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Introduction

Games	are	central	in	machine	learning	(ML)	
training	[Goodfellow	et	al.,2014,Silver	et	al.,2017,	Vinyals	et	al.,
2019]	in	GANs,	Starcraft,	Alpha	GO,	Chess	etc.



Non-convergence	in	Games
General	assumption	in	ML	is	that	competition	between	learning	
algorithms	forces	the	algorithm	to	improve.	
Games	can	be	unpredictable	[Galla	et	al.,2013,	Piliouras	et	al.,2014]	or	formally	
chaotic	[Palaiopanos	et	al.,2017,	Sato	et	al.,	2002].	
Recently,	[Balduzzi	et	al.,2020]	showed	that	continuous	time	Gradient	ascent	
in	smooth	games	can	diverge.		A	similar	divergence	result	for	discrete	time	
multiplicative	weight	updates	in	zero-sum	games	was	shown	by	[Bailey	et	
al.,2018].		
In	continuous	action/state	multi-agent	RL,	policy	gradient	was	shown	to	
have	no	guarantees	of	local	convergence	in	simple	games	[Mazumdar	et	al.,
2020].	
How	can	we	control	learning	dynamics	in	large	scale	multi-agent	systems?



A	Physics	Approach

Gravity Quantum	Mechanics

Complex	systems	in	two	vastly	different	scales!

But	governed	by	fundamental	laws	of	conservation	and	symmetry.



An	Example	with	Springs

Method	1:	Use	Newton’s	Laws,	using	force	diagrams	to	
derive	equations	of	motion.	
Method	2:	Write	down	the	Hamiltonian	or	Lagrangian	
and	apply	the	least	action	principle	to	obtain	the	
equations	of	motion.

A	simple	1	mass	and	1	spring	system.



How	does	it	Scale?

A	spring	mass	systems	with	3	springs	and	3	masses

A	network	of	spring	mass	systems

Writing	force	diagrams	becomes		
an	uphill	task	and	does		
not	scale	well!		
Method	2	works	better!

Can	still	salvage	using	
Newton’s	laws	and		
force	diagrams.



A	Physicist’s	Checklist

Make	an	appropriate	coordinate	transform	dictated	by	
the	geometry	of	the	problem.	

Identify	the	conservation	laws		in	the	system.	

Exploit	the	symmetries	in	the	transformed	system	to	
obtain	the	required	equations.



Main	Question

Can	we	identify	a	class	of	games	and	learning	
dynamics	that	have	conservation	laws?



Network	Game	with	Charges	(NGC)
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λu	,	λv			are	called	charges.	
They	scale	the	utilities	of		
the	respective	players.	

Rock-Paper-Scissors	(RPS) Matching	Pennies	(MP)

RPS	or	MP
Some	instantiations	of	charges:	
λu		=	1	and	λv		=	1	-	RPS	or	MP		
λu		=	-1	and	λv		=	1-	Coordination	versions	of	RPS/MP	
λu		=	-1	and	λv		=	-1	-	Switches	row	and	column	player.

Row	player

Column	Player

Row	
player

Column	Player



NGC	Formalism
Consider	a	graphical	polymatrix	game	[Kearns	et	al.,	2001]:	
Nodes	are	players,	playing	a	game	with	each	neighbor.	

Special	cases	include	:		
Network	Zero-sum,	coordination	games,	hybrid	varieties	
and	other	large	scale	games	[Nagarajan	et	al.,2018,	Szabo	et	
al.,2007,	Wang	et	al.,2015].

Bimatrix	game	between	
u	and	v	is	(Au,v,Av,u).	
Charges	:	λu	,λv		are	
elements	in	R\{0}.	
Utility	of	player	u:		v

u

(Au,v,	Av,u)
λu

λv

λu

λv



Learning	Dynamics
Players	use	classic	no-regret	algorithms	to	update	their	
mixed	strategies	via	Follow	the	Regularized	Leader	
(FTRL)	[Hazan	et	al.,2016,	Mertikopoulos	et	al.,	2018]	with	
possibly	different	regularizers.	

	

Accumulated	
payoff	from	0	
until	time	t.

Choose	the	next	mixed	
strategy	by	optimizing	Q	
with	regularizer	h.

Applying	h=negative	entropy	,	leads	to	Replicator	dynamics	and	h	=	
squared	euclidean	norm,		gives	gradient	descent.



Main	Theorems	(Informal)

Conservation	Law:	When	the	agents	play	via	any	FTRL	
dynamics	in	a	NGC,	a	notion	of	a	“linear	combination	of	
distances”	in	the	payoff	space	is	invariant	with	respect	to	
time.	
Dimensionality	Reduction:	The	dynamics	in	some	families	of	
NGC,	allows	for	many	invariant	functions	and	this	in-turn	
guarantees	that	the	trajectories	lie	in	a	lower	dimensional	
space.	
Periodicity:		The	dynamics	of	a	bipartite	NGC	with	a	base	
constant	sum	game	that	is	2-by-2	is	periodic	when	the	
charges	are	of	the	same	sign.



Conservation	Laws	in	NGC
When	the	players	play	in	a	NGC,	we	show	that	the	following	
quantity	is	invariant	with	respect	to	time	:		

Where,	y(t)	describes	the	evolution	w.r.t	to	the	payoffs.	
																																																																														
																																																																																																																																																																				
	hi*(.)	is	the	convex	conjugate	of	hi(.)	and	xi*	is	the	fully	
mixed	Nash	equilibrium.	
Key	idea	is	to	take	the	time	derivative	of	H(y)	and	show	that	it	is	0.



Facts	about	Conservation	Laws

Interpretation:	A	linear	combination	of	“distances”	(closely	
connected	to	the	notion	of	Bregman	divergences)	from	
the	Nash	equilibrium	strategy	of	each	player,	scaled	by	
their	respective	charge	is	invariant	in	the	space	of	payoffs.	

Some	games	can	have	multiple	conservation	laws.	

Conservation	laws	generally	constrain	the	dynamics	
leading	to	simple,	non-chaotic	behavior.



A	Visualisation	of	Conservation

Replicator	Dynamics	
on	Rock-Paper-Scissors.	



Complex	Behavior	in	NGC
Consider	the	MP	game	being	played	along	the	
edges	of	this	bipartite	network.

Bipartite	network	game		
with	symmetries.

Bipartite	network	game		
in	the	absence	
of	symmetries.

The	trajectories	of	the	mixed	
strategies	over	time	is	chaotic!

The	trajectories	of	the	mixed	
strategies	over	time	is	periodic!

Both	systems		
are	driven	by	
same		
conservation	
laws!!	

Row Col



Dimensionality	Reduction
Consider	a	network	constant	sum	game	with	charges	described	by	a	base	game	A	(n-
by-n).	Such	games	appear	in	[Szabo	et	al.,2007,	Wang	et	al.,2015].	
Consider	a	graph	with	L	layers,	K	nodes	per	layer.	Each	node	is	a	player	with	charge	λi.														

Then,	the	dynamics	of	the	mixed	strategies	effectively	lies	in	the	lower-dimensional	
space	containing	L*(n-1)	variables.		
Note	that	in	general,	L	is	relatively	small	compared	to	K.

L	Layers

K	nodes



Special	Cases-Periodic	Orbits
Certain	regularizers	such	as	negative	entropy	(replicator	
dynamics),	lead	to	a	closed	form	solution	for	the	reduction.	
Periodic	orbits	for	bipartite	network	zero-sum	game	with	
charges	(same	sign)	when	the	base	game	is	2-by-2.	

Proof	Sketch:	Apply	the	result	of	dimensionality	reduction	
to	this	case	and	then	use	Poincaré-Bendixon	theorem	and	
Poincaré-Recurrence	theorem	[Mertikopoulos	et	al.,	2018].

Row Col



Cooperation	from	Competition

Center	Agent

Leaf	Agent

Star	configuration.	
MP	game	played	
on	the	edges	and	all	
charges	are	set	to	1.

The	trajectories	of	the	mixed	
strategies	involving	the	Center	agent.

The	trajectories	of	the	mixed	strategies	of		
the	Leaf	agents.

The	trajectories	involving	
the	Center	agent		
always	results	in	a		
periodic	orbit.	But	for	the	
Leaf	agents,	the	probability	
of	playing	a	particular	
strategy	always	moves	
concurrently!



Reverse	Engineering	the	Game

Given	a	fully	mixed	Nash,	can	we	obtain	a	base	constant-sum	game	
matrix	A,	with	value	c,	that	implements	the	conservation	laws?	
For	the	sake	of	illustration,	consider	two	players,	such	that,	
(x0*,x1*,x2*,y0*,y1*,y2*)	is	a	fully	mixed	Nash	equilibrium.	We	construct	
a	sparse	constant	sum	game	that	has	the	given	Nash	equilibrium	profile.	

Each	player	can	run	FTRL	with	the	regularizer	hi		and	this	satisfies	the	
conservation	law.	This	can	be	extended	for	an	arbitrary	network	
constant	sum	game	with	charges.



Future	Work

Investigate	more	network	configurations	where	
competition	leads	to	cooperation.	

To	understand	how	these	results	can	carry	over	in	
discrete	time	dynamical	systems.	

Taking	the	results	on	conservation	laws	and	
dimensionality	reduction	to	multi-agent	
reinforcement	learning.



Summary
	We	introduced	NGC	framework	using	FTRL	dynamics.		To	analyze	the	complex	systems	in	
NGC	we	did	the	following:		

Made	a	coordinate	transform		to	the	payoff	space.		

Identify	conservation	laws	in	NGC.	

Exploit	the	inherent	symmetries	w.r.t	to	the	row/column	agents	in	the	payoff	space.		

We	provided	special	cases	of	our	results	which	lead	to	simple,	non-chaotic	behavior	and	
where	cooperation	arose	from	competition.	

We	answer	the	inverse	question	of	implementing	a	base	game	with	the	required	mixed	NE	
profile	in	the	NGC	framework	that	satisfies	the	given	conservation	laws.	
	



Thank	You

Please	email	with	questions	or	for	a	
copy	of	the	paper:	

sai_nagarajan@mymail.sutd.edu.sg

mailto:sai_nagarajan@mymail.sutd.edu.sg
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Consider	the	first	layer	(unravelled)	as	follows:	

Main	observation	is	that	each	player	in	layer	1,	sees	the	same	
payoff	coming	from	the	column	agents	in	layer	2	(up	to	a	
scaling	factor	which	is	their	charge).	
Then	we	can	obtain	the	invariant	equations	for	each	strategy	
in	the	payoff	space	between	the	players	of	the	layer		1.	
Inductively	applying	this	idea	layer	by	layer	we	obtain		
required	dimensionality	reduction.

Proof	Sketch

Layer	2	
column
agents

Layer	2	
column
agents

Layer	2	
column
agents

Node1 Node2 Node3


