
Multiclass Neural Network Minimization via
Tropical Newton Polytope Approximation

Georgios Smyrnis & Petros Maragos

S c h o o l o f E C E , N a t i o n a l Te c h n i c a l U n i v e r s i t y o f A t h e n s , A t h e n s , G r e e c e

R o b o t P e r c e p t i o n a n d I n t e r a c t i o n U n i t , A t h e n a R e s e a r c h C e n t e r, M a r o u s s i , G r e e c e

Spotlight

•Main problem: Minimization of a neural network.

•Various methods exist, a couple of examples:
➢(Luo et al. 2017): Removing entire neurons.

➢(Han et al. 2015): Removing connections between units.

•These methods: Remove elements from the network – more insight
might be gained via the theoretical structure of the network.

Spotlight

•In (Smyrnis et al. 2020): Use of tropical algebra in the domain of neural
networks.

•Each network with ReLU activations: Represented by tropical
polynomials (maximum of linear functions).

•Each tropical polynomial: Associated Newton Polytopes (upper hull
defines polynomial).

•Tropical inspiration: Inherently linked with underlying workings of
neural networks.

Spotlight

•Previously:

➢Defined approximate division of tropical polynomials.

➢Presented method for network minimization.

•In this work:

➢Extend these methods in the case of multiple output neurons.

➢Provide a more stable alternative for the single output case.

Spotlight

General idea for the task:

Original Network Polytope Approximate Network Polytope

Spotlight

Key elements in this talk:

1. Α method for a vertex transformation, to approximate the various
polytopes of the network simultaneously.

2. A One-Vs-All approach, to handle each class separately.

3. A more stable minimization method for the single class case.

4. Evaluations on the minimization of pretrained networks, retaining a
significant amount of the contained information.

Tropical Algebra Basics

Basics of Tropical Algebra

•Tropical algebra: Study of the max-plus semiring:
(ℝ ∪ {−∞},max,+)

•Tropical polynomial: The maximum of several linear functions:

𝑝 𝒙 = max𝑖=1
𝑘 (𝒂𝑖

𝑇𝒙 + 𝑏𝑖)

“Tropicalization” of a regular polynomial (𝑐𝑖𝒙
𝒂𝑖 → 𝒂𝑖

𝑇𝒙 + 𝑏𝑖).

Newton Polytopes

Let 𝑝 𝒙 = max𝑖=1
𝑘 (𝒂𝑖

𝑇𝒙 + 𝑏𝑖).

Extended Newton Polytope - ENewt 𝑝 :

ENewt 𝑝 = conv 𝒂𝑖 , 𝑏𝑖 , 𝑖 = 1 ,… , 𝑘

the convex hull of the exponents & coefficients of its terms, viewed as
vectors.

Newton Polytopes

•“Upper” vertices of ENewt 𝑝 define 𝑝
as a function.

•Geometrically:
max 3𝑥 + 1, 2𝑥 + 1.25, 𝑥 + 2, 0
= max(3𝑥 + 1, 𝑥 + 2, 0)

(extra point is not on the upper hull).

ENewt(𝑝), 𝑝 𝑥 = max 3𝑥 + 1, 𝑥 + 2,0 .

Tropical Polynomial Division

•(Smyrnis et al. 2020): We studied a
form of approximate tropical
polynomial division.

•We find a quotient and a
remainder such that:

𝑝 𝒙 ≥ max (𝑞 𝒙 + 𝑑 𝒙 , 𝑟 𝒙)

•How: By shifting and raising
ENewt(𝑑), so that it matches
ENewt(𝑝) as closely as possible.

Tropical Polynomials and Neural Networks

Application in Neural
Networks

•In (Charisopoulos & Maragos 2017, 2018) and (Zhang et al. 2018), the
link between tropical polynomials and neural networks was shown.

•The output of a neural network with ReLU activations is equal to a
tropical rational function 𝑝1 𝒙 − 𝑝2(𝒙), the difference of two tropical
polynomials.

➢Each network also has corresponding Newton polytopes.

•In (Smyrnis et al. 2020) we showed how to minimize the hidden layer of
a two layer network with one output neuron, via ideas from tropical
polynomial division.

Application in Neural
Networks

•Main idea of (Smyrnis et al. 2020):

➢Find a divisor which approximates the polytopes of 𝑝1, 𝑝2:

1. Calculate the “importance” of each vertex.

2. Add the first vertex as a neuron.

3. Add as a neuron the difference of each new vertex from a random
previous one.

Intuition: Sums of neurons become polytope vertices.

➢Set the average difference in activations as output bias (quotient).

•In the following, we shall refer to this as the heuristic method.

Application in Multiclass Networks

Extension with Multiple
Output Neurons

•What we have: Multiple polytopes, interconnected (as seen in the
figure).

•What we want: Simultaneous approximation of all polytopes.

Upper hull of polytope, Neuron 1 Upper hull of polytope, Neuron 2

Binary Description of Vertices

•The polytopes of the network are zonotopes: they are constructed via
line segments (each corresponding to one neuron).

•Each vertex has a natural binary representation: the neurons
corresponding to the line segments it is constructed from.

•Vertex weight: The sum of the respective neuron weights.

•Previous figure: The polytopes of the output neurons share the binary
representation.

First Method: Approximation
with a Vertex Transform

For an output neuron with weights 𝒘𝑙
2, and a hidden layer with weights

𝑾1, a vertex of the polytope can be represented as:

𝒗 = 𝑾1diag 𝒘𝑙
2 𝟏𝒗

where 𝟏𝒗 is a binary column vector of the representation.

First Method: Approximation
with a Vertex Transform

•The method is as follows:

➢Perform the single output neuron minimization, assuming all output
weights are equal to 1.

➢For each output neuron, find the original representation of the
chosen points 𝒗.

➢Using the new weight matrix (𝑾1)′, find the optimal weights for the
output layer, so that:

𝒗′ ≈ 𝒗

➢Add the output bias as before.

•However, this treats all classes in the same fashion: counter-intuitive!

Second Method: One-Vs-All

•Second approach: treat each output neuron (class) separately:

➢Copy the hidden layer once for each output neuron.

➢Minimize each copy with the single output neuron method.

➢Combine all reduced copies in a new network.

•To rank the importance of a sample: reweighting.

➢𝐶 output classes: positive samples count as 𝐶 − 1.

➢Negative samples for each class count as 1.

Alternative Method for Single Output Neuron

Alternative Method for Single
Output Neuron

Outline of the algorithm for the divisor:

• Calculate the importance of each vertex as before.

• Convert each vertex to its binary representation.

• Add new vertices, splitting their binary representations so that each
neuron of the original hidden layer is contained at most once.

➢Example: Vertices 1110, 0111 - three neurons: 1000, 0110, 0001.

➢This way, new vertices are strictly inside the original polytope.

• Find the actual weights of the final neurons (via binary
representation).

Alternative Method for Single
Output Neuron

•Final polytope (right) is precisely under the original (left).

•The process is a “smoothing” of the original polytope.

•It is deterministic: less variation is expected.

•Extra output bias: Average difference in activations (to address samples
not covered by chosen vertices).

Properties of the Stable
Method

1. Approximate polytope of the divisor contains only vertices of the
original.

2. The samples corresponding to the chosen vertices have the same
output in the two networks (without the extra output bias).

Original Polytope Approximate Polytope,
Heuristic Method

Approximate Polytope,
Stable Method

Properties of the Stable
Method

3. At least:
𝑁

σ𝑗=0
𝑑

𝑛
𝑗

𝑂(log𝑛′)

samples retain their output (𝑁 is the number of samples, 𝑛 and 𝑛′ the
number of neurons in the hidden layer before and after the
approximation). Note that this is not a tight bound.

Experimental Evaluation

Experimental Evaluation

•We evaluate our methods on two datasets:

➢MNIST Dataset

➢Fashion – MNIST Dataset

•The architecture in both datasets consists of:

➢2 convolutional layers, with max-pooling.

➢2 fully connected layers.

•For each trial, we minimize the second-to-last fully connected layer,
with the One-Vs-All method.

•Results: Average accuracy and standard deviation for 5 trials.

MNIST Dataset
Neurons Kept Heuristic

Method, Avg.
Accuracy

Heuristic
Method, St.

Deviation

Stable
Method, Avg.

Accuracy

Stable
Method, St.

Deviation

Original 98.604 0.027 - -

75% 95.048 1.552 96.560 1.245

50% 95.522 3.003 96.392 1.177

25% 91.040 5.882 95.154 2.356

10% 92.790 3.530 93.748 2.572

5% 92.928 2.589 92.928 2.589

Fashion-MNIST Dataset
Neurons Kept Stable Method, Avg.

Accuracy
Stable Method, St.

Deviation

Original 88.658 0.538

90% 83.634 2.894

75% 83.556 2.885

50% 83.300 2.799

25% 82.224 2.845

10% 80.430 3.267

Conclusions & Future Work

Conclusions & Future Work

•In this work:

➢We extended work done in (Smyrnis et al. 2020) to include networks
trained for classification tasks with multiple classes.

➢We presented a stable alternative to the method in (Smyrnis et al
2020).

•Moving on, we will try to:

➢Extend these methods in more complicated architectures.

➢Evaluate them in comparison with existing minimization techniques,
in more complicated datasets.

References
•S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and connections for
efficient neural network”, in Advances in Neural Information Processing Systems 28,
2015, pp. 1135–1143.

•J.-H. Luo, J. Wu, and W. Lin, “ThiNet: A filter level pruning method for deep neural
network compression”, in Proc. Int'l Conf. on Computer Vision, Oct. 2017.

•G. Smyrnis, P. Maragos, and G. Retsinas, “Maxpolynomial division with application to
neural network simplification”, in Proc. ICASSP ‘20, IEEE, 2020, pp. 4192–4196.

•V. Charisopoulos and P. Maragos, “Morphological Perceptrons: Geometry and
Training Algorithms”, in Proc. Int’l Symp. Mathematical Morphology (ISMM), ser.
LNCS, vol. 10225, Springer, Cham, 2017, pp. 3–15.

•V. Charisopoulos and P. Maragos, “A tropical approach to neural networks with
piecewise linear activations”, arXiv preprint arXiv:1805.08749, 2018.

•L. Zhang, G. Naitzat and L.-H. Lim, “Tropical geometry of deep neural networks”, in
Proc. Int’l Conf. on Machine Learning, vol. 80, PMLR, 2018, pp. 5824–5832.

For more information, demos, and current results, visit:

http://cvsp.cs.ntua.gr and http://robotics.ntua.gr

THANK YOU FOR YOUR
ATTENTION!

http://cvsp.cs.ntua.gr/
https://robotics.ntua.gr/

