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Unsupervised representation learning

We tackle the problem of general visual representation learning from a set
of unlabeled images.

After unsupervised learning, the learned model and image representations
can be used for downstream applications.

3 .

Unsupervised Downstream
Unlabeled data g pretrained network ) applications

(images)
-
N— A




Google Research

First category of unsupervised learning

e Generative modeling
o Generate or otherwise model pixels in the input space
o Pixel-level generation is computationally expensive
o Generating images of high-fidelity may not be necessary for
representation learning
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Autoencoder Generative Adversarial Nets

Image credit: Xifeng Guo, Thalles Silva.
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Second category of unsupervised learning

4
Image X

1 I
| F -1
o A0, =) »  ConvNet » Maximize prob. ! 1 ! ]
> . = model F() | F'(x") . g8 | J
Rotate 90 degrees ‘ Predict 90 deg o |
Rotated image: X’ | Pt B~ v 5
‘ H : .
ey | g L
_ onvNef aximize prob. -
> g(X,y=2) — > [ modelEQ) ‘y—> Fx) ’ s < b

Discriminative modeling
o Train networks to perform pretext tasks where both the inputs and
labels are derived from an unlabeled dataset.
o Heuristic-based pretext tasks: rotation prediction, relative patch
location prediction, colorization, solving jigsaw puzzle.
o Many heuristics seem ad-hoc and may be limiting.

| ConvNet
» g(x,y=0) > > model F() F(X°)

Rotate 0 degrees . o ‘ Predict 0 degrees rotation (y=0)
Rotated image: X"

Rotate 180 degrees ! | | | Predict 180 degrees rotation (y=2) ‘ g : ! :
Rotated image: X* 1 1 ] H
| 1 1
\ | £ H
teoned bteawd

%—» im |
ConvNet Maximize prob.
> g(x,y=3) —» model F() —" F(x)
Rotate 270 d | predi s otation (=i I
Oe AT otated image: X7 Predict 270 degrees rotation (y=3) | Images: [Gidaris et al 2018, Doersch et al 2015]



Google Research
SN

\_ -

Introducing SIimCLR framework
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The proposed SImCLR framework

A simple idea: maximizing the agreement of representations under data
transformation, using a contrastive loss in the latent/feature space.

Maximize Agreement

h; +Representation— h;

Figure 2. A framework for contrastive representation learning.
Two separate stochastic data augmentations ¢, ¢ ~ T are applied
to each example to obtain two correlated views. A base encoder
network f(-) with a projection head g(-) is trained to maximize
agreement in latent representations via a contrastive loss.
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The proposed SImCLR framework

We use random crop and color distortion for augmentation.

Examples of augmentation applied to the left most images:
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The proposed SImCLR framework
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Maximize Agreement

+Representation—

34-layer residual

34-layer plain

f(x) is the base network that computes internal
representation.

We use (unconstrained) ResNet in this work.
However, it can be other networks.
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The proposed SImCLR framework

g(h) is a projection network that project
representation to a latent space.

We use a 2-layer non-linear MLP (fully
connected net).

hidden layer

output layer
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The proposed SImCLR framework

Maximize agreement using a contrastive task:

Given {x_k} where two different examples x_i
and x_j are a positive pair, identify x_j in
{x_k} {kl=i} for x_i.

[ Maximize Agreement }
Zi j

h; +Representation— h;
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Original image crop 1 crop 2 contrastive image

Let sim(u,v) = u'v/||ul|||v||

Loss function: exp(sim(z;, 2;)/7)

Zigl 1 (i) €xp(sim(z;, 1) /7)

Ei,j = — IOg
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SIMCLR pseudo code and illustration

Algorithm 1 SimCLR’s main learning algorithm.

input: batch size N, temperature 7, form of f, g, 7.
for sampled mini-batch {z; }?_, do
forallk € {1,...,N} do

draw two augmentation functions t ~ 7, t' ~T

# the first augmentation

Top—1 = t(wk)

hor—1 = f(@x2r-1) # representation

2ok—1 = g(hox_1) # projection

# the second augmentation

igk = t’(wk)

hox = f(Zak) # representation

zor = g(har) # projection
end for
forallie {1,...,2N}andj € {1,...,2N} do

si.i = z; zi/(7llzll|lz;]) # pairwise similarity
end for

define /(7, j) as —s; ; + log Zi:l Lk €xp(si k)
L= [6(2k—1,2k) + £(2k, 2k —1)]
update networks f and g to minimize £
end for
return encoder network f GIF credit: Tom Small
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Important implementation details

e We trained the model with varied batch sizes (256-8192).
O No memory bank, as a batch size of 8K gives us 16K negatives per
positive pair.
o Typically, an intermediate batch size (e.g. 1k, 2k) could work well.

e To stabilize training for large bsz, we use LARS optimizer.
o Scale learning rate dynamically according to grad norm.

e To avoid shortcut, we use global BN.

O Compute BN statistics over all cores.
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Understand the learned representations & essentials

Main dataset:

e |mageNet
e (Also works on CIFAR-10 & MNIST)

Three evaluation protocols

e Linear classifier trained on learned features
o What we used for ablations
e Fine-tune the model on few labels
e Transfer learning by fine-tuning on other datasets
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Data Augmentation for Contrastive
Representation Learning
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Data augmentation defines predictive tasks

Simply via Random Crop (with resize to standard size), we can mimic (1)
global to local view prediction, and (2) neighboring view prediction.

This simple transformation defines a family of predictive tasks.

_____

(a) Global and local views. (b) Adjacent views.

Figure 3. By randomly cropping and resizing images (solid rect-
angles) to a standard size, we sample contrastive prediction tasks
that mimic global to local view (B — A) or neighbouring view
(D — C) prediction.
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We study a set of transformations...

Systematically study a set of augmentation

(f) Rotate {90°, 180°, 270°} (g) Cutout (h) Gaussian noise (i) Gaussian blur (j) Sobel filtering

* Note that we only test these for ablation, the augmentation policy used to train our models only involves random crop (with flip and resize) + color distortion + Gaussian blur.
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Studying single or a pair of augmentations

e ImageNet images are of different resolutions, so random crops are
typically applied.
e Toremove co-founding
o First random crop an image and resize to a standard resolution.
o Then apply a single or a pair of augmentations on one branch,
while keeping the other as identity mapping.
o This is suboptimal than applying augmentations to both branches,
but sufficient for ablation.

No augm‘eM/g@vor a pair of
augmentations

Crop and

esizetoa
stand size:
224x224x3
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Composition of augmentations are crucial

Composition of crop and color stands out!

Crop

Cutout

Color

Sobel

Noise

1st transformation

Blur

Rotate

R R \of A <2 o 5@ e
o) o o oo® o N @@ " 2%

2nd transformation

Figure 5. Linear evaluation (ImageNet top-1 accuracy) under in-
dividual or composition of data augmentations, applied only to
one branch. For all columns but the last, diagonal entries corre-
spond to single transformation, and off-diagonals correspond to
composition of two transformations (applied sequentially). The
last column reflects the average over the row.
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(a) Without color distortion. (b) With color distortion.

Figure 6. Histograms of pixel intensities (over all channels) for
different crops of two different images (i.e. two rows). The image
for the first row is from Figure 4. All axes have the same range.
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Contrastive learning needs stronger data/color augmentation than

supervised learning

Simply combining crop + color (+ Blur) beats searched AutoAugmentation,
a searched policy on supervised learning!

We should rethink data augmentation for self-supervised learning!

Strength  1/8 1/4 172 1 I (+Blur) | AutoAug

Unsup. 59.6 61.0 626 632 64.5 61.1
Sup. 77.0 767 76,5 75.7 75.4 74.1

Table 1. Top-1 accuracy of unsupervised ResNet-50 using linear
evaluation and supervised ResNet-50° , under varied color distor-
tion strength (see Appendix A) and other data transformations.
Strength 1 (+Blur) is our default data augmentation policy.

7Supervised models are trained for 90 epochs; longer training
improves performance of stronger augmentation by ~ 0.5%.
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Encoder and Projection Head
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Unsupervised contrastive learning benefits (more) from

bigger models
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Figure 7. Linear evaluation of models with varied depth and width.

Models in blue dots are ours trained for 100 epochs, models in red
stars are ours trained for 1000 epochs, and models in green crosses
are supervised ResNets (He et al., 2016).”
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A nonlinear projection head improves the representation quality
of the layer before it

We compare three projection head g(.) (after average pooling of ResNet):

e |dentity mapping

e Linear projection

e Nonlinear projection with one additional hidden layer (and ReLU
activation 70

“ul il ol
§so Projection Even when non-linear projection is
. i : ;‘(’)‘s?rnear used, the layer before the projection
m=None head,h,is still much better (>10%) than

30 - the layer after,z=g(h).
%L 1% ,Lc)b ‘)\' b« Qb«% y g( )

Output dlmensmnallty

Figure 8. Linear evaluation of pretraining with different projection
heads. The dimension of h (before projection) is 2048.
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A nonlinear projection head improves the representation quality
of the layer before it

To understand why this happens, we measure information in h and z=g(h)

: Representation
What to predict? Random guess
b : h g(h)
Color vs grayscale 80 99.3 97.4
[ Rotation 2D 67.6 25.6 |
Orig. vs corrupted 50 99.5 59.6
Orig. vs Sobel filtered 50 96.6 56.3

Table 3. Accuracy of training additional MLPs on different repre-
sentations to predict the transformation applied. Other than crop
and color augmentation, we additionally and independently add
rotation (one of {0°,90°, 180°,270° }), Gaussian noise, and So-
bel filtering transformation during the pretraining for the last three
rows. Both h and g(h) are of the same dimensionality, i.e. 2048.

Contrastive loss can remove/damping rotation information in the last
layer when the model is asked to identify rotated variant of an image.
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Loss Function and Batch Size
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Normalized cross entropy loss with adjustable temperature works
better than alternatives

Name | Negative loss function | Gradient w.r.t. u
exp(uTvt /7 exp(uTv™ /7 —
NT-Xent uTv" /T —log Y rvefetp) exp(u’v/7) | (1— —I)—(W/—)—)/Tv+ =D - —p(mu/ﬂ)
NT-Logistic logo(ufvt /1) +logo(—ulv™/7) (o(—uTvt /7)) /TvT —o(uTv™ /7)/TV™
Margin Triplet —max(u’v™ —uTvt +m,0) vt —v  ifu’vT —ulv™ <melse 0

Table 2. Negative loss functions and their gradients. All input vectors, i.e. w,v ", v, are /2 normalized. NT-Xent is an abbreviation for

“Normalized Temperature-scaled Cross Entropy”. Different loss functions impose different weightings of positive and negative examples.

Margin NT-Logi. Margin (sh) NT-Logi.(sh) NT-Xent
50.9 51.6 573 57.9 63.9

Table 4. Linear evaluation (top 1) for models trained with different
loss functions. “sh” means using semi-hard negative mining.



NT-Xent loss needs Nand T

We compare variants of NT-Xent loss

L2 normalization with temperature scaling makes a better loss.
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Contrastive accuracy is not correlated with linear evaluation when 2

norm and/or temperature are changed.

¢ norm? 7 | Entropy Contrast. task acc. | Top 1
0.05 1.0 90.5 59.7

Yes 0.1 4.5 87.8 64.4
0.5 8.2 68.2 60.7

| 8.3 59.1 58.0

N 10 0.5 91.7 372

@ 100 | 05 92.1 57.0

Table 5. Linear evaluation for models trained with different choices
of £5 norm and temperature 7 for NT-Xent loss. The contrastive
distribution is over 4096 examples.
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Contrastive learning benefits from larger batch sizes and
longer training
70.0

67.

65.0
62.5
-
260.0
k= Batch size
57.5 256
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55.0 1024
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52.5 4096
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Figure 9. Linear evaluation models (ResNet-50) trained with dif-
ferent batch size and epochs. Each bar is a single run from scratch.
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Comparison Against State-of-The-Art
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Baselines
We mainly compare to existing work on self-supervised visual

representation learning, including those that are also based on contrastive
learning, e.g. Exemplar, InstDist, CPC, DIM, AMDIM, CMC, MoCao, PIRL, ...
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Linear evaluation

7% relative improvement over previous SOTA (cpc v2), matching
fully-supervised ResNet-50.

Method Architecture Param. Topl Top5 % Supervised j - SimCLR (4x)
Methods using ResNet-50: < 18r ~_*SimCLR (2x)
Local Agg. ResNet-50 24 60.2 - - it PCV2-L
PIRL ResNet-50 214 636 - 3 *SimCLR ocmc ¢
CPC v2 ResNet-50 24 638 853 2 *PIRL-c2x AMDIM
Ours ResNet-50 24 69.3  89.0 - 65F ‘PIRL-en;MOCO 2x)
TR R —— & | Bl '

ethods llSlng other architectures: [ et % i
Rotation RevNet-50 (4x) 86 554 - @ gok QMOCO °BigBiGAN
BigBiGAN  RevNet-50 (4x) 86 613  81.9 = LA
AMDIM Custom-ResNet 626 68.1 . g
CMC ResNet-50 (2x) 188 684 882 E &5} _ eRotation
MoCo ResNet-50 (4x) 375 686 - Pl _ . P
CPC v2 ResNet-161 (*) 305 71.5 90.1 25 50 100 200 400 626
Ours ResNet-50 (2x) 94 74.2 92.0 Number of P t Milli
Ours ResNet-50 (4x) 375 765  93.2 MmberokParemeters:(Millions)

Figure 1. ImageNet top-1 accuracy of linear classifiers trained
Table 6. ImageNet accuracies of linear classifiers trained on repre- on representations learned with different self-supervised methods
sentations learned with different self-supervised methods. (pretrained on ImageNet). Our method, SimCLR, is shown in bold.



Semi-supervised learning

10% relative improvement over previous SOTA (cpc v2), outperforms

AlexNet with 100X fewer labels.
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Label fraction

Method Architecture 1% 10%
Top 5

Methods using other label-propagation:

Pseudo-label ResNet50 51.6 824
VAT+Entropy Min. ResNet50 47.0 834
UDA (w. RandAug) ResNet50 . 88.5
FixMatch (w. RandAug) ResNet50 - 89.1
S4L (Rot+VAT+En. M.)  ResNet50 (4 x) - 91.2
Methods using representation learning only:

InstDisc ResNet50 392 774
BigBiGAN RevNet-50 (4x) 55.2 78.8
PIRL ResNet-50 572 838
CPC v2 ResNet-161(%) 77.9 91.2
Ours ResNet-50 75.5 87.8
Ours ResNet-50 (2x) 83.0 91.2
Ours ResNet-50 (4x) 85.8 92.6

Table 7. ImageNet accuracy of models trained with few labels.
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Transfer learning

When fine-tuned, SImCLR significantly outperforms the supervised
baseline on 5 datasets, whereas the supervised baseline is superior on only
2*. On the remaining 5 datasets, the models are statistically tied.

Food CIFAR10 CIFARI00 Birdsnap SUN397 Cars Aircraft VOC2007 DTD Pets Caltech-101 Flowers

Linear evaluation:

Self-supervised 76.9  95.3 80.2 48.4 659 600 612 84.2 78.9 89.2 93.9 95.0
Supervised 75.2 95.7 81.2 56.4 649 688 63.8 83.8 78.7 92.3 94.1 94.2
Fine-tuned:

Self-supervised 89.4  98.6 89.0 78.2 68.1 921 87.0 86.6 77.8 92.1 9.1 97.6
Supervised 88.7 98.3 88.7 77.8 67.0 914 88.0 86.5 78.8 93.2 94.2 98.0
Random init 88.3 96.0 81.9 77.0 537 913 848 69.4 64.1 827 72.5 92.5

Table 8. Comparison of transfer learning performance of our self-supervised approach with supervised baselines across 12 natural image
classification datasets, for ResNet-50 (4 x ) models pretrained on ImageNet. Results not significantly worse than the best (p > 0.05,
permutation test) are shown in bold. See Appendix B.6 for experimental details and results with standard ResNet-50.

* The two datasets, where the supervised ImageNet pretrained model is better, are Pets and Flowers, which share a portion of labels with ImageNet.
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Conclusion

e SImCLR is a simple yet effective self-supervised learning framework,
advancing state-of-the-art by a large margin.

e The superior performance of SIMCLR is not due to any single design
choice, but a combination of design choices.

e Our studies reveal several important factors that enable effective
representation learning, which could help future research.

Code & checkpoints available in github.com/google-research/simclr.



https://github.com/google-research/simclr

