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A relationship between features and labels

x : feature and y : label.

Consider the tuple (x,y) with y = f(x):

08 1 °
e®
o
0.6 1 L]
%
y 04 1 o M
.
[ |
0.2 1
e ®
L) e e®
o, ®,° ..3. e %9 o
0.0 1
o
: : - r T T
0.0 02 04 06 08 10



20 25 30 35

1.5

25 30 35

20

15

Example: Music Perception
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Application of Mixture of ML Models

Multi-modal data, Heterogeneous data

Recent Works: Stadler, Buhlmann, De Geer, 2010; Faria and Soromenho, 2010;
Chaganty and Liang, 2013

Yi, Caramanis, Sanghavi 2014-2016: Algorithms
An expressive and rich model
Modeling a complicated relation as a mixture of simple components

Advantage: Clean theoretical analysis



Semi-supervised Active Learning framework: Advantages

In this framework, we can carefully design data to query for labels.

Objective: Recover the parameters of the models with minimum number of
queries/samples.
Advantage:
1. Can avoid millions of parameters used by a deep learning model to fit the data!
2. Learn with significantly less amount of data!
3. We can use crowd-knowledge which is difficult to incorporate in algorithm.
Crowdsourcing/ Active Learning has become very popular but is expensive
(Dasgupta et. al., Freund et. al.)



Mixture of sparse linear regression

Suppose we have two unknown distinct vectors 81, 32 € R" and an oracle O : R” — R.

We assume that 3%, 32 have k significant entries where k << n.

The oracle O takes input a vector x € R” and return noisy output (sample) y € R:
y=(x,8)+¢

where 8 ~y {8, 3%} and ¢ ~ N(0,0?) with known o.

Generalization of Compressed Sensing

Unknown Vector 8! € R (x ﬁl> +¢

Query x € R"

Unknown Vector 8% € R"



Mixture of sparse linear regression

e We also define the Signal-to-Noise Ratio (SNR) for a query x as:

A EKXHB:[ B 162>’2
= ECQ

SNR(x) and SNR = maxSNR(x)
X

e Objective: For each 3 € {3, 3%}, we want to recover A such that

1B =Bl < cllB = Byl +7

where ,B(k) is the best k-sparse approximation of 5 with minimum queries for a
fixed SNR.



Previous and Our results

e First studied by Yin et.al. (2019) who made following assumptions

1. the unknown vectors are exactly k-sparse, i.e., has at most k nonzero entries;
2. ﬁjl #* 61-2 for each  j € suppB3* N suppB?
3. for some € > 0, B', 3% € {0, e, +2¢, +3¢, .. .}".

and showed query complexity exponential in o/¢.

e Krishnamurthy et. al. (2019) removed the first two assumptions but their query
complexity was still exponential in (o /€)?/3.

e We get rid of all assumptions and need a query complexity of

k log nlog? k max(l ot +a2>
log(ov/SNR/~) "4V/SNR 72

which is polynomial in o.



Insight 1: Compressed Sensing

. If B = 32 (single unknown vector), the objective is exactly the same as in
Compressed sensing.

. It is well known (Candes and Tao) that for the following m x n matrix A with
m = O(k log n),

N(0,1) N(0,1)
AL L : -
m : '
vim N(0,1) N(0,1)
using its rows as queries is sufficient in the CS setting.

. Can we cluster the samples in our framework?



Insight 2: (Gaussian mixtures)

1. For a given x € R”, repeating x as query to the oracle gives us samples which are
distributed according to

SNx BY),0) + SN (x, 5%), %)

2. With known 2, how many samples do we need to recover (x, 3), (x, 3%)?



Recover means of Gaussian mixture with same & known variance
Input: Obtain samples from a mixture of Gaussians M with two components

L1 1
M= 5/\/(#1,02) + EN(M2,U2)-

Method of Fit a single

EM Algorithm moments Gaussian

Output: Return fig, fio.



EM algorithm (Daskalakis et.al. 2017, Xu et.al. 2016)

Algorithm 1 EM(x,0,T) Estimate the means (x,3'),
(x, 82) for a query x using EM algorithm

Require: An oracle O which when queried with a vector
x € R™ returns (x, 8) + N(0,02) where 3 is sampled
uniformly from {8, 8%}.

:fori=1,2,...,Tdo

Query the oracle O with x and obtain a response 3°.

: end for

Set the function w : R?® — R as w(y,p, p2) =

o= (y—p1)?/20° (e—(y—m)g/zog + e—(y—mg/zoz) -

Eal o

: Initialize 49, /i3 randomly and t = 0.

: while Until Convcrgence do

ﬂ§+1 = ZZ 1 ylw(yh ﬂl:#z)/ Ez—l w(yh
= EZ 1 yiw(yi, i, 04)/ 21—1 w(yi,
t+—t+ 1.

: end while

: Return jif, 4}

~t+1
Hao

—_

—




Method of Moments (Hardt and Price 2015)

e Estimate the first and second central moments
Samples from the mixture

yl y2 y3 y4 o yT

Divide into batches

i y
si= > %

j€ Batch 4 i M; = median({Si}5 )
' (v = 51)? M = median({S3}2.))
Sl — 2Ji=1
2 ' Z ot—1
j€ Batch ¢

e Set up system of equations to calculate i1, fip where

fir + fio = 2My, (fu1 — fi2)? = 4Mp — 402



Fit a single Gaussian (Daskalakis et. al. 2017)

Estimate the mean Ml and return as both /i1, fio

Samples from the mixture

vttt oyt oyt

‘ Sort
y2 y7 y10 y5 o Y

Return average of first and third quartiles

26



How to choose which algorithm to use

EM Algorithm

Sample Complexity

O(max (l, 0%/(é (1 — p2)*) log 1/77))

Method of moments

Sample Complexity
> — = o
I=" |'u1 ‘u’2| 20( ) O(max(l,of\,i/ef,aj‘\,t/eg)logl/n)
61:7/47€2=7 /16 03‘4%(#1—4%)24“,2
Fit a single
0l -l ST SRR

€="/2

O(max(l, o?log 7’]71/62))

We can design a test to infer the parameter regime correctly.




Stage 1: Denoising

We sample x ~ N (0, I ,xp).

Use Test to Use EM/ MoM/
X— (?.uery Tl __|determine C.luery T2 Fit a single
times to parameter times to Gaussian to
oracle regime oracle recover i1, flo
S 1 1
Distribution 1 2 2 2
of Samples §N(<X75 >’0 ) + EN(<X>ﬁ >70' )

e For unknown permutation 7 : {1,2} — {1,2}, fi1, iz satisfies |fij — (5] < -

5

e We can show that E(T7 + T3) < O((M + %5) |Ogn—1)

e We follow identical steps for x1, x2, ..., x™.



Stage 2: Alignment across queries

1 oIy /2 Al
<X f AN /\X ¥e > Only one of the
>< sums is close to
—
\ X1 4 x2 1
1 2 2 2
(x, BT, 67) X560
Or only one of the
differences is close to
Query x1 + x2,x1 — X2 <x1 . X2 ﬁ1>
)

(x'+x%, 1) (! —x*, 8T

<X1+X2,ﬁ2> <X1 —X2,52>




Stage 3: Cluster & Recover

e After the denoising and alignment steps, we are able to recover two vectors u and
v of length m = O(k log n) each such that

U[I] B <xi“37l'(1)>’ < 10~; ’V[I] — <xi“37r(2)> < 10y

for some permutation 7 : {1,2} — {1,2} for all i € [m] w.p. at least 1 — 7

e We now solve the following convex optimization problems to recover B”(l),BW(Q)

1
==t x* x* ... xm7

vm
~m(1) . u

= 1 ||[Az— —=]]2 L1
B min lizll st [[Az = —ll2 < 10y
~m(2) .

= t. ||Az — <10
B = min Izl st |14z = -l < 109
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(b) The 100-dimensional ground truth vectors 3* and 52 with
sparsity k = b plotted in green (left) and the recovered vectors
(using Algorithm 8) ﬁl and ,32 plotted in orange (right) using a
batch-size ~ 100 for each of 150 random gaussian gueries. The
order of the recovered vectors and the ground truth vectors is

Simulations
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(¢) The 100-dimensional ground truth vectors 3* and 3% with
sparsity k = b plotted in green (left) and the recovered vectors
(using Algorithm 8) Bl and 32 plotted in orange (right) using a
batch-size ~ 600 for each of 150 random gaussian queries. The
order of the recovered vectors and the ground truth vectors is
reversed.



Conclusion and Future Work

Our work removes any assumption for two unknown vectors that previous papers
depended on.

Our algorithm contains all main ingredients for extension to larger L. The main
technical bottleneck is tight bounds in untangling Gaussian mixtures for more
than two components.

Can we handle other noise distributions?

Lower bounds on query complexity?
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