Session
Poster Session 6
With continual miniaturization ever more applications of deep learning can be found in embedded systems, where it is common to encounter data with natural representation in the complex domain. To this end we extend Sparse Variational Dropout to complex-valued neural networks and verify the proposed Bayesian technique by conducting a large numerical study of the performance-compression trade-off of C-valued networks on two tasks: image recognition on MNIST-like and CIFAR10 datasets and music transcription on MusicNet. We replicate the state-of-the-art result by Trabelsi et al. (2018) on MusicNet with a complex-valued network compressed by 50-100x at a small performance penalty.
Constructive Universal High-Dimensional Distribution Generation through Deep ReLU Networks
Dmytro Perekrestenko · Stephan Müller · Helmut Bölcskei
We present an explicit deep neural network construction that transforms uniformly distributed one-dimensional noise into an arbitrarily close approximation of any two-dimensional Lipschitz-continuous target distribution. The key ingredient of our design is a generalization of the "space-filling" property of sawtooth functions discovered in (Bailey & Telgarsky, 2018). We elicit the importance of depth - in our neural network construction - in driving the Wasserstein distance between the target distribution and the approximation realized by the network to zero. An extension to output distributions of arbitrary dimension is outlined. Finally, we show that the proposed construction does not incur a cost - in terms of error measured in Wasserstein-distance - relative to generating $d$-dimensional target distributions from $d$ independent random variables.
Controlling Overestimation Bias with Truncated Mixture of Continuous Distributional Quantile Critics
Arsenii Kuznetsov · Pavel Shvechikov · Alexander Grishin · Dmitry Vetrov
The overestimation bias is one of the major impediments to accurate off-policy learning. This paper investigates a novel way to alleviate the overestimation bias in a continuous control setting. Our method---Truncated Quantile Critics, TQC,---blends three ideas: distributional representation of a critic, truncation of critics prediction, and ensembling of multiple critics. Distributional representation and truncation allow for arbitrary granular overestimation control, while ensembling provides additional score improvements. TQC outperforms the current state of the art on all environments from the continuous control benchmark suite, demonstrating 25% improvement on the most challenging Humanoid environment.
Entropy Minimization In Emergent Languages
Eugene Kharitonov · Rahma Chaabouni · Diane Bouchacourt · Marco Baroni
There is growing interest in studying the languages that emerge when neural agents are jointly trained to solve tasks requiring communication through a discrete channel. We investigate here the information-theoretic complexity of such languages, focusing on the basic two-agent, one-exchange setup. We find that, under common training procedures, the emergent languages are subject to an entropy minimization pressure that has also been detected in human language, whereby the mutual information between the communicating agent's inputs and the messages is minimized, within the range afforded by the need for successful communication. That is, emergent languages are (nearly) as simple as the task they are developed for allow them to be. This pressure is amplified as we increase communication channel discreteness. Further, we observe that stronger discrete-channel-driven entropy minimization leads to representations with increased robustness to overfitting and adversarial attacks. We conclude by discussing the implications of our findings for the study of natural and artificial communication systems.
Meta-Learning with Shared Amortized Variational Inference
Ekaterina Iakovleva · Jakob Verbeek · Karteek Alahari
We propose a novel amortized variational inference scheme for an empirical Bayes meta-learning model, where model parameters are treated as latent variables. We learn the prior distribution over model parameters conditioned on limited training data using a variational autoencoder approach. Our framework proposes sharing the same amortized inference network between the conditional prior and variational posterior distributions over the model parameters. While the posterior leverages both the labeled support and query data, the conditional prior is based only on the labeled support data. We show that in earlier work, relying on Monte-Carlo approximation, the conditional prior collapses to a Dirac delta function. In contrast, our variational approach prevents this collapse and preserves uncertainty over the model parameters. We evaluate our approach on the miniImageNet and FC100 datasets, and present results demonstrating its advantages over previous work.
Normalizing Flows on Tori and Spheres
Danilo J. Rezende · George Papamakarios · Sebastien Racaniere · Michael Albergo · Gurtej Kanwar · Phiala Shanahan · Kyle Cranmer
Normalizing flows are a powerful tool for building expressive distributions in high dimensions. So far, most of the literature has concentrated on learning flows on Euclidean spaces. Some problems however, such as those involving angles, are defined on spaces with more complex geometries, such as tori or spheres. In this paper, we propose and compare expressive and numerically stable flows on such spaces. Our flows are built recursively on the dimension of the space, starting from flows on circles, closed intervals or spheres.
Partial Trace Regression and Low-Rank Kraus Decomposition
Hachem Kadri · Stephane Ayache · Riikka Huusari · alain rakotomamonjy · Ralaivola Liva
The trace regression model, a direct extension of the well-studied linear regression model, allows one to map matrices to real-valued outputs. We here introduce an even more general model, namely the partial-trace regression model, a family of linear mappings from matrix-valued inputs to matrix-valued outputs; this model subsumes the trace regression model and thus the linear regression model. Borrowing tools from quantum information theory, where partial trace operators have been extensively studied, we propose a framework for learning partial trace regression models from data by taking advantage of the so-called low-rank Kraus representation of completely positive maps. We show the relevance of our framework with synthetic and real-world experiments conducted for both i) matrix-to-matrix regression and ii) positive semidefinite matrix completion, two tasks which can be formulated as partial trace regression problems.
Restarted Bayesian Online Change-point Detector achieves Optimal Detection Delay
REDA ALAMI · Odalric-Ambrym Maillard · Raphaël Féraud
we consider the problem of sequential change-point detection where
both the change-points and the distributions before and after the change are assumed to be unknown. For this problem of primary importance in statistical and sequential learning theory, we derive a variant of the Bayesian Online Change Point Detector proposed by \cite{fearnhead2007line}
which is easier to analyze than the original version while keeping its powerful message-passing algorithm.
We provide a non-asymptotic analysis of the false-alarm rate and the detection delay that matches the existing lower-bound. We further provide the first explicit high-probability control of the detection delay for such approach. Experiments on synthetic and real-world data show that this proposal outperforms the state-of-art change-point detection strategy, namely the Improved Generalized Likelihood Ratio (Improved GLR) while compares favorably with the original Bayesian Online Change Point Detection strategy.
Stochastic Frank-Wolfe for Constrained Finite-Sum Minimization
Geoffrey Negiar · Gideon Dresdner · Alicia Yi-Ting Tsai · Laurent El Ghaoui · Francesco Locatello · Robert Freund · Fabian Pedregosa
We propose a novel Stochastic Frank-Wolfe (a. k. a. conditional gradient) algorithm for constrained smooth finite-sum minimization with a generalized linear prediction/structure. This class of problems includes empirical risk minimization with sparse, low-rank, or other structured constraints. The proposed method is simple to implement, does not require step-size tuning, and has a constant per-iteration cost that is independent of the dataset size. Furthermore, as a byproduct of the method we obtain a stochastic estimator of the Frank-Wolfe gap that can be used as a stopping criterion. Depending on the setting, the proposed method matches or improves on the best computational guarantees for Stochastic Frank-Wolfe algorithms. Benchmarks on several datasets highlight different regimes in which the proposed method exhibits a faster empirical convergence than related methods. Finally, we provide an implementation of all considered methods in an open-source package.
TaskNorm: Rethinking Batch Normalization for Meta-Learning
John Bronskill · Jonathan Gordon · James Requeima · Sebastian Nowozin · Richard E Turner
Modern meta-learning approaches for image classification rely on increasingly deep networks to achieve state-of-the-art performance, making batch normalization an essential component of meta-learning pipelines. However, the hierarchical nature of the meta-learning setting presents several challenges that can render conventional batch normalization ineffective, giving rise to the need to rethink normalization in this setting. We evaluate a range of approaches to batch normalization for meta-learning scenarios, and develop a novel approach that we call TaskNorm. Experiments on fourteen datasets demonstrate that the choice of batch normalization has a dramatic effect on both classification accuracy and training time for both gradient based- and gradient-free meta-learning approaches. Importantly, TaskNorm is found to consistently improve performance. Finally, we provide a set of best practices for normalization that will allow fair comparison of meta-learning algorithms.
A distributional view on multi-objective policy optimization
Abbas Abdolmaleki · Sandy Huang · Leonard Hasenclever · Michael Neunert · Francis Song · Martina Zambelli · Murilo Martins · Nicolas Heess · Raia Hadsell · Martin Riedmiller
Many real-world problems require trading off multiple competing objectives. However, these objectives are often in different units and/or scales, which can make it challenging for practitioners to express numerical preferences over objectives in their native units. In this paper we propose a novel algorithm for multi-objective reinforcement learning that enables setting desired preferences for objectives in a scale-invariant way. We propose to learn an action distribution for each objective, and we use supervised learning to fit a parametric policy to a combination of these distributions. We demonstrate the effectiveness of our approach on challenging high-dimensional real and simulated robotics tasks, and show that setting different preferences in our framework allows us to trace out the space of nondominated solutions.
Recently non-convex optimization approaches for solving machine learning problems have gained significant attention. In this paper we explore non-convex boosting in classification by means of integer programming and demonstrate real-world practicability of the approach while circumvent- ing shortcomings of convex boosting approaches. We report results that are comparable to or better than the current state-of-the-art.
Learning disconnected manifolds: a no GAN's land
Ugo Tanielian · Thibaut Issenhuth · Elvis Dohmatob · Jeremie Mary
Typical architectures of Generative Adversarial Networks make use of a unimodal latent/input distribution transformed by a continuous generator. Consequently, the modeled distribution always has connected support which is cumbersome when learning a disconnected set of manifolds. We formalize this problem by establishing a "no free lunch" theorem for the disconnected manifold learning stating an upper-bound on the precision of the targeted distribution. This is done by building on the necessary existence of a low-quality region where the generator continuously samples data between two disconnected modes. Finally, we derive a rejection sampling method based on the norm of generator’s Jacobian and show its efficiency on several generators including BigGAN.
Learning Portable Representations for High-Level Planning
Steven James · Benjamin Rosman · George Konidaris
We present a framework for autonomously learning a portable representation that describes a collection of low-level continuous environments. We show that these abstract representations can be learned in a task-independent egocentric space specific to the agent that, when grounded with problem-specific information, are provably sufficient for planning. We demonstrate transfer in two different domains, where an agent learns a portable, task-independent symbolic vocabulary, as well as operators expressed in that vocabulary, and then learns to instantiate those operators on a per-task basis. This reduces the number of samples required to learn a representation of a new task.
Learning the piece-wise constant graph structure of a varying Ising model
Batiste Le Bars · Pierre Humbert · Argyris Kalogeratos · Nicolas Vayatis
This work focuses on the estimation of multiple change-points in a time-varying Ising model that evolves piece-wise constantly. The aim is to identify both the moments at which significant changes occur in the Ising model, as well as the underlying graph structures. For this purpose, we propose to estimate the neighborhood of each node by maximizing a penalized version of its conditional log-likelihood. The objective of the penalization is twofold: it imposes sparsity in the learned graphs and, thanks to a fused-type penalty, it also enforces them to evolve piece-wise constantly. Using few assumptions, we provide two change-points consistency theorems. Those are the first in the context of unknown number of change-points detection in time-varying Ising model. Finally, experimental results on several synthetic datasets and a real-world dataset demonstrate the performance of our method.
Learning to Simulate Complex Physics with Graph Networks
Alvaro Sanchez-Gonzalez · Jonathan Godwin · Tobias Pfaff · Rex (Zhitao) Ying · Jure Leskovec · Peter Battaglia
Here we present a machine learning framework and model implementation that can learn to simulate a wide variety of challenging physical domains, involving fluids, rigid solids, and deformable materials interacting with one another. Our framework---which we term "Graph Network-based Simulators" (GNS)---represents the state of a physical system with particles, expressed as nodes in a graph, and computes dynamics via learned message-passing. Our results show that our model can generalize from single-timestep predictions with thousands of particles during training, to different initial conditions, thousands of timesteps, and at least an order of magnitude more particles at test time. Our model was robust to hyperparameter choices across various evaluation metrics: the main determinants of long-term performance were the number of message-passing steps, and mitigating the accumulation of error by corrupting the training data with noise. Our GNS framework advances the state-of-the-art in learned physical simulation, and holds promise for solving a wide range of complex forward and inverse problems.
Multi-step Greedy Reinforcement Learning Algorithms
Manan Tomar · Yonathan Efroni · Mohammad Ghavamzadeh
Multi-step greedy policies have been extensively used in model-based reinforcement learning (RL), both when a model of the environment is available (e.g.,~in the game of Go) and when it is learned. In this paper, we explore their benefits in model-free RL, when employed using multi-step dynamic programming algorithms: $\kappa$-Policy Iteration ($\kappa$-PI) and $\kappa$-Value Iteration ($\kappa$-VI). These methods iteratively compute the next policy ($\kappa$-PI) and value function ($\kappa$-VI) by solving a surrogate decision problem with a shaped reward and a smaller discount factor. We derive model-free RL algorithms based on $\kappa$-PI and $\kappa$-VI in which the surrogate problem can be solved by any discrete or continuous action RL method, such as DQN and TRPO. We identify the importance of a hyper-parameter that controls the extent to which the surrogate problem is solved and suggest a way to set this parameter. When evaluated on a range of Atari and MuJoCo benchmark tasks, our results indicate that for the right range of $\kappa$, our algorithms outperform DQN and TRPO. This shows that our multi-step greedy algorithms are general enough to be applied over any existing RL algorithm and can significantly improve its performance.
On Contrastive Learning for Likelihood-free Inference
Conor Durkan · Iain Murray · George Papamakarios
Likelihood-free methods perform parameter inference in stochastic simulator models where evaluating the likelihood is intractable but sampling synthetic data is possible. One class of methods for this likelihood-free problem uses a classifier to distinguish between pairs of parameter-observation samples generated using the simulator and pairs sampled from some reference distribution, which implicitly learns a density ratio proportional to the likelihood. Another popular class of methods fits a conditional distribution to the parameter posterior directly, and a particular recent variant allows for the use of flexible neural density estimators for this task. In this work, we show that both of these approaches can be unified under a general contrastive learning scheme, and clarify how they should be run and compared.
Ready Policy One: World Building Through Active Learning
Philip Ball · Jack Parker-Holder · Aldo Pacchiano · Krzysztof Choromanski · Stephen Roberts
Model-Based Reinforcement Learning (MBRL) offers a promising direction for sample efficient learning, often achieving state of the art results for continuous control tasks. However many existing MBRL methods rely on combining greedy policies with exploration heuristics, and even those which utilize principled exploration bonuses construct dual objectives in an ad hoc fashion. In this paper we introduce Ready Policy One (RP1), a framework that views MBRL as an active learning problem, where we aim to improve the world model in the fewest samples possible. RP1 achieves this by utilizing a hybrid objective function, which crucially adapts during optimization, allowing the algorithm to trade off reward v.s. exploration at different stages of learning. In addition, we introduce a principled mechanism to terminate sample collection once we have a rich enough trajectory batch to improve the model. We rigorously evaluate our method on a variety of continuous control tasks, and demonstrate statistically significant gains over existing approaches.
SimGANs: Simulator-Based Generative Adversarial Networks for ECG Synthesis to Improve Deep ECG Classification
Tomer Golany · Kira Radinsky · Daniel Freedman
Generating training examples for supervised tasks is a long sought after goal in AI. We study the problem of heart signal electrocardiogram (ECG) synthesis for improved heartbeat classification. ECG synthesis is challenging: the generation of training examples for such biological-physiological systems is not straightforward, due to their dynamic nature in which the various parts of the system interact in complex ways. However, an understanding of these dynamics has been developed for years in the form of mathematical process simulators. We study how to incorporate this knowledge into the generative process by leveraging a biological simulator for the task of ECG classification. Specifically, we use a system of ordinary differential equations representing heart dynamics, and incorporate this ODE system into the optimization process of a generative adversarial network to create biologically plausible ECG training examples. We perform empirical evaluation and show that heart simulation knowledge during the generation process improves ECG classification.
Understanding the Curse of Horizon in Off-Policy Evaluation via Conditional Importance Sampling
Yao Liu · Pierre-Luc Bacon · Emma Brunskill
Off-policy policy estimators that use importance sampling (IS) can suffer from high variance in long-horizon domains, and there has been particular excitement over new IS methods that leverage the structure of Markov decision processes. We analyze the variance of the most popular approaches through the viewpoint of conditional Monte Carlo. Surprisingly, we find that in finite horizon MDPs there is no strict variance reduction of per-decision importance sampling or stationary importance sampling, comparing with vanilla importance sampling. We then provide sufficient conditions under which the per-decision or stationary estimators will provably reduce the variance over importance sampling with finite horizons. For the asymptotic (in terms of horizon $T$) case, we develop upper and lower bounds on the variance of those estimators which yields sufficient conditions under which there exists an exponential v.s. polynomial gap between the variance of importance sampling and that of the per-decision or stationary estimators. These results help advance our understanding of if and when new types of IS estimators will improve the accuracy of off-policy estimation.
Weakly-Supervised Disentanglement Without Compromises
Francesco Locatello · Ben Poole · Gunnar Ratsch · Bernhard Schölkopf · Olivier Bachem · Michael Tschannen
Intelligent agents should be able to learn useful representations by observing changes in their environment. We model such observations as pairs of non-i.i.d. images sharing at least one of the underlying factors of variation. First, we theoretically show that only knowing how many factors have changed, but not which ones, is sufficient to learn disentangled representations. Second, we provide practical algorithms that learn disentangled representations from pairs of images without requiring annotation of groups, individual factors, or the number of factors that have changed. Third, we perform a large-scale empirical study and show that such pairs of observations are sufficient to reliably learn disentangled representations on several benchmark data sets. Finally, we evaluate our learned representations and find that they are simultaneously useful on a diverse suite of tasks, including generalization under covariate shifts, fairness, and abstract reasoning. Overall, our results demonstrate that weak supervision enables learning of useful disentangled representations in realistic scenarios.
Word-Level Speech Recognition With a Letter to Word Encoder
Ronan Collobert · Awni Hannun · Gabriel Synnaeve
We propose a direct-to-word sequence model which uses a word network to learn word embeddings from letters. The word network can be integrated seamlessly with arbitrary sequence models including Connectionist Temporal Classification and encoder-decoder models with attention. We show our direct-to-word model can achieve word error rate gains over sub-word level models for speech recognition. We also show that our direct-to-word approach retains the ability to predict words not seen at training time without any retraining. Finally, we demonstrate that a word-level model can use a larger stride than a sub-word level model while maintaining accuracy. This makes the model more efficient both for training and inference.