
Tilting the playing field: Dynamical
loss functions for machine learning

Miguel Ruiz-García1,2, Ge Zhang3, Samuel
S. Schoenholz4, and Andrea J. Liu3

1Universidad Politécnica de Madrid

2Universidad Carlos III de Madrid

3University of Pennsylvania

4Google Research: Brain Team

Supervised learning: data classification

10 output classesInput: pixels

W

Dog

Deer

Horse

f(xj, yj, W)1

f(xj, yj, W)2

f(xj, yj, W)3

ℱ = ∑
j∈P

−log (ef(xj,yj,W)cj

∑i ef(xj,yj,W)i)
Loss function:

Probability of
sample belonging
to correct class

Cats Dogs

Correcting the
misclassified dog

implies the temporary
misclassification of

two cats -> Frustration

ℱ

W1D subspace of

If we temporarily
decreased the penalty
for misclassifying cats

we could ease the
frustration.

ℱ

W1D subspace of

Borrowing simple ideas from human learning:

Topics inside every subject are
progressively introduced

Deep learning analogue: Curriculum learning

Bengio et al. ICML 2009

Train the model using samples organized in a
meaningful order

Difficult to implement: One needs to asses the
“difficulty” of each sample inside each class

This is much simpler than creating a
curriculum!

Is there a machine learning analogy?

Can we alternatively focus more on each
class?

Schedule with many subjects

Something much simpler: Subjects are alternated
during the week

Γc(t)

time (minimization steps)

No osc
Osc

Focusing on different classes

Creating a dynamical loss function

ℱ = ∑
j∈P

Γcj
(t) −log (ef(xj,yj,W)cj

∑i ef(xj,yj,W)i)
The contribution of each class to the

loss function oscillates with time

Extremely easy to implement (data already classified in classes)

Two new hyper-parameters: period and amplitude

Conserves the global minima

Will this improve
learning?Lo

ss
 fu

nc
tio

n

W1D subspace of

Toy picture:
Oscillates the

landscape
without

changing the
global

minima

Dynamical loss function and CIFAR10
Pe

rio
d

(T
)

Pe
rio

d
(T

)
Tr

ai
ni

ng
 A

cc
ur

ac
y

Va
lid

at
io

n
Ac

cu
ra

cy

Amplitude (A) Amplitude (A)

(Myrtle5-64channels, SGD + Momentum, Learning rate schedule…)

In the overparametrized regime the dynamical loss
function improves generalization!

Va
l A

cc
ur

ac
y

Cycling over classes -> learning
slower but better

Epochs

(One hidden layer, full batch gradient descent)

f(xj, yj, W)1xj

f(xj, yj, W)2

f(xj, yj, W)3

yj

Data set Input:
coordinates W

ℱ = ∑
j∈P

Γcj
(t) −log (ef(xj,yj,W)cj

∑i ef(xj,yj,W)i)

Three output
classes

Simple model and dataset

Background color -> predicted class
for any point in the plane

Pe
rio

d
(T

)

Tr
ai

ni
ng

 A
cc

ur
ac

y

Amplitude (A)

Pe
rio

d
(T

)

Amplitude (A)

Va
lid

at
io

n
Ac

cu
ra

cy

(a)

(b)

(c)

(d)

Pe
rio

d
(T

)

Tr
ai

ni
ng

 A
cc

ur
ac

y

Amplitude (A)

Pe
rio

d
(T

)

Amplitude (A)

Va
lid

at
io

n
Ac

cu
ra

cy

(a)

(b)

(c)

(d)

Pe
rio

d
(T

)

Tr
ai

ni
ng

 A
cc

ur
ac

y

Amplitude (A)

Pe
rio

d
(T

)

Amplitude (A)

Va
lid

at
io

n
Ac

cu
ra

cy

(a)

(b)

(c)

(d)

1000 hidden units
Overparametrized

regime
There is a region

where
generalization

improves!

100 hidden units
Underparametrized

regime

With a standard
(static) loss function
the model could not

learn

But the
dynamical loss

function enables
learning!

We move to deeper valleys

We move to wider valleys

At the end of some periods
there is an instability

Coupled dynamics: the system is descending a landscape that is oscillating…

A threshold in the curvature
triggers the instabilities

ℱ = ∑
j∈P

Γcj
(t) −log (ef(xj,yj,W)cj

∑i e f(xj,yj,W)i)

We move to wider valleys

At the end of some periods
there is an instability

Coupled dynamics: the system is descending a landscape that is oscillating…

A threshold in the curvature
triggers the instabilities

We move to deeper valleys

ℱ = ∑
j∈P

Γcj
(t) −log (ef(xj,yj,W)cj

∑i e f(xj,yj,W)i)

We move to wider valleys

Coupled dynamics: the system is descending a landscape that is oscillating…

A threshold in the curvature
triggers the instabilities

We move to deeper valleys

At the end of some periods
there is an instability

ℱ = ∑
j∈P

Γcj
(t) −log (ef(xj,yj,W)cj

∑i e f(xj,yj,W)i)

We move to wider valleys

Coupled dynamics: the system is descending a landscape that is oscillating…

A threshold in the curvature
triggers the instabilities

We move to deeper valleys

At the end of some periods
there is an instability

Bifurcations are also
visible in the accuracy

ℱ = ∑
j∈P

Γcj
(t) −log (ef(xj,yj,W)cj

∑i e f(xj,yj,W)i)

We move to deeper valleys

Coupled dynamics: the system is descending a landscape that is oscillating…

We move to wider valleys

A threshold in the curvature
triggers the instabilities

The dynamical loss
function leads to a

landscape with valleys
that oscillate. Valleys
alternatively become
deeper and wider and
higher and narrower.

This “peristaltic”
movement pushes the
system towards better

minima.

At the end of some periods
there is an instability

Bifurcations are also
visible in the accuracy

ℱ = ∑
j∈P

Γcj
(t) −log (ef(xj,yj,W)cj

∑i e f(xj,yj,W)i)

(Overparametrized)

(Underparametrized)

The threshold depends on the learning rate but
it does not depend on the width of the NN:

The threshold is computed with the dynamical loss function but it
explains why the model was (not) able to learn with the standard

static loss function!

∼ LR−1

ℱ(⃗x) ∼ ℱ(⃗a) + ∇ℱ(⃗a)(⃗x − ⃗a) +
1
2

(⃗x − ⃗a)THℱ(⃗a)(⃗x − ⃗a), (⃗x − ⃗a) ∝ LR
GD breaks down when the first and second order terms are proportional -> Hessian � λmax ∝ LR−1

Bonus slide
Bifurcations can also

be understood in
terms of the NTK.

Largest eigenvalue of
the NTK drops during

instabilities:

Test accuracy of a
Wide Residual
Network and

CIFAR10. We did not
see an improvement

over our limited set of
experiments.

Why was the dynamical loss unhelpful in this case?

1) Interaction of the dynamical loss with batch

normalization and regularization terms?

2) The network is already well-conditioned and so the

oscillations may not lead to further improvements?

3) Do we need to retune other hyperparameters?

4) Can we use a variable learning rate that takes

advantage of the changing curvature of the dynamical
loss?

you!

We understand the complex
dynamics and its instabilities in

terms of the curvature of the
landscape

We can define dynamical loss functions for deep neural networks
taking advantage of the different classes in the dataset

Dynamical loss functions can improve training in
the underparametrized regime and

generalization in the overparametrized regime

Thank

