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Binary Neural Networks (BiNN)
• BiNN: Neural Networks with binary weights 


• Much faster and much smaller [1,2]


• Difficult to optimize in theory (discrete optimization) 


• But easy in practice: Just use SGD with “Straight-through 
estimator (STE)”!


• It is mysterious as to why this works [3]


• Are there any principled approaches to explain this?

2

1. Courbariaux et al., Training deep neural networks with binary weights during propagations. NeurIPS 2015.
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Our Contribution:  
Training BiNN using Bayes

• We show that by using the Bayesian Learning Rule [1,2] 
(natural-gradient variational inference), we can justify such 
previous approaches


• Main point: optimize the parameter of a Bernoulli 
distribution (a continuous optimization problem)


• The Bayesian approach gives us an estimate of uncertainty 
which can be used for continual learning [3]
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Binary Optimizer (Bop)

• Open question: Why does this work?[3]



• Main point: optimize the parameters of Bernoulli distribution (a 
continuous optimization problem)

min
q(w)

Posterior approximation 
over weights

KL
Divergence

Prior 
Distribution

BayesBiNN
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q (w) =
D

∏
i=1

p
1 + wi

2
i (1 − pi)

1 − wi
2

Natural parameters:  λi := 1
2 log

pi

1 − pi
Probability of wi = + 1

q (w) =
D

∏
i=1

exp [λiϕ (wi) − A (λi)]
wi ∈ {−1, + 1}

•  is chosen to be mean-field Bernoulli distributionq (w)

• Problem reformulation: Optimize distribution over weights[1,2]

Loss
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Learning rate 

• Using the Gumbel Softmax trick[2,3], we can approximate the 
natural gradient by using the mini-batch gradient

Minibatch Gradient,
easy to compute!

Scale vector

How to 
compute? 

BayesBiNN
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BayesBiNN Justifies Some 
Previous Methods
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• Main point 1: STE works as a special case of BayesBiNN as τ → 0

• Main point 2: Justify the “exponential average” used in Bop

τ → 0

Note that  in BayesBiNN corresponds to  wr λ



• STE finds a deterministic boundary
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•  Open-source Code Available : https://github.com/team-approx-bayes/BayesBiNN

̂pk ← 1
C ∑C

c=1 p (y = k |x, w(c)), C = 10 ~w(c) q(w)

 Uncertainty Estimation
• Main point: BayesBiNN obtains uncertainty estimates around the 

classification boundaries

Classification on two moons dataset 
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BayesBiNN  STE≈
•  Open-source Code Available : https://github.com/team-approx-bayes/BayesBiNN



• CL: Sequentially learning new tasks without forgetting old ones[1]

Uncertainty Provided by BayesBiNN  
Enables Continual Learning 

Overcoming 
catastrophic forgetting
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• But, it is unclear how to regularize binary weights of BiNN using STE/Bop

min
qt(w)

𝔼qt(w) [ ∑
i∈Dt

ℓ(yt
i , fw(xt

i ))] + 𝔻KL (qt (w) | |p (w)) Prior Distribution

(uniform) 

• Main point: BayesBiNN enables continual learning (CL) for BiNN 
using the intrinsic KL divergence as regularization

Common Method: 
Regularizing weights

• In BayesBiNN, there is one natural solution using KL divergence 

1. Kirkpatrick, J. et al. Overcoming catastrophic forgetting in neural networks. PANS, 114(13):3521–3526, 2017.

• CL: Sequentially learning new tasks without forgetting old ones[1]

Independent

Learning  
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• Main point: BayesBiNN avoids the catastrophic forgetting problem
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Training on task 2 Training on task 3

Test 
Accuracy 
on task 1

Our method

Catastrophic forgetting of task 1

Training on Task 1

Note: For other 
tasks, refer to paper

• As the number of tasks increases, 
the distribution over binary weights 
become more and more deterministic

Permuted 

MNIST

• Main point: BayesBiNN avoids the catastrophic forgetting problem

•  Open-source Code Available : https://
github.com/team-approx-bayes/BayesBiNN
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Summary
• BiNN: Neural Networks with binary weights


• Much faster and much smaller but difficult to optimize 


• Gradient based methods work well but not well understood 


• We proposed a principled approach to train BiNN using the 
Bayesian Learning Rule, which can justify some previous 
approaches


• The Bayesian approach also gives us estimate of uncertainty 
which can be used for continual learning



Thank you! 

Q&A
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