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Typical learning procedure:

observations X
given model class M solve  min D(X]Y)
Yem

cost function D(-||-)

Example: if D(X||Y) is the Kullback-Leibler divergence
= maximum likelihood estimation

Problem: what statistical guarantees are implied by D(X||Y) < &?



Measures of similarity for random variables

How “close” to each other are X and Y?

¢-divergences integral probability metrics
oI =B [0 (BEZD)] 45060 = sup [BFCOL-EF M
PlY =y] fer
for convex ¢ with ¢(1) = 0 class F of “test” functions
Ex: Kullback-Leibler (KL) div,, Ex: total variation dist., max.

X2‘diV., Hellil’lger diSt., Oé‘diV., etc. mean discrepancy' etc.



What is the best lower bound of Dy(X]Y)
in terms of E[f (X)] — E[f(Y)]?



Theorem (Informal)

There exists an explicit function Kgyy : R — R associated with f(Y)
inducing a correspondence between

1. lower bounds Dy (X||Y) = L(E[f(X)] — E[f(Y)]) for all X
and

2. upper bounds Kgvy(t) < B(t) forallt € R
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and
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Ex: for the KL divergence, Kf(yy is the log moment-generating function



Cumulant-generating function

For a given ¢-divergence, define:

+ the convex conjugate ¢*(y) = sup,so {X- ¥ — ¢(X)}
- the ¢-cumulant-generating function of f(Y)

Ky (1) = jnf E[g"(t-F(Y) +2) = t-f(¥) = A]
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For a given ¢-divergence, define:

+ the convex conjugate ¢*(y) = sup,so {X- ¥ — ¢(X)}
- the ¢-cumulant-generating function of f(Y)

Ky (1) = jnf E[g"(t-F(Y) +2) = t-f(¥) = A]

Example: for the KL divergence, ¢(x) = xlog x and:

CPr(y) =
- we recover the (centered) cumulant-generating function

Krry(t) = IogE[et'f (V) -t EF(V)]



Theorem
The following are equivalent:

1. Kf(y)(t) < B(t) fOI’ allt e R
2. D4(X[Y) = B* (B (X)] — EIf(V)]) for all X

where
Kreny(t) = Aig%EW*(t )+ =t f(Y) = A

and * denotes the convex conjugate



Theorem
The following are equivalent:

1. Kf(y)(t) < B(t) fOI’ allt e R
2. D4(X[Y) = B* (B (X)] — EIf(V)]) for all X

where
Kreny(t) = Aig%EW*(t )+ =t f(Y) = A

and * denotes the convex conjugate

Key technique: use convex analysis to obtain variational
representations of Dy (X]Y)



Applications and examples

1. for the KL divergence, if f takes values in [-1,1]:

t? .
Krry(t) = |og]E[et'f(Y)*t'EU(Y)]} <3 (Hoeffding's lemma)

= D(X||Y) > 2(E[f(X)] — E[f(Y)])’ (Pinsker’s inequality)
Holds more generally if f(Y) is subgaussian
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1. for the KL divergence, if f takes values in [-1,1]:

(Hoeffding's lemma)

tZ
— tf(V)—t-E[f(Y)] -

Krny(t) = Iog]E[e } <3
= D(X||Y) > 1 (E[f(X)] - IE[]‘(Y)])2 (Pinsker's inequality)

Holds more generally if f(Y) is subgaussian

2. “Pinkser’s type” inequality for all a-divergences (Rényi
divergences)

3. Negative result, when limy_, o ¢(X)/x < oc:

f(Y) unbounded = no nontrivial lower bound
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Thanks!



