

R2-B2: Recursive Reasoning-Based Bayesian Optimization for No-Regret Learning in Games

Zhongxiang Dai ¹

Yizhou Chen ¹

Bryan Kian Hsiang Low ¹

Patrick Jaillet ²

Teck-Hua Ho³

¹ Department of Computer Science, National University of Singapore

² Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology

³ NUS Business School, National University of Singapore

Overview

Problem:

 Repeated games between boundedly rational, selfinterested agents, with unknown, complex and costly-toevaluate payoff functions.

Solution:

R2-B2: Recursive Reasoning

Model the reasoning process in

interactions between agents

+ Bayesian Optimization

Principled efficient strategies for action selection

Theoretical results:

- No-regret strategies for different levels of reasoning
- Improved convergence for level- $k \ge 2$ reasoning

• Empirical results:

Adversarial ML, and multi-agent reinforcement learning

 Some real-world machine learning (ML) tasks can be modelled as repeated games between boundedly rational, self-interested agents, with unknown, complex and costly-to-evaluate payoff functions.

Adversarial Machine Learning (ML)

Multi-Agent Reinforcement Learning (MARL)

- How do we derive an efficient strategy for these games?
 - The payoffs of different actions of each agent are usually correlated

- Predict the payoff function using Gaussian processes (GP)
- Select actions using Bayesian optimization (BO)

How do we account for interactions between agents in a principled way?

The cognitive hierarchy model of games
 (Camerer et al., 2004) models the recursive
 reasoning process between humans, i.e.,
 boundedly rational, self-interested agents.

- Every agent is associated with a level of reasoning k (cognitive limit):
 - Level-0 Agent: randomizes action
 - Level- $k \ge 1$ Agent: best-responds to lower-level agents

• We introduce **R2-B2**:

Recursive Reasoning-Based Bayesian optimization, to help agents perform effectively in these games through the recursive reasoning formalism

- Repeated games with simultaneous moves and perfect monitoring
- Generally applicable:
 - Constant-sum games (e.g., adversarial ML)
 - General-sum games (e.g., MARL)
 - Common-payoff games

- We focus on the view of Attacker (A), playing against Defender (D)
- Can be extended to games with ≥ 2 agents

Algorithm 1 R2-B2 for attacker \mathcal{A} 's level-k reasoning

- 1: **for** t = 1, 2, ..., T **do**
- 2: Select input action $\mathbf{x}_{1,t}$ using its level-k strategy (while defender \mathcal{D} selects input action $\mathbf{x}_{2,t}$)
- 3: Observe noisy payoff $y_{1,t} = f_1(\mathbf{x}_{1,t}, \mathbf{x}_{2,t}) + \epsilon_1$
- 4: Update GP posterior belief using $\langle (\mathbf{x}_{1,t}, \mathbf{x}_{2,t}), y_{1,t} \rangle$

- Level-0: randomized action selection (mixed strategy)
- Level- $k \ge 1$: best-responds to level-(k-1) agents

Level-k = 0 Strategy

- Require no knowledge about opponent's strategy
- Mixed strategy
- Any strategy, including existing baselines, can be considered as level-0
- Some reasonable choices:
 - Random search
 - EXP3 for adversarial linear bandit
 - **GP-MW** (Sessa et al., 2019); sublinear upper bound on the regret:

$$R_{1,T} = \mathcal{O}(\sqrt{T\log|\mathcal{X}_1|} + \sqrt{T\log(2/\delta)} + \sqrt{T\beta_T\gamma_T})$$

Level-k = 1 Strategy

Sublinear upper bound on the expected regret:

$$\mathbb{E}[R_{1,T}] \le \sqrt{C_1 T \beta_T \gamma_T}$$

- Holds for any opponent's level-0 strategy
- Opponent may not even perform recursive reasoning

Level- $k \geq 2$ Strategy

• Sublinear upper bound on the regret:

$$R_{1,T} \leq \sqrt{C_1 T \beta_T \gamma_T}$$

 Converges faster than level-0 strategy using GP-MW

Attacker's level-k action

 $egin{array}{cccc} \mathbf{x}_{1,t}^k & ext{action} & (k-1) ext{ action} \ \mathbf{x}_{1,t}^k & ext{arg max}_{\mathbf{x}_1 \in \mathcal{X}_1} lpha_{1,t}(\mathbf{x}_1, \mathbf{x}_{2,t}^{k-1}) \end{array}$

Defender's level-

$$\mathbf{x}_{2,t}^{k-1} \triangleq \arg\max_{\mathbf{x}_2 \in \mathcal{X}_2} \alpha_{2,t}(\mathbf{x}_{1,t}^{k-2}, \mathbf{x}_2)$$

Higher level of reasoning ⇒ more computational cost

 Cognitive hierarchy model: humans usually reason at a level ≤ 2 Compute recursively until level 1

R2-B2-Lite for Level-1 Reasoning

- R2-B2-Lite for level-1 reasoning:
 - Better computational efficiency
 - Worse convergence guarantee
- Firstly sample an action from opponent's level-0 strategy: $\widetilde{\mathbf{x}}_{2,t}^0$
- Then select

$$\mathbf{x}_{1,t}^1 \triangleq \arg\max_{\mathbf{x}_1 \in \mathcal{X}_1} \alpha_{1,t}(\mathbf{x}_1, \widetilde{\mathbf{x}}_{2,t}^0)$$

More accurate action sampling

- Theoretical insights:
 - Benefits if opponent's level-0 strategy has smaller variance
 - Asymptotically no-regret if the variance of opponent's level-0 strategy \rightarrow 0

Synthetic Games (2 agents)

- GP-MW level-0 strategy
- Reasoning at one level higher than opponent gives better performance
- Our level-1 agent outperforms the baseline of GP-MW (red vs blue)
- Effect of incorrect thinking about opponent's level of reasoning

Mean regret of agent 1 (legends: level of agent 1 vs. agent 2)

Adversarial Machine Learning (ML)

Adversarial Machine Learning (ML)

- When attacker reasons at one level higher than defender ⇒ higher attack scores, more successful attacks
- The same applies to the defender

Table 1. Average number of successful attacks by \mathcal{A} over 150 iterations in adversarial ML for MNIST and CIFAR-10 datasets where the levels of reasoning are in the form of \mathcal{A} vs. \mathcal{D} .

Levels of reasoning	MNIST (random)	MNIST (GP-MW)	CIFAR-10
0 vs. 0	2.6	4.3	70.1
1 vs. 0	12.8	6.0	113.1
1 vs. 0 (R2-B2-Lite)	10.2	6.8	99.7
0 vs. 1	0.8	0.4	25.2
0 vs. 1 (R2-B2-Lite)	1.8	1.0	29.7
2 vs. 1	3.0	5.2	70.9
1 vs. 2	0.9	0.4	54.0

Adversarial Machine Learning (ML)

- Play our level-1 defender against state-ofthe-art black-box adversarial attacker,
 Parsimonious, used as level-0 strategy
- Among 70 CIFAR-10 images
 - Completely prevent any successful attacks for 53 images
 - Requires ≥ 3.5 times more queries for 10 other images

Figure 3. Loss incurred by Parsimonious with and without our level-1 R2-B2 defender on 4 randomly selected images that are successfully attacked by Parsimonious.

Multi-Agent Reinforcement Learning (MARL)

- Predator-pray game: 2 predators vs 1 prey
- General-sum game
- Prey at level $1 \Rightarrow$ better return for prey
- 1 predator at one level higher ⇒ better return for predators
- 2 predators at one level higher ⇒ even better return for predators

Conclusion and Future Work

 We introduce R2-B2, the first recursive reasoning formalism of BO to model the reasoning process in the interactions between boundedly rational, selfinterested agents with unknown, complex, and costly-to-evaluate payoff functions in repeated games

- Future works:
 - Extend R2-B2 to allow a level-k agent to best-respond to an agent whose reasoning level follows a distribution such as Poisson distribution (Camerer et al., 2004)
 - Investigate connection of R2-B2 with other game-theoretic solution concepts such as Nash equilibrium