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Graphs are ubiquitous!

e Social networks
e Proteins
e Molecules

e (enes

e Internet o

e And many more!




Graphs are non-Euclidean!

e Approach: embed graph into a Euclidean space
e Graphs typically exhibit non-Euclidean features
e Richer manifold structure needed

e The choice of a metric space where to embed
the data is a powerful inductive bias




Previous Work

e Hyperbolic spaces

Krioukov et al., 2009; Chamberlain et al., 2017; Nickel & Kiela,
2017,2018; Sala et al.,, 2018; Ganea et al., 2018.

e Spherical spaces

Wilson et al., 2014; Liu et al., 2017; Xu & Durrett, 2018;
Meng et al., 2019; Defferrard et al., 2020

e Different curvatures combined
Chamiet al,, 2019; Bachmann et al., 2020; Grattarola et al., 2020

e (artesian products of spaces
Gu et al,, 2019; Tifrea et al., 2019; Skopek et al., 2020

e Symmetric Positive Definite matrices and

Grassmannian manifolds
Huang & Gool, 2017; Huang et al., 2018; Cruceru et al., 2020




Previous Work

e Hyperbolic spaces

Krioukov et al., 2009; Chamberlain et al., 2017; Nickel & Kiela, These are a ||
2017,2018; Sala et al.,, 2018; Ganea et al., 2018.

e Spherical spaces

Wilson et al., 2014; Liu et al., 2017; Xu & Durrett, 2018;
Meng et al., 2019; Defferrard et al., 2020

e Different curvatures combined
Chamiet al,, 2019; Bachmann et al., 2020; Grattarola et al., 2020

e (Cartesian products of spaces
Gu et al, 2019; Tifrea et al., 2019; Skopek et al., 2020

A unified framework in which
1o encompass these various
Huang & Gool, 2017; Huang et al., 2018; Cruceru et al., 2020 y examples is still missing

e Symmetric Positive Definite matrices and
Grassmannian manifolds




We Propose!

) . ) Symmetric
Systematic use of symmetric spaces in Spaces
representation learning

e General framework to learn graph embeddings:
o Choose a space to represent nodes General
o How to measure distances Framework
o How to compute gradient
embedding
e Concrete implementation of the dlgovithm A
e T
framework with Siegel Spaces .




Siegel Spaces

e A family of non-compact symmetric spaces
of non-positive curvature

e Generalization of hyperbolic plane

e Rich geometry:
o Euclidean subspaces
o Hyperbolic subspaces
o Products of Euclidean x Hyperbolic
o Copies of SPD matrix spaces

e Excellent device for learning embeddings of complex networks:

o They automatically adapt to dissimilar graphs without a priori knowledge of
their internal structure



Points in the Space

e FEach pointis represented as a symmetric matrix

with coefficients in the complex numbers C

e Complex variable representation:
Z =X +1iY € Sym(n,C)
Z X =RZ) Y =94 € Sym(n,R)




Models of Siegel Spaces

Bounded domain model:
o Generalizes the Poincaré disk

B, :={Z € Sym(n,C)|Id — Z*Z > 0}

Siegel upper half space model:
o  Generalizes the upper half plane model
of the hyperbolic plane

Sp:={Z=X+41iY € Sym(n,C)| Y > 0}
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e Distances are distorted!
o dy(AD)=2 1= d_(AD)=12

e |ength minimizing paths are unique

We embed a 2D grid in an
Euclidean plane R?
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o dy(AD)=2 1= d_(AD)=12
e |ength minimizing paths are unique °

We embed a 2D grid in an
Euclidean plane R?
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Distances are not distorted!
o dyAD)=2 == d,(AD)=2

Geodesics are not unique!



Experiments on Graph Reconstruction

Embedding Graph
Algorithm Reconstruction

e Metrics
o Global and local metric

e Model Baselines
o Euclidean, Hyperbolic

o Cartesian product thereof
o SPD




Synthetic
Graphs
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e The Riemannian metric performs on par with the best matching geometric spaces @

e Siegel space with Finsler metrics significantly outperform the baselines in most graphs



Real-World
Datasets
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e Models with Finsler (One) metrics outperform all baselines Y

e Strong reconstruction capabilities of RSS for real-world data @



Structure Analysis

e The vector-valued distance ™~ & -
can be leveraged to find : AN
structure in graphs.

e The model distinguishes tree-like and grid-like edges

BIO-DISEASOME FACEBOOK



More Applications

e Downstream tasks:
o Recommender Systems
o Node classification

® Embeddings capture structural properties
of the datasets useful for the task

e Downstream tasks can profit from the enhanced r'-" -
graph representation capacity o f P :-":{ fy
Qood DR/ P 0%, :
BRI [ o Wogse
e Flexibility of the method ey ¢+
" o:.;:..,o :O Z %.ozogocp
e Integration of RSS embeddings with classical A O

Euclidean network layers



Ssummary

e General framework for embeddings
in symmetric spaces
o Finsler Metrics: better representation capacities
o Vector-valued distance: tool for graph analysis

e Implementation on Siegel spaces

o Matrix models of hyperbolic plane

o Ties or outperforms constant-curvature baselines
on three different tasks

o It does not require any previous assumption on
geometric features of the graph

o Approach offers flexibility and enhanced
representation capacity




