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The Min-Max Optimization Problem

Problem: Stochastic Smooth Game.

min
x12Rd1

max
x22Rd2

g(x1, x2) =
1

n

nX

i=1

g

i

(x1, x2) (1)

where g : Rd1 ⇥ Rd2 ! R is a smooth objective.

Goal: Find Min-max solution / Nash Equilibrium.

Find x

⇤ = (x⇤1 , x
⇤
2 ) 2 Rd such that, for every x1 2 Rd1 and x2 2 Rd2 ,

g(x⇤1 , x2)  g(x⇤1 , x
⇤
2 )  g(x1, x

⇤
2 ),

Appears in many applications:

Domain Generalization (Albuquerque et al., 2019)

Generative Adversarial Networks (GANs) (Goodfellow et al., 2014)

Formulations in Reinforcement Learning (Pfau, Vinyals, 2016)
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Related Work

Deterministic Games:
Last-iterate convergence guarantees. Classic results (Korpelevich,

1976; Nemirovski, 2004) and recent results (Mescheder et al., 2017;

Daskalakis et al., 2017; Gidel et al., 2018b; Azizian et al., 2019).

Stochastic Games:
Convergent methods rely on iterate averaging over compact
domains (Nemirovski, 2004).
Palaniappan & Bach, 2016 and Chavdarova et al., 2019 proposed methods
with last-iterate convergence guarantees over a non-compact domain
but under strong monotonicity assumption.

Second-Order Methods:
Consensus optimization method (Mescheder et al., 2017) and
Hamiltonian gradient descent (Balduzzi et al., 2018; Abernethy et al.,

2019). No available analysis for the stochastic problem.
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Main Contributions

1 First global non-asymptotic last-iterate convergence guarantees
in the stochastic setting (without assuming strong monotonicity or
bounded domain) including a class of non-convex non-concave games.

2 First convergence analysis of stochastic Hamiltonian methods
for solving min-max problems. Existing papers on these methods are
empirical (Mescheder et al. 2017, Balduzzi et al. 2018).

3 A novel unbiased estimator of the Hamiltonian gradient. Crucial
point for proving convergence for the proposed methods (existing
methods use biased estimators).

4 First stochastic Hamiltonian variance reduced method (linear
convergence guarantees).

Hamiltonian Perspective: Popular stochastic optimization algorithms can
be used as methods for solving stochastic min-max problems.
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Smooth Games and Hamiltonian Gradient Descent

min
x12Rd1

max
x22Rd2

g(x1, x2) (2)

x = (x1, x2)
> 2 Rd ⇠(x) =

✓
r

x1g

�r
x2g

◆
J = r⇠ =

✓
r2

x1,x1g r2
x1,x2g

�r2
x2,x1g �r2

x2,x2g

◆

Vector x⇤ 2 Rd is a stationary point when ⇠(x⇤) = 0.

Key Assumption:

All stationary points of the objective g are global min-max solutions.

Hamiltonian Gradient Descent (HGD) (Balduzzi et al., 2018)

min
x

H(x) =
1

2
k⇠(x)k2. (3)

HGD can be expressed using a Jacobian-vector product:

x

k+1 = x

k � ⌘
k

rH(x) = x

k � ⌘
k

h
J

>⇠
i
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Stochastic Hamiltonian Function

min
x12Rd1

max
x22Rd2

g(x1, x2) =
1

n

nX

i=1

g

i

(x1, x2) (4)

⇠
i

(x) =

✓
r

x1gi

�r
x2gi

◆
J =

1

n

nX

i=1

J
i

, where J
i

=

✓
r2

x1,x1gi r2
x1,x2gi

�r2
x2,x1gi �r2

x2,x2gi

◆
.

Finite-Sum Structure Hamiltonian Function

H(x) =
1

n

2

nX

i ,j=1

H
i ,j(x) where H

i ,j(x) =
1

2
h⇠

i

(x), ⇠
j

(x)i (5)

Algorithms use gradient of only one component function H
i ,j(x):

rH
i ,j(x) =

1

2

h
J>
i

⇠
j

+ J>
j

⇠
i

i
. (6)

Unbiased estimator of the rH(x). That is, E
i ,j [rH

i ,j(x)] = rH(x).
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Classes of Stochastic Smooth Games

Stochastic Bilinear Games.

g(x1, x2) =
1

n

nX

i=1

x

>
1 b

i

+ x

>
1 A

i

x2 + c

>
i

x2 (7)

Proposition: Stochastic bilinear game (7) ) Stochastic Hamiltonian
function (5) is a smooth quadratic quasi-strongly convex function.

Stochastic su�ciently bilinear games.(Abernethy et al., 2019)

Games where the following condition is true:

(�2 + ⇢2)(�2 + �2)� 4L2�2 > 0, (8)

where 0 < �  �
i

�
r2

x1,x2g
�
 �, ⇢2 = min

x1,x2 �min

⇥
r2

x1,x1g(x1, x2)
⇤2

and

�2 = min
x1,x2 �min

⇥
r2

x2,x2g(x1, x2)
⇤2
.

Proposition: Stochastic su�ciently bilinear game ) Stochastic
Hamiltonian function (5) is smooth and satisfies the PL condition.
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Stochastic Hamiltonian Gradient Methods

Stochastic Hamiltonian Gradient Descent (SHGD)

1 Generate fresh samples i ⇠ D and j ⇠ D and evaluate rH
i ,j(xk).

2 Set step-size �k (constant, decreasing)

3 Set
x

k+1 = x

k � �krH
i ,j(x

k)

Loopless Stochastic Variance Reduced Hamiltonian Gradient (L-SVRHG)

Input: Choose initial points x0 = w

0 2 Rd and probability p 2 (0, 1].

1 Generate fresh samples i ⇠ D and j ⇠ D and evaluate rH
i ,j(xk).

2 Evaluate g

k = rH
i ,j(x

k)�rH
i ,j(w

k) +rH(wk) .

3 Set xk+1 = x

k � �gk

4 Set wk+1 =

(
x

k with probability p

w

k with probability 1� p
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Convergence Guarantees

Algorithm
Stochastic

Bilinear Game
E
⇥
kxk � x

⇤k2
⇤

Stochastic
Su�ciently Bilinear Game

E [H(x)]

Remarks on Rates
(all: global, non-asymptotic)

SHGD
Constant step-size

Linear Linear
last-iterate convergence

to neighborhood
SHGD

Decreasing step-size
sublinear: O(1/k) sublinear: O(1/k)

last-iterate convergence
to min-max solution

L-SVRHG
with/without restarts

Linear Linear
last-iterate convergence
to min-max solution

Table: Summary of Convergence Analysis Results

Remark: In our results we do not assume bounded gradient or bounded
variance. We use the recently introduced weak assumptions of Expected
smoothness and Expected Residual. (Gower et al., 2019, 2020)
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Numerical Evaluation

Stochastic Bilinear Games

Stochastic Su�ciently Bilinear Games

GANs
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Stochastic Bilinear Game

g(x1, x2) =
1

n

nX

i=1

x

>
1 b

i

+ x

>
1 A

i

x2 + c

>
i

x2

n = d1 = d2 = 100, [b
i

]
k

, [c
i

]
k

⇠ N (0, 1/n) and [A
i

]
kl

= 1 if i = k = l .

Figure: Distance to optimality
||x

k

� x

⇤||2/||x0 � x

⇤||2
Figure: Gradient Vector Field and
Trajectory. (x1 and x2 are scalars)
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Take-Away Message

1 First set of global non-asymptotic last-iterate convergence guarantees
for stochastic smooth games over a non-compact domain, in the
absence of strong monotonicity assumptions.

2 Present the first variance reduced Hamiltonian method (linear
convergence).

3 Hamiltonian Perspective: Popular stochastic optimization algorithms
can be used as methods for solving stochastic min-max problems.

Future Extensions
Hamiltonian-type methods for solving more classes of games.

Development of e�cient accelerated, distributed / decentralized
Hamiltonian methods.

N. Loizou, Stochastic Hamiltonian Methods 13 / 14



Thank You!
(for questions welcome to our virtual poster)
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