

Symmetric Spaces For Graph Embeddings: A Finsler-Riemannian Approach

Federico López Beatrice Pozzetti Steve Trettel Michael Strube Anna Wienhard

Graphs are ubiquitous!

- Social networks
- Proteins
- Molecules
- Genes
- Internet
- And many more!

Graphs are non-Euclidean!

- Approach: embed graph into a Euclidean space
- Graphs typically exhibit non-Euclidean features
- Richer manifold structure needed
- The choice of a metric space where to embed the data is a powerful inductive bias

Previous Work

- Hyperbolic spaces
 Krioukov et al., 2009; Chamberlain et al., 2017; Nickel & Kiela, 2017, 2018; Sala et al., 2018; Ganea et al., 2018.
- Spherical spaces
 Wilson et al., 2014; Liu et al., 2017; Xu & Durrett, 2018;
 Meng et al., 2019; Defferrard et al., 2020
- Different curvatures combined
 Chami et al., 2019; Bachmann et al., 2020; Grattarola et al., 2020
- Cartesian products of spaces
 Gu et al., 2019; Tifrea et al., 2019; Skopek et al., 2020
- Symmetric Positive Definite matrices and Grassmannian manifolds
 Huang & Gool, 2017; Huang et al., 2018; Cruceru et al., 2020

Previous Work

- Hyperbolic spaces
 Krioukov et al., 2009; Chamberlain et al., 2017; Nickel & Kiela, 2017, 2018; Sala et al., 2018; Ganea et al., 2018.
- Spherical spaces
 Wilson et al., 2014; Liu et al., 2017; Xu & Durrett, 2018;
 Meng et al., 2019; Defferrard et al., 2020
- Different curvatures combined
 Chami et al., 2019; Bachmann et al., 2020; Grattarola et al., 2020
- Cartesian products of spaces
 Gu et al., 2019; Tifrea et al., 2019; Skopek et al., 2020
- Symmetric Positive Definite matrices and Grassmannian manifolds
 Huang & Gool, 2017; Huang et al., 2018; Cruceru et al., 2020

These are all symmetric spaces!!!

A **unified framework** in which to encompass these various examples is still missing

We Propose!

Systematic use of **symmetric spaces** in representation learning

- **General framework** to learn graph embeddings:
 - Choose a space to represent nodes
 - How to measure distances
 - How to compute gradient

 Concrete implementation of the framework with Siegel Spaces

Siegel Spaces

- A family of non-compact symmetric spaces of **non-positive** curvature
- Generalization of hyperbolic plane
- Rich geometry:
 - Euclidean subspaces
 - Hyperbolic subspaces
 - Products of Euclidean x Hyperbolic
 - Copies of SPD matrix spaces
- Excellent device for learning embeddings of complex networks:
 - They automatically adapt to dissimilar graphs without a priori knowledge of their internal structure

Points in the Space

ullet Each point is represented as a **symmetric matrix** with coefficients in the **complex numbers** ${\mathbb C}$

Complex variable representation:

$$Z = X + iY \in \operatorname{Sym}(n, \mathbb{C})$$

$$Z \qquad X = \Re(Z) \qquad Y = \Im(Z) \in \operatorname{Sym}(n, \mathbb{R})$$

$$= + i$$

Models of Siegel Spaces

- Bounded domain model:
 - Generalizes the Poincaré disk

$$\mathcal{B}_n := \{ Z \in \operatorname{Sym}(n, \mathbb{C}) | \operatorname{Id} - Z^* Z > > 0 \}$$

- Siegel upper half space model:
 - Generalizes the upper half plane model of the hyperbolic plane

$$S_n := \{ Z = X + iY \in \text{Sym}(n, \mathbb{C}) | Y \gg 0 \}$$

Finsler Distances

We embed a 2D grid in an Euclidean plane \mathbb{R}^2

- Distances are distorted!
 - o $d_{G}(A,D) = 2$!= $d_{R}(A,D) = \sqrt{2}$
- Length minimizing paths are **unique**

Finsler Distances

We embed a 2D grid in an Euclidean plane \mathbb{R}^2

- Distances are distorted!
 - o $d_G(A,D) = 2$!= $d_R(A,D) = \sqrt{2}$
- Length minimizing paths are unique

- Distances are **not** distorted!
 - o $d_{G}(A,D) = 2$ == $d_{p_1}(A,D) = 2$
- Geodesics are not unique!

Experiments on Graph Reconstruction

- Metrics
 - Global and local metric
- Model Baselines
 - o Euclidean, Hyperbolic
 - Cartesian product thereof
 - o SPD

- The **Riemannian metric performs on par** with the best matching geometric spaces
- Siegel space with **Finsler metrics significantly outperform** the baselines in most graphs

Real-World **Datasets**

Models with Finsler (One) metrics outperform all baselines

Strong reconstruction capabilities of RSS for real-world data

Structure Analysis

• The **vector-valued distance** can be leveraged to find structure in graphs.

• The model distinguishes tree-like and grid-like edges

More Applications

- Downstream tasks:
 - Recommender Systems
 - Node classification
- Embeddings capture structural properties of the datasets useful for the task
- Downstream tasks can profit from the enhanced graph representation capacity
- **Flexibility** of the method
- **Integration** of RSS embeddings with classical Euclidean network layers

Summary

- General framework for embeddings in symmetric spaces
 - Finsler Metrics: better representation capacities
 - Vector-valued distance: tool for graph analysis
- Implementation on Siegel spaces
 - Matrix models of hyperbolic plane
 - Ties or outperforms constant-curvature baselines on three different tasks
 - It does not require any previous assumption on geometric features of the graph
 - Approach offers flexibility and enhanced representation capacity

