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Supervised learning: data classification

10 output classesInput: pixels
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ℱ = ∑
j∈P

−log ( ef(xj,yj,W)cj

∑i ef(xj,yj,W)i )
Loss function:

Probability of 
sample belonging 
to correct class

Cats Dogs

Correcting the 
misclassified dog 

implies the temporary 
misclassification of 

two cats -> Frustration 

ℱ
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If we temporarily 
decreased the penalty 
for misclassifying cats 

we could ease the 
frustration.
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Borrowing simple ideas from human learning:

Topics inside every subject are 
progressively introduced

Deep learning analogue: Curriculum learning

Bengio et al. ICML 2009  

Train the model using samples organized in a 
meaningful order


 

Difficult to implement: One needs to asses the 
“difficulty” of each sample inside each class 

This is much simpler than creating a 
curriculum! 

Is there a machine learning analogy? 

Can we alternatively focus more on each 
class? 

Schedule with many subjects

Something much simpler: Subjects are alternated 
during the week



Γc(t)

time (minimization steps)

No osc
Osc

Focusing on different classes

Creating a dynamical loss function

ℱ = ∑
j∈P

Γcj
(t) −log ( ef(xj,yj,W)cj

∑i ef(xj,yj,W)i )
The contribution of each class to the 

loss function oscillates with time

Extremely easy to implement (data already classified in classes)

Two new hyper-parameters: period and amplitude


Conserves the global minima

Will this improve 
learning?Lo
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Toy picture:
Oscillates the 

landscape 
without 

changing the 
global 

minima



Dynamical loss function and CIFAR10
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(Myrtle5-64channels, SGD + Momentum, Learning rate schedule…)

In the overparametrized regime the dynamical loss 
function improves generalization!
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Cycling over classes -> learning 
slower but better

Epochs



(One hidden layer, full batch gradient descent)

f(xj, yj, W)1xj

f(xj, yj, W)2

f(xj, yj, W)3

yj

Data set Input: 
coordinates W

ℱ = ∑
j∈P

Γcj
(t) −log ( ef(xj,yj,W)cj

∑i ef(xj,yj,W)i )

Three output 
classes

Simple model and dataset

Background color -> predicted class 
for any point in the plane
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1000 hidden units 
Overparametrized 

regime
There is a region 

where 
generalization 

improves!

100 hidden units 
Underparametrized 

regime

With a standard 
(static) loss function 
the model could not 

learn

But the 
dynamical loss 

function enables 
learning!



We move to deeper valleys

We move to wider valleys

At the end of some periods 
there is an instability

Coupled dynamics: the system is descending a landscape that is oscillating…

A threshold in the curvature 
triggers the instabilities

ℱ = ∑
j∈P

Γcj
(t) −log ( ef(xj,yj,W)cj

∑i e f(xj,yj,W)i )
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We move to wider valleys

Coupled dynamics: the system is descending a landscape that is oscillating…

A threshold in the curvature 
triggers the instabilities

We move to deeper valleys

At the end of some periods 
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We move to wider valleys

Coupled dynamics: the system is descending a landscape that is oscillating…

A threshold in the curvature 
triggers the instabilities

We move to deeper valleys

At the end of some periods 
there is an instability

Bifurcations are also 
visible in the accuracy

ℱ = ∑
j∈P

Γcj
(t) −log ( ef(xj,yj,W)cj

∑i e f(xj,yj,W)i )



We move to deeper valleys

Coupled dynamics: the system is descending a landscape that is oscillating…

We move to wider valleys

A threshold in the curvature 
triggers the instabilities

The dynamical loss 
function leads to a 

landscape with valleys 
that oscillate. Valleys 
alternatively become 
deeper and wider and 
higher and narrower. 

This “peristaltic” 
movement pushes the 
system towards better 

minima.

At the end of some periods 
there is an instability

Bifurcations are also 
visible in the accuracy

ℱ = ∑
j∈P

Γcj
(t) −log ( ef(xj,yj,W)cj

∑i e f(xj,yj,W)i )



(Overparametrized)

(Underparametrized)

The threshold depends on the learning rate but 
it does not depend on the width of the NN:

The threshold is computed with the dynamical loss function but it 
explains why the model was (not) able to learn with the standard 

static loss function!

∼ LR−1

ℱ( ⃗x ) ∼ ℱ( ⃗a ) + ∇ℱ( ⃗a )( ⃗x − ⃗a ) +
1
2

( ⃗x − ⃗a )THℱ( ⃗a )( ⃗x − ⃗a ), ( ⃗x − ⃗a ) ∝ LR
GD breaks down when the first and second order terms are proportional -> Hessian �  λmax ∝ LR−1



Bonus slide
Bifurcations can also 

be understood in 
terms of the NTK. 

Largest eigenvalue of 
the NTK drops during 

instabilities:

Test accuracy of a 
Wide Residual 
Network and 

CIFAR10. We did not 
see an improvement 

over our limited set of 
experiments.

Why was the dynamical loss unhelpful in this case?

1) Interaction of the dynamical loss with batch 

normalization and regularization terms?

2) The network is already well-conditioned and so the 

oscillations may not lead to further improvements? 

3) Do we need to retune other hyperparameters?

4) Can we use a variable learning rate that takes 

advantage of the changing curvature of the dynamical 
loss?



you!

We understand the complex 
dynamics and its instabilities in 

terms of the curvature of the 
landscape

We can define dynamical loss functions for deep neural networks 
taking advantage of the different classes in the dataset

Dynamical loss functions can improve training in 
the underparametrized regime and 

generalization in the overparametrized regime

Thank


