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Motivation

m Deep neural networks are widely used as generative models for
complex data as images and natural language.

m Many generative network architectures are based on the
transformation of low-dimensional distributions to
high-dimensional ones, e.g., Variational Autoencoder,
Wasserstein Autoencoder, etc.

m This talk answers the question of whether there exists a
fundamental limitation in going from low dimension to a higher
one.



Our contribution
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This talk will show that there is no such limitation.



Generation of multi-dimensional distributions from U|0, 1]

m Classical approaches - transforming distributions of the same
dimension, e.g., the Box-Muller method
[Box and Muller, 1958].

m [Bailey and Telgarsky, 2018] show that deep ReLU networks can
transport [0, 1] to U0, 1]<.



Neural networks

A map ® : RN — RNL given by
®:=WropoWp_10po---0poW;
is called a neural network (NN).
m Affine maps: Wy = Agx + by : RVe1 5 RNe v {1,2,... L}

m Non-linearity or activation function: p acts component-wise

m Network connectivity: M(®) — total number of non-zero
parameters in W,

m Depth of network or number of layers: £(®) := L

We denote by Ny 4 the set of all ReLU networks with input
dimension Ny = d and output dimension Nj, = d'.



Histogram distributions

Histogram distribution £[0,1]},
d=1,n=5.

Histogram distribution £[0,1]2,
d=2,n=4.



Our goal

Transport U[0, 1] to an approximation of any given distribution
supported on [0, 1]%. For illustration purposes we look at d = 2.
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RelLU networks and histograms
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Takeaway message

For any histogram distribution there exists a ReLU net that generates
it from a uniform input. This net realizes an inverse cumulative
distribution function (cdf™1).



The key ingredient to dimension increase

Sawtooth function g : [0,1] — [0, 1],
2z, if x < %,
g(z) = _ !
2(1—xz), ifz>g3,

let g1(z) = g(z), and define the “sawtooth” function of order s as
the s-fold composition of g with itself according to

gsi=gogo-—-og, s>2.
|
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NN realize sawtooth as g(z) = 2p(x) — 4p(x — 1/2) 4+ 2p(xz — 1).



Related work

Theorem ([Bailey and Telgarsky, 2018, Th. 2.1], case d = 2)

There exists a ReLU network ® : x — (z, gs(x)), ® € N 4 with
connectivity M(®) < C's for some constant C' > 0, and of depth
L(P) < s+ 1, such that

W(®#U|0,1], U0, 1]?) < g

Main proof idea - space-filling property of sawtooth function.
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Generalization of the space-filling property
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Approximating 2D distributions

M :a— (z, f(gs(2)))
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Generating a histogram distribution via the transport map (z, f(gs(z))).
Left—the function f(z), center—f(g4(x)), right—a heatmap of the
resulting histogram distribution.



Approximating 2D distributions con't

n—1
M:z— (fmarg(af), Z fi(gs(nfmarg(w) - Z)))

1=0

1.0 -

0.8

) )
0.751 0755 i
06 2 2 2 2
05-
a 1 4 1

0.5
0.25 1 02 4 0.25 -
1 1 1 1
0 0
T i ; T i T i ; : - i ; | |
0o 025 05 075 1 0 025 05 075 1 00 025 05 075 10

Generating a general 2-D histogram distribution. Left—the function
f1=fs center—Z?:O fi (gg (4x — z))) right—a heatmap of the resulting
histogram distribution. The function fo = fo is depicted on the left in
Figure 3.



Generating histogram distributions with NNs

Theorem

For every distribution px y (x,y) in £[0,1]2, there exists a ¥ € N 2
with connectivity M(¥) < Cyn? + Cqns, for some constants
C1,Cs > 0, and of depth L(¥) < s+ 3, such that
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W(Q#U[Oa 1]7pX,Y) <

m Error decays exponentially with depth and linearly in n

m Connectivity is in O(n?) which is of the same order as the
number of £[0,1]2's parameters (n? — 1).

m Special case n = 1 coincides with [Bailey and Telgarsky, 2018,
Th. 2.1].



Histogram approximation

Let pxy be a 2-dimensional Lipschitz-continuous pdf of finite
differential entropy on its support [0,1]2. Then, for every n > 0,
there exists a pxy € &[0, 1)2 such that

_ 1 _ LV2
Wipxy,bxy) < slpxy — PxyllLi (o2 < o



Universal approximation

Theorem

Let pxy be an L-Lipschitz continuous pdf supported on [0, 1]2.
Then, for every n > 0, there exists a ® € ./\/1,2 with connectivity
M(D) < Cin? 4+ Cyns for some constants Cy,Cy > 0, and of depth
L(®) < s+ 3, such that
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Takeaway message

ReLU networks have no fundamental limitation in going from low
dimension to a higher one.
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