

Learning to Learn Kernels with Variational Random Features

Presenter: Haoliang Sun

Xiantong Zhen*, Haoliang Sun*, Yingjun Du*, Jun Xu, Yilong Yin, Ling Shao, Cees Snoek

Meta-Learning (Leaning to Learn)

- Extract prior (meta) knowledge from related tasks (meta learner)
- Fast adaptation to a new task (base learner)

Meta Knowledge:

- ➤ Good parameter initialization (Finn et al., 2017)
- > Efficient optimization update rules (Ravi et al., 2017)
- General feature extractors (Vinyals et al., 2016)

• • •

Few-Shot Learning (FSL) with Meta-Learning (ML)

- ➤ The episodic training-testing strategy
 - -- **meta-training**: a meta-learner is trained to enhance base-learners' performance on the meta-training set with a batch of few-shot learning tasks
 - -- meta-testing: base-learners are evaluated on the meta-test set with novel categories of data
- An episode (task)
 - -- sample C-way k-shot classification tasks from the meta-training (testing) set
 - -- k is the number of labelled examples for each of the C classes

Few-Shot Learning (FSL) with Meta-Learning (ML)

Example of few-shot learning setup (Ravi et al., 2017)

An Effective Meta-Learning Scenario

- Base-learner:
 - -- be powerful to solve individual tasks
 - -- be able to absorb common information
- Meta-learner:
 - -- extract valid prior knowledge

Key idea:

- ➤ integrate kernel learning with random features and variational inference (VI) into the ML framework for FSL
- > formulate the optimization as a VI problem by deriving new ELBO
- ➤ a context inference puts the inference of random bases of the current task into the context of all previous, related tasks

Problem Statement

Meta-learning with kernels

$$\sum_{t}^{T} \sum_{(\tilde{\mathbf{x}}, \tilde{\mathbf{y}}) \in \mathcal{Q}^{t}} L\left(f_{\alpha^{t}}(\Phi^{t}(\tilde{\mathbf{x}})), \tilde{\mathbf{y}}\right), \text{s.t.}\left[\alpha^{t} = \Lambda\left(\Phi^{t}(X), Y\right)\right]$$

For task t , support set $\mathcal{S}^t = \{X,Y\}$, query set \mathcal{Q}^t , predictor f_{lpha^t} ,

base-learner Λ , loss L , mapping function Φ , $\mathtt{k}^t\!(\mathbf{x},\mathbf{x}')=\langle\Phi^t\!(\mathbf{x}),\Phi^t\!(\mathbf{x}')
angle$.

A practical base-learner (Kernel ridge regression)

$$\Lambda = \underset{\alpha}{\operatorname{arg\,min}} \operatorname{Tr}[(Y - \alpha K)(Y - \alpha K)^{\top}] + \lambda \operatorname{Tr}[\alpha K \alpha^{\top}]$$

The closed-form solution $\ \alpha = Y(\lambda {
m I} + K)^{-1}$. The predictor $\hat{Y} = f_{\alpha}(\tilde{X}) = \alpha \tilde{K}$.

Learning adaptive kernels $k(\cdot)$ with data-driven random Fourier features

Problem Statement

Random Fourier Features (RFFs)

- learn adaptive kernels in a data-driven way
- leverage the shared knowledge by exploring dependencies among related tasks to generate rich features
- construct approximate translation-invariant kernels using explicit feature maps
 via random bases (Bochner's theorem)

Data-driven adaptive kernels is to find the posterior $p(\omega|\mathbf{y},\mathbf{x},\mathcal{S})$ for random bases ω

Formulated as a variational inference problem

Meta Variational Random Features (MetaVRF)

The objective function

> The posterior is intractable. Approximate it by using a meta variational distribution

$$D_{\mathrm{KL}}[q_{\phi}(\omega|\mathcal{S})||p(\omega|\mathbf{y},\mathbf{x},\mathcal{S})]$$

Variational distribution

➤ The Evidence Lower Bound (ELBO)

$$\log p(\mathbf{y}|\mathbf{x}, \mathcal{S}) \ge \frac{\mathbb{E}_{q_{\phi}(\omega|\mathcal{S})} \log p(\mathbf{y}|\mathbf{x}, \mathcal{S}, \omega) - D_{\mathrm{KL}}[q_{\phi}(\omega|\mathcal{S})||p(\omega|\mathbf{x}, \mathcal{S})]}{\mathsf{ELBO}}$$

➤ The objective (maximizing ELBO w.r.t. T tasks)

$$\frac{1}{T} \sum_{t=1}^{T} \left(\sum_{(\mathbf{x}, \mathbf{y}) \in \mathcal{Q}^t} \mathbb{E}_{q_{\phi}(\omega^t | \mathcal{S}^t)} \log p(\mathbf{y} | \mathbf{x}, \mathcal{S}^t, \omega^t) - D_{\mathrm{KL}}[q_{\phi}(\omega^t | \mathcal{S}^t) | | p(\omega^t | \mathbf{x}, \mathcal{S}^t)] \right)$$

Context Inference

- > generate rich random bases to build strong kernels
- ightharpoonup put the inference of bases ω of the current task into the context of all previous, related tasks
- \triangleright The context \mathcal{C} of related tasks

$$q_{\phi}(\omega^t|\mathcal{S}^t) \longrightarrow q_{\phi}(\omega^t|\mathcal{S}^t,\mathcal{C})$$

The directed graphical model.

An LSTM-Based Context Inference Network

➤ LSTM transformation with input of the support set and previous cell states

$$[\mathbf{h}^t, \mathbf{c}^t] = g_{\text{LSTM}}(\bar{\mathcal{S}}^t, \mathbf{h}^{t-1}, \mathbf{c}^{t-1})$$

ightharpoonup shared MLPs for inference $\phi(\mathbf{h}^t)$ outputs the parameter of the variational distribution

> The optimization objective with the context inference

$$\mathcal{L} = \frac{1}{T} \sum_{t=1}^{T} \left(\sum_{(\mathbf{x}, \mathbf{y}) \in \mathcal{Q}^t} \mathbb{E}_{q_{\phi}(\omega^t | \mathbf{h}^t)} \log p(\mathbf{y} | \mathbf{x}, \mathcal{S}^t, \omega^t) - D_{\mathrm{KL}}[q_{\phi}(\omega^t | \mathbf{h}^t) | | p(\omega^t | \mathbf{x}, \mathcal{S}^t)] \right)$$

Experiments

- Few-Shot Regression
 - -- Fitting a target sine function
- > Few-Shot Classification
 - -- Three benchmarks
- Further analysis
 - -- Deep embedding
 - -- Efficiency
 - -- Versatility

Evaluation: Few-Shot Regression

Figure 1: Performance (MSE) comparison for few-shot regression. Our MetaVRF fits the target function well, even with only three shots, and consistently outperforms regular RFFs and the counterpart MAML. (--- MetaVRF with bi-LSTM; --- MetaVRF with LSTM; --- MetaVRF w/o LSTM; --- MAML; — Ground Truth; \(\triangle \) Support Samples.)

Evaluation: Few-Shot Classification

Table 1. Performance (%) on *mini*ImageNet and CIFAR-FS.

	miniImageNet, 5-way		,	
Method	1-shot	5-shot	1-shot	5-shot
MATCHING NET (Vinyals et al., 2016)	44.2	57	_	_
MAML (Finn et al., 2017)	48.7 ± 1.8	63.1 ± 0.9	58.9 ± 1.9	71.5 ± 1.0
MAML (64C)	46.7 ± 1.7	61.1 ± 0.1	58.9 ± 1.8	71.5 ± 1.1
META-LSTM (Ravi & Larochelle, 2017)	43.4 ± 0.8	60.6 ± 0.7		
PROTO NET (Snell et al., 2017)	47.4 ± 0.6	65.4 ± 0.5	55.5 ± 0.7	72.0 ± 0.6
RELATION NET (Sung et al., 2018)	50.4 ± 0.8	65.3 ± 0.7	55.0 ± 1.0	69.3 ± 0.8
SNAIL (32C) by (Bertinetto et al., 2019)	45.1	55.2	_	
GNN (Garcia & Bruna, 2018)	50.3	66.4	61.9	75.3
PLATIPUS (Finn et al., 2018)	50.1 ± 1.9	_		
VERSA (Gordon et al., 2019)	53.3 ± 1.8	67.3 ± 0.9	62.5 ± 1.7	75.1 ± 0.9
R2-D2 (64C) (Bertinetto et al., 2019)	49.5 ± 0.2	65.4 ± 0.2	62.3 ± 0.2	77.4 \pm 0.2
R2-D2 (Devos et al., 2019)	51.7 ± 1.8	63.3 ± 0.9	60.2 ± 1.8	70.9 ± 0.9
CAVIA (Zintgraf et al., 2019)	51.8 ± 0.7	65.6 ± 0.6		
IMAML (Aravind Rajeswaran, 2019)	49.3 ± 1.9	_	_	_
RFFs (2048d)	52.8±0.9	65.4±0.9	61.1±0.8	74.7±0.9
METAVRF (w/o LSTM, 780d)	51.3 ± 0.8	66.1 ± 0.7	61.1 ± 0.7	74.3 ± 0.9
METAVRF (vanilla LSTM, 780d)	53.1 ± 0.9	66.8 ± 0.7	62.1 ± 0.8	76.0 ± 0.8
METAVRF (bi-LSTM, 780d)	54.2 ±0.8	67.8 \pm 0.7	63.1 \pm 0.7	76.5 ± 0.9

Evaluation: Few-Shot Classification

Table 2. Performance (%) on Omniglot.

	Omniglot, 5-way		Omniglot, 20-way	
Method	1-shot	5-shot	1-shot	5-shot
SIAMESE NET (Koch, 2015)	96.7	98.4	88	96.5
MATCHING NET (Vinyals et al., 2016)	98.1	98.9	93.8	98.5
MAML (Finn et al., 2017)	98.7 ± 0.4	99.9 ±0.1	95.8 ± 0.3	98.9 ± 0.2
PROTO NET (Snell et al., 2017)	98.5 ± 0.2	99.5 ± 0.1	95.3 ± 0.2	98.7 ± 0.1
SNAIL (Mishra et al., 2018)	99.1 ± 0.2	99.8 ± 0.1	97.6 ± 0.3	99.4 \pm 0.2
GNN (Garcia & Bruna, 2018)	99.2	99.7	97.4	99.0
VERSA (Gordon et al., 2019)	99.7 ± 0.2	99.8 ± 0.1	97.7 ± 0.3	98.8 ± 0.2
R2-D2 (Bertinetto et al., 2019)	98.6	99.7	94.7	98.9
IMP (Allen et al., 2019)	98.4 ± 0.3	99.5 ± 0.1	95.0 ± 0.1	98.6 ± 0.1
RFFs (2048d)	99.5±0.2	99.5±0.2	97.2±0.3	98.3±0.2
METAVRF (w/o LSTM, 780d)	99.6 ± 0.2	99.6 ± 0.2	97.0 ± 0.3	98.4 ± 0.2
METAVRF (vanilla LSTM, 780d)	99.7 ± 0.2	99.8 ± 0.1	97.5 ± 0.3	99.0 ± 0.2
METAVRF (bi-LSTM, 780d)	99.8 ±0.1	99.9 ±0.1	97.8 ±0.3	99.2 ± 0.2

Further Analysis

Table 3. Performance (%) on *mini*ImageNet (5-way)

Method	1-shot	5-shot
META-SGD (Li et al., 2017)	54.24 ± 0.03	70.86 ± 0.04
(Gidaris & Komodakis, 2018)	56.20 ± 0.86	73.00 ± 0.64
(Bauer et al., 2017)	56.30 ± 0.40	73.90 ± 0.30
(Munkhdalai et al., 2017)	57.10 ± 0.70	70.04 ± 0.63
(Qiao et al., 2018)	59.60 ± 0.41	73.54 ± 0.19
LEO (Rusu et al., 2019)	61.76 ± 0.08	77.59 ± 0.12
SNAIL (Mishra et al., 2018)	55.71 ± 0.99	68.88 ± 0.92
TADAM (Oreshkin et al., 2018)	58.50 ± 0.30	76.70 ± 0.30
METAVRF (w/o LSTM, 780d)	62.12 ±0.07	77.05 ± 0.28
METAVRF (vanilla LSTM, 780d)	63.21 ± 0.06	77.83 ± 0.28
METAVRF (bi-LSTM, 780d)	63.80 ± 0.05	77.97 ± 0.28

Further Analysis

Further Analysis

Conclusion

- A novel meta-learning framework, MetaVRF, introducing RFFs into the meta-learning framework and leveraging VI to infer the spectral distribution in a data-driven way.
- The LSTM-based context inference explores the shared knowledge and generates rich random features.
- Achieve the state-of-the-art performance.
- ❖ Learned kernels exhibit high representational power with a low spectral sampling rate.
- * Robustness and flexibility to a great variety of testing conditions.

Thank you for your attention!