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Synopsis

Motivation for C-valued neural networks
I perform better for naturally C-valued data
I use half as much storage, but the same number of flops

Propose Sparse Variational Dropout for C-valued neural networks
I Bayesian sparsification method with C-valued distributions
I empirically explore the compression-performance trade-off

Conclusions
I C-valued methods compress similarly to R-valued predecessors
I final performance benefits from fine-tuning sparsified network
I compress a SOTA CVNN on MusicNet by 50− 100× at a

moderate performance penalty
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C-valued neural networks: Applications
Data with natural C-valued representation

I radar and satellite imaging
[Hirose, 2009, Hänsch and Hellwich, 2010, Zhang et al., 2017]

I magnetic resonance imaging
[Hui and Smith, 1995, Wang et al., 2020]

I radio signal classification
[Yang et al., 2019, Tarver et al., 2019]

I spectral speech modelling and music transcription
[Wisdom et al., 2016, Trabelsi et al., 2018, Yang et al., 2019]

Exploring benefits beyond C-valued data
I sequence modelling, dynamical system identification

[Danihelka et al., 2016, Wisdom et al., 2016]

I image classification, road / lane segmentation
[Popa, 2017, Trabelsi et al., 2018, Gaudet and Maida, 2018]

I unitary transition matrices in recurrent networks
[Arjovsky et al., 2016, Wisdom et al., 2016]
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C-valued neural networks: Implementation

Geometric representation C ' R2

I z = <z + =z , 2 = −1
I <z and =z are real and imaginary parts of z

An intricate double-R network that respects C-arithmetic
W11 W12

W21 W22
×


x1

x2

RVNN linear operation


W11 −W21

W21 W11
×


x1

x2

CVNN linear operation

Activations z 7→ σ(z), e.g reφ 7→ σ(r , φ) or z 7→ σ(<z) + σ(=z).
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Sparsity and compression
Improve power, storage or throughput efficiency of deep nets

I Knowledge distillation
[Hinton et al., 2015, Balasubramanian, 2016]

I Network pruning
[LeCun et al., 1990, Seide et al., 2011, Zhu and Gupta, 2018]

I Low-rank matrix / tensor decomposition
[Denton et al., 2014, Novikov et al., 2015]

I Quantization and fixed point arithmetic
[Courbariaux et al., 2015, Han et al., 2016, Chen et al., 2017]

Applications to CVNN:
I C modulus pruning, quantization with k-means in R2,

[Wu et al., 2019]

I `1 regularization for hyper-complex-valued networks,
[Vecchi et al., 2020]
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Sparse Variational Dropout
[Molchanov et al., 2017]

Variational Inference with automatic relevance determination effect

maximize
q∈Q

Ew∼q log p(D | w)︸ ︷︷ ︸
data model likelihood

− KL(q‖π)︸ ︷︷ ︸
variational regularization

(ELBO)

prior π → data model likelihood → posterior q (close to p(w | D))

Factorized Gaussian dropout posterior family Q
I wij ∼ q(wij) = N (wij

∣∣µij , αijµij
2), αij > 0, and µij ∈ R

Factorized prior
I (VD) π(wij) ∝ 1

|wij | [Molchanov et al., 2017]

I (ARD) π(wij) = N (wij

∣∣ 0, 1
τij
) [Kharitonov et al., 2018]
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C-valued Variational Dropout
Our proposal

Factorized complex-valued posterior q(w) =
∏

q(wij)
I wij are independent CN (w

∣∣µ, σ2, σ2ξ), σ2 = α|µ|2, |ξ| ≤ 1(
<w
=w

)
∼ N2

((
<µ
=µ

)
,
σ2

2

(
1+ <ξ =ξ
=ξ 1−<ξ

))

I wij are circularly symmetric about µij (ξij = 0)

I relevance ∝ 1
αij

and 2|wij−µij |2
αij |µij |2 is χ2

2

Factorized complex-valued priors π
I (C-VD) π(wij) ∝ |wij |−ρ, ρ ≥ 1

I (C-ARD) π(wij) = CN (0, 1
τij
, 0)
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C-valued Variational Dropout
KL(q‖π) term in (ELBO)

KL(q‖π) =
∑
ij

KL(q(wij)‖π(wij))

(C-VD) improper prior

KLij ∝ ρ−2
2 log|µij |2 + log 1

αij
− ρ

2Ei(−
1
αij
)

Ei(x) =

∫ x

−∞
ett−1dt

(C-ARD) prior is optimized w.r.t. τij in empirical Bayes

KLij = −1− log σ2
ijτij + τij(σ

2
ij + |µij |2)

min
τij

KLij = log
(
1+ 1

αij

)
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Experiments: Goals and Setup

We conduct numerous experiments on various datasets to
I validate the proposed C-valued sparsification methods
I explore the compression-performance profiles
I compare to the R-valued Sparse Variational Dropout

‘pre-train’ → ‘compress’ → ‘fine-tune’
I ‘compress’ with R/C-Variational Dropout layers
I ‘fine-tune’ pruned network (logαij ≤ −1

2)

max
q

Ew∼q log p(D | w)− β KL(q‖π) (β-ELBO)
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Experiments: Datasets
Four MNIST-like datasets

I channel features (R ↪→ C) or 2d Fourier features
I fixed random subset of 10k train samples
I simple dense and convolutional nets

CIFAR10 dataset (R3 ↪→ C3)
I random cropping and horizontal flipping
I C-valued variant of VGG16 [Simonyan and Zisserman, 2015]

Music transcription on MusicNet [Thickstun et al., 2017]

I audio dataset of 330 annotated musical compositions
I use power spectrum to tell which piano keys are pressed
I compress deep CVNN proposed by [Trabelsi et al., 2018]
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Results: CIFAR10
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C-valued version of VGG16 [Simonyan and Zisserman, 2015]
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Results: MusicNet
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The CVNN of Trabelsi et al. [2018]
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MusicNet: Effects of pruning threshold
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Effect of threshold on the CVNN of Trabelsi et al. [2018]
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Summary: Results

Bayesian sparsification of C-valued networks
I proposed C-VD and C-ARD methods
I investigated performance-compression trade-off
I compress the CVNN of Trabelsi et al. [2018] by 50− 100× at

a small performance penalty

Experiments
I C-VD and C-ARD have trade-off similar to R methods

I R-networks tend to compress better than C-nets

I fine-tuning improves performance in high compression regime

I β in β-ELBO influences compression stronger than threshold
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Summary: Limitations

Circular symmetry of the posterior q(wij) about µij implies
independence of < and =

I modelling corr(wij ,w ij) gives better variational approximation

Factorized q implies parameter independence
I structured sparsity is desirable for fast computations and

hardware implementations
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