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Supervised learning: data classification Probability of

sample belonging
1% to correct class
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10 output classes

F Correcting the
. misclassified dog
implies the temporary
' misclassification of

two cats -> Frustration

1D subspace of W

If we temporarily
decreased the penalty
for misclassifying cats

we could ease the
frustration.
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Borrowing simple ideas from human learning:

Topics inside every subject are
progressively introduced
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Early Math Concepts | Place Value Fractions

Whole Number
Operations

Whole Number

Concepts Decimals

Deep learning analogue: Curriculum learning

Train the model using samples organized in a
meaningful order

Something much simpler: Subjects are alternated
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This is much simpler than creating a

Difficult to implement: One needs to asses the curriculum!

“difficulty” of each sample inside each class

Is there a machine learning analogy?

Can we alternatively focus more on each

Bengio et al. ICML 2009
class?



Creating a dynamical loss function
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The contribution of each class to the

loss function oscillates with time

Extremely easy to implement (data already classified in classes)

Two new hyper-parameters: period and amplitude
Conserves the global minima

Toy picture:

Loss function

1D subspace of W
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Oscillates the
landscape
without
changing the
global
minima

time (minimization steps)

Will this improve
learning?



Period (T)

10”1

Dynamical loss function and CIFAR10

(Myrtle5-64channels, SGD + Momentum, Learning rate schedule...)
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In the overparametrized regime the dynamical loss
function improves generalization!
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Cycling over classes -> learning
slower but better



Simple model and dataset

(One hidden layer, full batch gradient descent)

Input: Three output
Data set coordinates W classes
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Background color -> predicted class
for any point in the plane



100 hidden units 1000 hidden units
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Coupled dynamics: the system is descending a landscape that is oscillating...
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Coupled dynamics: the system is descending a landscape that is oscillating...
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Coupled dynamics: the system is descending a landscape that is oscillating...
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Coupled dynamics: the system is descending a landscape that is oscillating...
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Coupled dynamics: the system is descending a landscape that is oscillating...
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The dynamical loss
function leads to a
landscape with valleys
that oscillate. Valleys
alternatively become
deeper and wider and
higher and narrower.
This “peristaltic”
movement pushes the
system towards better
minima.



Threshold )\,
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The threshold depends on the learning rate but
It does not depend on the width of the NN:
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The threshold is computed with the dynamical loss function but it
explains why the model was (not) able to learn with the standard

static loss function!

F(X)~F(@)+VF (a)(x—a)+1(x—a)THJf(a)(x—a) (¥ — @) « LR

GD breaks down when the first and second order terms are proportional -> Hessian 4, ,.. LR™!



Bonus slide

Bifurcations can also
be understood In
terms of the NTK.

Largest eigenvalue of

the NTK drops during

instabllities:
® ———f5do0 2080030000 2000050000 60000 70000
0.955
0.954 Why was the dynamical loss unhelpful in this case?
Test accuracy of a 1) Interaction of the dynamical loss with batch
Wide Residual > 0.953 normalization and regularization terms?
Network and : 2)  The network is already well-conditioned and so the
CIFAR10. We did not < o0.952 oscillations may not lead to further improvements?
see an improvement 3) Do we need to retune other hyperparameters?
over our limited set of o9 4) Can we use a variable learning rate that takes
experiments. advantage of the changing curvature of the dynamical

0.950 losSs?
100 101



We can define dynamical loss functions for deep neural networks
taking advantage of the different classes in the dataset

Dynamical loss functions can improve training in
the underparametrized regime and
generalization In the overparametrized regime
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