Session
Poster Session 12
Data Amplification: Instance-Optimal Property Estimation
Yi Hao · Alon Orlitsky
The best-known and most commonly used technique for distribution-property estimation uses a plug-in estimator, with empirical frequency replacing the underlying distribution. We present novel linear-time-computable estimators that significantly ``amplify'' the effective amount of data available. For a large variety of distribution properties including four of the most popular ones and for every underlying distribution, they achieve the accuracy that the empirical-frequency plug-in estimators would attain using a logarithmic-factor more samples. Specifically, for Shannon entropy and a broad class of Lipschitz properties including the $L_1$ distance to a fixed distribution, the new estimators use $n$ samples to achieve the accuracy attained by the empirical estimators with $n\log n$ samples. For support-size and coverage, the new estimators use $n$ samples to achieve the performance of empirical frequency with sample size $n$ times the logarithm of the property value. Significantly strengthening the traditional min-max formulation, these results hold not only for the worst distributions, but for each and every underlying distribution. Furthermore, the logarithmic amplification factors are optimal. Experiments on a wide variety of distributions show that the new estimators outperform the previous state-of-the-art estimators designed for each specific property.
Private Reinforcement Learning with PAC and Regret Guarantees
Giuseppe Vietri · Borja de Balle Pigem · Akshay Krishnamurthy · Steven Wu
Motivated by high-stakes decision-making domains like personalized medicine where user information is inherently sensitive, we design privacy preserving exploration policies for episodic reinforcement learning (RL). We first provide a meaningful privacy formulation using the notion of joint differential privacy (JDP)--a strong variant of differential privacy for settings where each user receives their own sets of output (e.g., policy recommendations). We then develop a private optimism-based learning algorithm that simultaneously achieves strong PAC and regret bounds, and enjoys a JDP guarantee. Our algorithm only pays for a moderate privacy cost on exploration: in comparison to the non-private bounds, the privacy parameter only appears in lower-order terms. Finally, we present lower bounds on sample complexity and regret for reinforcement learning subject to JDP.
Self-Concordant Analysis of Frank-Wolfe Algorithms
Pavel Dvurechenskii · Petr Ostroukhov · Kamil Safin · Shimrit Shtern · Mathias Staudigl
Projection-free optimization via different variants of the Frank-Wolfe (FW), a.k.a. Conditional Gradient method has become one of the cornerstones in optimization for machine learning since in many cases the linear minimization oracle is much cheaper to implement than projections and some sparsity needs to be preserved. In a number of applications, e.g. Poisson inverse problems or quantum state tomography, the loss is given by a self-concordant (SC) function having unbounded curvature, implying absence of theoretical guarantees for the existing FW methods. We use the theory of SC functions to provide a new adaptive step size for FW methods and prove global convergence rate O(1/k) after k iterations. If the problem admits a stronger local linear minimization oracle, we construct a novel FW method with linear convergence rate for SC functions.
Accelerated Stochastic Gradient-free and Projection-free Methods
Feihu Huang · Lue Tao · Songcan Chen
In the paper, we propose a class of accelerated stochastic gradient-free and projection-free (a.k.a., zeroth-order Frank-Wolfe) methods to solve the constrained stochastic and finite-sum nonconvex optimization. Specifically, we propose an accelerated stochastic zeroth-order Frank-Wolfe (Acc-SZOFW) method based on the variance reduced technique of SPIDER/SpiderBoost and a novel momentum accelerated technique. Moreover, under some mild conditions, we prove that the Acc-SZOFW has the function query complexity of $O(d\sqrt{n}\epsilon^{-2})$ for finding an $\epsilon$-stationary point in the finite-sum problem, which improves the exiting best result by a factor of $O(\sqrt{n}\epsilon^{-2})$, and has the function query complexity of $O(d\epsilon^{-3})$ in the stochastic problem, which improves the exiting best result by a factor of $O(\epsilon^{-1})$. To relax the large batches required in the Acc-SZOFW, we further propose a novel accelerated stochastic zeroth-order Frank-Wolfe (Acc-SZOFW*) based on a new variance reduced technique of STORM, which still reaches the function query complexity of $O(d\epsilon^{-3})$ in the stochastic problem without relying on any large batches. In particular, we present an accelerated framework of the Frank-Wolfe methods based on the proposed momentum accelerated technique. The extensive experimental results on black-box adversarial attack and robust black-box classification demonstrate the efficiency of our algorithms.
Characterizing Distribution Equivalence and Structure Learning for Cyclic and Acyclic Directed Graphs
AmirEmad Ghassami · Alan Yang · Negar Kiyavash · Kun Zhang
The main approach to defining equivalence among acyclic directed causal graphical models is based on the conditional independence relationships in the distributions that the causal models can generate, in terms of the Markov equivalence. However, it is known that when cycles are allowed in the causal structure, conditional independence may not be a suitable notion for equivalence of two structures, as it does not reflect all the information in the distribution that is useful for identification of the underlying structure. In this paper, we present a general, unified notion of equivalence for linear Gaussian causal directed graphical models, whether they are cyclic or acyclic. In our proposed definition of equivalence, two structures are equivalent if they can generate the same set of data distributions. We also propose a weaker notion of equivalence called quasi-equivalence, which we show is the extent of identifiability from observational data. We propose analytic as well as graphical methods for characterizing the equivalence of two structures. Additionally, we propose a score-based method for learning the structure from observational data, which successfully deals with both acyclic and cyclic structures.
Collaborative Machine Learning with Incentive-Aware Model Rewards
Rachael Hwee Ling Sim · Yehong Zhang · Mun Choon Chan · Bryan Kian Hsiang Low
Collaborative machine learning (ML) is an appealing paradigm to build high-quality ML models by training on the aggregated data from many parties. However, these parties are only willing to share their data when given enough incentives, such as a guaranteed fair reward based on their contributions. This motivates the need for measuring a party's contribution and designing an incentive-aware reward scheme accordingly. This paper proposes to value a party's reward based on Shapley value and information gain on model parameters given its data. Subsequently, we give each party a model as a reward. To formally incentivize the collaboration, we define some desirable properties (e.g., fairness and stability) which are inspired by cooperative game theory but adapted for our model reward that is uniquely freely replicable. Then, we propose a novel model reward scheme to satisfy fairness and trade off between the desirable properties via an adjustable parameter. The value of each party's model reward determined by our scheme is attained by injecting Gaussian noise to the aggregated training data with an optimized noise variance. We empirically demonstrate interesting properties of our scheme and evaluate its performance using synthetic and real-world datasets.
Distributionally Robust Policy Evaluation and Learning in Offline Contextual Bandits
Nian Si · Fan Zhang · Zhengyuan Zhou · Jose Blanchet
Policy learning using historical observational data is an important problem that has found widespread applications. However, existing literature rests on the crucial assumption that the future environment where the learned policy will be deployed is the same as the past environment that has generated the data–an assumption that is often false or too coarse an approximation. In this paper, we lift this assumption and aim to learn a distributionally robust policy with bandit observational data. We propose a novel learning algorithm that is able to learn a robust policy to adversarial perturbations and unknown covariate shifts. We first present a policy evaluation procedure in the ambiguous environment and also give a heuristic algorithm to solve the distributionally robust policy learning problems efficiently. Additionally, we provide extensive simulations to demonstrate the robustness of our policy.
Fair Generative Modeling via Weak Supervision
Kristy Choi · Aditya Grover · Trisha Singh · Rui Shu · Stefano Ermon
Real-world datasets are often biased with respect to key demographic factors such as race and gender. Due to the latent nature of the underlying factors, detecting and mitigating bias is especially challenging for unsupervised machine learning. We present a weakly supervised algorithm for overcoming dataset bias for deep generative models. Our approach requires access to an additional small, unlabeled reference dataset as the supervision signal, thus sidestepping the need for explicit labels on the underlying bias factors. Using this supplementary dataset, we detect the bias in existing datasets via a density ratio technique and learn generative models which efficiently achieve the twin goals of: 1) data efficiency by using training examples from both biased and reference datasets for learning; and 2) data generation close in distribution to the reference dataset at test time. Empirically, we demonstrate the efficacy of our approach which reduces bias w.r.t. latent factors by an average of up to 34.6% over baselines for comparable image generation using generative adversarial networks.
Generative flows models enjoy the properties of tractable exact likelihood and efficient sampling, which are composed of a sequence of invertible functions. In this paper, we incorporate matrix exponential into generative flows. Matrix exponential is a map from matrices to invertible matrices, this property is suitable for generative flows. Based on matrix exponential, we propose matrix exponential coupling layers that are a general case of affine coupling layers and matrix exponential invertible 1 x 1 convolutions that do not collapse during training. And we modify the networks architecture to make training stable and significantly speed up the training process. Our experiments show that our model achieves great performance on density estimation amongst generative flows models.
Implicit Learning Dynamics in Stackelberg Games: Equilibria Characterization, Convergence Analysis, and Empirical Study
Tanner Fiez · Benjamin Chasnov · Lillian Ratliff
Contemporary work on learning in continuous games has commonly overlooked the hierarchical decision-making structure present in machine learning problems formulated as games, instead treating them as simultaneous play games and adopting the Nash equilibrium solution concept. We deviate from this paradigm and provide a comprehensive study of learning in Stackelberg games. This work provides insights into the optimization landscape of zero-sum games by establishing connections between Nash and Stackelberg equilibria along with the limit points of simultaneous gradient descent. We derive novel gradient-based learning dynamics emulating the natural structure of a Stackelberg game using the implicit function theorem and provide convergence analysis for deterministic and stochastic updates for zero-sum and general-sum games. Notably, in zero-sum games using deterministic updates, we show the only critical points the dynamics converge to are Stackelberg equilibria and provide a local convergence rate. Empirically, our learning dynamics mitigate rotational behavior and exhibit benefits for training generative adversarial networks compared to simultaneous gradient descent.
MoNet3D: Towards Accurate Monocular 3D Object Localization in Real Time
XICHUAN ZHOU · YiCong Peng · Chunqiao Long · Fengbo Ren · Cong Shi
Monocular multi-object detection and localization in 3D space has been proven to be a challenging task. The MoNet3D algorithm is a novel and effective framework that can predict the 3D position of each object in a monocular image, and draw a 3D bounding box on each object. The MoNet3D method incorporates the prior knowledge of spatial geometric correlation of neighboring objects into the deep neural network training process, in order to improve the accuracy of 3D object localization. Experiments over the KITTI data set show that the accuracy of predicting the depth and horizontal coordinate of the object in 3D space can reach 96.25% and 94.74%, respectively. Meanwhile, the method can realize the real-time image processing capability of 27.85 FPS. Our code is publicly available at https://github.com/CQUlearningsystemgroup/YicongPeng
NGBoost: Natural Gradient Boosting for Probabilistic Prediction
Tony Duan · Anand Avati · Daisy Ding · Khanh K. Thai · Sanjay Basu · Andrew Ng · Alejandro Schuler
We present Natural Gradient Boosting (NGBoost), an algorithm for generic probabilistic prediction via gradient boosting. Typical regression models return a point estimate, conditional on covariates, but probabilistic regression models output a full probability distribution over the outcome space, conditional on the covariates. This allows for predictive uncertainty estimation - crucial in applications like healthcare and weather forecasting. NGBoost generalizes gradient boosting to probabilistic regression by treating the parameters of the conditional distribution as targets for a multiparameter boosting algorithm. Furthermore, we show how the Natural Gradient is required to correct the training dynamics of our multiparameter boosting approach. NGBoost can be used with any base learner, any family of distributions with continuous parameters, and any scoring rule. NGBoost matches or exceeds the performance of existing methods for probabilistic prediction while offering additional benefits in flexibility, scalability, and usability. An open-source implementation is available at github.com/stanfordmlgroup/ngboost.
Recurrent Hierarchical Topic-Guided RNN for Language Generation
Dandan Guo · Bo Chen · Ruiying Lu · Mingyuan Zhou
To simultaneously capture syntax and global semantics from a text corpus, we propose a new larger-context recurrent neural network (RNN) based language model, which extracts recurrent hierarchical semantic structure via a dynamic deep topic model to guide natural language generation. Moving beyond a conventional RNN-based language model that ignores long-range word dependencies and sentence order, the proposed model captures not only intra-sentence word dependencies, but also temporal transitions between sentences and inter-sentence topic dependencies. For inference, we develop a hybrid of stochastic-gradient Markov chain Monte Carlo and recurrent autoencoding variational Bayes. Experimental results on a variety of real-world text corpora demonstrate that the proposed model not only outperforms larger-context RNN-based language models, but also learns interpretable recurrent multilayer topics and generates diverse sentences and paragraphs that are syntactically correct and semantically coherent.
Semiparametric Nonlinear Bipartite Graph Representation Learning with Provable Guarantees
Sen Na · Yuwei Luo · Zhuoran Yang · Zhaoran Wang · Mladen Kolar
Graph representation learning is a ubiquitous task in machine learning where the goal is to embed each vertex into a low-dimensional vector space. We consider the bipartite graph and formalize its representation learning problem as a statistical estimation problem of parameters in a semiparametric exponential family distribution: the bipartite graph is assumed to be generated by a semiparametric exponential family distribution, whose parametric component is given by the proximity of outputs of two one-layer neural networks that take high-dimensional features as inputs, while nonparametric (nuisance) component is the base measure. In this setting, the representation learning problem is equivalent to recovering the weight matrices, and the main challenges of estimation arise from the nonlinearity of activation functions and the nonparametric nuisance component of the distribution. To overcome these challenges, we propose a pseudo-likelihood objective based on the rank-order decomposition technique and show that the proposed objective is strongly convex in a neighborhood around the ground truth, so that a gradient descent-based method achieves linear convergence rate. Moreover, we prove that the sample complexity of the problem is linear in dimensions (up to logarithmic factors), which is consistent with parametric Gaussian models. However, our estimator is robust to any model misspecification within the exponential family, which is validated in extensive experiments.
Semismooth Newton Algorithm for Efficient Projections onto $\ell_{1, \infty}$-norm Ball
Dejun Chu · Changshui Zhang · Shiliang Sun · Qing Tao
Structured sparsity-inducing $\ell_{1, \infty}$-norm, as a generalization of the classical $\ell_1$-norm, plays an important role in jointly sparse models which select or remove simultaneously all the variables forming a group. However, its resulting problem is more difficult to solve than the conventional $\ell_1$-norm constrained problem. In this paper, we propose an efficient algorithm for Euclidean projection onto $\ell_{1, \infty}$-norm ball. We tackle the projection problem via semismooth Newton algorithm to solve the system of semismooth equations. Meanwhile, exploiting the structure of Jacobian matrix via LU decomposition yields an equivalent algorithm which is proved to terminate after a finite number of iterations. Empirical studies demonstrate that our proposed algorithm outperforms the existing state-of-the-art solver and is promising for the optimization of learning problems with $\ell_{1, \infty}$-norm ball constraint.
Student Specialization in Deep Rectified Networks With Finite Width and Input Dimension
Yuandong Tian
We consider a deep ReLU / Leaky ReLU student network trained from the output of a fixed teacher network of the same depth, with Stochastic Gradient Descent (SGD). The student network is \emph{over-realized}: at each layer $l$, the number $n_l$ of student nodes is more than that ($m_l$) of teacher. Under mild conditions on dataset and teacher network, we prove that when the gradient is small at every data sample, each teacher node is \emph{specialized} by at least one student node \emph{at the lowest layer}. For two-layer network, such specialization can be achieved by training on any dataset of \emph{polynomial} size $\mathcal{O}( K^{5/2} d^3 \epsilon^{-1})$. until the gradient magnitude drops to $\mathcal{O}(\epsilon/K^{3/2}\sqrt{d})$. Here $d$ is the input dimension, $K = m_1 + n_1$ is the total number of neurons in the lowest layer of teacher and student. Note that we require a specific form of data augmentation and the sample complexity includes the additional data generated from augmentation. To our best knowledge, we are the first to give polynomial sample complexity for student specialization of training two-layer (Leaky) ReLU networks with finite depth and width in teacher-student setting, and finite complexity for the lowest layer specialization in multi-layer case, without parametric assumption of the input (like Gaussian). Our theory suggests that teacher nodes with large fan-out weights get specialized first when the gradient is still large, while others are specialized with small gradient, which suggests inductive bias in training. This shapes the stage of training as empirically observed in multiple previous works. Experiments on synthetic and CIFAR10 verify our findings. The code is released in \url{https://github.com/facebookresearch/luckmatters}.
Training Binary Neural Networks through Learning with Noisy Supervision
Kai Han · Yunhe Wang · Yixing Xu · Chunjing Xu · Enhua Wu · Chang Xu
This paper formalizes the binarization operations over neural networks from a learning perspective. In contrast to classical hand crafted rules (\eg hard thresholding) to binarize full-precision neurons, we propose to learn a mapping from full-precision neurons to the target binary ones. Each individual weight entry will not be binarized independently. Instead, they are taken as a whole to accomplish the binarization, just as they work together in generating convolution features. To help the training of the binarization mapping, the full-precision neurons after taking sign operations is regarded as some auxiliary supervision signal, which is noisy but still has valuable guidance. An unbiased estimator is therefore introduced to mitigate the influence of the supervision noise. Experimental results on benchmark datasets indicate that the proposed binarization technique attains consistent improvements over baselines.
Two Routes to Scalable Credit Assignment without Weight Symmetry
Daniel Kunin · Aran Nayebi · Javier Sagastuy-Brena · Surya Ganguli · Jonathan Bloom · Daniel Yamins
The neural plausibility of backpropagation has long been disputed, primarily for its use of non-local weight transport --- the biologically dubious requirement that one neuron instantaneously measure the synaptic weights of another. Until recently, attempts to create local learning rules that avoid weight transport have typically failed in the large-scale learning scenarios where backpropagation shines, e.g. ImageNet categorization with deep convolutional networks. Here, we investigate a recently proposed local learning rule that yields competitive performance with backpropagation and find that it is highly sensitive to metaparameter choices, requiring laborious tuning that does not transfer across network architecture. Our analysis indicates the underlying mathematical reason for this instability, allowing us to identify a more robust local learning rule that better transfers without metaparameter tuning. Nonetheless, we find a performance and stability gap between this local rule and backpropagation that widens with increasing model depth. We then investigate several non-local learning rules that relax the need for instantaneous weight transport into a more biologically-plausible "weight estimation" process, showing that these rules match state-of-the-art performance on deep networks and operate effectively in the presence of noisy updates. Taken together, our results suggest two routes towards the discovery of neural implementations for credit assignment without weight symmetry: further improvement of local rules so that they perform consistently across architectures and the identification of biological implementations for non-local learning mechanisms.
FormulaZero: Distributionally Robust Online Adaptation via Offline Population Synthesis
Aman Sinha · Matthew O'Kelly · Hongrui Zheng · Rahul Mangharam · John Duchi · Russ Tedrake
Balancing performance and safety is crucial to deploying autonomous vehicles in multi-agent environments. In particular, autonomous racing is a domain that penalizes safe but conservative policies, highlighting the need for robust, adaptive strategies. Current approaches either make simplifying assumptions about other agents or lack robust mechanisms for online adaptation. This work makes algorithmic contributions to both challenges. First, to generate a realistic, diverse set of opponents, we develop a novel method for self-play based on replica-exchange Markov chain Monte Carlo. Second, we propose a distributionally robust bandit optimization procedure that adaptively adjusts risk aversion relative to uncertainty in beliefs about opponents’ behaviors. We rigorously quantify the tradeoffs in performance and robustness when approximating these computations in real-time motion-planning, and we demonstrate our methods experimentally on autonomous vehicles that achieve scaled speeds comparable to Formula One racecars.
Uncertainty-Aware Lookahead Factor Models for Quantitative Investing
Lakshay Chauhan · John Alberg · Zachary Lipton
On a periodic basis, publicly traded companies report fundamentals, financial data including revenue, earnings, debt, among others. Quantitative finance research has identified several factors, functions of the reported data that historically correlate with stock market performance. In this paper, we first show through simulation that if we could select stocks via factors calculated on future fundamentals (via oracle), that our portfolios would far outperform standard factor models. Motivated by this insight, we train deep nets to forecast future fundamentals from a trailing 5-year history. We propose lookahead factor models which plug these predicted future fundamentals into traditional factors. Finally, we incorporate uncertainty estimates from both neural heteroscedastic regression and a dropout-based heuristic, improving performance by adjusting our portfolios to avert risk. In retrospective analysis, we leverage an industry-grade portfolio simulator (backtester) to show simultaneous improvement in annualized return and Sharpe ratio. Specifically, the simulated annualized return for the uncertainty-aware model is 17.7% (vs 14.0% for a standard factor model) and the Sharpe ratio is 0.84 (vs 0.52).
Generative Adversarial Imitation Learning with Neural Network Parameterization: Global Optimality and Convergence Rate
Yufeng Zhang · Qi Cai · Zhuoran Yang · Zhaoran Wang
Generative adversarial imitation learning (GAIL) demonstrates tremendous success in practice, especially when combined with neural networks. Different from reinforcement learning, GAIL learns both policy and reward function from expert (human) demonstration. Despite its empirical success, it remains unclear whether GAIL with neural networks converges to the globally optimal solution. The major difficulty comes from the nonconvex-nonconcave minimax optimization structure. To bridge the gap between practice and theory, we analyze a gradient-based algorithm with alternating updates and establish its sublinear convergence to the globally optimal solution. To the best of our knowledge, our analysis establishes the global optimality and convergence rate of GAIL with neural networks for the first time.
Parameterized Rate-Distortion Stochastic Encoder
Quan Hoang · Trung Le · Dinh Phung
We propose a novel gradient-based tractable approach for the Blahut-Arimoto (BA) algorithm to compute the rate-distortion function where the BA algorithm is fully parameterized. This results in a rich and flexible framework to learn a new class of stochastic encoders, termed PArameterized RAte-DIstortion Stochastic Encoder (PARADISE). The framework can be applied to a wide range of settings from semi-supervised, multi-task to supervised and robust learning. We show that the training objective of PARADISE can be seen as a form of regularization that helps improve generalization. With an emphasis on robust learning we further develop a novel posterior matching objective to encourage smoothness on the loss function and show that PARADISE can significantly improve interpretability as well as robustness to adversarial attacks on the CIFAR-10 and ImageNet datasets. In particular, on the CIFAR-10 dataset, our model reduces standard and adversarial error rates in comparison to the state-of-the-art by 50% and 41%, respectively without the expensive computational cost of adversarial training.
Fast OSCAR and OWL Regression via Safe Screening Rules
Runxue Bao · Bin Gu · Heng Huang
Ordered Weighted $L_{1}$ (OWL) regularized regression is a new regression analysis for high-dimensional sparse learning. Proximal gradient methods are used as standard approaches to solve OWL regression. However, it is still a burning issue to solve OWL regression due to considerable computational cost and memory usage when the feature or sample size is large. In this paper, we propose the first safe screening rule for OWL regression by exploring the order of the primal solution with the unknown order structure via an iterative strategy, which overcomes the difficulties of tackling the non-separable regularizer. It effectively avoids the updates of the parameters whose coefficients must be zero during the learning process. More importantly, the proposed screening rule can be easily applied to standard and stochastic proximal gradient methods. Moreover, we prove that the algorithms with our screening rule are guaranteed to have identical results with the original algorithms. Experimental results on a variety of datasets show that our screening rule leads to a significant computational gain without any loss of accuracy, compared to existing competitive algorithms.
Rank Aggregation from Pairwise Comparisons in the Presence of Adversarial Corruptions
Arpit Agarwal · Shivani Agarwal · Sanjeev Khanna · Prathamesh Patil
Rank aggregation from pairwise preferences has widespread applications in recommendation systems and information retrieval. Given the enormous economic and societal impact of these applications, and the consequent incentives for malicious players to manipulate ranking outcomes in their favor, an important challenge is to make rank aggregation algorithms robust to adversarial manipulations in data. In this paper, we initiate the study of robustness in rank aggregation under the popular Bradley-Terry-Luce (BTL) model for pairwise comparisons. We consider a setting where pairwise comparisons are initially generated according to a BTL model, but a fraction of these comparisons are corrupted by an adversary prior to being reported to us. We consider a strong contamination model, where an adversary having complete knowledge of the initial truthful data and the underlying true BTL parameters, can subsequently corrupt the truthful data by inserting, deleting, or changing data points. The goal is to estimate the true score/weight of each item under the BTL model, even in the presence of these corruptions. We characterize the extent of adversarial corruption under which the true BTL parameters are uniquely identifiable. We also provide a novel pruning algorithm that provably cleans the data of adversarial corruption under reasonable conditions on data generation and corruption. We corroborate our theory with experiments on both synthetic as well as real data showing that previous algorithms are vulnerable to even small amounts of corruption, whereas our algorithm can clean a reasonably high amount of corruption.
Scalable Deep Generative Modeling for Sparse Graphs
Hanjun Dai · Azade Nova · Yujia Li · Bo Dai · Dale Schuurmans
Learning graph generative models is a challenging task for deep learning and has wide applicability to a range of domains like chemistry, biology and social science. However current deep neural methods suffer from limited scalability: for a graph with n nodes and m edges, existing deep neural methods require Omega(n^2) complexity by building up the adjacency matrix. On the other hand, many real world graphs are actually sparse in the sense that m << n^2. Based on this, we develop a novel autoregressive model, named BiGG, that utilizes this sparsity to avoid generating the full adjacency matrix, and importantly reduces the graph generation time complexity to O((n + m) log n). Furthermore, during training this autoregressive model can be parallelized with O(log n) synchronization stages, which makes it much more efficient than other autoregressive models that require Omega(n). Experiments on several benchmarks show that the proposed approach not only scales to orders of magnitude larger graphs than previously possible with deep autoregressive graph generative models, but also yields better graph generation quality.
Structured Policy Iteration for Linear Quadratic Regulator
Youngsuk Park · Ryan A. Rossi · Zheng Wen · Gang Wu · Handong Zhao
Linear quadratic regulator (LQR) is one of the most popular frameworks to tackle continuous Markov decision process tasks. With its fundamental theory and tractable optimal policy, LQR has been revisited and analyzed in recent years, in terms of reinforcement learning scenarios such as the model-free or model-based setting. In this paper, we introduce the Structured Policy Iteration (S-PI) for LQR, a method capable of deriving a structured linear policy. Such a structured policy with (block) sparsity or low-rank can have significant advantages over the standard LQR policy: more interpretable, memory-efficient, and well-suited for the distributed setting. In order to derive such a policy, we first cast a regularized LQR problem when the model is known. Then, our Structured Policy Iteration (S-PI) algorithm, which takes a policy evaluation step and a policy improvement step in an iterative manner, can solve this regularized LQR efficiently. We further extend the S-PI algorithm to the model-free setting where a smoothing procedure is adopted to estimate the gradient. In both the known-model and model-free setting, we prove convergence analysis under the proper choice of parameters. Finally, the experiments demonstrate the advantages of S-PI in terms of balancing the LQR performance and level of structure by varying the weight parameter.
Task-Oriented Active Perception and Planning in Environments with Partially Known Semantics
Mahsa Ghasemi · Erdem Bulgur · Ufuk Topcu
We consider an agent that is assigned with a temporal logic task in an environment whose semantic representation is only partially known. We represent the semantics of the environment with a set of state properties, called \textit{atomic propositions} over which, the agent holds a probabilistic belief and updates it as new sensory measurements arrive. The goal is to design a policy for the agent that realizes the task with high probability. We develop a planning strategy that takes the semantic uncertainties into account and by doing so provides probabilistic guarantees on the task success. Furthermore, as new data arrive, the belief over the atomic propositions evolves and, subsequently, the planning strategy adapts accordingly. We evaluate the proposed method on various finite-horizon tasks in planar navigation settings where the empirical results show that the proposed method provides reliable task performance that also improves as the knowledge about the environment enhances.
A Chance-Constrained Generative Framework for Sequence Optimization
Xianggen Liu · Qiang Liu · Sen Song · Jian Peng
Deep generative modeling has achieved many successes for continuous data generation, such as producing realistic images and controlling their properties (e.g., styles). However, the development of generative modeling techniques for optimizing discrete data, such as sequences or strings, still lags behind largely due to the challenges in modeling complex and long-range constraints, including both syntax and semantics, in discrete structures. In this paper, we formulate the sequence optimization task as a chance-constrained optimization problem. The key idea is to enforce a high probability of generating valid sequences and also optimize the property of interest. We propose a novel minmax algorithm to simultaneously tighten a bound of the valid chance and optimize the expected property. Extensive experimental results in three domains demonstrate the superiority of our approach over the existing sequence optimization methods.
An Investigation of Why Overparameterization Exacerbates Spurious Correlations
Shiori Sagawa · aditi raghunathan · Pang Wei Koh · Percy Liang
We study why overparameterization---increasing model size well beyond the point of zero training error---can hurt test error on minority groups despite improving average test error when there are spurious correlations in the data. Through simulations and experiments on two image datasets, we identify two key properties of the training data that drive this behavior: the proportions of majority versus minority groups, and the signal-to-noise ratio of the spurious correlations. We then analyze a linear setting and theoretically show how the inductive bias of models towards ``memorizing'' fewer examples can cause overparameterization to hurt. Our analysis leads to a counterintuitive approach of subsampling the majority group, which empirically achieves low minority error in the overparameterized regime, even though the standard approach of upweighting the minority fails. Overall, our results suggest a tension between using overparameterized models versus using all the training data for achieving low worst-group error.
Bayesian Graph Neural Networks with Adaptive Connection Sampling
Arman Hasanzadeh · Ehsan Hajiramezanali · Shahin Boluki · Mingyuan Zhou · Nick Duffield · Krishna Narayanan · Xiaoning Qian
We propose a unified framework for adaptive connection sampling in graph neural networks (GNNs) that generalizes existing stochastic regularization methods for training GNNs. The proposed framework not only alleviates over-smoothing and over-fitting tendencies of deep GNNs, but also enables learning with uncertainty in graph analytic tasks with GNNs. Instead of using fixed sampling rates or hand-tuning themas model hyperparameters in existing stochastic regularization methods, our adaptive connection sampling can be trained jointly with GNN model parameters in both global and local fashions. GNN training with adaptive connection sampling is shown to be mathematically equivalent to an efficient approximation of training BayesianGNNs. Experimental results with ablation studies on benchmark datasets validate that adaptively learning the sampling rate given graph training data is the key to boost the performance of GNNs in semi-supervised node classification, less prone to over-smoothing and over-fitting with more robust prediction.
Beyond UCB: Optimal and Efficient Contextual Bandits with Regression Oracles
Dylan Foster · Alexander Rakhlin
A fundamental challenge in contextual bandits is to develop flexible, general-purpose algorithms with computational requirements no worse than classical supervised learning tasks such as classification and regression. Algorithms based on regression have shown promising empirical success, but theoretical guarantees have remained elusive except in special cases. We provide the first universal and optimal reduction from contextual bandits to online regression. We show how to transform any oracle for online regression with a given value function class into an algorithm for contextual bandits with the induced policy class, with no overhead in runtime or memory requirements. We characterize the minimax rates for contextual bandits with general, potentially nonparametric function classes, and show that our algorithm is minimax optimal whenever the oracle obtains the optimal rate for regression. Compared to previous results, our algorithm requires no distributional assumptions beyond realizability, and works even when contexts are chosen adversarially.
CAUSE: Learning Granger Causality from Event Sequences using Attribution Methods
Wei Zhang · Thomas Panum · Somesh Jha · Prasad Chalasani · David Page
We study the problem of learning Granger causality between event types from asynchronous, interdependent, multi-type event sequences. Existing work suffers from either limited model flexibility or poor model explainability and thus fails to uncover Granger causality across a wide variety of event sequences with diverse event interdependency. To address these weaknesses, we propose CAUSE (Causality from AttribUtions on Sequence of Events), a novel framework for the studied task. The key idea of CAUSE is to first implicitly capture the underlying event interdependency by fitting a neural point process, and then extract from the process a Granger causality statistic using an axiomatic attribution method. Across multiple datasets riddled with diverse event interdependency, we demonstrate that CAUSE achieves superior performance on correctly inferring the inter-type Granger causality over a range of state-of-the-art methods.
Certified Robustness to Label-Flipping Attacks via Randomized Smoothing
Elan Rosenfeld · Ezra Winston · Pradeep Ravikumar · Zico Kolter
Machine learning algorithms are known to be susceptible to data poisoning attacks, where an adversary manipulates the training data to degrade performance of the resulting classifier. In this work, we propose a strategy for building linear classifiers that are certifiably robust against a strong variant of label flipping, where each test example is targeted independently. In other words, for each test point, our classifier includes a certification that its prediction would be the same had some number of training labels been changed adversarially. Our approach leverages randomized smoothing, a technique that has previously been used to guarantee---with high probability---test-time robustness to adversarial manipulation of the input to a classifier. We derive a variant which provides a deterministic, analytical bound, sidestepping the probabilistic certificates that traditionally result from the sampling subprocedure. Further, we obtain these certified bounds with minimal additional runtime complexity over standard classification and no assumptions on the train or test distributions. We generalize our results to the multi-class case, providing the first multi-class classification algorithm that is certifiably robust to label-flipping attacks.
Designing Optimal Dynamic Treatment Regimes: A Causal Reinforcement Learning Approach
Junzhe Zhang
A dynamic treatment regime (DTR) consists of a sequence of decision rules, one per stage of intervention, that dictates how to determine the treatment assignment to patients based on evolving treatments and covariates' history. These regimes are particularly effective for managing chronic disorders and is arguably one of the critical ingredients underlying more personalized decision-making systems. All reinforcement learning algorithms for finding the optimal DTR in online settings will suffer O(\sqrt{|D{X, S}|T}) regret on some environments, where T is the number of experiments, and D{X, S} is the domains of treatments X and covariates S. This implies T = O (|D{X, S}|) trials to generate an optimal DTR. In many applications, domains of X and S could be so enormous that the time required to ensure appropriate learning may be unattainable. We show that, if the causal diagram of the underlying environment is provided, one could achieve regret that is exponentially smaller than D{X, S}. In particular, we develop two online algorithms that satisfy such regret bounds by exploiting the causal structure underlying the DTR; one is based on the principle of optimism in the face of uncertainty (OFU-DTR), and the other uses the posterior sampling learning (PS-DTR). Finally, we introduce efficient methods to accelerate these online learning procedures by leveraging the abundant, yet biased observational (non-experimental) data.
Dispersed Exponential Family Mixture VAEs for Interpretable Text Generation
Wenxian Shi · Hao Zhou · Ning Miao · Lei Li
Interpretability is important in text generation for guiding the generation with interpretable attributes. Variational auto-encoder (VAE) with Gaussian distribution as prior has been successfully applied in text generation, but it is hard to interpret the meaning of the latent variable. To enhance the controllability and interpretability, one can replace the Gaussian prior with a mixture of Gaussian distributions (GM-VAE), whose mixture components could be related to some latent attributes of data. Unfortunately, straightforward variational training of GM-VAE leads the mode-collapse problem. In this paper, we find that mode-collapse is a general problem for VAEs with exponential family mixture priors. We propose DEM-VAE, which introduces an extra dispersion term to induce a well-structured latent space. Experimental results show that our approach does obtain a well structured latent space, with which our method outperforms strong baselines in interpretable text generation benchmarks.
Enhanced POET: Open-ended Reinforcement Learning through Unbounded Invention of Learning Challenges and their Solutions
Rui Wang · Joel Lehman · Aditya Rawal · Jiale Zhi · Yulun Li · Jeffrey Clune · Kenneth Stanley
Creating open-ended algorithms, which generate their own never-ending stream of novel and appropriately challenging learning opportunities, could help to automate and accelerate progress in machine learning. A recent step in this direction is the Paired Open-Ended Trailblazer (POET), an algorithm that generates and solves its own challenges, and allows solutions to goal-switch between challenges to avoid local optima. However, the original POET was unable to demonstrate its full creative potential because of limitations of the algorithm itself and because of external issues including a limited problem space and lack of a universal progress measure. Importantly, both limitations pose impediments not only for POET, but for the pursuit of open-endedness in general. Here we introduce and empirically validate two new innovations to the original algorithm, as well as two external innovations designed to help elucidate its full potential. Together, these four advances enable the most open-ended algorithmic demonstration to date. The algorithmic innovations are (1) a domain-general measure of how meaningfully novel new challenges are, enabling the system to potentially create and solve interesting challenges endlessly, and (2) an efficient heuristic for determining when agents should goal-switch from one problem to another (helping open-ended search better scale). Outside the algorithm itself, to enable a more definitive demonstration of open-endedness, we introduce (3) a novel, more flexible way to encode environmental challenges, and (4) a generic measure of the extent to which a system continues to exhibit open-ended innovation. Enhanced POET produces a diverse range of sophisticated behaviors that solve a wide range of environmental challenges, many of which cannot be solved through other means.
Evolutionary Reinforcement Learning for Sample-Efficient Multiagent Coordination
Somdeb Majumdar · Shauharda Khadka · Santiago Miret · Stephen Mcaleer · Kagan Tumer
Many cooperative multiagent reinforcement learning environments provide agents with a sparse team-based reward, as well as a dense agent-specific reward that incentivizes learning basic skills. Training policies solely on the team-based reward is often difficult due to its sparsity. Also, relying solely on the agent-specific reward is sub-optimal because it usually does not capture the team coordination objective. A common approach is to use reward shaping to construct a proxy reward by combining the individual rewards. However, this requires manual tuning for each environment. We introduce Multiagent Evolutionary Reinforcement Learning (MERL), a split-level training platform that handles the two objectives separately through two optimization processes. An evolutionary algorithm maximizes the sparse team-based objective through neuroevolution on a population of teams. Concurrently, a gradient-based optimizer trains policies to only maximize the dense agent-specific rewards. The gradient-based policies are periodically added to the evolutionary population as a way of information transfer between the two optimization processes. This enables the evolutionary algorithm to use skills learned via the agent-specific rewards toward optimizing the global objective. Results demonstrate that MERL significantly outperforms state-of-the-art methods, such as MADDPG, on a number of difficult coordination benchmarks.
Feature Quantization Improves GAN Training
Yang Zhao · Chunyuan Li · Ping Yu · Jianfeng Gao · Changyou Chen
The instability in GANs' training has been a long-standing problem despite remarkable research efforts. We identify that instability issues stem from difficulties of performing feature matching with mini-batch statistics, due to a fragile balance between the fixed target distribution and the progressively generated distribution. In this work, we propose feature quantizatoin (FQ) for the discriminator, to embed both true and fake data samples into a shared discrete space. The quantized values of FQ are constructed as an evolving dictionary, which is consistent with feature statistics of the recent distribution history. Hence, FQ implicitly enables robust feature matching in a compact space. Our method can be easily plugged into existing GAN models, with little computational overhead in training. Extensive experimental results show that the proposed FQ-GAN can improve the FID scores of baseline methods by a large margin on a variety of tasks, including three representative GAN models on 10 benchmarks, achieving new state-of-the-art performance.
Generalization Guarantees for Sparse Kernel Approximation with Entropic Optimal Features
Liang Ding · Rui Tuo · Shahin Shahrampour
Despite their success, kernel methods suffer from a massive computational cost in practice. In this paper, in lieu of commonly used kernel expansion with respect to $N$ inputs, we develop a novel optimal design maximizing the entropy among kernel features. This procedure results in a kernel expansion with respect to entropic optimal features (EOF), improving the data representation dramatically due to features dissimilarity. Under mild technical assumptions, our generalization bound shows that with only $O(N^{\frac{1}{4}})$ features (disregarding logarithmic factors), we can achieve the optimal statistical accuracy (i.e., $O(1/\sqrt{N})$). The salient feature of our design is its sparsity that significantly reduces the time and space costs. Our numerical experiments on benchmark datasets verify the superiority of EOF over the state-of-the-art in kernel approximation.
Hierarchically Decoupled Imitation For Morphological Transfer
Donald Hejna · Lerrel Pinto · Pieter Abbeel
Learning long-range behaviors on complex high-dimensional agents is a fundamental problem in robot learning. For such tasks, we argue that transferring learned information from a morphologically simpler agent can massively improve the sample efficiency of a more complex one. To this end, we propose a hierarchical decoupling of policies into two parts: an independently learned low-level policy and a transferable high-level policy. To remedy poor transfer performance due to mismatch in morphologies, we contribute two key ideas. First, we show that incentivizing a complex agent's low-level to imitate a simpler agent's low-level significantly improves zero-shot high-level transfer. Second, we show that KL-regularized training of the high level stabilizes learning and prevents mode-collapse. Finally, on a suite of publicly released navigation and manipulation environments, we demonstrate the applicability of hierarchical transfer on long-range tasks across morphologies.
Learning Adversarially Robust Representations via Worst-Case Mutual Information Maximization
Sicheng Zhu · Xiao Zhang · David Evans
Training machine learning models that are robust against adversarial inputs poses seemingly insurmountable challenges. To better understand adversarial robustness, we consider the underlying problem of learning robust representations. We develop a notion of representation vulnerability that captures the maximum change of mutual information between the input and output distributions, under the worst-case input perturbation. Then, we prove a theorem that establishes a lower bound on the minimum adversarial risk that can be achieved for any downstream classifier based on its representation vulnerability. We propose an unsupervised learning method for obtaining intrinsically robust representations by maximizing the worst-case mutual information between the input and output distributions. Experiments on downstream classification tasks %and analyses of saliency maps support the robustness of the representations found using unsupervised learning with our training principle.
Learning and Sampling of Atomic Interventions from Observations
Arnab Bhattacharyya · Sutanu Gayen · Saravanan Kandasamy · Ashwin Maran · Vinodchandran N. Variyam
We study the problem of efficiently estimating the effect of an intervention on a single variable using observational samples. Our goal is to give algorithms with polynomial time and sample complexity in a non-parametric setting. Tian and Pearl (AAAI '02) have exactly characterized the class of causal graphs for which causal effects of atomic interventions can be identified from observational data. We make their result quantitative. Suppose 𝒫 is a causal model on a set V of n observable variables with respect to a given causal graph G, and let do(x) be an identifiable intervention on a variable X. We show that assuming that G has bounded in-degree and bounded c-components (k) and that the observational distribution satisfies a strong positivity condition: (i) [Evaluation] There is an algorithm that outputs with probability 2/3 an evaluator for a distribution P^ that satisfies TV(P(V | do(x)), P^(V)) < eps using m=O~(n/eps^2) samples from P and O(mn) time. The evaluator can return in O(n) time the probability P^(v) for any assignment v to V. (ii) [Sampling] There is an algorithm that outputs with probability 2/3 a sampler for a distribution P^ that satisfies TV(P(V | do(x)), P^(V)) < eps using m=O~(n/eps^2) samples from P and O(mn) time. The sampler returns an iid sample from P^ with probability 1 in O(n) time. We extend our techniques to estimate P(Y | do(x)) for a subset Y of variables of interest. We also show lower bounds for the sample complexity, demonstrating that our sample complexity has optimal dependence on the parameters n and eps, as well as if k=1 on the strong positivity parameter.
Learning Compound Tasks without Task-specific Knowledge via Imitation and Self-supervised Learning
Sang-Hyun Lee · Seung-Woo Seo
Most real-world tasks are compound tasks that consist of multiple simpler sub-tasks. The main challenge of learning compound tasks is that we have no explicit supervision to learn the hierarchical structure of compound tasks. To address this challenge, previous imitation learning methods exploit task-specific knowledge, e.g., labeling demonstrations manually or specifying termination conditions for each sub-task. However, the need for task-specific knowledge makes it difficult to scale imitation learning to real-world tasks. In this paper, we propose an imitation learning method that can learn compound tasks without task-specific knowledge. The key idea behind our method is to leverage a self-supervised learning framework to learn the hierarchical structure of compound tasks. Our work also proposes a task-agnostic regularization technique to prevent unstable switching between sub-tasks, which has been a common degenerate case in previous works. We evaluate our method against several baselines on compound tasks. The results show that our method achieves state-of-the-art performance on compound tasks, outperforming prior imitation learning methods.
We introduce the lookahead-bounded Q-learning (LBQL) algorithm, a new, provably convergent variant of Q-learning that seeks to improve the performance of standard Q-learning in stochastic environments through the use of “lookahead” upper and lower bounds. To do this, LBQL employs previously collected experience and each iteration’s state-action values as dual feasible penalties to construct a sequence of sampled information relaxation problems. The solutions to these problems provide estimated upper and lower bounds on the optimal value, which we track via stochastic approximation. These quantities are then used to constrain the iterates to stay within the bounds at every iteration. Numerical experiments on benchmark problems show that LBQL exhibits faster convergence and more robustness to hyperparameters when compared to standard Q-learning and several related techniques. Our approach is particularly appealing in problems that require expensive simulations or real-world interactions.
Multiresolution Tensor Learning for Efficient and Interpretable Spatial Analysis
Jung Yeon Park · Kenneth Carr · Stephan Zheng · Yisong Yue · Rose Yu
Efficient and interpretable spatial analysis is crucial in many fields such as geology, sports, and climate science. Tensor latent factor models can describe higher-order correlations for spatial data. However, they are computationally expensive to train and are sensitive to initialization, leading to spatially incoherent, uninterpretable results. We develop a novel Multiresolution Tensor Learning (MRTL) algorithm for efficiently learning interpretable spatial patterns. MRTL initializes the latent factors from an approximate full-rank tensor model for improved interpretability and progressively learns from a coarse resolution to the fine resolution for boosted efficiency. We also prove the theoretical convergence and computational complexity of MRTL. When applied to two real-world datasets, MRTL demonstrates 4~5x speedup compared to a fixed resolution approach while yielding accurate and interpretable models.
Nearly Linear Row Sampling Algorithm for Quantile Regression
Yi Li · Ruosong Wang · Lin Yang · Hanrui Zhang
We give a row sampling algorithm for the quantile loss function with sample complexity nearly linear in the dimensionality of the data, improving upon the previous best algorithm whose sampling complexity has at least cubic dependence on the dimensionality. Based upon our row sampling algorithm, we give the fastest known algorithm for quantile regression and a graph sparsification algorithm for balanced directed graphs. Our main technical contribution is to show that Lewis weights sampling, which has been used in row sampling algorithms for $\ell_p$ norms, can also be applied in row sampling algorithms for a variety of loss functions. We complement our theoretical results by experiments to demonstrate the practicality of our approach.
Obtaining Adjustable Regularization for Free via Iterate Averaging
Jingfeng Wu · Vladimir Braverman · Lin Yang
Regularization for optimization is a crucial technique to avoid overfitting in machine learning. In order to obtain the best performance, we usually train a model by tuning the regularization parameters. It becomes costly, however, when a single round of training takes significant amount of time. Very recently, Neu and Rosasco show that if we run stochastic gradient descent (SGD) on linear regression problems, then by averaging the SGD iterates properly, we obtain a regularized solution. It left open whether the same phenomenon can be achieved for other optimization problems and algorithms. In this paper, we establish an averaging scheme that provably converts the iterates of SGD on an arbitrary strongly convex and smooth objective function to its regularized counterpart with an adjustable regularization parameter. Our approaches can be used for accelerated and preconditioned optimization methods as well. We further show that the same methods work empirically on more general optimization objectives including neural networks. In sum, we obtain adjustable regularization for free for a large class of optimization problems and resolve an open question raised by Neu and Rosasco.
Provable guarantees for decision tree induction: the agnostic setting
Guy Blanc · Jane Lange · Li-Yang Tan
We give strengthened provable guarantees on the performance of widely employed and empirically successful {\sl top-down decision tree learning heuristics}. While prior works have focused on the realizable setting, we consider the more realistic and challenging {\sl agnostic} setting. We show that for all monotone functions~$f$ and $s\in \mathbb{N}$, these heuristics construct a decision tree of size $s^{\tilde{O}((\log s)/\varepsilon^2)}$ that achieves error $\le \mathsf{opt}_s + \varepsilon$, where $\mathsf{opt}_s$ denotes the error of the optimal size-$s$ decision tree for $f$. Previously such a guarantee was not known to be achievable by any algorithm, even one that is not based on top-down heuristics. We complement our algorithmic guarantee with a near-matching $s^{\tilde{\Omega}(\log s)}$ lower bound.
Retrieval Augmented Language Model Pre-Training
Kelvin Guu · Kenton Lee · Zora Tung · Panupong Pasupat · Mingwei Chang
Language model pre-training has been shown to capture a surprising amount of world knowledge, crucial for NLP tasks such as question answering. However, this knowledge is stored implicitly in the parameters of a neural network, requiring ever-larger networks to cover more facts. To capture knowledge in a more modular and interpretable way, we augment language model pre-training with a latent knowledge retriever, which allows the model to retrieve and attend over documents from a large corpus such as Wikipedia, used during pre-training, fine-tuning and inference. For the first time, we show how to pre-train such a knowledge retriever in an unsupervised manner, using masked language modeling as the learning signal and backpropagating through a retrieval step that considers millions of documents. We demonstrate the effectiveness of Retrieval-Augmented Language Model pre-training (REALM) by fine-tuning on the challenging task of Open-domain Question Answering (Open-QA). We compare against state-of-the-art models for both explicit and implicit knowledge storage on three popular Open-QA benchmarks, and find that we outperform all previous methods by a significant margin (4-16% absolute accuracy), while also providing qualitative benefits such as interpretability and modularity.
Safe Imitation Learning via Fast Bayesian Reward Inference from Preferences
Daniel Brown · Russell Coleman · Ravi Srinivasan · Scott Niekum
Bayesian reward learning from demonstrations enables rigorous safety and uncertainty analysis when performing imitation learning. However, Bayesian reward learning methods are typically computationally intractable for complex control problems. We propose Bayesian Reward Extrapolation (Bayesian REX), a highly efficient Bayesian reward learning algorithm that scales to high-dimensional imitation learning problems by pre-training a low-dimensional feature encoding via self-supervised tasks and then leveraging preferences over demonstrations to perform fast Bayesian inference. Bayesian REX can learn to play Atari games from demonstrations, without access to the game score and can generate 100,000 samples from the posterior over reward functions in only 5 minutes on a personal laptop. Bayesian REX also results in imitation learning performance that is competitive with or better than state-of-the-art methods that only learn point estimates of the reward function. Finally, Bayesian REX enables efficient high-confidence policy evaluation without having access to samples of the reward function. These high-confidence performance bounds can be used to rank the performance and risk of a variety of evaluation policies and provide a way to detect reward hacking behaviors.
Source Separation with Deep Generative Priors
Vivek Jayaram · John Thickstun
Despite substantial progress in signal source separation, results for richly structured data continue to contain perceptible artifacts. In contrast, recent deep generative models can produce authentic samples in a variety of domains that are indistinguishable from samples of the data distribution. This paper introduces a Bayesian approach to source separation that uses deep generative models as priors over the components of a mixture of sources, and noise-annealed Langevin dynamics to sample from the posterior distribution of sources given a mixture. This decouples the source separation problem from generative modeling, enabling us to directly use cutting-edge generative models as priors. The method achieves state-of-the-art performance for MNIST digit separation. We introduce new methodology for evaluating separation quality on richer datasets, providing quantitative evaluation and qualitative discussion of results for CIFAR-10 image separation.
Stabilizing Differentiable Architecture Search via Perturbation-based Regularization
Xiangning Chen · Cho-Jui Hsieh
Differentiable architecture search (DARTS) is a prevailing NAS solution to identify architectures. Based on the continuous relaxation of the architecture space, DARTS learns a differentiable architecture weight and largely reduces the search cost. However, its stability has been challenged for yielding deteriorating architectures as the search proceeds. We find that the precipitous validation loss landscape, which leads to a dramatic performance drop when distilling the final architecture, is an essential factor that causes instability. Based on this observation, we propose a perturbation-based regularization - SmoothDARTS (SDARTS), to smooth the loss landscape and improve the generalizability of DARTS-based methods. In particular, our new formulations stabilize DARTS-based methods by either random smoothing or adversarial attack. The search trajectory on NAS-Bench-1Shot1 demonstrates the effectiveness of our approach and due to the improved stability, we achieve performance gain across various search spaces on 4 datasets. Furthermore, we mathematically show that SDARTS implicitly regularizes the Hessian norm of the validation loss, which accounts for a smoother loss landscape and improved performance.
Variational Imitation Learning with Diverse-quality Demonstrations
Voot Tangkaratt · Bo Han · Mohammad Emtiyaz Khan · Masashi Sugiyama
Learning from demonstrations can be challenging when the quality of demonstrations is diverse, and even more so when the quality is unknown and there is no additional information to estimate the quality. We propose a new method for imitation learning in such scenarios. We show that simple quality-estimation approaches might fail due to compounding error, and fix this issue by jointly estimating both the quality and reward using a variational approach. Our method is easy to implement within reinforcement-learning frameworks and also achieves state-of-the-art performance on continuous-control benchmarks.Our work enables scalable and data-efficient imitation learning under more realistic settings than before.