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» use half as much storage, but the same number of flops

Propose Sparse Variational Dropout for C-valued neural networks
» Bayesian sparsification method with C-valued distributions

» empirically explore the compression-performance trade-off

Conclusions
» C-valued methods compress similarly to R-valued predecessors
» final performance benefits from fine-tuning sparsified network

» compress a SOTA CVNN on MusicNet by 50 — 100x at a
moderate performance penalty
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C-valued neural networks: Applications

Data with natural C-valued representation
» radar and satellite imaging
[Hirose, 2009, Hinsch and Hellwich, 2010, Zhang et al., 2017]
> magnetic resonance imaging
[Hui and Smith, 1995, Wang et al., 2020]
» radio signal classification
[Yang et al., 2019, Tarver et al., 2019]
» spectral speech modelling and music transcription

[Wisdom et al., 2016, Trabelsi et al., 2018, Yang et al., 2019]
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Exploring benefits beyond C-valued data
» sequence modelling, dynamical system identification
[Danihelka et al., 2016, Wisdom et al., 2016]
» image classification, road / lane segmentation
[Popa, 2017, Trabelsi et al., 2018, Gaudet and Maida, 2018]
> unitary transition matrices in recurrent networks

[Arjovsky et al., 2016, Wisdom et al., 2016]
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C-valued neural networks: Implementation

Geometric representation C ~ R?
» z=Rz+ 3z, P =-1

» Rz and 3z are real and imaginary parts of z

An intricate double-R network that respects C-arithmetic

Wi+ Wiy X1 Wi — W X1
fffffff to------ X ST

Wor + Who X2 Wao + Wiy X2
RVNN linear operation CVNN linear operation

Activations z — o(z), e.g re’® v o(r, @) or z — o(Rz) + jo(Sz).
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Sparsity and compression

Improve power, storage or throughput efficiency of deep nets
» Knowledge distillation
[Hinton et al., 2015, Balasubramanian, 2016]
» Network pruning
[LeCun et al., 1990, Seide et al., 2011, Zhu and Gupta, 2018]
» Low-rank matrix / tensor decomposition

[Denton et al., 2014, Novikov et al., 2015]

» Quantization and fixed point arithmetic

[Courbariaux et al., 2015, Han et al., 2016, Chen et al., 2017]

Applications to CVNN:
» C modulus pruning, quantization with k-means in R?,

[Wu et al., 2019]

» (1 regularization for hyper-complex-valued networks,

[Vecchi et al., 2020]
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Sparse Variational Dropout
[Molchanov et al., 2017]

Variational Inference with automatic relevance determination effect

maximize E,.,logp(D|w) — KL(q||m) (ELBO)
€9 v ———
data model likelihood variational regularization

prior 1 — data model likelihood — posterior ¢ (close to p(w | D))
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Sparse Variational Dropout
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Variational Inference with automatic relevance determination effect

maximize E,.,logp(D|w) — KL(q||m) (ELBO)
€Q ———
data model likelihood variational regularization

prior 1 — data model likelihood — posterior ¢ (close to p(w | D))

Factorized Gaussian dropout posterior family Q

> Wi ~ (WU) = N(WU ‘ /t,’j,()é,'j/l,,'jz), Qi > 0, and Wij cR

Factorized prior

> (VD) W(WU) X ﬁ [Molchanov et al., 2017]

> (ARD) 7T(W,J) = N(W,J ‘ 0, 7}7) [Kharitonov et al., 2018]
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C-valued Variational Dropout

Our proposal
Factorized complex-valued posterior ( ) H W)
o2
o2

> wjj are independent CN'(w | 1, 02,0%¢), 0% = o|ul?, |¢] < 1

Rw IV R\ o2 [1+RE ¢
Sw) T2N\S ) 2 s 1-we
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Rw\ o (Re o? ([1+RE ¢
Sw 2ZW\sp) 2\ se 1-me

> wj; are circularly symmetric about 1i;; (£ = 0)

1 2|Wl'j_ﬂij|2 . 2 real
> relevance o and TP 18 X3

Factorized complex-valued priors 7
> (C-VD) m(wj) o< [wy| =7, p>1
> (C-ARD) 7(wj) = CA'(0, 1,0)

6= -45" 6=0"

CN(0,1,ne?), |n| <1

6=90"
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C-valued Variational Dropout
KL(g||7) term in (ELBO)

(qllm) = ZKL (wij) [l (wis))

(C-VD) improper prior

-2
KLj o 252 log|u;|? + log % — E'(_W)

Ei(x) :/ ett~tdt

— o0

(C-ARD) prior is optimized w.r.t. 7;; in empirical Bayes

KLU = —1—|Og0’,~2j7','j+7','j(0'§~+|,U/,'j’2)
_ 1
min KL; = Iog(l + fTu)

Tij
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Experiments: Goals and Setup

We conduct numerous experiments on various datasets to
» validate the proposed C-valued sparsification methods
» explore the compression-performance profiles

» compare to the R-valued Sparse Variational Dropout
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. : 1
> ‘fine-tune’ pruned network (log ajj < —3)
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Four MNIST-like datasets
» channel features (R < C) or 2d Fourier features
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Experiments: Datasets

Four MNIST-like datasets
» channel features (R < C) or 2d Fourier features
» fixed random subset of 10k train samples

» simple dense and convolutional nets

CIFARI10 dataset (R3 — C3)
» random cropping and horizontal flipping

> (C-Valued variant Of VGG16 [Simonyan and Zisserman, 2015]

Music transcription on MusicNet [Thickstun et al., 2017]
» audio dataset of 330 annotated musical compositions
» use power spectrum to tell which piano keys are pressed
» compress deep CVNN proposed by [Trabelsi et al., 2018]
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Results: CIFAR10

Trade-off on CIFAR10 (raw) (t=-0.5)
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C-valued version of VGG16 [Simonyan and Zisserman, 2015]
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Results: MusicNet

Trade-off on MusicNet (fft) (t=—0.5)
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The CVNN of Trabelsi et al. [2018]
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MusicNet: Effects of pruning threshold

C-ARD for DeepConvNet (MusicNet)
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C-VD for DeepConvNet (MusicNet)
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Effect of threshold on the CVNN of Trabelsi et al. [2018]
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Summary: Results

Bayesian sparsification of C-valued networks
» proposed C-VD and C-ARD methods
» investigated performance-compression trade-off

» compress the CVNN of Trabelsi et al. [2018] by 50 — 100 at
a small performance penalty
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Summary: Results

Bayesian sparsification of C-valued networks
» proposed C-VD and C-ARD methods
» investigated performance-compression trade-off

» compress the CVNN of Trabelsi et al. [2018] by 50 — 100 at
a small performance penalty

Experiments
» C-VD and C-ARD have trade-off similar to R methods

» R-networks tend to compress better than C-nets
» fine-tuning improves performance in high compression regime

» [ in B-ELBO influences compression stronger than threshold

13/14



Summary: Limitations

Circular symmetry of the posterior ¢(w;;) about 1i;; implies
independence of & and &

» modelling corr(wjj, wj;) gives better variational approximation

Factorized g implies parameter independence

» structured sparsity is desirable for fast computations and
hardware implementations
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