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Graphs are ubiquitous!

● Social networks

● Proteins

● Molecules

● Genes

● Internet

● And many more!



Graphs are non-Euclidean!

● Approach: embed graph into a Euclidean space

● Graphs typically exhibit non-Euclidean features

● Richer manifold structure needed

● The choice of a metric space where to embed 
the data is a powerful inductive bias



Previous Work
● Hyperbolic spaces

Krioukov et al., 2009; Chamberlain et al., 2017; Nickel & Kiela, 
2017, 2018; Sala et al., 2018; Ganea et al., 2018.

● Spherical spaces
Wilson et al., 2014; Liu et al., 2017; Xu & Durrett, 2018; 
Meng et al., 2019; Defferrard et al., 2020

● Different curvatures combined
Chami et al., 2019; Bachmann et al., 2020; Grattarola et al., 2020

● Cartesian products of spaces
Gu et al., 2019; Tifrea et al., 2019; Skopek et al., 2020

● Symmetric Positive Definite matrices and 
Grassmannian manifolds
Huang & Gool, 2017; Huang et al., 2018; Cruceru et al., 2020
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These are all 
symmetric spaces!!!

A unified framework in which 
to encompass these various 
examples is still missing



We Propose!

Systematic use of symmetric spaces in 
representation learning

● General framework to learn graph embeddings:

○ Choose a space to represent nodes

○ How to measure distances

○ How to compute gradient

● Concrete implementation of the

framework with Siegel Spaces

Symmetric
Spaces

General 
Framework



Siegel Spaces
● A family of non-compact symmetric spaces 

of non-positive curvature

● Generalization of hyperbolic plane

● Rich geometry:
○ Euclidean subspaces
○ Hyperbolic subspaces
○ Products of Euclidean x Hyperbolic
○ Copies of SPD matrix spaces

● Excellent device for learning embeddings of complex networks:
○ They automatically adapt to dissimilar graphs without a priori knowledge of 

their internal structure



Points in the Space
● Each point is represented as a symmetric matrix 

with coefficients in the complex numbers

● Complex variable representation:



Models of Siegel Spaces

● Bounded domain model:
○ Generalizes the Poincaré disk

● Siegel upper half space model:
○ Generalizes the upper half plane model

of the hyperbolic plane



Finsler 
Distances

● Distances are distorted!
○ dG(A,D) = 2      !=     d

ℝ
(A,D) = √2

● Length minimizing paths are unique
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● Distances are not distorted!
○ dG(A,D) = 2      ==     dℓ1(A,D) = 2

● Geodesics are not unique!



Experiments on Graph Reconstruction

● Metrics
○ Global and local metric

● Model Baselines
○ Euclidean, Hyperbolic
○ Cartesian product thereof
○ SPD

Embedding
Algorithm

Graph
Reconstruction



Synthetic 
Graphs

● The Riemannian metric performs on par with the best matching geometric spaces

● Siegel space with Finsler metrics significantly outperform the baselines in most graphs
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Real-World 
Datasets

● Models with Finsler (One) metrics outperform all baselines

● Strong reconstruction capabilities of RSS for real-world data
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Structure Analysis

● The vector-valued distance 
can be leveraged to find 
structure in graphs.

● The model distinguishes tree-like and grid-like edges



More Applications

● Downstream tasks:
○ Recommender Systems
○ Node classification

● Embeddings capture structural properties 
of the datasets useful for the task

● Downstream tasks can profit from the enhanced 
graph representation capacity

● Flexibility of the method

● Integration of RSS embeddings with classical 
Euclidean network layers



Summary

● General framework for embeddings 
in symmetric spaces
○ Finsler Metrics: better representation capacities
○ Vector-valued distance: tool for graph analysis

● Implementation on Siegel spaces
○ Matrix models of hyperbolic plane
○ Ties or outperforms constant-curvature baselines 

on three different tasks
○ It does not require any previous assumption on 

geometric features of the graph
○ Approach offers flexibility and enhanced 

representation capacity


