On Implicit Regularization in β -VAEs

Abhishek Kumar, Ben Poole

Google Research, Brain Team

ICML 2020

β-VAE

$$\max_{q \in \mathcal{Q}, p_{x|z}} \mathbb{E}_x \left[\mathbb{E}_{q(z|x)} \log p_{x|z}(x|z) - \beta KL(q(z|x)||p_z(z)) \right]$$

How does variational family Q regularize the learned generative model?

- Uniqueness of learned generative model (global regularization)
- Influencing the local geometry of the decoding model p(x|z)
- Deterministic approximation of β-VAE
- Empirical validation of theory and accuracy of approximations

Latent variable models and Uniqueness

Fixed prior p(z), conditional decoding model p(x|z), marginal $p(x) = \int dz \, p(z) p(x|z)$

$$z \xrightarrow{r} z'$$
 such that $p(z) = p(z')$

A set of solutions (latent representations) that are equivalent in terms of marginal likelihood [1].

Uniqueness: Ignoring permutations and transformations that act separately on each latent

[1] Locatello et al, Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations, 2019.

Uniqueness via variational family

When true posterior p(z|x) is in the variational family Q:

If $p_{z|x} \in \mathcal{Q}$ but $p'_{z|x} \notin \mathcal{Q}$, maximum ELBO for the transformed model will be less than the untransformed model.

Example: Isotropic Gaussian prior and orthogonal transforms ($p_{z|x} \in \mathcal{Q}$)

Isotropic Gaussian $\,p(z)\,$ is invariant under orthogonal transformations $\,r\in R\,$

- Transforming latents by orthogonal transforms will leave the marginal p(x) unchanged

Restricting variational family to mean-field can break this orthogonal "symmetry":

- If $p_{z|x}$ is mean-field, $r \# p_{z|x}$ will be mean-field, if and only if (Darmois, 1953; Skitovitch, 1953)
 - (i) $p_{z|x}$ is factorized Gaussian, and
 - (ii) variances of $p_{z|x}$ are all equal (isotropic)

Models with non-Gaussian factorized $\mathcal{P}_{z|x}$ will not have non-uniqueness to orthogonal transforms.

Choice of Q can lead to uniqueness even if $p_{z|x} \notin Q$.

R: set of transforms w.r.t. which we want uniqueness (that leave the prior invariant)

$$\widetilde{\mathcal{Q}}$$
: completion of \mathcal{Q} by $R \coloneqq \{r\#q: q \in \mathcal{Q}, r \in R\} \cup \mathcal{Q}$

Two conditions:

- 1. If $\mathcal Q$ is such that $q\in\mathcal Q\Rightarrow r\# q\not\in\mathcal Q$, and
- 2. $\arg\max_{q\in\widetilde{\mathcal{Q}}}\mathrm{ELBO}(q,p^*)$ is unique (holds when $\widetilde{\mathcal{Q}}$ is convex)

Then transforming the latents with $r \in R$ will result in reducing the β -VAE objective value.

Generative model of data: $x = \nu(Wz) + \epsilon, \quad z \sim \mathcal{N}(0, I), \epsilon \sim \mathcal{N}(0, .05^2)$

Train a VAE on this data:

- Decoder $x = \nu(Az) + b$
- Encoder $q(z|x) = \mathcal{N}(Cx + d, \Sigma)$

Generative model of data: $x = \nu(Wz) + \epsilon, \quad z \sim \mathcal{N}(0, I), \epsilon \sim \mathcal{N}(0, .05^2)$

Train a VAE on this data:

- Decoder $x = \nu(Az) + b$
- Encoder $q(z|x) = \mathcal{N}(Cx + d, \Sigma)$

Generative model of data: $x = \nu(Wz) + \epsilon, \quad z \sim \mathcal{N}(0, I), \epsilon \sim \mathcal{N}(0, .05^2)$

Train a VAE on this data:

- Decoder $x = \nu(Az) + b$
- Encoder $q(z|x) = \mathcal{N}(Cx + d, \Sigma)$

More details in the paper on implications for disentanglement [1].

[1] Locatello et al, Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations, 2019.

How does variational family regularize the local geometry of the generative model?c

Assumption: First two moments exist for q(z|x).

Let

$$f_x(z) = \log p(x|z)$$
 and $\mu_{z|x} = \mathbb{E}_{q_{\phi(\cdot|x)}}[z] = h_{\phi}(x)$

Taylor approximation around
$$\mu_{z|x}$$
:

$$f_x(z) = \log p(x|z) \approx \log p(x|h_\phi(x)) + \overbrace{J_{f_x}(h_\phi(x))(z - h_\phi(x))}^{\top} + \frac{1}{2}(z - h_\phi(x))^{\top} \underbrace{H_{f_x}(h_\phi(x))(z - h_\phi(x))}_{\text{Hessian}},$$

Jacobian

$$f_x(z) = \log p(x|z) \approx \log p(x|h_\phi(x)) + J_{f_x}(h_\phi(x))(z - h_\phi(x)) + \frac{1}{2}(z - h_\phi(x))^\top \underbrace{H_{f_x}(h_\phi(x))(z - h_\phi(x))}_{\text{Hessian}},$$

Taking expectation wrt. q(z|x), Taylor approximation of β -VAE reduces to

$$\log p_{\theta}(x|h_{\phi}(x)) + \frac{1}{2}tr(H_{f_x}(h_{\phi}(x))\Sigma_{z|x}) - \beta KL(q_{\phi}(z|x)||p(z))$$
Covariance of $q(z|x)$

We can further reduce the approximation in terms of the Jacobian of the decoder.

$$H_{f_x}(z) \approx J_g(z)^\top H_{p_x}(g(z)) J_g(z) \qquad \text{(exact for relu, leaky-relu in decoder)}$$

$$:= \nabla_z^2 \log p(x|z) \qquad := \nabla_{g(z)}^2 \log p(x;g(z))$$

We can further reduce the approximation in terms of the Jacobian of the decoder.

$$H_{f_x}(z) \approx J_g(z)^\top H_{p_x}(g(z)) J_g(z) \qquad \text{(exact for relu, leaky-relu in decoder)}$$

$$:= \nabla_z^2 \log p(x|z) \qquad := \nabla_{g(z)}^2 \log p(x;g(z))$$

$$\log p_{\theta}(x|h_{\phi}(x)) + \frac{1}{2}tr(\underline{H_{f_x}(h_{\phi}(x))\Sigma_{z|x}}) - \beta KL(q_{\phi}(z|x)||p(z))$$

$$\downarrow \log p(x|h(x)) + \frac{1}{2}tr(\underline{J_g(h(x))^{\top}H_{p_x}(g(h(x)))J_g(h(x))\Sigma_{z|x}}) - \beta KL(q_{\phi}(z|x)||p(z))$$

$$\log p(x|h(x)) + \frac{1}{2} tr(J_g(h(x))^{\top} H_{p_x}(g(h(x))) J_g(h(x)) \Sigma_{z|x}) - \beta K L(q_{\phi}(z|x) || p(z))$$

$$:= \nabla_{g(z)}^2 \log p(x; g(z))$$

- $H_{p_x}(g(h(x)))$: Diagonal for pixel-wise independent models
- Minimizes $\left\| \left[-H_{p_x}(g(h(x))) \right]^{1/2} J_g(h(x)) \Sigma_{z|x}^{-1/2} \right\|_F^2$

Gaussian p(z) and q(z|x)

$$\log p(x|h(x)) + \frac{1}{2}tr(J_g(h(x)))^{\top} H_{p_x}(g(h(x))) J_g(h(x)) \Sigma_{z|x} - \beta KL(q_{\phi}(z|x)||p(z))$$

$$:= \nabla_{g(z)}^2 \log p(x; g(z))$$

For this special case, optimal variational posterior covariance is given by

$$\Sigma_{z|x} = \left(I - \frac{1}{\beta} J_g(h(x))^{\top} H_{p_x}(g(h(x))) J_g(h(x)) \right)^{-1}$$

Gaussian p(z) and q(z|x)

$$\log p(x|h(x)) + \frac{1}{2}tr(J_g(h(x)))^{\top} H_{p_x}(g(h(x))) J_g(h(x)) \Sigma_{z|x} - \beta KL(q_{\phi}(z|x)||p(z))$$

$$:= \nabla_{g(z)}^2 \log p(x; g(z))$$

For this special case, optimal variational posterior covariance is given by

$$\Sigma_{z|x} = \left(I - \frac{1}{\beta} J_g(h(x))^{\top} H_{p_x}(g(h(x))) J_g(h(x))\right)^{-1}$$

$$= -I \quad \text{for} \quad p(x|z) = N(g(z), I)$$

$$\approx -I \quad \text{for} \quad p(x|z) = \text{Bern}(g(z))$$

A structure on $\Sigma_{z|x}$ influences the Jacobian of the decoder.

More details in the paper about its influence on metric properties of the learned manifold.

MNIST

(a)
$$\beta = 0.2, d = 8, b = 2$$

(c) $\beta = 0.6, d = 12, b = 2$

(b) $\beta = 0.4, d = 8, b = 2$

(d)
$$\beta = 1, d = 8, b = 2$$

Gaussian p(z), q(z|x), p(x|z)

The β-VAE objective approximates to

GRAE:
$$\min_{g,h} \ \underline{\frac{1}{2} \|x - g(h(x))\|^2 + \frac{\beta}{2} \|h(x)\|^2 + \frac{\beta}{2} \log \left|I + \frac{1}{\beta} J_g(h(x))^\top J_g(h(x))\right|}_{\text{Reconstruction error}}$$
 Encoding norm Regularizer on the decoder Jacobian

Gaussian p(z), q(z|x), p(x|z)

The β-VAE objective approximates to

GRAE:
$$\min_{g,h} \ \underline{\frac{1}{2} \|x - g(h(x))\|^2 + \frac{\beta}{2} \|h(x)\|^2 + \frac{\beta}{2} \log \left|I + \frac{1}{\beta} J_g(h(x))^\top J_g(h(x))\right|}_{\text{Reconstruction error}}$$
 Regularizer on the decoder Jacobian

We upper bound the regularizer to make it more tractable:

GRAE*:
$$\log \left| I + \frac{1}{\beta} J_g(h(x))^{\top} J_g(h(x)) \right| \leq \sum_{i} \log \left(1 + \frac{1}{\beta} \left\| [J_g(h(x))]_{:i} \right\|_2^2 \right)$$

We minimize a stochastic approximation of this upper bound (sampling one column of Jacobian per iteration).

Comparison of objectives

Samples

Samples

Thanks

For more details: https://arxiv.org/abs/2002.00041