Skip to yearly menu bar Skip to main content


Session

Workshops Sat

Abstract:
Chat is not available.

Sat 18 July 2:00 - 18:00 PDT

4th Lifelong Learning Workshop

Shagun Sodhani · Sarath Chandar · Balaraman Ravindran · Doina Precup

One of the most significant and challenging open problems in Artificial Intelligence (AI) is the problem of Lifelong Learning. Lifelong Machine Learning considers systems that can continually learn many tasks (from one or more domains) over a lifetime. A lifelong learning system efficiently and effectively:

1. retains the knowledge it has learned from different tasks;

2. selectively transfers knowledge (from previously learned tasks) to facilitate the learning of new tasks;

3. ensures the effective and efficient interaction between (1) and (2).

Lifelong Learning introduces several fundamental challenges in training models that generally do not arise in a single task batch learning setting. This includes problems like catastrophic forgetting and capacity saturation. This workshop aims to explore solutions for these problems in both supervised learning and reinforcement learning settings.

Sat 18 July 2:25 - 10:40 PDT

INNF+: Invertible Neural Networks, Normalizing Flows, and Explicit Likelihood Models

Chin-Wei Huang · David Krueger · Rianne Van den Berg · George Papamakarios · Chris Cremer · Ricky T. Q. Chen · Danilo J. Rezende

Normalizing flows are explicit likelihood models using invertible neural networks to construct flexible probability distributions of high-dimensional data. Compared to other generative models, the main advantage of normalizing flows is that they can offer exact and efficient likelihood computation and data generation. Since their recent introduction, flow-based models have seen a significant resurgence of interest in the machine learning community. As a result, powerful flow-based models have been developed, with successes in density estimation, variational inference, and generative modeling of images, audio and video.

This workshop is the 2nd iteration of the ICML 2019 workshop on Invertible Neural Networks and Normalizing Flows. While the main goal of last year’s workshop was to make flow-based models more accessible to the general machine learning community, as the field is moving forward, we believe there is now a need to consolidate recent progress and connect ideas from related fields. In light of the interpretation of latent variable models and autoregressive models as flows, this year we expand the scope of the workshop and consider likelihood-based models more broadly, including flow-based models, latent variable models and autoregressive models. We encourage the researchers to use these models in conjunction to exploit the their benefits at once, and to work together to resolve some common issues of likelihood-based methods, such as mis-calibration of out-of-distribution uncertainty.

Sat 18 July 3:00 - 3:00 PDT

Inductive Biases, Invariances and Generalization in Reinforcement Learning

Anirudh Goyal · Rosemary Nan Ke · Jane Wang · Stefan Bauer · Theophane Weber · Fabio Viola · Bernhard Schölkopf · Stefan Bauer

One proposed solution towards the goal of designing machines that can extrapolate experience across environments and tasks, are inductive biases. Providing and starting algorithms with inductive biases might help to learn invariances e.g. a causal graph structure, which in turn will allow the agent to generalize across environments and tasks.
While some inductive biases are already available and correspond to common knowledge, one key requirement to learn inductive biases from data seems to be the possibility to perform and learn from interventions. This assumption is partially motivated by the accepted hypothesis in psychology about the need to experiment in order to discover causal relationships. This corresponds to an reinforcement learning environment, where the agent can discover causal factors through interventions and observing their effects.

We believe that one reason which has hampered progress on building intelligent agents is the limited availability of good inductive biases. Learning inductive biases from data is difficult since this corresponds to an interactive learning setting, which compared to classical regression or classification frameworks is far less understood e.g. even formal definitions of generalization in RL have not been developed. While Reinforcement Learning has already achieved impressive results, the sample complexity required to achieve consistently good performance is often prohibitively high. This has limited most RL to either games or settings where an accurate simulator is available. Another issue is that RL agents are often brittle in the face of even tiny changes to the environment (either visual or mechanistic changes) unseen in the training phase.

To build intuition for the scope of the generalization problem in RL, consider the task of training a robotic car mechanic that can diagnose and repair any problem with a car. Current methods are all insufficient in some respect -- on-policy policy gradient algorithms need to cycle through all possible broken cars on every single iteration, off-policy algorithms end up with a mess of instability due to perception and highly diverse data, and model-based methods may struggle to fully estimate a complex web of causality.

In our workshop we hope to explore research and new ideas on topics related to inductive biases, invariances and generalization, including:

- What are efficient ways to learn inductive biases from data?
- Which inductive biases are most suitable to achieve generalization?
- Can we make the problem of generalization in particular for RL more concrete and figure out standard terms for discussing the problem?
- Causality and generalization especially in RL
- Model-based RL and generalization.
- Sample Complexity in reinforcement learning.
- Can we create models that are robust visual environments, assuming all the underlying mechanics are the same. Should this count as generalization or transfer learning?
- Robustness to changes in the mechanics of the environment, such as scaling of rewards.
- Can we create a theoretical understanding of generalization in RL, and understand how it is related to the well developed ideas from statistical learning theory.
- in RL, the training data is collected by the agent and it is affected by the agent's policy.
Therefore, the training distribution is not a fixed distribution. How does this affect how we should think about generalization?

The question of generalization in reinforcement learning is essential to the field’s future both in theory and in practice. However there are still open questions about the right way to think about generalization in RL, the right way to formalize the problem, and the most important tasks. This workshop would help to address this issue by bringing together researchers from different backgrounds to discuss these challenges.

Sat 18 July 5:00 - 14:00 PDT

Negative Dependence and Submodularity: Theory and Applications in Machine Learning

Zelda Mariet · Michal Derezinski · Mike Gartrell

Models of negative dependence and submodularity are increasingly important in machine learning. Whether selecting training data, finding an optimal experimental design, exploring in reinforcement learning and Bayesian optimization, or designing recommender systems, selecting high-quality yet diverse items has become a core challenge. This workshop aims to bring together researchers who, using theoretical or applied techniques, leverage negative dependence and submodularity in their work. Expanding upon last year's workshop, we will highlight recent developments in the rich mathematical theory of negative dependence, cover novel critical applications, and discuss the most promising directions for future research.

Sat 18 July 5:45 - 14:35 PDT

Federated Learning for User Privacy and Data Confidentiality

Nathalie Baracaldo · Olivia Choudhury · Olivia Choudhury · Gauri Joshi · Ramesh Raskar · Gauri Joshi · Shiqiang Wang · Han Yu

Training machine learning models in a centralized fashion often faces significant challenges due to regulatory and privacy concerns in real-world use cases. These include distributed training data, computational resources to create and maintain a central data repository, and regulatory guidelines (GDPR, HIPAA) that restrict sharing sensitive data. Federated learning (FL) is a new paradigm in machine learning that can mitigate these challenges by training a global model using distributed data, without the need for data sharing. The extensive application of machine learning to analyze and draw insight from real-world, distributed, and sensitive data necessitates familiarization with and adoption of this relevant and timely topic among the scientific community.Despite the advantages of federated learning, and its successful application in certain industry-based cases, this field is still in its infancy due to new challenges that are imposed by limited visibility of the training data, potential lack of trust among participants training a single model, potential privacy inferences, and in some cases, limited or unreliable connectivity.The goal of this workshop is to bring together researchers and practitioners interested in FL. This day-long event will facilitate interaction among students, scholars, and industry professionals from around the world to understand the topic, identify technical challenges, and discuss potential solutions. This will lead to an overall advancement of FL and its impact in the community.

For a detailed workshop schedule, please visit: http://federated-learning.org/fl-icml-2020/

Workshop date: July 18, 2020 (Saturday)
Starting at 9 am in US Eastern Daylight Time, https://time.is/EDT

Sat 18 July 5:45 - 15:05 PDT

Machine Learning for Global Health

Danielle Belgrave · Danielle Belgrave · Stephanie Hyland · Charles Onu · Nicholas Furnham · Ernest Mwebaze · Neil Lawrence

Machine learning is increasingly being applied to problems in the healthcare domain. However, there is a risk that the development of machine learning models for improving health remain focused within areas and diseases which are more economically incentivised and resourced. This presents the risk that as research and technological entities aim to develop machine-learning-assisted consumer healthcare devices, or bespoke algorithms for their populations within a certain geographical region, that the challenges of healthcare in resource-constrained settings will be overlooked. The predominant research focus of machine learning for healthcare in the “economically advantaged” world means that there is a skew in our current knowledge of how machine learning can be used to improve health on a more global scale – for everyone. This workshop aims to draw attention to the ways that machine learning can be used for problems in global health, and to promote research on problems outside high-resource environments.

Sat 18 July 5:50 - 14:30 PDT

Bridge Between Perception and Reasoning: Graph Neural Networks & Beyond

Jian Tang · Le Song · Jure Leskovec · Renjie Liao · Yujia Li · Sanja Fidler · Richard Zemel · Ruslan Salakhutdinov

Deep learning has achieved great success in a variety of tasks such as recognizing objects in images, predicting the sentiment of sentences, or image/speech synthesis by training on a large-amount of data. However, most existing success are mainly focusing on perceptual tasks, which is also known as System I intelligence. In real world, many complicated tasks, such as autonomous driving, public policy decision making, and multi-hop question answering, require understanding the relationship between high-level variables in the data to perform logical reasoning, which is known as System II intelligence. Integrating system I and II intelligence lies in the core of artificial intelligence and machine learning.

Graph is an important structure for System II intelligence, with the universal representation ability to capture the relationship between different variables, and support interpretability, causality, and transferability / inductive generalization. Traditional logic and symbolic reasoning over graphs has relied on methods and tools which are very different from deep learning models, such Prolog language, SMT solvers, constrained optimization and discrete algorithms. Is such a methodology separation between System I and System II intelligence necessary? How to build a flexible, effective and efficient bridge to smoothly connect these two systems, and create higher order artificial intelligence?

Graph neural networks, have emerged as the tool of choice for graph representation learning, which has led to impressive progress in many classification and regression problems such as chemical synthesis, 3D-vision, recommender systems and social network analysis. However, prediction and classification tasks can be very different from logic/symbolic reasoning.

Bits and pieces of evidence can be gleaned from recent literature, suggesting graph neural networks may be a general tool to make such a connection. For example, \cite{battaglia2018relational,barcelo2019logical} viewed graph neural networks as tools to incorporate explicitly logic reasoning bias. \cite{kipf2018neural} used graph neural network to reason about interacting systems,
\cite{yoon2018inference,zhang2020efficient} used neural networks for logic and probabilistic inference, \cite{hudson2019learning, hu2019language} used graph neural networks for reasoning on scene graphs for visual question reasoning, \cite{qu2019probabilistic} studied reasoning on knowledge graphs with graph neural networks, and \cite{khalil2017learning, xu2018powerful, velickovic2019neural, sato2019approximation} used graph neural networks for discrete graph algorithms. However, there can still be a long way to go for a satisfactory and definite answers on the ability of graph neural networks for automatically discovering logic rules, and conducting long-range multi-step complex reasoning in combination with perception inputs such as language, vision, spatial and temporal variation.

{\bf Can graph neural networks be the key bridge to connect System I and System II intelligence? Are there other more flexible, effective and efficient alternatives?} For instance, \citep{wang2019satnet} combined max satisfiability solver with deep learning, \citep{manhaeve2018deepproblog} combined directed graphical and Problog with deep learning, \citep{skryagin2020splog}~combined sum product network with deep learning, \citep{silver2019few,alet2019graph}~combined logic reasoning with reinforcement learning. How do these alternative methods compare with graph neural networks for being a bridge?

The goal of this workshop is to bring researchers from previously separate fields, such as deep learning, logic/symbolic reasoning, statistical relational learning, and graph algorithms, into a common roof to discuss this potential interface and integration between System I and System intelligence. By providing a venue for the confluence of new advances in theoretical foundations, models and algorithms, as well as empirical discoveries, new benchmarks and impactful applications,

Sat 18 July 6:00 - 14:55 PDT

7th ICML Workshop on Automated Machine Learning (AutoML 2020)

Frank Hutter · Joaquin Vanschoren · Marius Lindauer · Charles Weill · Katharina Eggensperger · Matthias Feurer · Matthias Feurer

Machine learning has achieved considerable successes in recent years, but this success often relies on human experts, who construct appropriate features, design learning architectures, set their hyperparameters, and develop new learning algorithms. Driven by the demand for off-the-shelf machine learning methods from an ever-growing community, the research area of AutoML targets the progressive automation of machine learning aiming to make effective methods available to everyone. Hence, the workshop targets a broad audience ranging from core machine learning researchers in different fields of ML connected to AutoML, such as neural architecture search, hyperparameter optimization, meta-learning, and learning to learn, to domain experts aiming to apply machine learning to new types of problems.

The schedule is wrt CEST (i.e., the time zone of Vienna)

Sat 18 July 6:00 - 22:00 PDT

Economics of privacy and data labor

Nikolaos Vasiloglou · Rachel Cummings · Glen Weyl · Paris Koutris · Meg Young · Ruoxi Jia · David Dao · Bo Waggoner

Although data is considered to be the “new oil”, it is very hard to be priced. Raw use of data has been invaluable in several sectors such as advertising, healthcare, etc, but often in violation of people’s privacy. Labeled data has also been extremely valuable for the training of machine learning models (driverless car industry). This is also indicated by the growth of annotation companies such as Figure8 and Scale.AI, especially in the image space. Yet, it is not clear what is the right pricing for data workers who annotate the data or the individuals who contribute their personal data while using digital services. In the latter case, it is very unclear how the value of the services offered is compared to the private data exchanged. While the first data marketplaces have appeared, such as AWS, Narattive.io, nitrogen.ai, etc, they suffer from a lack of good pricing models. They also fail to maintain the right of the data owners to define how their own data will be used. There have been numerous suggestions for sharing data while maintaining privacy, such as training generative models that preserve original data statistics.

Sat 18 July 7:00 - 14:10 PDT

1st Workshop on Language in Reinforcement Learning (LaReL)

Nantas Nardelli · Jelena Luketina · Nantas Nardelli · Jakob Foerster · Victor Zhong · Jacob Andreas · Tim Rocktäschel · Edward Grefenstette · Tim Rocktäschel

Language is one of the most impressive human accomplishments and is believed to be the core to our ability to learn, teach, reason and interact with others. Yet, current state-of-the-art reinforcement learning agents are unable to use or understand human language at all. The ability to integrate and learn from language, in addition to rewards and demonstrations, has the potential to improve the generalization, scope and sample efficiency of agents. Furthermore, many real-world tasks, including personal assistants and general household robots, require agents to process language by design, whether to enable interaction with humans, or simply use existing interfaces. The aim of our workshop is to advance this emerging field of research by bringing together researchers from several diverse communities to discuss recent developments in relevant research areas such as instruction following and embodied language learning, and identify the most important challenges and promising research avenues.

Sat 18 July 7:00 - 15:35 PDT

Real World Experiment Design and Active Learning

Ilija Bogunovic · Willie Neiswanger · Yisong Yue

This workshop aims to bring together researchers from academia and industry to discuss major challenges, outline recent advances, and highlight future directions pertaining to novel and existing large-scale real-world experiment design and active learning problems. We aim to highlight new and emerging research opportunities for the machine learning community that arise from the evolving needs to make experiment design and active learning procedures that are theoretically and practically relevant for realistic applications.

The intended audience and participants include everyone whose research interests, activities, and applications involve experiment design, active learning, bandit/Bayesian optimization, efficient exploration, and parameter search methods and techniques. We expect the workshop to attract substantial interest from researchers working in both academia and industry. The research of our invited speakers spans both theory and applications, and represents a diverse range of domains where experiment design and active learning are of fundamental importance (including robotics & control, biology, physical sciences, crowdsourcing, citizen science, etc.).


The schedule is with respect to UTC (i.e., Universal Time) time zone.

Sat 18 July 7:00 - 14:00 PDT

Workshop on Learning in Artificial Open Worlds

Arthur Szlam · Katja Hofmann · Ruslan Salakhutdinov · Noboru Kuno · William Guss · Kavya Srinet · Brandon Houghton

In situations where a task can be cleanly formulated and data is plentiful, modern machine learning (ML) techniques have achieved impressive (and often super-human) results. Here, plentiful data'' can mean labels from humans, access to a simulator and well designed reward function, or other forms of interaction and supervision.<br><br>On the other hand, in situations where tasks cannot be cleanly formulated and plentifully supervised, ML has not yet shown the same progress. We still seem far from flexible agents that can learn without human engineers carefully designing or collating their supervision. This is problematic in many settings where machine learning is or will be applied in real world settings, where these agents have to interact with human users and may be used in settings that go beyond any initial clean training data used during system development. A key open question is how to make machine learning effective and robust enough to operate in real world open domains.<br><br>Artificial {\it open} worlds are ideal laboratories for studying how to extend the successes of ML to build such agents. <br>Open worlds are characterized by:<br>\begin{itemize}<br> \item Large (or perhaps infinite) collections of tasks, often not specified till test time; or lack of well defined tasks altogether (despite there being lots to do).<br> \itemunbounded'' environments, long ``epsiodes''; or no episodes at all.
\item Many interacting agents; more generally, emergent behavior from interactions with the environment.
\end{itemize}
On one hand, they retain many of the challenging features of the real world with respect to studying learning agents. On the other hand,
they allow cheap collection of environment interaction data. Furthermore, because many artificial worlds of interest are games that people enjoy playing, they could allow interaction with humans at scale.

A particularly promising direction is that open world games can bridge: the closed domains and benchmarks that have traditionally driven research progress and open ended real world applications in which resulting technology is deployed.
We propose a workshop designed to catalyze research towards addressing these challenges posed by machine learning in open worlds.
Our goal is to bring together researchers with a wide range of perspectives whose work focuses on, or is enabled by, open worlds. This would be the very first workshop focused on this topic, and we anticipate that it would play a key role in sharing experience, brainstorming ideas, and catalyzing novel directions for research.

Sat 18 July 8:00 - 11:00 PDT

Incentives in Machine Learning

Boi Faltings · Yang Liu · David Parkes · Goran Radanovic · Dawn Song

Artificial Intelligence (AI), and Machine Learning systems in particular, often depend on the information provided by multiple agents. The most well-known example is federated learning, but also sensor data, crowdsourced human computation, or human trajectory inputs for inverse reinforcement learning. However, eliciting accurate data can be costly, either due to the effort invested in obtaining it, as in crowdsourcing, or due to the need to maintain automated systems, as in distributed sensor systems. Low-quality data not only degrades the performance of AI systems, but may also pose safety concerns. Thus, it becomes important to verify the correctness of data and be smart in how data is aggregated, and to provide incentives to promote effort and high-quality data. During the recent workshop on Federated Learning at NeurIPS 2019, 4 of 6 panel members mentioned incentives as the most important open issue.

This workshop is proposed to understand this aspect of Machine Learning, both theoretically and empirically. We particularly encourage contributions on the following aspects:
- How to collect high quality and credible data for machine learning systems from self-interested and possibly malicious agents, considering the game-theoretical properties of the problem?
- How to evaluate the quality of data supplied by self-interested and possibly malicious agents and how to optimally aggregate it?
- How to make use of machine learning in game-theoretic mechanisms that will facilitate the collection of high-quality data?

Sat 18 July 9:10 - 16:00 PDT

Machine Learning for Media Discovery

Erik Schmidt · Oriol Nieto · Fabien Gouyon · Yves Raimond · Katherine Kinnaird · Gert Lanckriet

The ever-increasing size and accessibility of vast media libraries has created a demand more than ever for AI-based systems that are capable of organizing, recommending, and understanding such complex data.

While this topic has received only limited attention within the core machine learning community, it has been an area of intense focus within the applied communities such as the Recommender Systems (RecSys), Music Information Retrieval (MIR), and Computer Vision communities. At the same time, these domains have surfaced nebulous problem spaces and rich datasets that are of tremendous potential value to machine learning and the AI communities at large.

This year's Machine Learning for Media Discovery (ML4MD) aims to build upon the five previous Machine Learning for Music Discovery editions at ICML, broadening the topic area from music discovery to media discovery. The added topic diversity is aimed towards having a broader conversation with the machine learning community and to offer cross-pollination across the various media domains.

One of the largest areas of focus in the media discovery space is on the side of content understanding. The recommender systems community has made great advances in terms of collaborative feedback recommenders, but these approaches suffer strongly from the cold-start problem. As such, recommendation techniques often fall back on content-based machine learning systems, but defining the similarity of media items is extremely challenging as myriad features all play some role (e.g., cultural, emotional, or content features, etc.). While significant progress has been made, these problems remain far from solved.

In addition, these complex data present many challenges beyond the development of machine learning systems to model and understand them. One of the largest challenges is scale. One example is commercial music libraries, which span into the tens of millions. However, user-generated content platforms such as YouTube and Pinterest have libraries stretching into the billions--a scale at which many of the traditional approaches discussed in the literature simply cannot perform.

On the other side of this problem sits the recent explosion of work in the area of Creative AI. Relevant examples include Google Magenta, Amazon's DeepComposer, who seek to develop algorithms capable of composing and performing completely original (and compelling) works of music. The same also happens in the world of visual media creation (e.g., DeepDream, Deep Fakes). Certain work in this area adds an interesting dimension to the conversation as understanding how content is created is a prerequisite to generating.

This workshop proposal is timely in that it will bridge these separate pockets of otherwise very related research. In addition to making progress on the challenges above, we hope to engage the wide AI and machine learning community with our rich problem space, and connect them with the many available datasets the community has to offer.

Sat 18 July 11:00 - 3:00 PDT

2nd ICML Workshop on Human in the Loop Learning (HILL)

Shanghang Zhang · Xin Wang · Fisher Yu · Jiajun Wu · Trevor Darrell

Recent years have witnessed the rising need for learning agents that can interact with humans. Such agents usually involve applications in computer vision, natural language processing, human computer interaction, and robotics. Creating and running such agents call for interdisciplinary research of artificial intelligence, machine learning, and software engineering design, which we abstract as Human in the Loop Learning (HILL). HILL is a modern machine learning paradigm of significant practical and theoretical interest. For HILL, models and humans engage in a two-way dialog to facilitate more accurate and interpretable learning. The workshop aims to bring together researchers and practitioners working on the broad areas of human in the loop learning, ranging from the interactive/active learning algorithm designs for real-world decision making systems (e.g., autonomous driving vehicles, robotic systems, etc.), models with strong explainability, as well as interactive system designs (e.g., data visualization, annotation systems, etc.). In particular, we aim to elicit new connections among these diverse fields, identifying theory, tools and design principles tailored to practical machine learning workflows. The target audience for the workshop includes people who are interested in using machines to solve problems by having a human be an integral part of the learning process. In this year’s HILL workshop, we emphasize on the interactive/active learning algorithms for real-world decision making systems as well as learning algorithms with strong explainability. We continue the previous effort to provide a platform for researchers to discuss approaches that bridge the gap between humans and machines and get the best of both worlds. We believe the theme of the workshop will be interesting to ICML attendees, especially those who are interested in interdisciplinary study.