Skip to yearly menu bar Skip to main content


Session

Poster Session 4

Abstract:
Chat is not available.


How recurrent networks implement contextual processing in sentiment analysis

Niru Maheswaranathan · David Sussillo

Neural networks have a remarkable capacity for contextual processing—using recent or nearby inputs to modify processing of current input. For example, in natural language, contextual processing is necessary to correctly interpret negation (e.g. phrases such as "not bad"). However, our ability to understand how networks process context is limited. Here, we propose general methods for reverse engineering recurrent neural networks (RNNs) to identify and elucidate contextual processing. We apply these methods to understand RNNs trained on sentiment classification. This analysis reveals inputs that induce contextual effects, quantifies the strength and timescale of these effects, and identifies sets of these inputs with similar properties. Additionally, we analyze contextual effects related to differential processing of the beginning and end of documents. Using the insights learned from the RNNs we improve baseline Bag-of-Words models with simple extensions that incorporate contextual modification, recovering greater than 90% of the RNN's performance increase over the baseline. This work yields a new understanding of how RNNs process contextual information, and provides tools that should provide similar insight more broadly.


Incremental Sampling Without Replacement for Sequence Models

Kensen Shi · David Bieber · Charles Sutton

Sampling is a fundamental technique, and sampling without replacement is often desirable when duplicate samples are not beneficial. Within machine learning, sampling is useful for generating diverse outputs from a trained model. We present an elegant procedure for sampling without replacement from a broad class of randomized programs, including generative neural models that construct outputs sequentially. Our procedure is efficient even for exponentially-large output spaces. Unlike prior work, our approach is incremental, i.e., samples can be drawn one at a time, allowing for increased flexibility. We also present a new estimator for computing expectations from samples drawn without replacement. We show that incremental sampling without replacement is applicable to many domains, e.g., program synthesis and combinatorial optimization.


Learning To Stop While Learning To Predict

Xinshi Chen · Hanjun Dai · Yu Li · Xin Gao · Le Song

There is a recent surge of interest in designing deep architectures based on the update steps in traditional algorithms, or learning neural networks to improve and replace traditional algorithms. While traditional algorithms have certain stopping criteria for outputting results at different iterations, many algorithm-inspired deep models are restricted to a fixed-depth'' for all inputs. Similar to algorithms, the optimal depth of a deep architecture may be different for different input instances, either to avoidover-thinking'', or because we want to compute less for operations converged already. In this paper, we tackle this varying depth problem using a steerable architecture, where a feed-forward deep model and a variational stopping policy are learned together to sequentially determine the optimal number of layers for each input instance. Training such architecture is very challenging. We provide a variational Bayes perspective and design a novel and effective training procedure which decomposes the task into an oracle model learning stage and an imitation stage. Experimentally, we show that the learned deep model along with the stopping policy improves the performances on a diverse set of tasks, including learning sparse recovery, few-shot meta learning, and computer vision tasks.


Outstanding Paper
On Learning Sets of Symmetric Elements

Haggai Maron · Or Litany · Gal Chechik · Ethan Fetaya

Learning from unordered sets is a fundamental learning setup, which is attracting increasing attention. Research in this area has focused on the case where elements of the set are represented by feature vectors, and far less emphasis has been given to the common case where set elements themselves adhere to certain symmetries. That case is relevant to numerous applications, from deblurring image bursts to multi-view 3D shape recognition and reconstruction. In this paper, we present a principled approach to learning sets of general symmetric elements. We first characterize the space of linear layers that are equivariant both to element reordering and to the inherent symmetries of elements, like translation in the case of images. We further show that networks that are composed of these layers, called Deep Sets for Symmetric elements layers (DSS), are universal approximators of both invariant and equivariant functions. DSS layers are also straightforward to implement. Finally, we show that they improve over existing set-learning architectures in a series of experiments with images, graphs, and point-clouds.


Revisiting Spatial Invariance with Low-Rank Local Connectivity

Gamaleldin Elsayed · Prajit Ramachandran · Jon Shlens · Simon Kornblith

Convolutional neural networks are among the most successful architectures in deep learning with this success at least partially attributable to the efficacy of spatial invariance as an inductive bias. Locally connected layers, which differ from convolutional layers only in their lack of spatial invariance, usually perform poorly in practice. However, these observations still leave open the possibility that some degree of relaxation of spatial invariance may yield a better inductive bias than either convolution or local connectivity. To test this hypothesis, we design a method to relax the spatial invariance of a network layer in a controlled manner; we create a \textit{low-rank} locally connected layer, where the filter bank applied at each position is constructed as a linear combination of basis set of filter banks with spatially varying combining weights. By varying the number of basis filter banks, we can control the degree of relaxation of spatial invariance. In experiments with small convolutional networks, we find that relaxing spatial invariance improves classification accuracy over both convolution and locally connected layers across MNIST, CIFAR-10, and CelebA datasets, thus suggesting that spatial invariance may be an overly restrictive prior.


Sub-Goal Trees -- a Framework for Goal-Based Reinforcement Learning

Tom Jurgenson · Or Avner · Edward Groshev · Aviv Tamar

Many AI problems, in robotics and other domains, are goal-directed, essentially seeking a trajectory leading to some goal state. Reinforcement learning (RL), building on Bellman's optimality equation, naturally optimizes for a single goal, yet can be made goal-directed by augmenting the state with the goal. Instead, we propose a new RL framework, derived from a dynamic programming equation for the all pairs shortest path (APSP) problem, which naturally solves goal-directed queries. We show that this approach has computational benefits for both standard and approximate dynamic programming. Interestingly, our formulation prescribes a novel protocol for computing a trajectory: instead of predicting the next state given its predecessor, as in standard RL, a goal-conditioned trajectory is constructed by first predicting an intermediate state between start and goal, partitioning the trajectory into two. Then, recursively, predicting intermediate points on each sub-segment, until a complete trajectory is obtained. We call this trajectory structure a sub-goal tree. Building on it, we additionally extend the policy gradient methodology to recursively predict sub-goals, resulting in novel goal-based algorithms. Finally, we apply our method to neural motion planning, where we demonstrate significant improvements compared to standard RL on navigating a 7-DoF robot arm between obstacles.


A Sample Complexity Separation between Non-Convex and Convex Meta-Learning

Nikunj Umesh Saunshi · Yi Zhang · Mikhail Khodak · Sanjeev Arora

One popular trend in meta-learning is to learn from many training tasks a common initialization for a gradient-based method that can be used to solve a new task with few samples. The theory of meta-learning is still in its early stages, with several recent learning-theoretic analyses of methods such as Reptile [Nichol et al., 2018] being for {\em convex models}. This work shows that convex-case analysis might be insufficient to understand the success of meta-learning, and that even for non-convex models it is important to look inside the optimization black-box, specifically at properties of the optimization trajectory. We construct a simple meta-learning instance that captures the problem of one-dimensional subspace learning. For the convex formulation of linear regression on this instance, we show that the new task sample complexity of any {\em initialization-based meta-learning} algorithm is $\Omega(d)$, where $d$ is the input dimension. In contrast, for the non-convex formulation of a two layer linear network on the same instance, we show that both Reptile and multi-task representation learning can have new task sample complexity of $O(1)$, demonstrating a separation from convex meta-learning. Crucially, analyses of the training dynamics of these methods reveal that they can meta-learn the correct subspace onto which the data should be projected.


A simpler approach to accelerated optimization: iterative averaging meets optimism

Pooria Joulani · Anant Raj · András György · Csaba Szepesvari

Recently there have been several attempts to extend Nesterov's accelerated algorithm to smooth stochastic and variance-reduced optimization. In this paper, we show that there is a simpler approach to acceleration: applying optimistic online learning algorithms and querying the gradient oracle at the online average of the intermediate optimization iterates. In particular, we tighten a recent result of Cutkosky (2019) to demonstrate theoretically that online iterate averaging results in a reduced optimization gap, independently of the algorithm involved. We show that carefully combining this technique with existing generic optimistic online learning algorithms yields the optimal accelerated rates for optimizing strongly-convex and non-strongly-convex, possibly composite objectives, with deterministic as well as stochastic first-order oracles. We further extend this idea to variance-reduced optimization. Finally, we also provide ``universal'' algorithms that achieve the optimal rate for smooth and non-smooth composite objectives simultaneously without further tuning, generalizing the results of Kavis et al. (2019) and solving a number of their open problems.


Automatic Shortcut Removal for Self-Supervised Representation Learning

Matthias Minderer · Olivier Bachem · Neil Houlsby · Michael Tschannen

In self-supervised visual representation learning, a feature extractor is trained on a "pretext task" for which labels can be generated cheaply, without human annotation. A central challenge in this approach is that the feature extractor quickly learns to exploit low-level visual features such as color aberrations or watermarks and then fails to learn useful semantic representations. Much work has gone into identifying such "shortcut" features and hand-designing schemes to reduce their effect. Here, we propose a general framework for mitigating the effect shortcut features. Our key assumption is that those features which are the first to be exploited for solving the pretext task may also be the most vulnerable to an adversary trained to make the task harder. We show that this assumption holds across common pretext tasks and datasets by training a "lens" network to make small image changes that maximally reduce performance in the pretext task. Representations learned with the modified images outperform those learned without in all tested cases. Additionally, the modifications made by the lens reveal how the choice of pretext task and dataset affects the features learned by self-supervision.


Bootstrap Latent-Predictive Representations for Multitask Reinforcement Learning

Zhaohan Guo · Bernardo Avila Pires · Bilal Piot · Jean-Bastien Grill · Florent Altché · Remi Munos · Mohammad Gheshlaghi Azar

Learning a good representation is an essential component for deep reinforcement learning (RL). Representation learning is especially important in multitask and partially observable settings where building a representation of the unknown environment is crucial to solve the tasks. Here we introduce Predictions of Bootstrapped Latents (PBL), a simple and flexible self-supervised representation learning algorithm for multitask deep RL. PBL builds on multistep predictive representations of future observations, and focuses on capturing structured information about environment dynamics. Specifically, PBL trains its representation by predicting latent embeddings of future observations. These latent embeddings are themselves trained to be predictive of the aforementioned representations. These predictions form a bootstrapping effect, allowing the agent to learn more about the key aspects of the environment dynamics. In addition, by defining prediction tasks completely in latent space, PBL provides the flexibility of using multimodal observations involving pixel images, language instructions, rewards and more. We show in our experiments that PBL delivers across-the-board improved performance over state of the art deep RL agents in the DMLab-30 multitask setting.


Deep Isometric Learning for Visual Recognition

Haozhi Qi · Chong You · Xiaolong Wang · Yi Ma · Jitendra Malik

Initialization, normalization, and skip connections are believed to be three indispensable techniques for training very deep convolutional neural networks and obtaining state-of-the-art performance. This paper shows that deep vanilla ConvNets without normalization nor skip connections can also be trained to achieve surprisingly good performance on standard image recognition benchmarks. This is achieved by enforcing the convolution kernels to be near isometric during initialization and training, as well as by using a variant of ReLU that is shifted towards being isometric. Further experiments show that if combined with skip connections, such near isometric networks can achieve performances on par with (for ImageNet) and better than (for COCO) the standard ResNet, even without normalization at all. Our code is available at https://github.com/HaozhiQi/ISONet.


Differentiable Likelihoods for Fast Inversion of 'Likelihood-Free' Dynamical Systems

Hans Kersting · Nicholas Krämer · Martin Schiegg · Christian Daniel · Michael Schober · Philipp Hennig

Likelihood-free (a.k.a. simulation-based) inference problems are inverse problems with expensive, or intractable, forward models. ODE inverse problems are commonly treated as likelihood-free, as their forward map has to be numerically approximated by an ODE solver. This, however, is not a fundamental constraint but just a lack of functionality in classic ODE solvers, which do not return a likelihood but a point estimate. To address this shortcoming, we employ Gaussian ODE filtering (a probabilistic numerical method for ODEs) to construct a local Gaussian approximation to the likelihood. This approximation yields tractable estimators for the gradient and Hessian of the (log-)likelihood. Insertion of these estimators into existing gradient-based optimization and sampling methods engenders new solvers for ODE inverse problems. We demonstrate that these methods outperform standard likelihood-free approaches on three benchmark-systems.


Error Estimation for Sketched SVD via the Bootstrap

Miles Lopes · N. Benjamin Erichson · Michael Mahoney

In order to compute fast approximations to the singular value decompositions (SVD) of very large matrices, randomized sketching algorithms have become a leading approach. However, a key practical difficulty of sketching an SVD is that the user does not know how far the sketched singular vectors/values are from the exact ones. Indeed, the user may be forced to rely on analytical worst-case error bounds, which may not account for the unique structure of a given problem. As a result, the lack of tools for error estimation often leads to much more computation than is really necessary. To overcome these challenges, this paper develops a fully data-driven bootstrap method that numerically estimates the actual error of sketched singular vectors/values. Furthermore, the method is computationally inexpensive, because it operates only on sketched objects, and hence it requires no extra passes over the full matrix being factored.


Explainable k-Means and k-Medians Clustering

Michal Moshkovitz · Sanjoy Dasgupta · Cyrus Rashtchian · Nave Frost

Many clustering algorithms lead to cluster assignments that are hard to explain, partially because they depend on all the features of the data in a complicated way. To improve interpretability, we consider using a small decision tree to partition a data set into clusters, so that clusters can be characterized in a straightforward manner. We study this problem from a theoretical viewpoint, measuring cluster quality by the k-means and k-medians objectives. In terms of negative results, we show that popular top-down decision tree algorithms may lead to clusterings with arbitrarily large cost, and any clustering based on a tree with k leaves must incur an Omega(log k) approximation factor compared to the optimal clustering. On the positive side, for two means/medians, we show that a single threshold cut can achieve a constant factor approximation, and we give nearly-matching lower bounds; for general k > 2, we design an efficient algorithm that leads to an O(k) approximation to the optimal k-medians and an O(k^2) approximation to the optimal k-means. Prior to our work, no algorithms were known with provable guarantees independent of dimension and input size.


Federated Learning with Only Positive Labels

Felix Xinnan Yu · Ankit Singh Rawat · Aditya Menon · Sanjiv Kumar

We consider learning a multi-class classification model in the federated setting, where each user has access to the positive data associated with only a single class. As a result, during each federated learning round, the users need to locally update the classifier without having access to the features and the model parameters for the negative classes. Thus, naively employing conventional decentralized learning such as distributed SGD or Federated Averaging may lead to trivial or extremely poor classifiers. In particular, for embedding based classifiers, all the class embeddings might collapse to a single point. To address this problem, we propose a generic framework for training with only positive labels, namely Federated Averaging with Spreadout (FedAwS), where the server imposes a geometric regularizer after each round to encourage classes to be spreadout in the embedding space. We show, both theoretically and empirically, that FedAwS can almost match the performance of conventional learning where users have access to negative labels. We further extend the proposed method to settings with large output spaces.


Fully Parallel Hyperparameter Search: Reshaped Space-Filling

Marie-Liesse Cauwet · Camille Couprie · Julien Dehos · Pauline Luc · Jeremy Rapin · Morgane Riviere · Fabien Teytaud · Olivier Teytaud · Nicolas Usunier

Space-filling designs such as Low Discrepancy Sequence (LDS), Latin Hypercube Sampling (LHS) and Jittered Sampling (JS) were proposed for fully parallel hyperparameter search, and were shown to be more effective than random and grid search. We prove that LHS and JS outperform random search only by a constant factor. Consequently, we introduce a new sampling approach based on the reshaping of the search distribution, and we show both theoretically and numerically that it leads to significant gains over random search. Two methods are proposed for the reshaping: Recentering (when the distribution of the optimum is known), and Cauchy transformation (when the distribution of the optimum is unknown). The proposed methods are first validated on artificial experiments and simple real-world tests on clustering and Salmon mappings. Then we demonstrate that they drive performance improvement in a wide range of expensive artificial intelligence tasks, namely attend/infer/repeat, video next frame segmentation forecasting and progressive generative adversarial networks.


Generalizing Convolutional Neural Networks for Equivariance to Lie Groups on Arbitrary Continuous Data

Marc Finzi · Samuel Stanton · Pavel Izmailov · Andrew Wilson

The translation equivariance of convolutional layers enables CNNs to generalize well on image problems. While translation equivariance provides a powerful inductive bias for images, we often additionally desire equivariance to other transformations, such as rotations, especially for non-image data. We propose a general method to construct a convolutional layer that is equivariant to transformations from any specified Lie group with a surjective exponential map. Incorporating equivariance to a new group requires implementing only the group exponential and logarithm maps, enabling rapid prototyping. Showcasing the simplicity and generality of our method, we apply the same model architecture to images, ball-and-stick molecular data, and Hamiltonian dynamical systems. For Hamiltonian systems, the equivariance of our models is especially impactful, leading to exact conservation of linear and angular momentum.


Outstanding Paper Honorable Mention
Generative Pretraining From Pixels

Mark Chen · Alec Radford · Rewon Child · Jeffrey K Wu · Heewoo Jun · David Luan · Ilya Sutskever

Inspired by progress in unsupervised representation learning for natural language, we examine whether similar models can learn useful representations for images. We train a sequence Transformer to auto-regressively predict pixels, without incorporating knowledge of the 2D input structure. Despite training on low-resolution ImageNet without labels, we find that a GPT-2 scale model learns strong image representations as measured by linear probing, fine-tuning, and low-data classification. On CIFAR-10, we achieve 96.3% accuracy with a linear probe, outperforming a supervised Wide ResNet, and 99.0% accuracy with full fine-tuning, matching the top supervised pre-trained models. We are also competitive with self-supervised benchmarks on ImageNet when substituting pixels for a VQVAE encoding, achieving 69.0% top-1 accuracy on a linear probe of our features.


Generative Teaching Networks: Accelerating Neural Architecture Search by Learning to Generate Synthetic Training Data

Felipe Petroski Such · Aditya Rawal · Joel Lehman · Kenneth Stanley · Jeffrey Clune

This paper investigates the intriguing question of whether we can create learning algorithms that automatically generate training data, learning environments, and curricula in order to help AI agents rapidly learn. We show that such algorithms are possible via Generative Teaching Networks (GTNs), a general approach that is, in theory, applicable to supervised, unsupervised, and reinforcement learning, although our experiments only focus on the supervised case. GTNs are deep neural networks that generate data and/or training environments that a learner (e.g. a freshly initialized neural network) trains on for a few SGD steps before being tested on a target task. We then differentiate \emph{through the entire learning process} via meta-gradients to update the GTN parameters to improve performance on the target task. This paper introduces GTNs, discusses their potential, and showcases that they can substantially accelerate learning. We also demonstrate a practical and exciting application of GTNs: accelerating the evaluation of candidate architectures for neural architecture search (NAS). GTN-NAS improves the NAS state of the art, finding higher performing architectures when controlling for the search proposal mechanism. GTN-NAS also is competitive with the overall state of the art approaches, which achieve top performance while using orders of magnitude less computation than typical NAS methods. Speculating forward, GTNs may represent a first step toward the ambitious goal of algorithms that generate their own training data and, in doing so, open a variety of interesting new research questions and directions.


Global Concavity and Optimization in a Class of Dynamic Discrete Choice Models

Yiding Feng · Ekaterina Khmelnitskaya · Denis Nekipelov

Discrete choice models with unobserved heterogeneity are commonly used Econometric models for dynamic Economic behavior which have been adopted in practice to predict behavior of individuals and firms from schooling and job choices to strategic decisions in market competition. These models feature optimizing agents who choose among a finite set of options in a sequence of periods and receive choice-specific payoffs that depend on both variables that are observed by the agent and recorded in the data and variables that are only observed by the agent but not recorded in the data. Existing work in Econometrics assumes that optimizing agents are fully rational and requires finding a functional fixed point to find the optimal policy. We show that in an important class of discrete choice models the value function is globally concave in the policy. That means that simple algorithms that do not require fixed point computation, such as the policy gradient algorithm, globally converge to the optimal policy. This finding can both be used to relax behavioral assumption regarding the optimizing agents and to facilitate Econometric analysis of dynamic behavior. In particular, we demonstrate significant computational advantages in using a simple implementation policy gradient algorithm over existing “nested fixed point” algorithms used in Econometrics.


Harmonic Decompositions of Convolutional Networks

Meyer Scetbon · Zaid Harchaoui

We present a description of the function space and the smoothness class associated with a convolutional network using the machinery of reproducing kernel Hilbert spaces. We show that the mapping associated with a convolutional network expands into a sum involving elementary functions akin to spherical harmonics. The functional decomposition can be related to functional ANOVA decompositions in nonparametric statistics. Building off this functional characterization, we obtain statistical bounds which highlight an interesting trade-off between the approximation error and the estimation error.


Influence Diagram Bandits: Variational Thompson Sampling for Structured Bandit Problems

Tong Yu · Branislav Kveton · Zheng Wen · Ruiyi Zhang · Ole J. Mengshoel

We propose a novel framework for structured bandits, which we call an influence diagram bandit. Our framework captures complex statistical dependencies between actions, latent variables, and observations; and thus unifies and extends many existing models, such as combinatorial semi-bandits, cascading bandits, and low-rank bandits. We develop novel online learning algorithms that learn to act efficiently in our models. The key idea is to track a structured posterior distribution of model parameters, either exactly or approximately. To act, we sample model parameters from their posterior and then use the structure of the influence diagram to find the most optimistic action under the sampled parameters. We empirically evaluate our algorithms in three structured bandit problems, and show that they perform as well as or better than problem-specific state-of-the-art baselines.


Logarithmic Regret for Adversarial Online Control

Dylan Foster · Max Simchowitz

We introduce a new algorithm for online linear-quadratic control in a known system subject to adversarial disturbances. Existing regret bounds for this setting scale as $\sqrt{T}$ unless strong stochastic assumptions are imposed on the disturbance process. We give the first algorithm with logarithmic regret for arbitrary adversarial disturbance sequences, provided the state and control costs are given by known quadratic functions. Our algorithm and analysis use a characterization for the optimal offline control law to reduce the online control problem to (delayed) online learning with approximate advantage functions. Compared to previous techniques, our approach does not need to control movement costs for the iterates, leading to logarithmic regret.


Online Control of the False Coverage Rate and False Sign Rate

Asaf Weinstein · Aaditya Ramdas

The reproducibility debate has caused a renewed interest in changing how one reports uncertainty, from $p$-value for testing a null hypothesis to a confidence interval (CI) for the corresponding parameter. When CIs for multiple selected parameters are being reported, the analog of the false discovery rate (FDR) is the false coverage rate (FCR), which is the expected ratio of number of reported CIs failing to cover their respective parameters to the total number of reported CIs. Here, we consider the general problem of FCR control in the online setting, where one encounters an infinite sequence of fixed unknown parameters ordered by time. We propose a novel solution to the problem which only requires the scientist to be able to construct marginal CIs. As special cases, our framework yields algorithms for online FDR control and online sign-classification procedures that control the false sign rate (FSR). All of our methodology applies equally well to prediction intervals, having particular implications for selective conformal inference.


On the Theoretical Properties of the Network Jackknife

Qiaohui Lin · Robert Lunde · Purnamrita Sarkar

We study the properties of a leave-node-out jackknife procedure for network data. Under the sparse graphon model, we prove an Efron-Stein-type inequality, showing that the network jackknife leads to conservative estimates of the variance (in expectation) for any network functional that is invariant to node permutation. For a general class of count functionals, we also establish consistency of the network jackknife. We complement our theoretical analysis with a range of simulated and real-data examples and show that the network jackknife offers competitive performance in cases where other resampling methods are known to be valid. In fact, for several network statistics, we see that the jackknife provides more accurate inferences compared to related methods such as subsampling.


Optimally Solving Two-Agent Decentralized POMDPs Under One-Sided Information Sharing

Yuxuan Xie · Jilles Dibangoye · Olivier Buffet

Optimally solving decentralized partially observable Markov decision processes under either full or no information sharing received significant attention in recent years. However, little is known about how partial information sharing affects existing theory and algorithms. This paper addresses this question for a team of two agents, with one-sided information sharing---\ie both agents have imperfect information about the state of the world, but only one has access to what the other sees and does. From the perspective of a central planner, we show that the original problem can be reformulated into an equivalent information-state Markov decision process and solved as such. Besides, we prove that the optimal value function exhibits a specific form of uniform continuity. We also present a heuristic search algorithm utilizing this property and providing the first results for this family of problems.


Optimal Robust Learning of Discrete Distributions from Batches

Ayush Jain · Alon Orlitsky

Many applications, including natural language processing, sensor networks, collaborative filtering, and federated learning, call for estimating discrete distributions from data collected in batches, some of which may be untrustworthy, erroneous, faulty, or even adversarial. Previous estimators for this setting ran in exponential time, and for some regimes required a suboptimal number of batches. We provide the first polynomial-time estimator that is optimal in the number of batches and achieves essentially the best possible estimation accuracy.


Policy Teaching via Environment Poisoning: Training-time Adversarial Attacks against Reinforcement Learning

Amin Rakhsha · Goran Radanovic · Rati Devidze · Jerry Zhu · Adish Singla

We study a security threat to reinforcement learning where an attacker poisons the learning environment to force the agent into executing a target policy chosen by the attacker. As a victim, we consider RL agents whose objective is to find a policy that maximizes average reward in undiscounted infinite-horizon problem settings. The attacker can manipulate the rewards or the transition dynamics in the learning environment at training-time and is interested in doing so in a stealthy manner. We propose an optimization framework for finding an \emph{optimal stealthy attack} for different measures of attack cost. We provide sufficient technical conditions under which the attack is feasible and provide lower/upper bounds on the attack cost. We instantiate our attacks in two settings: (i) an \emph{offline} setting where the agent is doing planning in the poisoned environment, and (ii) an \emph{online} setting where the agent is learning a policy using a regret-minimization framework with poisoned feedback. Our results show that the attacker can easily succeed in teaching any target policy to the victim under mild conditions and highlight a significant security threat to reinforcement learning agents in practice.


Responsive Safety in Reinforcement Learning by PID Lagrangian Methods

Adam Stooke · Joshua Achiam · Pieter Abbeel

Lagrangian methods are widely used algorithms for constrained optimization problems, but their learning dynamics exhibit oscillations and overshoot which, when applied to safe reinforcement learning, leads to constraint-violating behavior during agent training. We address this shortcoming by proposing a novel Lagrange multiplier update method that utilizes derivatives of the constraint function. We take a controls perspective, wherein the traditional Lagrange multiplier update behaves as \emph{integral} control; our terms introduce \emph{proportional} and \emph{derivative} control, achieving favorable learning dynamics through damping and predictive measures. We apply our PID Lagrangian methods in deep RL, setting a new state of the art in Safety Gym, a safe RL benchmark. Lastly, we introduce a new method to ease controller tuning by providing invariance to the relative numerical scales of reward and cost. Our extensive experiments demonstrate improved performance and hyperparameter robustness, while our algorithms remain nearly as simple to derive and implement as the traditional Lagrangian approach.


Robust One-Bit Recovery via ReLU Generative Networks: Near-Optimal Statistical Rate and Global Landscape Analysis

Shuang Qiu · Xiaohan Wei · Zhuoran Yang

We study the robust one-bit compressed sensing problem whose goal is to design an algorithm that faithfully recovers any sparse target vector $\theta_0\in\mathbb{R}^d$ \textit{uniformly} via $m$ quantized noisy measurements. Specifically, we consider a new framework for this problem where the sparsity is implicitly enforced via mapping a low dimensional representation $x_0 \in \mathbb{R}^k$ through a known $n$-layer ReLU generative network $G:\mathbb{R}^k\rightarrow\mathbb{R}^d$ such that $\theta_0 = G(x_0)$. Such a framework poses low-dimensional priors on $\theta_0$ without a known sparsity basis. We propose to recover the target $G(x_0)$ solving an unconstrained empirical risk minimization (ERM). Under a weak \textit{sub-exponential measurement assumption}, we establish a joint statistical and computational analysis. In particular, we prove that the ERM estimator in this new framework achieves a statistical rate of $m=\widetilde{\mathcal{O}}(kn \log d /\varepsilon^2)$ recovering any $G(x_0)$ uniformly up to an error $\varepsilon$. When the network is shallow (i.e., $n$ is small), we show this rate matches the information-theoretic lower bound up to logarithm factors on $\varepsilon^{-1}$. From the lens of computation, we prove that under proper conditions on the network weights, our proposed empirical risk, despite non-convexity, has no stationary point outside of small neighborhoods around the true representation $x_0$ and its negative multiple; furthermore, we show that the global minimizer of the empirical risk stays within the neighborhood around $x_0$ rather than its negative multiple under further assumptions on weights.


SCAFFOLD: Stochastic Controlled Averaging for Federated Learning

Sai Praneeth Reddy Karimireddy · Satyen Kale · Mehryar Mohri · Sashank Jakkam Reddi · Sebastian Stich · Ananda Theertha Suresh

Federated learning is a key scenario in modern large-scale machine learning where the data remains distributed over a large number of clients and the task is to learn a centralized model without transmitting the client data. The standard optimization algorithm used in this setting is Federated Averaging (FedAvg) due to its low communication cost. We obtain a tight characterization of the convergence of FedAvg and prove that heterogeneity (non-iid-ness) in the client's data results in a `drift' in the local updates resulting in poor performance.

As a solution, we propose a new algorithm (SCAFFOLD) which uses control variates (variance reduction) to correct for the `client drift'. We prove that SCAFFOLD requires significantly fewer communication rounds and is not affected by data heterogeneity or client sampling. Further, we show that (for quadratics) SCAFFOLD can take advantage of similarity in the client's data yielding even faster convergence. The latter is the first result to quantify the usefulness of local-steps in distributed optimization.


Selective Dyna-style Planning Under Limited Model Capacity

Zaheer Abbas · Samuel Sokota · Erin Talvitie · Martha White

In model-based reinforcement learning, planning with an imperfect model of the environment has the potential to harm learning progress. But even when a model is imperfect, it may still contain information that is useful for planning. In this paper, we investigate the idea of using an imperfect model selectively. The agent should plan in parts of the state space where the model would be helpful but refrain from using the model where it would be harmful. An effective selective planning mechanism requires estimating predictive uncertainty, which arises out of aleatoric uncertainty, parameter uncertainty, and model inadequacy, among other sources. Prior work has focused on parameter uncertainty for selective planning. In this work, we emphasize the importance of model inadequacy. We show that heteroscedastic regression can signal predictive uncertainty arising from model inadequacy that is complementary to that which is detected by methods designed for parameter uncertainty, indicating that considering both parameter uncertainty and model inadequacy may be a more promising direction for effective selective planning than either in isolation.


SoftSort: A Continuous Relaxation for the argsort Operator

Sebastian Prillo · Julian M Eisenschlos

While sorting is an important procedure in computer science, the argsort operator - which takes as input a vector and returns its sorting permutation - has a discrete image and thus zero gradients almost everywhere. This prohibits end-to-end, gradient-based learning of models that rely on the argsort operator. A natural way to overcome this problem is to replace the argsort operator with a continuous relaxation. Recent work has shown a number of ways to do this, but the relaxations proposed so far are computationally complex. In this work we propose a simple continuous relaxation for the argsort operator which has the following qualities: it can be implemented in three lines of code, achieves state-of-the-art performance, is easy to reason about mathematically - substantially simplifying proofs - and is faster than competing approaches. We open source the code to reproduce all of the experiments and results.


Structured Prediction with Partial Labelling through the Infimum Loss

Vivien Cabannnes · Alessandro Rudi · Francis Bach

Annotating datasets is one of the main costs in nowadays supervised learning. The goal of weak supervision is to enable models to learn using only forms of labelling which are cheaper to collect, as partial labelling. This is a type of incomplete annotation where, for each datapoint, supervision is cast as a set of labels containing the real one. The problem of supervised learning with partial labelling has been studied for specific instances such as classification, multi-label, ranking or segmentation, but a general framework is still missing. This paper provides a unified framework based on structured prediction and on the concept of {\em infimum loss} to deal with partial labelling over a wide family of learning problems and loss functions. The framework leads naturally to explicit algorithms that can be easily implemented and for which proved statistical consistency and learning rates. Experiments confirm the superiority of the proposed approach over commonly used baselines.


Topological Autoencoders

Michael Moor · Max Horn · Bastian Rieck · Karsten Borgwardt

We propose a novel approach for preserving topological structures of the input space in latent representations of autoencoders. Using persistent homology, a technique from topological data analysis, we calculate topological signatures of both the input and latent space to derive a topological loss term. Under weak theoretical assumptions, we construct this loss in a differentiable manner, such that the encoding learns to retain multi-scale connectivity information. We show that our approach is theoretically well-founded and that it exhibits favourable latent representations on a synthetic manifold as well as on real-world image data sets, while preserving low reconstruction errors.


Train Big, Then Compress: Rethinking Model Size for Efficient Training and Inference of Transformers

Zhuohan Li · Eric Wallace · Sheng Shen · Kevin Lin · Kurt Keutzer · Dan Klein · Joseph Gonzalez

Since hardware resources are limited, the objective of training deep learning models is typically to maximize accuracy subject to the time and memory constraints of training and inference. We study the impact of model size in this setting, focusing on Transformer models for NLP tasks that are limited by compute: self-supervised pretraining and high-resource machine translation. We first show that even though smaller Transformer models execute faster per iteration, wider and deeper models converge in significantly fewer steps. Moreover, this acceleration in convergence typically outpaces the additional computational overhead of using larger models. Therefore, the most compute-efficient training strategy is to counterintuitively train extremely large models but stop after a small number of iterations. This leads to an apparent trade-off between the training efficiency of large Transformer models and the inference efficiency of small Transformer models. However, we show that large models are more robust to compression techniques such as quantization and pruning than small models. Consequently, one can get the best of both worlds: heavily compressed, large models achieve higher accuracy than lightly compressed, small models.


Training Deep Energy-Based Models with f-Divergence Minimization

Lantao Yu · Yang Song · Jiaming Song · Stefano Ermon

Deep energy-based models (EBMs) are very flexible in distribution parametrization but computationally challenging because of the intractable partition function. They are typically trained via maximum likelihood, using contrastive divergence to approximate the gradient of the KL divergence between data and model distribution. While KL divergence has many desirable properties, other f-divergences have shown advantages in training implicit density generative models such as generative adversarial networks. In this paper, we propose a general variational framework termed f-EBM to train EBMs using any desired f-divergence. We introduce a corresponding optimization algorithm and prove its local convergence property with non-linear dynamical systems theory. Experimental results demonstrate the superiority of f-EBM over contrastive divergence, as well as the benefits of training EBMs using f-divergences other than KL.


When are Non-Parametric Methods Robust?

Robi Bhattacharjee · Kamalika Chaudhuri

A growing body of research has shown that many classifiers are susceptible to adversarial examples -- small strategic modifications to test inputs that lead to misclassification. In this work, we study general non-parametric methods, with a view towards understanding when they are robust to these modifications. We establish general conditions under which non-parametric methods are r-consistent -- in the sense that they converge to optimally robust and accurate classifiers in the large sample limit.

Concretely, our results show that when data is well-separated, nearest neighbors and kernel classifiers are r-consistent, while histograms are not. For general data distributions, we prove that preprocessing by Adversarial Pruning (Yang et. al., 2019)-- that makes data well-separated -- followed by nearest neighbors or kernel classifiers also leads to r-consistency.


XTREME: A Massively Multilingual Multi-task Benchmark for Evaluating Cross-lingual Generalisation

Junjie Hu · Sebastian Ruder · Aditya Siddhant · Graham Neubig · Orhan Firat · Melvin Johnson

Much recent progress in applications of machine learning models to NLP has been driven by benchmarks that evaluate models across a wide variety of tasks. However, these broad-coverage benchmarks have been mostly limited to English, and despite an increasing interest in multilingual models, a benchmark that enables the comprehensive evaluation of such methods on a diverse range of languages and tasks is still missing. To this end, we introduce the Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark, a multi-task benchmark for evaluating the cross-lingual generalization capabilities of multilingual representations across 40 languages and 9 tasks. We demonstrate that while models tested on English reach human performance on many tasks, there is still a sizable gap in the performance of cross-lingually transferred models, particularly on syntactic and sentence retrieval tasks. There is also a wide spread of results across languages. We will release the benchmark to encourage research on cross-lingual learning methods that transfer linguistic knowledge across a diverse and representative set of languages and tasks.