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Learning from untrusted sources

Crowdsourcing
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Main contributions

Rigorous adversarial models and statistical PAC-learnability framework

Positive results:

PAC-learnability is fulfilled (under minimal assumptions)
Explicit learning algorithm and rates

Hardness results:

Sample complexity lower bound
The learner needs the group structure to achieve PAC-learnability
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Setup

Supervised learning scenario

Input-output space X × Y, unknown data distribution D ∈ P(X × Y)

Hypothesis space H, loss function ` : Y × Y → R+

Want to find h ∈ H, such that R(h) = ED(`(h(x), y)) is small

Learning from multiple sources

Given: a set of N datasets S = (S1, . . . ,SN)

m labeled points in each: Si = {(xi ,j , yi ,j)}mj=1
iid∼ D
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Adversarial model

Informal description

An adversary controls an α-fraction of the sources, α < 1/2

The adversary can choose the new points with full knowledge of the setup

The learner does not know which sources are manipulated

Formal definitions

(X × Y)N×m - set of all unordered sequences of N sets of m points

A fixed-set adversary is any function A : (X × Y)N×m → (X × Y)N×m, such that:

(S ′1, . . . ,S
′
N) = A(S1, . . . ,SN) satisfies S ′i = Si ,

∀i ∈ C , where C is the set of “clean” sources and |C | = (1− α)N
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Adversarial PAC-learnability

A multi-source learner is a function L : (X × Y)N×m → H

Focus on fixed N and α, while m→∞

H is α-adversarially PAC-learnable if ∃m : (0, 1]2 → N, such that for any ε, δ ∈ (0, 1],
whenever m ≥ m(ε, δ), with probability at least 1− δ:

R(L(A(S)) ≤ min
h∈H
R(h) + ε,

against any (fixed-set) adversary of power α
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Related work

Learning discrete distributions from untrusted batches

Unsupervised version of the problem studied in (Qiao and Valiant 2018; Jain et al. 2020)

Robust PAC learning from a single dataset

One point per source recovers the malicious noise model (Kearns et al. 1993)

PAC-learnability is known to be impossible: minimum possible error is α/(1− α)

Byzantine-robust distributed optimization

Practical and robust gradient optimization methods (Yin et al. 2018; Alistarh et al. 2018)

Convergence analysis under convexity/smoothness assumptions

Collaborative learning

Multiple parties learn one model each

Adversarial PAC-learnability provably possible (Blum et al. 2017; Qiao 2018)
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Adversarial PAC-learnability

Main assumption: H is uniformly convergent

Given m samples S = {(x1, y1) , . . . , (xm, ym)} iid∼ D, with probability at least 1− δ over
the data :

sup
h∈H
|R(h)− R̂(h)| ≤ sH,` (m, δ, S) ,

sH,` (m, δ,Sm)→ 0 as m→∞, for any sequence {Sm}m∈N with Sm ∈ (X × Y)m

Theorem

H - uniformly convergent =⇒ H - adversarially PAC-learnable.

Holds even against a stronger adversary that can choose which sources to corrupt
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Sample complexity upper bound

In many situations sH,` (m, δ, S) = O(1/
√
m)

There exists a learning algorithm, such that with probability at least 1− δ:

R(L(A(S)))− min
h∈H
R(h) ≤ Õ

( 1√
(1− α)Nm

+ α
1√
m

)
,

against any fixed-set adversary1

1Õ hides constants and logarithmic factors
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Hardness results (for formal statements see paper)

Sample complexity lower bound

No learning algorithm can achieve against any adversary error less than:

O

(
1√

(1− α)Nm
+ α

1

m

)

If m is constant and α > 0, N →∞ does not guarantee PAC-learnability

The learner has to use the group structure

No learning algorithm that ignores the group structure can guarantee error less than
O(α/(1− α))
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Summary

Learning from multiple unreliable sources now commonplace

Setup modeled as a PAC-learning problem with an adversary

Group structure enables PAC-learnability, even against a strong adversary

Describe fundamental limitations on the learner

Thank you for your attention!

Meet us at the poster session for more details.
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