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Meta-Learning (Leaning to Learn)

Datasets
o 1 > 1 - O Meta Knowledge :
\ V% / T » Good parameter initialization (Finn

Base Base Base new
Learnerl Learner2 Learner3 Learner

et al., 2017)

» Efficient optimization update rules

Meta-Learning. (Ravi et al., 2017)

» Extract prior (meta) knowledge from General feature extractors (Vinyals

related tasks (meta learner) et al., 2016)

» Fast adaptation to a new task (base ~— /

learner)
. Y,
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Few-Shot Learning (FSL) with Meta-Learning (ML)

» The episodic training-testing strategy
-- meta-training: a meta-learner is trained to enhance base-learners’ performance
on the meta-training set with a batch of few-shot learning tasks
-- meta-testing: base-learners are evaluated on the meta-test set with novel
categories of data
» An episode (task)
-- sample C-way k-shot classification tasks from the meta-training (testing) set

-- k is the number of labelled examples for each of the C classes
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Few-Shot Learning (FSL) with Meta-Learning (ML)
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Example of few-shot learning setup (Ravi et al., 2017)
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An Effective Meta-Learning Scenario

» Base-learner:

-- be powerful to solve individual tasks

-- be able to absorb common information
» Meta-learner:

-- extract valid prior knowledge

Key idea .
» integrate kernel learning with random features and variational
inference (VI) into the ML framework for FSL
» formulate the optimization as a VI problem by deriving new ELBO
» a context inference puts the inference of random bases of the

current task into the context of all previous, related tasks
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Problem Statement

Meta—learning with kernels

_____________________________

___________________________

t (xy)eQt
For task ¢, support set S = {X, Y}, query set Q" , predictor fut
base-learner A , loss L , mapping function @ , kt(x7 X’) — <<I>t(x), (I)t(x’)>.

A practical base-learner (Kernel ridge regression)
A =argminTr[(Y — aK)(Y —aK) "] + A Tr[aKa ']

The closed-form solution o = Y (Al + K)~*. The predictor Y = fo(X) = oK .

Learning adaptive kernels k(-) with data-driven random Fourier features
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Problem Statement

Random Fourier Features (RFFs)
» learn adaptive kernels in a data-driven way
» leverage the shared knowledge by exploring dependencies among related tasks
to generate rich features
» construct approximate translation-invariant kernels using explicit feature maps

via random bases (Bochner’s theorem)

Data-driven adaptive kernels is to find the posterior p(w|y, x,S)
for random bases W

Formulated as a variational inference problem
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Meta Variational Random Features (MetaVRF)

The objective function

» The posterior is intractable. Approximate it by using a meta variational distribution

Dk, [Q¢(w|8) | |p(UJ|y, X, 8)]

Variational distribution

» The Evidence Lower Bound (ELBO)

logp(y[x,8) = Eqyis)log p(y[x, S, w) — Dk |gs(w|S)|Ip(w|x, S)]
ELBO

» The objective (maximizing ELBO w.r.t. T’ tasks)

i
1
= Z ( Z Eq, (tst log p(y|x, 8%, w’) — Dk, [Q¢(Wt‘8t)||17(wt‘x>8t)]>

t=1  (x,y)eQ!
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Context Inference

» generate rich random bases to build strong kernels

> put the inference of bases ({J of the current task into the context of all previous,

Q t-th task
gs(W'|S") —— qu(w’]S",C) ° @
O

The directed graphical model.

related tasks

» The context C of related tasks




An LSTM-Based Context Inference Network

» LSTM transformation with input of the support set and

previous cell states
[hta Ct] — JLSTM (Sta ht_lv Ct_l)

> shared MLPs for inference ¢(h") outputs the parameter of

the variational distribution

» The optimization objective with the context inference

T
1
L= ( 3" Eqywme log p(ylx, ' w')— D, [q¢(wt|ht)||p(wt|x,8t)])

t=1  (x,y)eQ!
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Experiments

» Few-Shot Regression

-- Fitting a target sine function
» Few-Shot Classification

-- Three benchmarks
» Further analysis

-- Deep embedding
-- Efficiency

-- Versatility
e /
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Evaluation: Few-Shot Regression

Figure 1: Performance (MSE) comparison for few-shot regres-
sion. Our MetaVRF fits the target function well, even
with only three shots, and consistently outperforms regular
RFFs and the counterpart MAML. (=== MetaVRF with bi-
LSTM; === MetaVRF with LSTM; = = = MetaVRF w/o LSTM;
= = = MAML; —— Ground Truth; A Support Samples.)
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Evaluation: Few-Shot Classification

Table 1. Performance (%) on minilmageNet and CIFAR-FS.

minilmageNet, S5-way CIFAR-FS, 5-way

Method 1-shot 5-shot 1-shot 5-shot
MATCHING NET (Vinyals et al., 2016) 442 57 — —
MAML (Finn et al., 2017) 48.7+1.8 63.1+£0.9 589+1.9 71.5£1.0
MAML (64C) 46.7+1.7 61.1+£0.1 589+1.8 71.5+1.1
META-LSTM (Ravi & Larochelle, 2017) 43.4+0.8 60.6+0.7 - -
PROTO NET (Snell et al., 2017) 47440.6 654405 55.54+0.7 72.0+0.6
RELATION NET (Sung et al., 2018) 50440.8 65.3+0.7 55.0+1.0 69.3+0.8
SNAIL (32C) by (Bertinetto et al., 2019) 45.1 55.2 - -
GNN (Garcia & Bruna, 2018) 50.3 66.4 61.9 75.3
PLATIPUS (Finn et al., 2018) 50.1£1.9 — — —
VERSA (Gordon et al., 2019) 533+1.8 67.3+0.9 62.5+1.7 75.1+0.9
R2-D2 (64C) (Bertinetto et al., 2019) 495402 654+0.2 62.3+0.2 77.4+0.2
R2-D2 (Devos et al., 2019) 517418 63.3+0.9 60.2+1.8 70.940.9
CAVIA (Zintgraf et al., 2019) 51.840.7 65.61+0.6 — —
IMAML (Aravind Rajeswaran, 2019) 493+1.9 - - —
RFFS (2048d) 528409 654+09 61.1+£0.8 74.74+0.9
METAVRF (w/o LSTM, 780d) 51.3+£0.8 66.1+0.7 61.1+0.7 74.3 +£0.9
METAVRF (vanilla LSTM, 780d) 53.1+£0.9 66.8+0.7 62.1+0.8 76.04+0.8
METAVRF (bi-LSTM, 780d) 54.2+0.8 67.8+0.7 63.1+0.7 76.54+0.9
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Evaluation: Few-Shot Classification

Table 2. Performance (%) on Omniglot.

Omniglot, 5-way

Omniglot, 20-way

Method | -shot 5-shot 1 -shot 5-shot
SIAMESE NET (Koch, 2015) 96.7 98.4 88 96.5
MATCHING NET (Vinyals et al., 2016) 98.1 98.9 93.8 98.5
MAML (Finn et al., 2017) 98.7+0.4  99.940.1 95.840.3  98.940.2
PROTO NET (Snell et al., 2017) 98.54+0.2 99.540.1 95.3+0.2  98.740.1
SNAIL (Mishra et al., 2018) 99.1+0.2 99.84+0.1 97.6 +£0.3 994 +0.2
GNN (Garcia & Bruna, 2018) 99.2 99.7 97.4 99.0
VERSA (Gordon et al., 2019) 99.74+0.2 99.8+0.1 97.740.3  98.8+0.2
R2-D2 (Bertinetto et al., 2019) 98.6 99.7 94.7 98.9
IMP (Allen et al., 2019) 98.4+0.3 99.54+0.1 95.04+0.1  98.640.1
RFFS (2048d) 99.5+0.2 99.5+0.2 97.24+0.3  98.3+0.2
METAVRF (w/o LSTM, 780d) 99.6+0.2 99.64+0.2 97.0+0.3  98.4+0.2
METAVRF (vanilla LSTM, 780d) 99.74+0.2 99.8+0.1 97.5+£0.3  99.0+0.2
METAVREF (bi-LSTM, 780d) 99.8+0.1 999+0.1 97.8+0.3 99.240.2
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Further Analysis

Table 3. Performance (%) on minilmageNet (5-way)

Method 1-shot 5-shot

META-SGD (Li et al., 2017) 54.2440.03  70.86+0.04
(Gidaris & Komodakis, 2018) 56.20+0.86 73.004+0.64
(Bauer et al., 2017) 56.30+0.40  73.90+0.30
(Munkhdalai et al., 2017) 57.10+0.70  70.04+0.63
(Qiao et al., 2018) 59.60+0.41 73.54+0.19
LEO (Rusuetal., 2019) 61.76+0.08 77.59+0.12
SNAIL (Mishra et al., 2018) 55.71+£0.99  68.88+0.92
TADAM (Oreshkin et al., 2018)  58.50+0.30  76.704+0.30
METAVRF (w/o LSTM, 780d) 62.124+0.07 77.05+0.28
METAVREF (vanilla LSTM, 780d) 63.21+0.06 77.83+0.28
METAVRF (bi-LSTM, 780d) 63.80+0.05 77.97+0.28
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Further Analysis

minilmageNet
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Further Analysis

1 00 r T T ‘ 1 00 w

2 95 S

) )

8 s 98

- =

8 90 —20-way, 5-shot S —20-way, 5-shot

< —20-way, 1-shot < 97+ —20-way, 1-shot -
— 5 -way, 5-shot — 5 -way, 5-shot
— 5 -way, 1-shot — 5 -way, 1-shot

85 : : : : 96 : : ' :
0 20 40 60 80 100 0 2 4 6 8 10

(a) Way (b) Shot




Conclusion

** A novel meta-learning framework, MetaVRF, introducing RFFs into the
meta-learning framework and leveraging VI to infer the spectral
distribution in a data-driven way.

¢ The LSTM-based context inference explores the shared knowledge and
generates rich random features.

¢ Achieve the state-of-the-art performance.

¢ Learned kernels exhibit high representational power with a low spectral
sampling rate.

¢ Robustness and flexibility to a great variety of testing conditions.
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Thank you for your attention !




