have increasingly outperformed gated RNNs in obtaining new state-of-the-art results on supervised tasks involving text sequences. Inspired by this trend, we study the question of how Transformer-based models can improve the performance of sequential decision-making agents. We present the Working Memory Graph (WMG), an agent that employs multi-head self-attention to reason over a dynamic set of vectors representing observed and recurrent state. We evaluate WMG in three environments featuring factored observation spaces: a Pathfinding environment that requires complex reasoning over past observations, BabyAI gridworld levels that involve variable goals, and Sokoban which emphasizes future planning. We find that the combination of WMG's Transformer-based architecture with factored observation spaces leads to significant gains in learning efficiency compared to baseline architectures across all tasks. WMG demonstrates how Transformer-based models can dramatically boost sample efficiency in RL environments for which observations can be factored.

Tue 14 July 9:00 - 9:45 PDT

Adversarial Attacks on Probabilistic Autoregressive Forecasting Models

Raphaël Dang-Nhu · Gagandeep Singh · Pavol Bielik · Martin Vechev

We develop an effective generation of adversarial attacks on neural models that output a sequence of probability distributions rather than a sequence of single values. This setting includes the recently proposed deep probabilistic autoregressive forecasting models that estimate the probability distribution of a time series given its past and achieve state-of-the-art results in a diverse set of application domains. The key technical challenge we address is how to effectively differentiate through the Monte-Carlo estimation of statistics of the output sequence joint distribution. Additionally, we extend prior work on probabilistic forecasting to the Bayesian setting which allows conditioning on future observations, instead of only on past observations. We demonstrate that our approach can successfully generate attacks with small input perturbations in two challenging tasks where robust decision making is crucial -- stock market trading and prediction of electricity consumption.

Tue 14 July 9:00 - 9:45 PDT

Fiduciary Bandits

Gal Bahar · Omer Ben-Porat · Kevin Leyton-Brown · Moshe Tennenholtz

Recommendation systems often face exploration-exploitation tradeoffs: the system can only learn about the desirability of new options by recommending them to some user. Such systems can thus be modeled as multi-armed bandit settings; however, users are self-interested and cannot be made to follow recommendations. We ask whether exploration can nevertheless be performed in a way that scrupulously respects agents' interests---i.e., by a system that acts as a fiduciary. More formally, we introduce a model in which a recommendation system faces an exploration-exploitation tradeoff under the constraint that it can never recommend any action that it knows yields lower reward in expectation than an agent would achieve if it acted alone. Our main contribution is a positive result: an asymptotically optimal, incentive compatible, and ex-ante individually rational recommendation algorithm.

Tue 14 July 9:00 - 9:45 PDT

Two Simple Ways to Learn Individual Fairness Metrics from Data

Debarghya Mukherjee · Mikhail Yurochkin · Moulinath Banerjee · Yuekai Sun

Individual fairness is an intuitive definition of algorithmic fairness that addresses some of the drawbacks of group fairness. Despite its benefits, it depends on a task specific fair metric that encodes our intuition of what is fair and unfair for the ML task at hand, and the lack of a widely accepted fair metric for many ML tasks is the main barrier to broader adoption of individual fairness. In this paper, we present two simple ways to learn fair metrics from a variety of data types. We show empirically that fair training with the learned metrics leads to improved fairness on three machine learning tasks susceptible to gender and racial biases. We also provide theoretical guarantees on the statistical performance of both approaches.

Tue 14 July 9:00 - 9:45 PDT

Variable Skipping for Autoregressive Range Density Estimation

Eric Liang · Zongheng Yang · Ion Stoica · Pieter Abbeel · Yan Duan · Peter Chen

Deep autoregressive models compute point likelihood estimates of individual data points. However, many applications (i.e., database cardinality estimation), require estimating range densities, a capability that is under-explored by current neural density estimation literature. In these applications, fast and accurate range density estimates over high-dimensional data directly impact user-perceived performance. In this paper, we explore a technique for accelerating range density estimation over deep autoregressive models. This technique, called variable skipping, exploits the sparse structure of range density queries to avoid sampling unnecessary variables during approximate inference. We show that variable skipping provides 10-100x efficiency improvements when targeting challenging high-quantile error metrics, enables complex applications such as text pattern matching, and can be realized via a simple data augmentation procedure without changing the usual maximum likelihood objective.

Tue 14 July 10:00 - 10:45 PDT

Incremental Sampling Without Replacement for Sequence Models

Kensen Shi · David Bieber · Charles Sutton

Sampling is a fundamental technique, and sampling without replacement is often desirable when duplicate samples are not beneficial. Within machine learning, sampling is useful for generating diverse outputs from a trained model. We present an elegant procedure for sampling without replacement from a broad class of randomized programs, including generative neural models that construct outputs sequentially. Our procedure is efficient even for exponentially-large output spaces. Unlike prior work, our approach is incremental, i.e., samples can be drawn one at a time, allowing for increased flexibility. We also present a new estimator for computing expectations from samples drawn without replacement. We show that incremental sampling without replacement is applicable to many domains, e.g., program synthesis and combinatorial optimization.

Tue 14 July 10:00 - 10:45 PDT

Learning To Stop While Learning To Predict

Xinshi Chen · Hanjun Dai · Yu Li · Xin Gao · Le Song

There is a recent surge of interest in designing deep architectures based on the update steps in traditional algorithms, or learning neural networks to improve and replace traditional algorithms. While traditional algorithms have certain stopping criteria for outputting results at different iterations, many algorithm-inspired deep models are restricted to a fixed-depth'' for all inputs. Similar to algorithms, the optimal depth of a deep architecture may be different for different input instances, either to avoidover-thinking'', or because we want to compute less for operations converged already. In this paper, we tackle this varying depth problem using a steerable architecture, where a feed-forward deep model and a variational stopping policy are learned together to sequentially determine the optimal number of layers for each input instance. Training such architecture is very challenging. We provide a variational Bayes perspective and design a novel and effective training procedure which decomposes the task into an oracle model learning stage and an imitation stage. Experimentally, we show that the learned deep model along with the stopping policy improves the performances on a diverse set of tasks, including learning sparse recovery, few-shot meta learning, and computer vision tasks.

Tue 14 July 10:00 - 10:45 PDT

Revisiting Spatial Invariance with Low-Rank Local Connectivity

Gamaleldin Elsayed · Prajit Ramachandran · Jon Shlens · Simon Kornblith

Convolutional neural networks are among the most successful architectures in deep learning with this success at least partially attributable to the efficacy of spatial invariance as an inductive bias. Locally connected layers, which differ from convolutional layers only in their lack of spatial invariance, usually perform poorly in practice. However, these observations still leave open the possibility that some degree of relaxation of spatial invariance may yield a better inductive bias than either convolution or local connectivity. To test this hypothesis, we design a method to relax the spatial invariance of a network layer in a controlled manner; we create a \textit{low-rank} locally connected layer, where the filter bank applied at each position is constructed as a linear combination of basis set of filter banks with spatially varying combining weights. By varying the number of basis filter banks, we can control the degree of relaxation of spatial invariance. In experiments with small convolutional networks, we find that relaxing spatial invariance improves classification accuracy over both convolution and locally connected layers across MNIST, CIFAR-10, and CelebA datasets, thus suggesting that spatial invariance may be an overly restrictive prior.

Tue 14 July 10:00 - 10:45 PDT

A Sample Complexity Separation between Non-Convex and Convex Meta-Learning

Nikunj Umesh Saunshi · Yi Zhang · Mikhail Khodak · Sanjeev Arora

One popular trend in meta-learning is to learn from many training tasks a common initialization for a gradient-based method that can be used to solve a new task with few samples. The theory of meta-learning is still in its early stages, with several recent learning-theoretic analyses of methods such as Reptile [Nichol et al., 2018] being for {\em convex models}. This work shows that convex-case analysis might be insufficient to understand the success of meta-learning, and that even for non-convex models it is important to look inside the optimization black-box, specifically at properties of the optimization trajectory. We construct a simple meta-learning instance that captures the problem of one-dimensional subspace learning. For the convex formulation of linear regression on this instance, we show that the new task sample complexity of any {\em initialization-based meta-learning} algorithm is $\Omega(d)$, where $d$ is the input dimension. In contrast, for the non-convex formulation of a two layer linear network on the same instance, we show that both Reptile and multi-task representation learning can have new task sample complexity of $O(1)$, demonstrating a separation from convex meta-learning. Crucially, analyses of the training dynamics of these methods reveal that they can meta-learn the correct subspace onto which the data should be projected.

Tue 14 July 10:00 - 10:45 PDT

Generalizing Convolutional Neural Networks for Equivariance to Lie Groups on Arbitrary Continuous Data

Marc Finzi · Samuel Stanton · Pavel Izmailov · Andrew Wilson

The translation equivariance of convolutional layers enables CNNs to generalize well on image problems. While translation equivariance provides a powerful inductive bias for images, we often additionally desire equivariance to other transformations, such as rotations, especially for non-image data. We propose a general method to construct a convolutional layer that is equivariant to transformations from any specified Lie group with a surjective exponential map. Incorporating equivariance to a new group requires implementing only the group exponential and logarithm maps, enabling rapid prototyping. Showcasing the simplicity and generality of our method, we apply the same model architecture to images, ball-and-stick molecular data, and Hamiltonian dynamical systems. For Hamiltonian systems, the equivariance of our models is especially impactful, leading to exact conservation of linear and angular momentum.

Tue 14 July 10:00 - 10:45 PDT

Outstanding Paper Honorable Mention
Generative Pretraining From Pixels

Mark Chen · Alec Radford · Rewon Child · Jeffrey K Wu · Heewoo Jun · David Luan · Ilya Sutskever

Inspired by progress in unsupervised representation learning for natural language, we examine whether similar models can learn useful representations for images. We train a sequence Transformer to auto-regressively predict pixels, without incorporating knowledge of the 2D input structure. Despite training on low-resolution ImageNet without labels, we find that a GPT-2 scale model learns strong image representations as measured by linear probing, fine-tuning, and low-data classification. On CIFAR-10, we achieve 96.3% accuracy with a linear probe, outperforming a supervised Wide ResNet, and 99.0% accuracy with full fine-tuning, matching the top supervised pre-trained models. We are also competitive with self-supervised benchmarks on ImageNet when substituting pixels for a VQVAE encoding, achieving 69.0% top-1 accuracy on a linear probe of our features.

Tue 14 July 10:00 - 10:45 PDT

Generative Teaching Networks: Accelerating Neural Architecture Search by Learning to Generate Synthetic Training Data

Felipe Petroski Such · Aditya Rawal · Joel Lehman · Kenneth Stanley · Jeffrey Clune

This paper investigates the intriguing question of whether we can create learning algorithms that automatically generate training data, learning environments, and curricula in order to help AI agents rapidly learn. We show that such algorithms are possible via Generative Teaching Networks (GTNs), a general approach that is, in theory, applicable to supervised, unsupervised, and reinforcement learning, although our experiments only focus on the supervised case. GTNs are deep neural networks that generate data and/or training environments that a learner (e.g. a freshly initialized neural network) trains on for a few SGD steps before being tested on a target task. We then differentiate \emph{through the entire learning process} via meta-gradients to update the GTN parameters to improve performance on the target task. This paper introduces GTNs, discusses their potential, and showcases that they can substantially accelerate learning. We also demonstrate a practical and exciting application of GTNs: accelerating the evaluation of candidate architectures for neural architecture search (NAS). GTN-NAS improves the NAS state of the art, finding higher performing architectures when controlling for the search proposal mechanism. GTN-NAS also is competitive with the overall state of the art approaches, which achieve top performance while using orders of magnitude less computation than typical NAS methods. Speculating forward, GTNs may represent a first step toward the ambitious goal of algorithms that generate their own training data and, in doing so, open a variety of interesting new research questions and directions.

Tue 14 July 10:00 - 10:45 PDT

Global Concavity and Optimization in a Class of Dynamic Discrete Choice Models

Yiding Feng · Ekaterina Khmelnitskaya · Denis Nekipelov

Discrete choice models with unobserved heterogeneity are commonly used Econometric models for dynamic Economic behavior which have been adopted in practice to predict behavior of individuals and firms from schooling and job choices to strategic decisions in market competition. These models feature optimizing agents who choose among a finite set of options in a sequence of periods and receive choice-specific payoffs that depend on both variables that are observed by the agent and recorded in the data and variables that are only observed by the agent but not recorded in the data. Existing work in Econometrics assumes that optimizing agents are fully rational and requires finding a functional fixed point to find the optimal policy. We show that in an important class of discrete choice models the value function is globally concave in the policy. That means that simple algorithms that do not require fixed point computation, such as the policy gradient algorithm, globally converge to the optimal policy. This finding can both be used to relax behavioral assumption regarding the optimizing agents and to facilitate Econometric analysis of dynamic behavior. In particular, we demonstrate significant computational advantages in using a simple implementation policy gradient algorithm over existing “nested fixed point” algorithms used in Econometrics.

Tue 14 July 10:00 - 10:45 PDT

Logarithmic Regret for Adversarial Online Control

Dylan Foster · Max Simchowitz

We introduce a new algorithm for online linear-quadratic control in a known system subject to adversarial disturbances. Existing regret bounds for this setting scale as $\sqrt{T}$ unless strong stochastic assumptions are imposed on the disturbance process. We give the first algorithm with logarithmic regret for arbitrary adversarial disturbance sequences, provided the state and control costs are given by known quadratic functions. Our algorithm and analysis use a characterization for the optimal offline control law to reduce the online control problem to (delayed) online learning with approximate advantage functions. Compared to previous techniques, our approach does not need to control movement costs for the iterates, leading to logarithmic regret.

Tue 14 July 10:00 - 10:45 PDT

Online Control of the False Coverage Rate and False Sign Rate

Asaf Weinstein · Aaditya Ramdas

The reproducibility debate has caused a renewed interest in changing how one reports uncertainty, from $p$-value for testing a null hypothesis to a confidence interval (CI) for the corresponding parameter. When CIs for multiple selected parameters are being reported, the analog of the false discovery rate (FDR) is the false coverage rate (FCR), which is the expected ratio of number of reported CIs failing to cover their respective parameters to the total number of reported CIs. Here, we consider the general problem of FCR control in the online setting, where one encounters an infinite sequence of fixed unknown parameters ordered by time. We propose a novel solution to the problem which only requires the scientist to be able to construct marginal CIs. As special cases, our framework yields algorithms for online FDR control and online sign-classification procedures that control the false sign rate (FSR). All of our methodology applies equally well to prediction intervals, having particular implications for selective conformal inference.

Tue 14 July 10:00 - 10:45 PDT

On the Theoretical Properties of the Network Jackknife

Qiaohui Lin · Robert Lunde · Purnamrita Sarkar

We study the properties of a leave-node-out jackknife procedure for network data. Under the sparse graphon model, we prove an Efron-Stein-type inequality, showing that the network jackknife leads to conservative estimates of the variance (in expectation) for any network functional that is invariant to node permutation. For a general class of count functionals, we also establish consistency of the network jackknife. We complement our theoretical analysis with a range of simulated and real-data examples and show that the network jackknife offers competitive performance in cases where other resampling methods are known to be valid. In fact, for several network statistics, we see that the jackknife provides more accurate inferences compared to related methods such as subsampling.

Tue 14 July 10:00 - 10:45 PDT

Optimal Robust Learning of Discrete Distributions from Batches

Ayush Jain · Alon Orlitsky

Many applications, including natural language processing, sensor networks, collaborative filtering, and federated learning, call for estimating discrete distributions from data collected in batches, some of which may be untrustworthy, erroneous, faulty, or even adversarial. Previous estimators for this setting ran in exponential time, and for some regimes required a suboptimal number of batches. We provide the first polynomial-time estimator that is optimal in the number of batches and achieves essentially the best possible estimation accuracy.

Tue 14 July 10:00 - 10:45 PDT

Responsive Safety in Reinforcement Learning by PID Lagrangian Methods

Adam Stooke · Joshua Achiam · Pieter Abbeel

Lagrangian methods are widely used algorithms for constrained optimization problems, but their learning dynamics exhibit oscillations and overshoot which, when applied to safe reinforcement learning, leads to constraint-violating behavior during agent training. We address this shortcoming by proposing a novel Lagrange multiplier update method that utilizes derivatives of the constraint function. We take a controls perspective, wherein the traditional Lagrange multiplier update behaves as \emph{integral} control; our terms introduce \emph{proportional} and \emph{derivative} control, achieving favorable learning dynamics through damping and predictive measures. We apply our PID Lagrangian methods in deep RL, setting a new state of the art in Safety Gym, a safe RL benchmark. Lastly, we introduce a new method to ease controller tuning by providing invariance to the relative numerical scales of reward and cost. Our extensive experiments demonstrate improved performance and hyperparameter robustness, while our algorithms remain nearly as simple to derive and implement as the traditional Lagrangian approach.

Tue 14 July 10:00 - 10:45 PDT

Robust One-Bit Recovery via ReLU Generative Networks: Near-Optimal Statistical Rate and Global Landscape Analysis

Shuang Qiu · Xiaohan Wei · Zhuoran Yang

We study the robust one-bit compressed sensing problem whose goal is to design an algorithm that faithfully recovers any sparse target vector $\theta_0\in\mathbb{R}^d$ \textit{uniformly} via $m$ quantized noisy measurements. Specifically, we consider a new framework for this problem where the sparsity is implicitly enforced via mapping a low dimensional representation $x_0 \in \mathbb{R}^k$ through a known $n$-layer ReLU generative network $G:\mathbb{R}^k\rightarrow\mathbb{R}^d$ such that $\theta_0 = G(x_0)$. Such a framework poses low-dimensional priors on $\theta_0$ without a known sparsity basis. We propose to recover the target $G(x_0)$ solving an unconstrained empirical risk minimization (ERM). Under a weak \textit{sub-exponential measurement assumption}, we establish a joint statistical and computational analysis. In particular, we prove that the ERM estimator in this new framework achieves a statistical rate of $m=\widetilde{\mathcal{O}}(kn \log d /\varepsilon^2)$ recovering any $G(x_0)$ uniformly up to an error $\varepsilon$. When the network is shallow (i.e., $n$ is small), we show this rate matches the information-theoretic lower bound up to logarithm factors on $\varepsilon^{-1}$. From the lens of computation, we prove that under proper conditions on the network weights, our proposed empirical risk, despite non-convexity, has no stationary point outside of small neighborhoods around the true representation $x_0$ and its negative multiple; furthermore, we show that the global minimizer of the empirical risk stays within the neighborhood around $x_0$ rather than its negative multiple under further assumptions on weights.

Tue 14 July 10:00 - 10:45 PDT

SCAFFOLD: Stochastic Controlled Averaging for Federated Learning

Sai Praneeth Reddy Karimireddy · Satyen Kale · Mehryar Mohri · Sashank Jakkam Reddi · Sebastian Stich · Ananda Theertha Suresh

Federated learning is a key scenario in modern large-scale machine learning where the data remains distributed over a large number of clients and the task is to learn a centralized model without transmitting the client data. The standard optimization algorithm used in this setting is Federated Averaging (FedAvg) due to its low communication cost. We obtain a tight characterization of the convergence of FedAvg and prove that heterogeneity (non-iid-ness) in the client's data results in a `drift' in the local updates resulting in poor performance.

As a solution, we propose a new algorithm (SCAFFOLD) which uses control variates (variance reduction) to correct for the `client drift'. We prove that SCAFFOLD requires significantly fewer communication rounds and is not affected by data heterogeneity or client sampling. Further, we show that (for quadratics) SCAFFOLD can take advantage of similarity in the client's data yielding even faster convergence. The latter is the first result to quantify the usefulness of local-steps in distributed optimization.

Tue 14 July 10:00 - 10:45 PDT

Train Big, Then Compress: Rethinking Model Size for Efficient Training and Inference of Transformers

Zhuohan Li · Eric Wallace · Sheng Shen · Kevin Lin · Kurt Keutzer · Dan Klein · Joseph Gonzalez

Since hardware resources are limited, the objective of training deep learning models is typically to maximize accuracy subject to the time and memory constraints of training and inference. We study the impact of model size in this setting, focusing on Transformer models for NLP tasks that are limited by compute: self-supervised pretraining and high-resource machine translation. We first show that even though smaller Transformer models execute faster per iteration, wider and deeper models converge in significantly fewer steps. Moreover, this acceleration in convergence typically outpaces the additional computational overhead of using larger models. Therefore, the most compute-efficient training strategy is to counterintuitively train extremely large models but stop after a small number of iterations. This leads to an apparent trade-off between the training efficiency of large Transformer models and the inference efficiency of small Transformer models. However, we show that large models are more robust to compression techniques such as quantization and pruning than small models. Consequently, one can get the best of both worlds: heavily compressed, large models achieve higher accuracy than lightly compressed, small models.

Tue 14 July 10:00 - 10:45 PDT

Training Deep Energy-Based Models with f-Divergence Minimization

Lantao Yu · Yang Song · Jiaming Song · Stefano Ermon

Deep energy-based models (EBMs) are very flexible in distribution parametrization but computationally challenging because of the intractable partition function. They are typically trained via maximum likelihood, using contrastive divergence to approximate the gradient of the KL divergence between data and model distribution. While KL divergence has many desirable properties, other f-divergences have shown advantages in training implicit density generative models such as generative adversarial networks. In this paper, we propose a general variational framework termed f-EBM to train EBMs using any desired f-divergence. We introduce a corresponding optimization algorithm and prove its local convergence property with non-linear dynamical systems theory. Experimental results demonstrate the superiority of f-EBM over contrastive divergence, as well as the benefits of training EBMs using f-divergences other than KL.

Tue 14 July 10:00 - 10:45 PDT

When are Non-Parametric Methods Robust?

Robi Bhattacharjee · Kamalika Chaudhuri

A growing body of research has shown that many classifiers are susceptible to adversarial examples -- small strategic modifications to test inputs that lead to misclassification. In this work, we study general non-parametric methods, with a view towards understanding when they are robust to these modifications. We establish general conditions under which non-parametric methods are r-consistent -- in the sense that they converge to optimally robust and accurate classifiers in the large sample limit.

Concretely, our results show that when data is well-separated, nearest neighbors and kernel classifiers are r-consistent, while histograms are not. For general data distributions, we prove that preprocessing by Adversarial Pruning (Yang et. al., 2019)-- that makes data well-separated -- followed by nearest neighbors or kernel classifiers also leads to r-consistency.

Tue 14 July 10:00 - 10:45 PDT

XTREME: A Massively Multilingual Multi-task Benchmark for Evaluating Cross-lingual Generalisation

Junjie Hu · Sebastian Ruder · Aditya Siddhant · Graham Neubig · Orhan Firat · Melvin Johnson

Much recent progress in applications of machine learning models to NLP has been driven by benchmarks that evaluate models across a wide variety of tasks. However, these broad-coverage benchmarks have been mostly limited to English, and despite an increasing interest in multilingual models, a benchmark that enables the comprehensive evaluation of such methods on a diverse range of languages and tasks is still missing. To this end, we introduce the Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark, a multi-task benchmark for evaluating the cross-lingual generalization capabilities of multilingual representations across 40 languages and 9 tasks. We demonstrate that while models tested on English reach human performance on many tasks, there is still a sizable gap in the performance of cross-lingually transferred models, particularly on syntactic and sentence retrieval tasks. There is also a wide spread of results across languages. We will release the benchmark to encourage research on cross-lingual learning methods that transfer linguistic knowledge across a diverse and representative set of languages and tasks.