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Adversarial examples

• Adversarial training is a popular approach to improve robustness
• It augments the training set on-the-fly with adversarial examples

[Goodfellow et al. 2015]

• Standard training leads to models that are not robust



Adversarial training increases standard error

Robust Accuracy: % of test examples misclassified after an ℓ!-bounded adversarial perturbation 

Method Robust Accuracy

Standard Training 0%

TRADES Adversarial 
Training (Zhang et al. 2019) 55.4%
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Adversarial training increases standard error

Robust Accuracy: % of test examples misclassified after an ℓ!-bounded adversarial perturbation 

Why is there a tradeoff between robustness and accuracy? We only augmented with
more data!

Method Robust Accuracy Standard Accuracy

Standard Training 0% 95.2%

TRADES Adversarial 
Training (Zhang et al. 2019) 55.4% 84.0%

CIFAR-10



Prior hypotheses for the tradeoff

• Optimal predictor not robust to adversarial 
perturbations [Tsipras et al. 2019]
• But typical perturbations are imperceptible, 

robustness should be possible
• Hypothesis class not expressive enough [Nakkiran et al. 

2019]
• But neural networks highly expressive, reaches 

100% std and robust training accuracy
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Prior hypotheses for the tradeoff
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2019]
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More realistic settings:



No tradeoff with infinite data

• Observations
• Gap between robust and standard accuracies 

are large for small data regime
• Gap decreases with labeled sample size
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No tradeoff with infinite data

• Observations
• Gap between robust and standard accuracies 

are large for small data regime
• Gap decreases with labeled sample size

• We ask: if we have consistent 
perturbations + well-specified model 
family (no inherent tradeoff), why do we 
observe a tradeoff in practice?

CIFAR-10
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Results overview
• Characterize how training with consistent extra data can increase 

standard error even in well-specified noiseless linear regression
• Analysis suggests robust self-training to mitigate tradeoff [Carmon 2019, 

Najafi 2019, Uesato 2019]

• Prove that robust self-training (RST) improves robust error without 
hurting standard error in linear setting with unlabeled data

• Empirically, RST improves robust and standard error across different 
adversarial training algorithms and adversarial perturbation types



Noiseless linear regression
• Model: 𝑦 = 𝑥!𝜃∗

• Standard data:   𝑋#$% ∈ ℝ&×% , 𝑦#$% = 𝑋#$%𝜃∗, 𝑛 ≪ 𝑑 (overparameterized)   

• Extra data (adv examples):    𝑋()$ ∈ ℝ*×% , 𝑦()$ = 𝑋()$𝜃∗

• We study min-norm interpolators
• 𝜃!"# = argmin${ 𝜃 %: 𝑋!"#𝜃 = 𝑦!"#}
• 𝜃&'( = argmin${ 𝜃 %: 𝑋!"#𝜃 = 𝑦!"# , 𝑋)*"𝜃 = 𝑦)*"}

• Standard error: 𝜃 − 𝜃∗ !Σ 𝜃 − 𝜃∗ for population covariance Σ
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Example: when extra data hurts standard error
• Min-norm interpolants + noiseless: 

recover 𝜃∗ exactly in span of training data
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• Min-norm interpolants + noiseless: 
recover 𝜃∗ exactly in span of training data

• Suppose null space of 𝑋"#$ is [𝑒%, 𝑒&]

• 𝜃'() fits 𝜃∗ in 𝑥*+# direction, 0 otherwise 

• If Σ has high weight on  𝑒& direction, 
errors in 𝑒& are more costly ⇒
augmented estimator has higher error
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• Min-norm interpolants + noiseless: 
recover 𝜃∗ exactly in span of training data

• Suppose null space of 𝑋"#$ is [𝑒%, 𝑒&]

• 𝜃'() fits 𝜃∗ in 𝑥*+# direction, 0 otherwise 

• If Σ has high weight on  𝑒& direction, 
errors in 𝑒& are more costly ⇒
augmented estimator has higher error

• The paper has exact characterization for 
noiseless linear regression setting
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Mitigating the increase in error
• Suppose we know the population covariance Σ has high weight on 𝑒%
• To mitigate error, regularize toward 𝜃&'( on 𝑒% component

𝑥()&

𝜃∗

𝜃%&' 𝑒$

𝑒#

𝜃-%&Same error as std on 𝑒#

• Idea: Use unlabeled 
data to estimate Σ

Space of solutions that fit 𝑥()&

We show this is exactly 
Robust Self-Training!



Robust Self-Training (RST)
• Recent semi-supervised algorithm that can be applied on top of existing 

adversarial training methods (Carmon et al., Najafi et al., Uesato et al.)
• Labeled examples 𝑥, 𝑦

Standard Robust (extra data 𝒙𝒆𝒙𝒕 = 𝒙𝒂𝒅𝒗)

Labeled Fit 𝑥, 𝑦 Fit 𝑥*'4, 𝑦
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Robust Self-Training (RST)
• Recent semi-supervised algorithm that can be applied on top of existing 

adversarial training methods (Carmon et al., Najafi et al., Uesato et al.)
• Labeled examples 𝑥, 𝑦
• Unlabeled examples .𝑥 → standard predictor → pseudo-labels .𝑦

Standard Robust (extra data 𝒙𝒆𝒙𝒕 = 𝒙𝒂𝒅𝒗)

Labeled Fit 𝑥, 𝑦 Fit 𝑥*'4, 𝑦

Unlabeled Fit -𝑥, -𝑦 Fit -𝑥*'4, -𝑦

Theorem (informal): for noiseless linear regression, RST always 
improves both standard and robust errors

Components of RST



RST mitigates tradeoff in adversarial training
• RST mitigates tradeoff for adv. training with both TRADES and PG-AT

Method Robust Accuracy Standard Accuracy
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RST mitigates tradeoff in adversarial training
• RST mitigates tradeoff for adv. training with both TRADES and PG-AT
• Other semi-supervised approaches do not improve standard accuracy 

Method Robust Accuracy Standard Accuracy

Standard Training 0% 95.2%

PG-AT (Madry et al. 2018) 45.8% 87.3%

TRADES (Zhang et al. 2019) 55.4% 84.0%

RST + PG-AT 58.5% 91.8%

RST + TRADES 63.1% 89.7%

Robust Consistency Training 
(Carmon et al. 2019) 56.5% 83.2%

CIFAR-10



RST mitigates tradeoff across perturbation 
types
• Adversarial rotations + translations don’t hurt standard error 

(Engstrom et al. 2019, Yang et al. 2019)
• Even in this case, RST improves both standard and robust error

Method Robust Accuracy Standard Accuracy

Standard Training 0.2% 94.6%

Worst-of-10 73.9% 95.0%

RST + Worst-of-10 75.1% 95.8%

CIFAR-10
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Takeaways

We characterize the tradeoff in noiseless linear 
regression in the more realistic setting of no 
inherent tradeoff. 

We show the effect of inductive bias in causing 
a tradeoff with finite data.

Using unlabeled data, we can mitigate the 
tradeoff via robust self-training (RST).
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