

Closing the convergence gap of SGD without replacement

Shashank Rajput, Anant Gupta, Dimitris Papailiopoulos

Stochastic Gradient Descent (SGD)

- Problem : $\min_{x} F(x) := \frac{1}{n} \sum_{i=1}^{n} f_i(x)$
- Algorithm:
 - 1. At each iteration, sample f_i randomly from $\{f_1, \ldots, f_n\}$
 - 2. $x_{t+1} := x_t \alpha \nabla f_i(x_t), \alpha$ is the step size
 - 3. Repeat for T iterations
- SGD with replacement is theoretically well understood

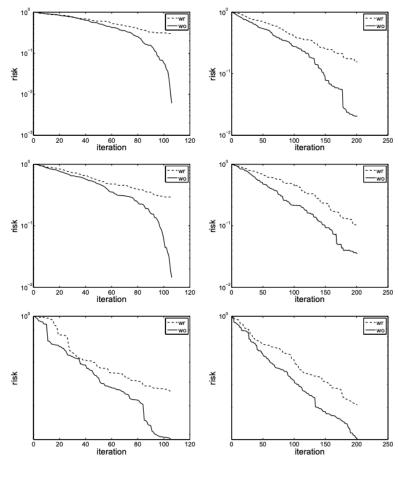
However, in practice we sample without replacement

Sampling with replacement

SGD without replacement (SGDo)

- 1. Repeat K times
 - 1. $I = \{f_1, \dots, f_n\}$
 - 2. Repeat n times
 - 1. Sample f_i uniformly at random from I
 - 2. Remove f_i from I
 - 3. $x_{t+1} = x_t \alpha \nabla f_i(x_t)$

Known to be faster in practice! [1]



With v/s Without replacement [2]

Epoch

^{[1]:} Léon Bottou. Curiously fast convergence of some stochastic gradient descent algorithms. 2009

^{[2]:} Benjamin Recht and Christopher Ré. Beneath the valley of the noncommutative arithmetic-geometric mean inequality: conjectures, case-studies, and consequences. 2012

Why should SGDo be faster?

- Example:
 - Let $f_1(x) = (x+1)^2$, $f_2(x) = (x-1)^2$. Start at x = 0.
 - SGDo: Both functions seen in epoch, iterates stay close to 0.
 - SGD: With probability 1/2, f_1 missed or f_2 missed.
- SGDo: Every function is seen once in n iterations.
- SGD : In n iterations, n/e functions missed.

Variance over an epoch is reduced for SGDo!

SGDo – Theoretically elusive

- Until recently, SGDo eluded theoretical analysis
- Why?
 - SGD: Easy because $\mathbb{E}[\nabla f_i(x_t)] = \nabla F(x_t)$
 - SGDo: Difficult because $\mathbb{E}[\nabla f_i(x_t)] \neq \nabla F(x_t)$
- Error metric: $\mathbb{E}[\|x_T x^*\|^2]$
- SGD error = $O\left(\frac{1}{T}\right)$

Can SGDo (provably) do better?

Our results

• SGDo error bounds:

Upper bound [3,4]	$O\left(\frac{1}{T^2} + \frac{n^3}{T^3}\right), O\left(\frac{n}{T^2}\right)$
Lower bound [5]	$\Omega\left(\frac{1}{T^2} + \frac{n^2}{T^3}\right)$
Our upper bound	$O\left(\frac{1}{T^2} + \frac{n^2}{T^3}\right)$

F is strongly convex quadratic

$$egin{aligned} n &= \# \, \mathrm{functions} \ K &= \# \, \mathrm{epochs} \ T &= nK \ \mathrm{SGD} \, \mathrm{error} \, = \, O \, (1/T \,) \end{aligned}$$

Neither upper bound is better than the other!

^{[3]:} Jeffery Z HaoChen and Suvrit Sra. Random shuffling beats sgd after finite epochs. 2018

^{[4]:} Prateek Jain, Dheeraj Nagaraj, and Praneeth Netrapalli. Sgd without replacement: Sharper rates for general smooth convex functions. 2019

^{[5]:} Itay Safran and Ohad Shamir. How good is sgd with random shuffling?

Our results

• SGDo error bounds:

Surprisingly, lower bound is different for non-quadratics!

$$egin{aligned} n &= \# \, \mathrm{functions} \ K &= \# \, \mathrm{epochs} \ T &= nK \ \mathrm{SGD} \, \mathrm{error} &= O \left(1/T \, \right) \end{aligned}$$

Upper bound [4]	$O\left(\frac{n}{T^2}\right)$
Lower bound [5]	$\Omega\left(\frac{1}{T^2} + \frac{n^2}{T^3}\right)$
Our lower bound	$\Omega\left(\frac{n}{T^2}\right)$

F is strongly convex smooth function

Upper bound

Upper bound - Approach

- $x_1 = \text{Start of epoch}, x_n = \text{End of epoch}$
- Idea [3]:

$$x_n - x_1 = \alpha \sum_i \nabla f_{\sigma(i)}(x_i) \approx \alpha \sum_i \nabla f_{\sigma(i)}(x_1) = \alpha n \nabla F(x_1)$$

n steps of gradient descent!

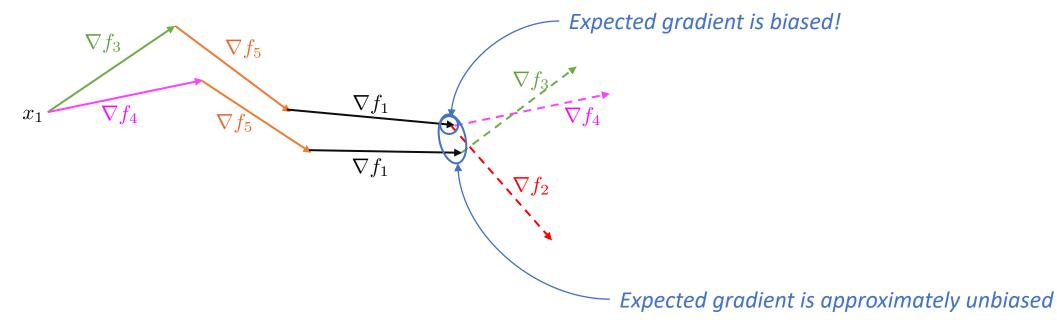
- Key lemma $[4] : \mathbb{E}[||x_i x_1||^2] = O(i\alpha^2)$
 - $||x_i x_1||^2$ grows as $i\alpha^2$ instead of $i^2\alpha^2$
 - (Tight!)

^{[3]:} Jeffery Z HaoChen and Suvrit Sra. Random shuffling beats sgd after finite epochs. 2018

^{[4]:} Prateek Jain, Dheeraj Nagaraj, and Praneeth Netrapalli. Sgd without replacement: Sharper rates for general smooth convex functions. 2019

Iterate coupling

• Assume n = 5: $\{f_1, f_2, f_3, f_4, f_5\}$



• Same coupling as [4]

[4]: Prateek Jain, Dheeraj Nagaraj, and Praneeth Netrapalli. Sgd without replacement: Sharper rates for general smooth convex functions. 2019

Lower bound

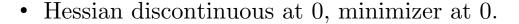
Lower bound - Function

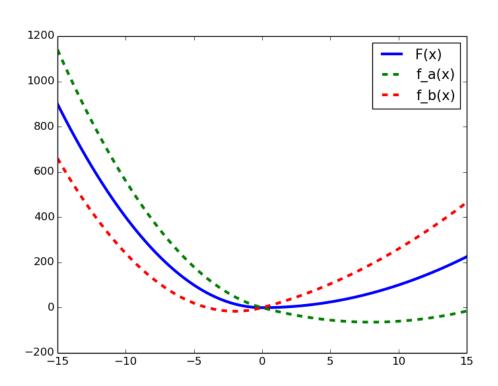
- If F has Lipschitz Hessian, $Error = O\left(\frac{n^3}{T^3} + \frac{1}{T^2}\right)[3]$
- Need non-Lipschitz Hessian : Piece-wise quadratic!

$$F(x) = \frac{1}{n} \left(\sum_{i=1}^{n/2} f_a(x) + \sum_{i=1}^{n/2} f_b(x) \right)$$
where $f_a(x) = \int x^2 + x$ $x \ge 0$

where,
$$f_a(x) = \begin{cases} x^2 + x & x \ge 0 \\ Rx^2 + x & x < 0 \end{cases}$$

and,
$$f_b(x) = \begin{cases} x^2 - x & x \ge 0 \\ Rx^2 - x & x < 0 \end{cases}$$





Proof sketch

• Consider the function gradients

$$\nabla f_a(x) = \begin{cases} 2x + 1 & x \ge 0 \\ 2Rx + 1 & x < 0 \end{cases} \qquad \nabla f_b(x) = \begin{cases} 2x - 1 & x \ge 0 \\ 2Rx - 1 & x < 0 \end{cases}$$

- When x is small, the gradient is dominated by the gradients of linear terms
- These are Rademacher variables (but not independent)
- For $i \leq \frac{n}{4}$, $|x_i| \geq C\alpha\sqrt{i}$

Proof sketch

$$\nabla f_a(x) = \begin{cases} 2x + 1 & x \ge 0 \\ 2Rx + 1 & x < 0 \end{cases} \qquad \nabla f_b(x) = \begin{cases} 2x - 1 & x \ge 0 \\ 2Rx - 1 & x < 0 \end{cases}$$

- $x_n x_1 = \alpha \sum_{i=1}^n \nabla f_{\sigma(i)}(x_i)$
- The sum of gradients from linear terms = 0
- The sum of gradients from quadratic terms

$$\sum_{x_i < 0} \alpha R x_i + \sum_{x_i \ge 0} \alpha x_i \approx \sum_{x_i \ge 0} \alpha R x_i \quad \text{(assume } R >> 1)$$

Plug the value from previous slide and recurse for K epochs

Conclusion

- In this work, we close the gap in convergence rates of SGDo.
- We discovered an interesting phenomenon:

SGDo converges faster for strongly convex quadratics than general strongly convex smooth functions.

Future Work

- Do there exist "optimal" permutations? Distribution of convergence rates for permutations.
- Can these analyses be extended to algorithms that compress gradients?
- Can we analyze convergence for "system-friendly" shuffling schemes?