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Stochastic Gradient Descent (SGD)
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* Problem : min F(:lj) = oy Z?Zl fZ (aj) Sampling with replacement
e Algorithm: /
, fn}

1. At each iteration, sample f; randomly from {fi,...
2. X411 = 1w — aV fi(xy), a is the step size
3. Repeat for T iterations

 SGD with replacement is theoretically well understood

However, in practice we sample without replacement



SGD without replacement (SGDo)

1. Repeat K times
L. I:{flvvf’n} h

2. Repeat n times

1. Sample f; uniformly at random from I > Epoch

2. Remove f; from [
3. Lt+1 — LTt — O(sz (CCt) _

Known to be faster in practice! |1]

[1]: Léon Bottou. Curiously fast convergence of some stochastic gradient descent algorithms. 2009
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[2]: Benjamin Recht and Christopher Ré. Beneath the valley of the noncommutative arithmetic-geometric mean inequality: conjectures, case-studies, and consequences. 2012



Why should SGDo be faster?

* Example:

* Let fi(x) = (z +1)?, fo(z) = (x — 1)%. Start at = = 0.
 SGDo: Both functions seen in epoch, iterates stay close to 0.
* SGD: With probability 1/2, f; missed or f, missed.

* SGDo : Every function is seen once in n iterations.

* SGD : In n iterations, n/e functions missed.

Variance over an epoch is reduced for SGDo!



SGDo — Theoretically elusive

» Until recently, SGDo eluded theoretical analysis

* Why?
« SGD: Easy because E[V f;(x:)] = VF(z})
« SGDo: Difficult because E[V f;(x)] # VF(x;)

e Error metric: E[||lzr — 2*||?]

* SGD error = O (%)

Can SGDo (provably) do better?



Our results

n = # functions
K = # epochs
* SGDo error bounds: T — nK

SGD error = O (1/T)

Upper bound |3,4] O < ) Neither upper bound is better than the other!
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Our upper bound

F is strongly convex quadratic

[3]: Jeffery Z HaoChen and Suvrit Sra. Random shuffling beats sgd after finite epochs. 2018
[4]: Prateek Jain, Dheeraj Nagaraj, and Praneeth Netrapalli. Sgd without replacement: Sharper rates for general smooth convex functions. 2019

[5]: Ttay Safran and Ohad Shamir. How good is sgd with random shuffling?



Our results

e SGDo error bounds:

Surprisingly, lower bound is different for non-quadratics!

n = # tunctions
K = # epochs
T =nK

SGD error = O (1/T)

Upper bound [4] O (%)
Lower bound [5] 0 (% 4 ;_i
Our lower bound 0 (%)

F is strongly convex smooth function

[4]: Prateek Jain, Dheeraj Nagaraj, and Praneeth Netrapalli. Sgd without replacement: Sharper rates for general smooth convex functions. 2019

[5]: Ttay Safran and Ohad Shamir. How good is sgd with random shuffling?




Upper bound



Upper bound - Approach

* ; = Start of epoch, z, = End of epoch
* Idea [3]:
Tp —21=0a) , Visp(x)~a) , Viep(r)=anVF(x)
| l
|
n steps of gradient descent!

* Key lemma [4] : E[||z; — z1]]?] = O(ia?)
o ||z; — 21]|* grows as i 2
* (Tight!)

instead of 2«

[3]: Jeffery Z HaoChen and Suvrit Sra. Random shuffling beats sgd after finite epochs. 2018
[4]: Prateek Jain, Dheeraj Nagaraj, and Praneeth Netrapalli. Sgd without replacement: Sharper rates for general smooth convex functions. 2019



iterate coupling

* Assume n = 5: {f,, L, /5, /i, 5}

Expected gradient is biased!

”

Expected gradient is approximately unbiased
* Same coupling as [4]

[4]: Prateek Jain, Dheeraj Nagaraj, and Praneeth Netrapalli. Sgd without replacement: Sharper rates for general smooth convex functions. 2019



Lower bound



Lower bound - Function

o If I has Lipschitz Hessian, Error = O (%i -+ %) 3] 1200 | | | | |
. — F(x)

* Need non-Lipschitz Hessian : Piece-wise quadratic! "\ - f
1000} + _a(x) |

n/2 n/2 800 -

F({IJ‘):% Zfa(x)‘i‘Zfb(x) 600 [

400 -

2 > 0
where, f,(z) = var v

Ri’4+z2 x2<0 200
0_
x2 —x x>0
and: fb('r) — 2
Rxs—x2 x<0 -200 . ! . . .
-15 -10 -5 0 5 10 15

* Hessian discontinuous at 0, minimizer at O.

[3]: Jeffery Z HaoChen and Suvrit Sra. Random shuffling beats sgd after finite epochs. 2018



Proof sketch

* Consider the function gradients

2¢ + 1 x>0
ke +1 x<0

20 — 1 x>0
ke —1 x<0

Vfa(x) = { Viy(z) = {

* When z is small, the gradient is dominated by the gradients of linear terms

* These are Rademacher variables (but not independent)
* For i < %, |x;| > Cavi



Proof sketch

20 + 1 x>0
SRk +1 x<0

20— 1 x>0

vf“(x>{ 2Rr—1 x<0

Vfy(z) = {

° Ipn —I1 =« Z?:l Vfa(z) (x’b)
* The sum of gradients from linear terms = 0
* The sum of gradients from quadratic terms

ZCZRSQ + Zaiﬁi ~ ZCXRQ;; (assume R >> 1)

x; <0 x; >0 x; >0

Plug the value from previous slide
and recurse for K epochs



Conclusion

* In this work, we close the gap in convergence rates of SGDo.
* We discovered an interesting phenomenon :
SGDo converges faster for strongly convex quadratics than

general strongly convex smooth functions.

Future Work

* Do there exist “optimal” permutations? Distribution of convergence rates for permutations.
« Can these analyses be extended to algorithms that compress gradients?

 Can we analyze convergence for “system-friendly” shuffling schemes?



