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- /
Positive examples U

Key idea: The learned representation is as close as possible to X and as
far as possible to the negative samples Y.
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Key Idea: We propose to characterize “contrastiveness” as finding a
representation U that maximizes the \Wasserstein Distance

max Lor(U) := Welfuppx,vy)

Similar to Subspace Robust Optimal Transport [1], we use f; = UUT, the
projection operator for Grassmannian U € G(d, k), UTU = I,.
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What does this mean?
It asks to find a subspace U on a Grassmann manifold such that projections of x; €
X onto U will maximize their Wasserstein distance from the negatives, y; € Y. Such

a subspace U should thus capture discriminative properties between X and Y.
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Questions:

a) How can we find negative
examples?

b) How can we ensure they do
not have useful features?

Contrastive
Representation |—

classlabel ¢; | | | Learning

Positive examples

We propose to train an adversarial generator to produce negative feature distribution
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Adversarial Distribution Learning Using Wasserstein GAN
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Adversarial Distribution Learning Using Wasserstein GAN
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Adversarial Distribution Learning Using Wasserstein GAN
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Capturing Temporal Order
U7 x|

Find U such that i \)

[U ]|+ < [[O x|

|UT><7:+1H2

We use Generalized Rank Pooling (Cherian et al., CVPR 2017)
The idea is to find subspaces U
such that projections x on to U is temporally ordered.
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Contrastive Representation Learning
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Questions:

Contrastive
Representation |—
Learning

class label ¢;

Positive examples

4. How should we “represent” the
sequence”?

We use the subspace U as the representation of the sequence and use
a subspace kernel learning SVM as the sequence classifier.
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Experiments : Adversarial Noise Generator

CIFAR10 images  Corrupted Images Generated noise

The generated noise appears to be targeting regions in the image that are relevant
for recognition. Thus, if our representation maximizes the distance between the
corrupted and uncorrupted images, it must focus on regions useful for recognition.
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Experiments and Results

 We used two action recognition datasets:
— JHMDB dataset
» 21 classes, ~10-40 frames per sequence, ~900 sequences
 We used VGG features per frame and 13D features for short clips
— HMDB dataset
* 51 classes, ~20-400 frames per sequence, ~6000 sequences
* We used 3D features for short clips

The I3D network was pre-trained on Kinetics. We did not fine-tune to the above
datasets.
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Experiments and Results

Ablation JHMDB (vgg) JHMDB (I3D) HMDB (I3D)

RGB FLOW R+F |RGB FLOW R+F | RGB FLOW R+F
Avg. Pool 470 630 73.1| 775 810 850 682 695 765
COT + Random 480 639 719 | 622 772 194 | 685 711 725
ACOT 493 650 750 | 76.1 812 900 | 69.5 746 764
ACOT + PCA 495 657 756 | 776 828 90.6 | 69.8 749  76.6
AC +PCA +order No OT) | 490 66.1 758 | 752 800 89.8 | 702 748 763
ACOT + PCA + order 503 692 798| 781 829 915|708 755 79.1

A = Adversarial, C = Contrastive, OT = Optimal Transport, Random = using random noise (instead of
adversarial), PCA = Regularization penalty, Order = Temporal ordering
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Experiments and Results

Ablation JHMDB (vgg) JHMDB (I3D) HMDB (I3D)

RGB FLOW R+F |RGB FLOW R+F | RGB FLOW R+F
Avg. Pool 470 630 73.1| 775 810 850 682 695 765
COT + Random 480 639 779 | 622 772 7194 | 685 711 725
ACOT 493 650 750 | 76.1 812 900 | 69.5 746 764
ACOT + PCA 495 657 756 | 776 828 90.6 | 69.8 749  76.6
AC +PCA +order No OT) | 490 66.1 758 | 752 800 89.8 | 702 748 763
ACOT + PCA + order 503 692 798| 781 829 915|708 755 79.1

A = Adversarial, C = Contrastive, OT = Optimal Transport, Random = using random noise (instead of
adversarial), PCA = Regularization penalty, Order = Temporal ordering
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Experiments and Results

Ablation JHMDB (vgg) JHMDB (I3D) HMDB (I3D)

RGB FLOW R+F |RGB FLOW R+F | RGB FLOW R+F
Avg. Pool 470 630 73.1| 775 810 850 682 695 765
COT + Random 430 639 719 | 622 772 194 | 685 711 725
ACOT 493 650 750 | 76.1 812 900 | 69.5 746 764
ACOT + PCA 495 657 756 | 776 828 90.6 | 69.8 749  76.6
AC +PCA +order No OT) | 490 66.1 758 | 752 80.0 89.8 | 702 748 763
ACOT + PCA + order 503 692 798| 781 8.9 915|708 755 79.1

A = Adversarial, C = Contrastive, OT = Optimal Transport, Random = using random noise (instead of
adversarial), PCA = Regularization penalty, Order = Temporal ordering
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Experiments and Results

Ablation JHMDB (vgg) JHMDB (I3D) HMDB (13D)

RGB FLOW R+F | RGB FLOW R+F | RGB FLOW R+F
Avg. Pool 470 630 73.1| 775 810 850 | 682 695 765
COT + Random 480 639 779 | 622 772 794 | 685 71.1 725
ACOT 493 650 750 | 761 812 900 | 69.5 746 6.4
ACOT + PCA 495 657 756 | 776 828 906 | 69.8 749  76.6
AC +PCA +order No OT) | 490 661 758 | 752 800 898 | 702 748 763
ACOT + PCA + order 503 692 798| 781 829 915|708 755 79.1

A = Adversarial, C = Contrastive, OT = Optimal Transport, Random = using random noise (instead of
adversarial), PCA = Regularization penalty, Order = Temporal ordering
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Experiments: Representation Quality
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Experiments: Representation Quality
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Experiments: Representation Quality
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Experiments and Results

JHMDB using vgg Accuracy

GRP (Cherian et al., 2017) 70.6

P-CNN (Chéron et al., 2015) 72.2 Method Acc. (%)
Kernelized Pooling (Cherian et al., 2018) | 73.8 I3D (Carreira & Zisserman, 2017) 80.9
Ours (full model) 75.7 Disc. Pool (Wang & Cherian, 2019) 81.3
JHMDB using 3D-CNNs Accuracy DSP (Wang & Cherian, 2018) 81.5
Chained (Zolfaghari et al., 2017) 76.1 Ours (I3D+full model) 81.8
I3D + Potion (Choutas et al., 2018) 85.5

13D + Ours (full model) 87.5 HMDB Comparisons

JHMDB Comparisons

Running time: Excluding time to extract CNN features, our scheme runs at about 30
frames per second in producing the representations.
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Conclusions

“* We proposed a novel framework for video representation learning by combining
« Contrastive learning
» Adversarial distribution learning via GANs, and
« Optimal transport.

** We used a Riemannian optimization framework for learning our subspace
representation.

“» Our experiments demonstrate that using adversarially-learned negative examples
provide better contrastive learning using the proposed framework.

Our code will be available soon at https://www.merl.com/research/license/
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