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Problem Formulation
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Contrastive Representation Learning
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Contrastive Representation Learning

Key idea: The learned representation is as close as possible to X and as 
far as possible to the negative samples Y.
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How Should We Characterize Contrastiveness? 
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How Should We Characterize Contrastiveness? 
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Wasserstein Distance 

where Π is the set of all coupling between 𝜇 and 𝜈.

Coupling Π
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How Should We Characterize Contrastiveness? 

𝜇% 𝜈&
𝑥 𝑦

Coupling Π

Key Idea: We propose to characterize “contrastiveness” as finding a 
representation U that maximizes the Wasserstein Distance

Similar to Subspace Robust Optimal Transport [1], we use 𝑓( = 𝑈𝑈), the 
projection operator for Grassmannian 𝑈 ∈ 𝒢 𝑑, 𝑘 , 𝑈)𝑈 = 𝐼*.
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Contrastive Learning via Optimal Transport

𝜇% 𝜈&
𝑥 𝑦

Coupling Π

What does this mean? 
It asks to find a subspace     on a Grassmann manifold such that projections of 𝑥$ ∈
𝑋 onto     will maximize their Wasserstein distance from the negatives, 𝑦+ ∈ 𝑌. Such 
a subspace     should thus capture discriminative properties between X and Y.
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Negative Examples

Questions: 
a) How can we find negative 

examples? 
b) How can we ensure they do 

not have useful features?

We propose to train an adversarial generator to produce negative feature distribution
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Adversarial Distribution Learning Using Wasserstein GAN
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Capturing Temporal Order
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Find U such that 

We use Generalized Rank Pooling (Cherian et al., CVPR 2017)
The idea is to find subspaces U 

such that projections x on to U is temporally ordered.

……
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Contrastive Representation Learning

Questions: 
1. How should we characterize 

contrastiveness?
2. How can we find negative 

examples? 
3. How can we capture the 

temporal order in X? 
4. How should we “represent” the 

sequence?

We use the subspace U as the representation of the sequence and use 
a subspace kernel learning SVM as the sequence classifier. 
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Putting it all Together!
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Putting it all Together!
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Experiments : Adversarial Noise Generator
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CIFAR10 images Corrupted Images Generated noise

The generated noise appears to be targeting regions in the image that are relevant 
for recognition. Thus, if our representation maximizes the distance between the 
corrupted and uncorrupted images, it must focus on regions useful for recognition.
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Experiments and Results

• We used two action recognition datasets:
– JHMDB dataset 

• 21 classes, ~10-40 frames per sequence, ~900 sequences
• We used VGG features per frame and I3D features for short clips

– HMDB dataset
• 51 classes, ~20-400 frames per sequence, ~6000 sequences
• We used I3D features for short clips 

The I3D network was pre-trained on Kinetics. We did not fine-tune to the above 
datasets.

30
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Experiments and Results
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A = Adversarial, C = Contrastive, OT = Optimal Transport, Random = using random noise (instead of 
adversarial), PCA = Regularization penalty, Order = Temporal ordering
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Experiments: Representation Quality
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(Ours)
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Experiments and Results
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JHMDB Comparisons
HMDB Comparisons

Running time: Excluding time to extract CNN features, our scheme runs at about 30 
frames per second in producing the representations.
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Conclusions

v We proposed a novel framework for video representation learning by combining
• Contrastive learning
• Adversarial distribution learning via GANs, and
• Optimal transport.

v We used a Riemannian optimization framework for learning our subspace 
representation.

v Our experiments demonstrate that using adversarially-learned negative examples 
provide better contrastive learning using the proposed framework.
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Our code will be available soon at https://www.merl.com/research/license/

https://www.merl.com/research/license/

