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Ø Extract prior (meta) knowledge from 
related tasks (meta learner)

Ø Fast adaptation to a new task (base
learner)

Ø Good parameter initialization (Finn 

et al., 2017) 

Ø Efficient optimization update rules

(Ravi et al., 2017)

Ø General feature extractors (Vinyals

et al., 2016) 
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Few-Shot Learning (FSL) with Meta-Learning (ML)
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Ø The episodic training-testing strategy

-- meta-training: a meta-learner is trained to enhance base-learners’ performance

on the meta-training set with a batch of few-shot learning tasks

-- meta-testing: base-learners are evaluated on the meta-test set with novel 

categories of data

Ø An episode (task)

-- sample 𝐶-way 𝑘-shot classification tasks from the meta-training (testing) set

-- 𝑘 is the number of labelled examples for each of the 𝐶 classes
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Example of few-shot learning setup (Ravi et al., 2017)

Few-Shot Learning (FSL) with Meta-Learning (ML)

Episode 1

Episode 2

…
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An Effective Meta-Learning Scenario

Ø Base-learner:
-- be powerful to solve individual tasks
-- be able to absorb common information 

Ø Meta-learner:
-- extract valid prior knowledge

Key idea：
Ø integrate kernel learning with random features and variational 

inference (VI) into the ML framework for FSL

Ø formulate the optimization as a VI problem by deriving new ELBO

Ø a context inference puts the inference of random bases of the 

current task into the context of all previous, related tasks



Learning adaptive kernels with data-driven random Fourier features
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Problem Statement

Meta-learning with kernels

A practical base-learner (Kernel ridge regression)

The closed-form solution . The predictor .

For task , support set , query set , predictor ,

base-learner , loss , mapping function , .
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Problem Statement

Random Fourier Features (RFFs)
Ø learn adaptive kernels in a data-driven way

Ø leverage the shared knowledge by exploring dependencies among related tasks 

to generate rich features

Ø construct approximate translation-invariant kernels using explicit feature maps 

via random bases (Bochner’s theorem)

Data-driven adaptive kernels is to find the posterior
for random bases

Formulated as a variational inference problem
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Meta Variational Random Features (MetaVRF) 

Ø The posterior is intractable. Approximate it by using a meta variational distribution

Ø The Evidence Lower Bound (ELBO)

Ø The objective (maximizing ELBO w.r.t. tasks)

Variational distribution

ELBO

The objective function
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Context Inference 

Ø generate rich random bases to build strong kernels

Ø put the inference of bases of the current task into the context of all previous, 

related tasks

Ø The context      of related tasks
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165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Submission and Formatting Instructions for ICML 2019

specific spectral distribution of kernels. In the following
section, we introduce our meta variational random features
(MetaVRF), in which random Fourier bases are treated as
latent variables inferred from the support set in the meta-
learning setting.

3. Meta Variational Random Features
3.1. Evidence Lower Bound

From the probabilistic perspective of view, the goal of few-
shot learning is to maximize the conditional predictive log-
likelihood of samples from the query set Q. We treat the
random Fourier base ! of the kernel as a latent variable:

max
p

X

(x,y)2Q

log p(y|x,S) (10)

= max
p

X

(x,y)2Q

log

Z
p(y|x,S,!)p(!|x,S)d!. (11)

In order to infer the posterior p(!|y,x,S) over !, which
is generally intractable, we resort to using a variational
distribution q�(!|S) to approximate this posterior, where
the base is conditioned on the support set S by leveraging
meta-learning. We can obtain the variational distribution by
minimizing the Kullback-Leibler (KL) divergence

DKL[q�(!|S)||p(!|y,x,S)]. (12)

By applying the Bayes’ rule to the posterior p(!|y,x,S),
we can derive the ELBO as

log p(y|x,S) � Eq�(!|S) log p(y|x,S,!)

�DKL[q�(!|S)||p(!|x,S)]

= LELBO. (13)

The first term of ELBO is the predictive log-likelihood con-
ditioned on the observation x, S and the inferred RFF bases
!. Maximizing it enables us to make an accurate prediction
for the query set by utilizing the inferred bases from the
support set. The second term in our meta ELBO minimizes
the discrepancy between the meta variational distribution
q�(!|S) and the meta prior p(!|x,S), which encourages
samples from support and query sets to share the same ran-
dom Fourier bases. The full derivation of the ELBO is
provided in the Appendix.

We now obtain the objective by maximizing the ELBO with
respect to a batch of tasks:

L =
1

T

TX

t=1

 
X

(x,y)2Qt

Eq�(!t|St) log p(y|x,St,!t)

�DKL[q�(!
t
|S

t)||p(!t
|x,St)]

!
. (14)

-th task

Figure 2. Illustration of MetaVRF in a directed graphical model.
(x,y) is a test sample in the query set Qt. The base !t is inferred
by conditioning on both the base !t�1 from the previous task and
the support set St of the current task.

where St is the support set of the t-th task associated with its
specific bases {!t

d}
D
d=1

and (x, y)2 Q
t is the sample from

the query set of the t-th task. Directly optimizing the above
objective does not take into count the task dependency. We
introduce task context inference by making the posterior
conditioned on both the support set of the current task and
the bases from previous tasks.

3.2. Task Context Inference

Due to the scarcity of samples in each task, it is essentially
important to explore and leverage shared knowledge across
tasks in few shot learning. One of the central issues in
few-shot learning is to extract the knowledge from previous
tasks to help improve the performance in future tasks, which
however remains an outstanding problem.

We propose to accrue the knowledge from prior tasks by
modeling the task dependency for the inference of ran-
dom feature bases of the current task. To be more specific,
this is tantamount to replace the variational distribution in
(12) with a new variational distribution q�(!t

|S
t,S<t) that

makes the bases {!t
d}

D
d=1

of the t-th task conditioned on
the previous t� 1 task. This gives rise to a new ELBO as
follows:

log p(y|x,St) � Eq�(!|St,S<t) log p(y|x,St,!)

�DKL[q�(!|S
t,S<t)||p(!|x,St)].

(15)
which can be represented in a directed graphical model as
shown in Figure 2. In a practical sense, the KL term in
(15) encourages the model to extract useful information
from previous tasks for inferring the spectral distribution
associated with each individual sample x of the query set in
the current task.

It would be of a great challenge to simultaneously model
all previous tasks as indicated in the variational posterior
in (15). We therefore consider using recurrent networks to
gradually accumulate information episodically along with
the learning process. We propose an LSTM-type inference
network inspired by the fact that the long-term memory can
be carried and refined in cell states c during its update (Gers
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Learning to Learn Kernels with Variational Random Features

value k(x,x0) = z(x)z(x0)> in K is computed as the dot
product of their random feature maps with the same bases.

Instead of simply approximating a kernel accurately, our
goal is to learn an adaptive kernel specific to a task, which
is tantamount to find the posterior distribution over the ran-
dom Fourier bases in a data-driven way. In the following
section, we introduce our meta variational random features
(MetaVRF) by treating random Fourier bases as latent vari-
ables inferred from data under the meta-learning framework.

3. Meta Variational Random Features
3.1. Evidence Lower Bound

From the probabilistic perspective of view, the goal of few-
shot learning is to maximize the conditional predictive log-
likelihood of samples from the query set Q. We treat the
random Fourier base ! of the kernel as a latent variable:

max
p

X

(x,y)2Q

log p(y|x, S) (8)

= max
p

X

(x,y)2Q

log

Z
p(y|x, S, !)p(!|x, S)d!. (9)

We adopt a conditional prior distribution p(!|x, S) over
the base ! as in the conditional variational auto-encoder
(CVAE) (Sohn et al., 2015) rather than an uninformative
prior (Kingma & Welling, 2013; Rezende et al., 2014). By
depending on the input x, we infer the bases that can specif-
ically represent the data, while leveraging the context of the
current task by conditioning on the support set S .

In order to infer the posterior p(!|y,x, S) over !, which
is generally intractable, we resort to a variational distribu-
tion q�(!|S) to approximate this posterior, where the base
is conditioned on the support set S by leveraging meta-
learning. We can obtain the variational distribution by mini-
mizing the Kullback-Leibler (KL) divergence

DKL[q�(!|S)||p(!|y,x, S)]. (10)

By applying the Bayes’ rule to the posterior p(!|y,x, S),
we can derive the ELBO as

log p(y|x, S) � Eq�(!|S) log p(y|x, S, !)

� DKL[q�(!|S)||p(!|x, S)]. (11)

The first term of ELBO is the predictive log-likelihood con-
ditioned on the observation x, S and the inferred RFF bases
!. Maximizing it enables us to make an accurate prediction
for the query set by utilizing the inferred bases from the
support set. The second term in our meta ELBO minimizes
the discrepancy between the meta variational distribution
q�(!|S) and the meta prior p(!|x, S), which encourages
samples from support and query sets to share the same ran-
dom Fourier bases. The full derivation of the ELBO is
provided in the Appendix.

Figure 2. Illustration of MetaVRF in a directed graphical model.
(x,y) is a sample in the query set Qt. The base !t of the t-th
task is dependent on the support set St of the current task and S<t

of previous tasks, where we use S<t to indicate the experienced
tasks before the t-th task.

We now obtain the objective by maximizing the ELBO with
respect to a batch of T tasks:

L =
1

T

TX

t=1

⇣ X

(x,y)2Qt

Eq�(!t|St) log p(y|x, St, !t)

� DKL[q�(!t
|S

t)||p(!t
|x, St)]

⌘
, (12)

where S
t is the support set of the t-th task associated with its

specific bases {!t
d}

D
d=1 and (x,y) 2 Q

t is the sample from
the query set of the t-th task. Directly optimizing the above
objective does not take into count the task dependency. We
introduce task context inference by making the posterior
conditioned on both the support set of the current task and
the bases from previous tasks.

3.2. Task Context Inference

We propose task context inference of random feature bases
of the current task by modeling the task dependency C. We
replace the variational distribution in (10) with a conditional
distribution q�(!t

|S
t, S<t) that makes the bases {!t

d}
D
d=1

of the t-th task conditioned on the previous t � 1 task. This
puts the inference of the spectral distribution of the kernel
for the current task into the context of a set of previous tasks,
which gives rise to a new ELBO as follows:

log p(y|x, St) � Eq�(!|St,S<t) log p(y|x, St, !)

� DKL[q�(!|S
t, S<t)||p(!|x, St)],

(13)
which can be represented in a directed graphical model as
shown in Figure 2. In the practical sense, the KL term in
(13) encourages the model to extract useful information
from previous tasks for inferring the spectral distribution
associated with each individual sample x of the query set in
the current task.

It would be of a great challenge to simultaneously model
all previous tasks as indicated in the variational posterior
in (13). We therefore consider using recurrent networks to
gradually accumulate information episodically along with

The directed graphical model.
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An LSTM-Based Context Inference Network

Ø LSTM transformation with input of the support set and

previous cell states

Ø shared MLPs for inference outputs the parameter of

the variational distribution

Ø The optimization objective with the context inference 
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Experiments 

Ø Few-Shot Regression

-- Fitting a target sine function

Ø Few-Shot Classification

-- Three benchmarks

Ø Further analysis

-- Deep embedding

-- Efficiency

-- Versatility
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Evaluation: Few-Shot Regression 

Figure 1:
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Evaluation: Few-Shot Classification 
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Evaluation: Few-Shot Classification 
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Further Analysis
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Further Analysis
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Further Analysis
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Conclusion

v A novel meta-learning framework, MetaVRF, introducing RFFs into the 

meta-learning framework and leveraging VI to infer the spectral 

distribution in a data-driven way.

v The LSTM-based context inference explores the shared knowledge and

generates rich random features.

v Achieve the state-of-the-art performance.

v Learned kernels exhibit high representational power with a low spectral 

sampling rate.

v Robustness and flexibility to a great variety of testing conditions. 
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