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Community Detection

® Community detection refers to the problem of inferring
similarity classes of vertices (i.e., communities) in a network by observing
their local interactions (Abbe 2017); see the below graphs.

® Broad applications in machine learning, biology, social science and many
areas.

® Exact recovery requires to identify the entire partition correctly.




Overview

® Problem: exactly recover the communities in the binary symmetric
stochastic block model (SBM), where n vertices are partitioned into
two equal-sized communities and the vertices are connected with
probability p = «log(n)/n within communities and g = S log(n)/n
across communities.

® Goal: propose an efficient algorithm that achieves exact recovery at
the information-theoretic limit, i.e., v/a — /3 > V2.

® Proposed Method: a two-stage iterative algorithm:
(i) 1st-stage: power method, coarse estimate,
(i) 2nd-stage: generalized power method, refinement.

® Theoretic Results: the proposed method can achieve exact recovery
at the information-theoretic limit within O(n) time complexity.
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Stochastic Block Model

Given n nodes in two equal-sized clusters, we denote by x* its true
community structures, e.g., for every i € [n], x* = 1 if the node i belongs
to the first cluster and x* = —1 if it belongs to the second one.

Model 1 (Binary symmetric SBM)

The elements {aj; : 1 < i < j < n} of A are generated independently by

Bern(p), if x'x/ =1,
o
/ Bern(q), if x'xi = —1,

where
__alogn qiﬁlogn
n

for some constants o > 3 > 0. Besides, we have ajj = aj forall 1 < j < i < n.

and

The problem of achieving exact recovery is to develop efficient methods
that can find x* or —x* with high probability given the adjacency matrix
A



Phase Transition

The maximum likelihood (ML) estimator of x* in the binary symmetric
SBM is the solution of the following problem:

max{xTAx: 17x=0, X,-zil,izl,...m}. (1)

Theorem 1 (Abbe et al. (2016), Mossel et al. (2014))

In the binary symmetric SBM, exact recovery is impossible if
Va — /B < /2, while it is possible and can be achieved by the ML
estimator if \/a — /B > /2.

In literature, /o — /B > /2 is called the information-theoretic limit.

Question: Is it possible to develop efficient methods for achieving exact
recovery at the information-theoretic limit?



Related Works

Table: Methods above the information-theoretic limit

Authors

Methods

Time complexity

Recovery bounds

Boppana, 1987
McSherry, 2001

Abbe et al., 2016

Bandeira et al., 2016

spectral algo.

spectral algo.
SDP

manifold opti.

polynomial time

polynomial time
polynomial time

polynomial time

(o= B)?/(a+B) > 72
(o= B)?/(a+ B) > 64
3(a—B)? > 24(a + B)+
8(cr — )
(p—q)/VpTa=cn /s

Table: Methods at the information-theoretic limit

Authors Methods Time complexity Recovery bounds
Hajek et al., 2016  SDP polynomial time Va—+B>V2
Abbe et al., 2017  spectral algo. polynomial time Va—+B>V2
Gao et al., 2017 two-stage algo.  polynomial time Va—+B>V2
Our paper two-stage algo.  nearly-linear time  /a — /B > V2
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Algorithm

Algorithm 1 A Two-Stage Algorithm for Exact Recovery

e el i
N o

COeNIIO RN

: Input: adjacency matrix A, positive integer N
set p + 17 Al,/n* and B < A — pE,
choose y° randomly with uniform distribution over the unit sphere
for k = }(7 2,... ,klyldo 1 power method
set y* = By**/||By" |2 (PM): coarse
end foor N estimate
set x° < +/ny
for k=1,2,... do
set x*  Bx"~1/|Bx" 77| generalized
if x* = x""" then power method
terminate and return x* }stopping criteria (GPM): re-
end if finement
end for

For any v € R", v/|v| denotes the vector of R" defined as

( v ) 1, ifv, >0, . 1
2 = i=1,...,n
lv|/; —1, otherwise,



Main Theorem

Theorem 2 (lteration Complexity for Exact Recovery)

Let A be randomly generated by Model 1. If /o — \/B > /2, then the
following statement holds with probability at least 1 — n=*Y): Algorithm 1
finds x* or —x* in O(log n/ log log n) power iterations and O(log n/ log log n)
generalized power iterations.

Consequences:
® Algorithm 1 achieves exact recovery at the information-theoretic limit.

® Explicit iteration complexity bound for Algorithm 1 to achieve exact
recovery.

The number of non-zero entries in A is, with high probability, in the order of
nlog n.

Corollary 3 (Time Complexity for Exact Recovery)

Let A be randomly generated by Model 1. If \/oae — /B > /2, then with
probability at least 1 — n=Y  Algorithm 1 finds x* or —x* in O(nlog? n) time
complexity.



Analysis of Power Method
Proposition 1 (Convergence Rate of Power Method)

Let {y*}i>0 be the sequence generated in the first-stage of Algorithm 1. Then,
it holds with probability at least 1 — n=") that

; k_ < n/(logn)*'? ¥ k>0 2
,in lly* = swll S n/(log n)"*, ¥ k 20, (2)

where u; is an eigenvector of B associated with the largest eigenvalue.
o {yk}kzo with high probability converges at least linearly to u;.

® Equation (2) shows that the ratio in the linear rate of convergence tends
to 0 as n — oo.

Lemma 4 (Distance from Leading Eigenvalue of B to Ground Truth)

It holds with probability at least 1 — n= ) that

min ||v/nu — sx*||, < +/n/log n. (3)

se{£1}

® It suffices to compute y"» such that minse 11y [ly"? — sui|l2 < 1/+/Tog n.
By (2), we have N, = O(log n/ log log n).



Analysis of Generalized Power Method
Proposition 2 (Convergence Rate of Generalized Power Method)

Let o > B > 0 be fixed such that \/a — /B > V2. Suppose that the x° in
Algorithm 1 satisfies ||x°||2 = +/n and ||x° — x*||2 < \/n/log n. Then, it holds
with probability at least 1 — = that

Ix = x|l < [|x° = x"[[2/(log m)"*. (4)

® Note that ||x° — x*||2 < ||x° — v/nu||2 + ||/ — x*||2 < +/n/ log n.

Lemma 5 (One-step Convergence of Generalized Power Iterations)

For any fixed o > 8 > 0 such that \/a— /B > \/2, the following event
happens with probability at least 1 — n=*V): for all x € {£1}" such that
|[x — x*||2 < 2, it holds that

Bx/|Bx| = x™. (5)

® This lemma indicates that the GPM exhibits finite termination.

o If |x° — x*||2/(log n)Ve/2 < 2, by (4), we have [|x"e — x*||> < 2. Then,
x"et! = x*. One can verify N, = O(log n/ log log n).
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Phase Transition and Computation Efficiency
® Benchmark methods:
® SDP-based approach in Amini et al. (2018) solved by ADMM.

® Manifold optimization (MFO) based approach in Bandeira et al.
(2016) solved by manifold gradient descent (MGD) method.

® Spectral clustering approach in Abbe et al. (2017) solved by Matlab
function eigs.
® Parameters setting:

® n=300; a and 3 vary from 0 to 30 and 0 to 10, with increments 0.5
and 0.4, respectively.

® For fixed («, 3), we generate 40 instances and calculate the ratio of

exact recovery.

running time: 1064 s running time: 118 s

running ti;ne: 25s running tin;e: 9313 s
Figure: Phase transition: the x-axis is 3, the y-axis is , and darker pixels represent
lower empirical probability of success. The red curve is v/a — /B = v/2.



Convergence Performance

® Parameters setting:
® a=10, =2
® n= 1000, 5000, 10000.

1000, a=10, 42 =500, a=10, =2 =100, 010, 22

Figure: Convergence performance: the x-axis is number of iterations, the y-axis for
GPM is ||xkka — x*x*T ||, and the y-axis for MGD is ||QkOkT — x*x*T ||, where
xk and Q¥ are the iterates generated in the k-th iteration of GPM and MGD,
respectively.
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Conclusions

@ We propose a two-stage iterative algorithm to solve the problem of
exact community recovery in the binary symmetric SBM:

(i) 1st-stage: power method,
(i) 2nd-stage: generalized power method.

® We show that the proposed method can achieve exact recovery at
the information-theoretic limit within O(n) time complexity.

©® Numerical experiments demonstrate that the proposed approach has
strong recovery performance and is highly efficient.
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