Session
Tutorials 2
Causal inference provides a set of tools and principles that allows one to combine data and causal invariances about the environment to reason with questions of counterfactual nature -- i.e., what would have happened had reality been different, even when no data about this unrealized reality is available. Reinforcement Learning is concerned with efficiently finding a policy that optimizes a specific function (e.g., reward, regret) in interactive and uncertain environments. These two disciplines have evolved independently and with virtually no interaction between them. In fact, they operate over different aspects of the same building block, i.e., counterfactual relations, which makes them umbilically tied.
In this tutorial, we introduce a unified treatment putting these two disciplines under the same conceptual and theoretical umbrella. We show that a number of natural and pervasive classes of learning problems emerge when this connection is fully established, which cannot be seen individually from either discipline. In particular, we'll discuss generalized policy learning (a combination of online, off-policy, and do-calculus learning), where and where to intervene, counterfactual decision-making (and free-will, autonomy, Human-AI collaboration), police generalizability, causal imitation learning, among others. This new understanding leads to a broader view of what counterfactual learning is and suggests the great potential for the study of causality and reinforcement learning side by side, which we name causal reinforcement learning (CRL, for short).
The tutorial will focus on digital epidemiology – the study of the patterns of disease and health, and the factors that influence these patterns using digital technology and data. We will discuss the use of digital data and machine learning for studying and improving health in different populations.
The tutorial has four parts:
Part 1: Introduction to Digital Epidemiology.
Part 2: The use of digital data and technology to study infectious disease outbreaks, chronic diseases and other conditions.
Part 3: The use of digital data and tools during the COVID-19 pandemic.
Part 4: Ethics, privacy and representation.
Classical stochastic optimization results typically assume known values for various properties of the data (e.g. Lipschitz constants, distance to an optimal point, smoothness or strong-convexity constants). Unfortunately, in practice these values are unknown, necessitating a long trial-and-error procedure to find the best parameters. To address this issue, in recent years a number of parameter-free algorithms have been developed for online optimization and for online learning. Parameter-free algorithms make no assumptions about the properties of the data and yet nevertheless converge just as fast as the optimally tuned algorithm. This is an exciting line of work that has now reached enough maturity to be taught to general audiences. Indeed,these algorithms have not received a proper introduction to the machine learning community and only a handful of people fully understand them. This tutorial aims at bridging this gap, presenting practice and theory for using and designing parameter-free algorithms. We will present the latest advancements in this field, including practical applications.
One of the major recent advances in theoretical machine learning is the development of efficient learning algorithms for various high-dimensional statistical models. The Achilles heel of these algorithms is the assumption that the samples are precisely generated from the model. This assumption is crucial for the performance of these algorithms: even a very small fraction of outliers can completely compromise the algorithms' behavior.
Recent results in theoretical computer science have led to the development of the first computationally efficient robust estimators for a range of high-dimensional models. The goal of this tutorial is to introduce the machine learning community to the core insights and techniques in this area of algorithmic robust statistics, and discuss new directions and opportunities for future work.