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A relationship between features and labels

x : feature and y : label.

Consider the tuple (x , y) with y = f (x):



Example: Music Perception



Application of Mixture of ML Models

• Multi-modal data, Heterogeneous data

• Recent Works: Stadler, Buhlmann, De Geer, 2010; Faria and Soromenho, 2010;
Chaganty and Liang, 2013

• Yi, Caramanis, Sanghavi 2014-2016: Algorithms

• An expressive and rich model

• Modeling a complicated relation as a mixture of simple components

• Advantage: Clean theoretical analysis



Semi-supervised Active Learning framework: Advantages

• In this framework, we can carefully design data to query for labels.

• Objective: Recover the parameters of the models with minimum number of
queries/samples.

• Advantage:
1. Can avoid millions of parameters used by a deep learning model to fit the data!
2. Learn with significantly less amount of data!
3. We can use crowd-knowledge which is difficult to incorporate in algorithm.

• Crowdsourcing/ Active Learning has become very popular but is expensive
(Dasgupta et. al., Freund et. al.)



Mixture of sparse linear regression

• Suppose we have two unknown distinct vectors β1, β2 ∈ Rn and an oracle O : Rn → R.

• We assume that β1, β2 have k significant entries where k << n.

• The oracle O takes input a vector x ∈ Rn and return noisy output (sample) y ∈ R:

y = 〈x , β〉+ ζ

where β ∼U {β1, β2} and ζ ∼ N (0, σ2) with known σ.

• Generalization of Compressed Sensing



Mixture of sparse linear regression

• We also define the Signal-to-Noise Ratio (SNR) for a query x as:

SNR(x) ,
E|〈x,β1 − β2〉|2

Eζ2
and SNR = max

x
SNR(x)

• Objective: For each β ∈ {β1, β2}, we want to recover β̂ such that

||β̂ − β|| ≤ c||β − β(k)||+ γ

where β(k) is the best k-sparse approximation of β with minimum queries for a
fixed SNR.



Previous and Our results

• First studied by Yin et.al. (2019) who made following assumptions

1. the unknown vectors are exactly k-sparse, i.e., has at most k nonzero entries;
2. β1

j 6= β2
j for each j ∈ suppβ1 ∩ suppβ2

3. for some ε > 0 , β1,β2 ∈ {0,±ε,±2ε,±3ε, . . .}n.

and showed query complexity exponential in σ/ε.

• Krishnamurthy et. al. (2019) removed the first two assumptions but their query
complexity was still exponential in (σ/ε)2/3.

• We get rid of all assumptions and need a query complexity of

O

(
k log n log2 k

log(σ
√

SNR/γ)
max

(
1,

σ4

γ4
√

SNR
+
σ2

γ2

))

which is polynomial in σ.



Insight 1: Compressed Sensing

1. If β1 = β2 (single unknown vector), the objective is exactly the same as in
Compressed sensing.

2. It is well known (Candes and Tao) that for the following m × n matrix A with
m = O(k log n),

A ,
1√
m

N (0, 1) N (0, 1) . . .
...

. . .

N (0, 1) . . . N (0, 1)


using its rows as queries is sufficient in the CS setting.

3. Can we cluster the samples in our framework?



Insight 2: (Gaussian mixtures)

1. For a given x ∈ Rn, repeating x as query to the oracle gives us samples which are
distributed according to

1

2
N (〈x ,β1〉, σ2) +

1

2
N (〈x ,β2〉, σ2).

2. With known σ2, how many samples do we need to recover 〈x ,β1〉, 〈x ,β2〉?



Recover means of Gaussian mixture with same & known variance

Input: Obtain samples from a mixture of Gaussians M with two components

M ,
1

2
N (µ1, σ

2) +
1

2
N (µ2, σ

2).

Output: Return µ̂1, µ̂2.



EM algorithm (Daskalakis et.al. 2017, Xu et.al. 2016)



Method of Moments (Hardt and Price 2015)

• Estimate the first and second central moments

• Set up system of equations to calculate µ̂1, µ̂2 where

µ̂1 + µ̂2 = 2M̂1, (µ̂1 − µ̂2)2 = 4M̂2 − 4σ2



Fit a single Gaussian (Daskalakis et. al. 2017)

Estimate the mean M̂1 and return as both µ̂1, µ̂2



How to choose which algorithm to use

We can design a test to infer the parameter regime correctly.



Stage 1: Denoising

We sample x ∼ N (0, I n×n).

• For unknown permutation π : {1, 2} → {1, 2}, µ̂1, µ̂2 satisfies
∣∣µ̂i − µπ(i)∣∣ ≤ γ.

• We can show that E(T1 + T2) ≤ O
(

( σ5

γ4||β1−β2||2
+ σ2

γ2
) log η−1

)
• We follow identical steps for x1, x2, . . . , xm.



Stage 2: Alignment across queries



Stage 3: Cluster & Recover

• After the denoising and alignment steps, we are able to recover two vectors u and
v of length m = O(k log n) each such that∣∣∣u[i ]− 〈x i ,βπ(1)〉

∣∣∣ ≤ 10γ;
∣∣∣v [i ]− 〈x i ,βπ(2)〉

∣∣∣ ≤ 10γ

for some permutation π : {1, 2} → {1, 2} for all i ∈ [m] w.p. at least 1− η.

• We now solve the following convex optimization problems to recover β̂π(1), β̂π(2).

A =
1√
m

[x1 x2 x3 . . . xm]T

β̂
π(1)

= min
z∈Rn
||z ||1 s.t. ||Az − u√

m
||2 ≤ 10γ

β̂
π(2)

= min
z∈Rn
||z ||1 s.t. ||Az − v√

m
||2 ≤ 10γ



Simulations



Conclusion and Future Work

• Our work removes any assumption for two unknown vectors that previous papers
depended on.

• Our algorithm contains all main ingredients for extension to larger L. The main
technical bottleneck is tight bounds in untangling Gaussian mixtures for more
than two components.

• Can we handle other noise distributions?

• Lower bounds on query complexity?




