Improving Molecular Design by Stochastic Iterative Target Augmentation

Kevin Yang, Wengong Jin, Kyle Swanson, Regina Barzilay, Tommi Jaakkola

15-Second Overview

Data augmentation approach: improve molecular optimization SOTA by > 10%

Broadly useful for structured generation tasks, e.g. program synthesis (shown later)

Context: Pharmaceutical Drug Discovery

Suppose: have promising drug candidate for e.g., COVID-19

Input Molecule X

Property(X) = 0.78

Context: Pharmaceutical Drug Discovery

Suppose: have promising drug candidate for e.g., COVID-19

Want to make it more potent (higher property score)

Task: Molecular Optimization

"Translate" input molecule to a <u>similar</u> molecule with better property score.

Input Molecule
$$X$$
Property(X) = 0.78

Translate

Translate

Translate

NH

NH

NH

NH

NH

NH

Property(Y) = 0.92

Task: Molecular Optimization

"Translate" input molecule to a <u>similar</u> molecule with better property score.

Input Molecule
$$X$$
Property(X) = 0.78

Translate

Translate

Translate

NH

NH

NH

NH

NH

NH

Property(Y) = 0.92

Dataset: collection of input-target pairs

Real-world ground truth evaluation: lab assay

Real-world ground truth evaluation: lab assay

Slow + expensive!

Real-world ground truth evaluation: lab assay

Slow + expensive!

Key Problem: Small Datasets

Data augmentation meta-algorithm on top of existing model

Results: Molecular Optimization

Over 10% absolute gain over SOTA on both datasets

Results: Program Synthesis

Data augmentation meta-algorithm on top of existing model

 Sample input-output pairs from generator

New "data" Some **good**, some **bad**

Data augmentation meta-algorithm on top of existing model

 Sample input-output pairs from generator

How to filter for only the good pairs?

Idea: Filter with Property Predictor

Idea: Filter with Property Predictor

This is easier than generation!

Predict

Property(
$$Y$$
) = 0.92

Molecule Y

Idea: Filter with Property Predictor

This is easier than generation!

Predict

Property(
$$Y$$
) = 0.92

Molecule Y

Program synthesis analogue: hard to write program, easier to run test cases

Data augmentation meta-algorithm on top of existing model

- Sample input-output pairs from generator
- Filter with <u>property predictor</u>,
 add good pairs to training data

Data augmentation meta-algorithm on top of existing model

 Sample input-output pairs from generator

Filter with <u>property predictor</u>, add good pairs to training data

Train generator, repeat

Outline

Setup + Evaluation

Detailed Method

More Empirical Analysis

Program Synthesis Experiments + Results

Outline

Setup + Evaluation

Detailed Method

More Empirical Analysis

Program Synthesis Experiments + Results

Real World Molecular Optimization

Real-world ground truth evaluation: lab assay

Slow + expensive! (→ small datasets)

Real World Molecular Optimization

Real-world ground truth evaluation: lab assay

- Slow + expensive! (→ small datasets)
- Only use at final test time

Real World Molecular Optimization

Real-world ground truth evaluation: lab assay

- Slow + expensive! (→ small datasets)
- Only use at final test time

Use fast + cheap in silico (i.e., computational) predictor for model validation

Evaluation Setup

(Lab assay, in silico predictor) become (in silico predictor, proxy predictor)

Evaluation Setup

(Lab assay, in silico predictor) become (in silico predictor, proxy predictor)

- Just train proxy on property values of molecular optimization training pairs

Metric

"Success" if even 1/20 tries passes ground truth evaluator

Metric

"Success" if even 1/20 tries passes ground truth evaluator

Molecular optimization is hard...

Outline

Setup + Evaluation

Detailed Method

More Empirical Analysis

Program Synthesis Experiments + Results

Goal:

Target augmentation: Augment the set of correct targets for a given input.

1. Given inputs, sample input-target pairs from current generative model

Target augmentation: Augment the set of correct targets for a given input.

- 1. Given inputs, sample input-target pairs from current generative model
- 2. Filter candidate input-output pairs using property predictor

Target augmentation: Augment the set of correct targets for a given input.

- 1. Given inputs, sample input-target pairs from current generative model
- 2. Filter candidate input-output pairs using property predictor
- 3. Add good pairs to training data, train model, repeat

Results: Molecular Optimization

Over 10% absolute gain over SOTA on both datasets

Observations

- View as Stochastic EM

Observations

- View as Stochastic EM
- Why iterative? Better generator → easier to find new correct targets

Observations

- View as Stochastic EM
- Why iterative? Better generator → easier to find new correct targets
- May as well use proxy to filter samples at test time too

Outline

Setup + Evaluation

Detailed Method

More Empirical Analysis

Program Synthesis Experiments + Results

Frechet Chemnet Distance Analysis

FCD (embedding distance) is the molecular analogue to Inception distance in images. Lower is better.

Improved Diversity

Diversity: average distance between different correct outputs for the same input

Robustness to Predictor Quality

Far left point is oracle (ground truth); second-from left is learned proxy predictor.

Blue line indicates baseline performance.

Outline

Setup + Evaluation

Detailed Method

More Empirical Analysis

Program Synthesis Experiments + Results

Program Synthesis Task: Karel Dataset

Inputs: Test Cases

Outputs: Programs

Program A

def run():
 repeat(4):
 putMarker()
 move()
 turnLeft()

Program B

```
def run():
   while(noMarkersPresent):
     putMarker()
     move()
     turnLeft()
```

Evaluate correctness using held-out test cases

Program Synthesis Target Augmentation

Results: Program Synthesis

Data augmentation meta-algorithm for improving performance on structured generation tasks

Data augmentation meta-algorithm for improving performance on structured generation tasks

Significantly improves over SOTA in molecular optimization: > 10%

Data augmentation meta-algorithm for improving performance on structured generation tasks

Significantly improves over SOTA in molecular optimization: > 10%

Applicable to other domains: program synthesis

Data augmentation meta-algorithm for improving performance on structured generation tasks

Significantly improves over SOTA in molecular optimization: > 10%

Applicable to other domains: program synthesis

Thanks for Watching!