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Motivation

Deep neural networks are widely used as generative models for
complex data as images and natural language.

Many generative network architectures are based on the
transformation of low-dimensional distributions to
high-dimensional ones, e.g., Variational Autoencoder,
Wasserstein Autoencoder, etc.

This talk answers the question of whether there exists a
fundamental limitation in going from low dimension to a higher
one.



Our contribution

This talk will show that there is no such limitation.



Generation of multi-dimensional distributions from U [0, 1]

Classical approaches - transforming distributions of the same
dimension, e.g., the Box-Muller method
[Box and Muller, 1958].

[Bailey and Telgarsky, 2018] show that deep ReLU networks can
transport U [0, 1] to U [0, 1]d.



Neural networks

A map Φ : RN0 → RNL given by

Φ := WL ◦ ρ ◦WL−1 ◦ ρ ◦ · · · ◦ ρ ◦W1

is called a neural network (NN).

Affine maps: W` = A`x+ b` : RN`−1 → RN` , ` ∈ {1, 2, . . . , L}

Non-linearity or activation function: ρ acts component-wise

Network connectivity: M(Φ) – total number of non-zero
parameters in W`

Depth of network or number of layers: L(Φ) := L

We denote by Nd,d′ the set of all ReLU networks with input
dimension N0 = d and output dimension NL = d′.



Histogram distributions

Histogram distribution E [0, 1]1n,
d = 1, n = 5.

Histogram distribution E [0, 1]2n,
d = 2, n = 4.



Our goal

Transport U [0, 1] to an approximation of any given distribution
supported on [0, 1]d. For illustration purposes we look at d = 2.



ReLU networks and histograms

Takeaway message

For any histogram distribution there exists a ReLU net that generates
it from a uniform input. This net realizes an inverse cumulative
distribution function (cdf−1).



The key ingredient to dimension increase

Sawtooth function g : [0, 1]→ [0, 1],

g(x) =

{
2x, if x < 1

2 ,

2(1− x), if x ≥ 1
2 ,

let g1(x) = g(x), and define the “sawtooth” function of order s as
the s-fold composition of g with itself according to

gs := g ◦ g ◦ · · · ◦ g︸ ︷︷ ︸
s

, s ≥ 2.

NN realize sawtooth as g(x) = 2ρ(x)− 4ρ(x− 1/2) + 2ρ(x− 1).



Related work

Theorem ([Bailey and Telgarsky, 2018, Th. 2.1], case d = 2)

There exists a ReLU network Φ : x→ (x, gs(x)),Φ ∈ N1,d with
connectivity M(Φ) ≤ Cs for some constant C > 0, and of depth
L(Φ) ≤ s+ 1, such that

W (Φ#U [0, 1], U [0, 1]2) ≤
√

2

2s
.

Main proof idea - space-filling property of sawtooth function.



Generalization of the space-filling property



Approximating 2D distributions

M : x→ (x, f(gs(x)))

Generating a histogram distribution via the transport map (x, f(gs(x))).
Left—the function f(x), center—f(g4(x)), right—a heatmap of the
resulting histogram distribution.



Approximating 2D distributions con’t

M : x→

(
fmarg(x),

n−1∑
i=0

fi(gs(nfmarg(x)− i))

)

Generating a general 2-D histogram distribution. Left—the function

f1 = f3, center—
∑3

i=0 fi

(
g3

(
4x− i)

))
, right—a heatmap of the resulting

histogram distribution. The function f0 = f2 is depicted on the left in
Figure 3.



Generating histogram distributions with NNs

Theorem

For every distribution pX,Y (x, y) in E [0, 1]2n, there exists a Ψ ∈ N1,2

with connectivity M(Ψ) ≤ C1n
2 + C2ns, for some constants

C1, C2 > 0, and of depth L(Ψ) ≤ s+ 3, such that

W (Φ#U [0, 1], pX,Y ) ≤ 2
√

2

n2s
.

Error decays exponentially with depth and linearly in n

Connectivity is in O(n2) which is of the same order as the
number of E [0, 1]2n’s parameters (n2 − 1).

Special case n = 1 coincides with [Bailey and Telgarsky, 2018,
Th. 2.1].



Histogram approximation

Theorem

Let pX,Y be a 2-dimensional Lipschitz-continuous pdf of finite
differential entropy on its support [0, 1]2. Then, for every n > 0,
there exists a p̃X,Y ∈ E [0, 1]2n such that

W (pX,Y , p̃X,Y ) ≤ 1

2
‖pX,Y − p̃X,Y ‖L1([0,1]2) ≤

L
√

2

2n
.



Universal approximation

Theorem

Let pX,Y be an L-Lipschitz continuous pdf supported on [0, 1]2.
Then, for every n > 0, there exists a Φ ∈ N1,2 with connectivity
M(Φ) ≤ C1n

2 + C2ns for some constants C1, C2 > 0, and of depth
L(Φ) ≤ s+ 3, such that

W (Φ#U [0, 1], pX,Y ) ≤ L
√

2

2n
+

2
√

2

n2s
.

Takeaway message

ReLU networks have no fundamental limitation in going from low
dimension to a higher one.
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