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Convex smooth minimization over a spectrahedron

Main optimization problem:

minimize  f(X) := g(AX) + tr(CX)
xeS"cR™" (M)
subject to  tr(X) =1, and X €S,

function g strongly convex and smooth
linear map A and matrix C € S”

trace tr(-), sum of diagonals

positive semidefinite matrices S, i.e., symmetric matrices with
non-negative eigenvalues

unique optimal solution X,
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Applications

minimize  f(X) := g(AX) + tr(CX)
xeS"cR™" (M)
subject to tr(X)=1, and X €87,
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Applications

minimize  f(X) := g(AX) + tr(CX)
xeS"cR™" (M)
subject to tr(X)=1, and X €87,

matrix sensing [RFP10]

matrix completion [CR09, JS10]

phase retrieval [CESV15, YUTC17]
one-bit matrix completion [DPVDBW14]
blind deconvolution [ARR13]

Expect rank r, = rank(X,) < n!
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Projected Gradient (PG)

minimize, .g» f(X) subject to tr(X)=1, X € S],

-~ (M)
SP"
e orthogonal projection: Pgspn(X) = argminy || X — V|,
@ PG: Choose Xy € SP" and n > 0, iterate
Xer1 = Pspr (Xe = nVI(Xt)). (PG)

iteration complexity O(%)
accelerated PG, O(

1)
Bottleneck: O(n?) per iteration due to FULL EVD in Pgpn!
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Projection free method: Frank-Wolfe (FW)
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Projection free method: Frank-Wolfe (FW)

minimize, .g» f(X) subject to tr(X)=1, X € SI,

(M)

SPr

@ FW: choose Xy € SP", iterate

(LOO) Linear Optimization Oracle: Vi = arg minycspn tr(VVF(Xy)).
(LS) Line Search: X1 solves minx—yx,+(1—n)V;.nefo,1) f (X).

o Low per iteration complexity: LOO only needs to compute one
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Projection free method: Frank-Wolfe (FW)

minimize, .g» f(X) subject to tr(X)=1, X € SI, (M)

SPr

@ FW: choose Xy € SP", iterate

(LOO) Linear Optimization Oracle: Vi = arg minycspn tr(VVF(Xy)).
(LS) Line Search: X1 solves minx—yx,+(1—n)V;.nefo,1) f (X).

o Low per iteration complexity: LOO only needs to compute one
eigenvector of V£ (X;)!

Bottleneck: Slow convergence, O(1) iteration complexity
in both theory and practice!
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Many variants:
e Randomized regularized FW [Gar16]
@ In-face direction FW [FGM17]
@ BlockFW [AZHHL17]
e FW with r, = rank(X,) =1 [Garl9]

Shortage: No linear convergence or sensitive to input rank estimate
orr, =1.
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e SpecFW and strict complementarity
@ Spectral Frank-Wolfe (SpecFW)
@ Strict complementarity
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Spectral Frank-Wolfe (SpecFW)

Spectral Frank-Wolfe: choose Xo € SP”, a rank estimate k > 0, iterate
@ kLOO: Compute bottom k eigenvectors V = [v1,. .., vk] € R™ of
Vi(Xe).
o k Spectral Search (kSS): X;11 = 7 X: + VS, VT, in which
nx € R, S, € S¥ solves

min f(nX; + VSV') st. SeSX n+tr(S)=1,7>0.
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Spectral Frank-Wolfe (SpecFW)

Spectral Frank-Wolfe: choose Xo € SP”, a rank estimate k > 0, iterate
@ kLOO: Compute bottom k eigenvectors V = [v1,. .., vk] € R™ of
Vi(Xe).
o k Spectral Search (kSS): X;11 = 7 X: + VS, VT, in which
nx € R, S, € S¥ solves

minf(nX; + VSVT) st. SeSX n+tr(S)=1,1>0.
Both procedure are easy to solve for small k!

Moreover...
° O(%) convergence for general k.
e Linear convergence if k > r,! (also needs strict complementarity)
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Comparison with FW

Two stronger subproblem oracles:

Table: Comparison with FW

FW SpecFW
LOO: Compute one eigenvector v | kLOO: Compute k eigenvectors V
Line Search (LS): k Spectral Search (kSS):
min f(nX: + (1 —n)w ') min f(nX; + VSVT)
st. n € [0,1] st.n>0,SeSk tr(S)+n=1

In fact, when k = 1, SpecFW is FW! Expect at least O(1) convergence
even if k <r,.

How about linear convergence when k > r,?
What is strict complementarity?
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Strict complementarity

Eigenspace of Vf(X,) for the smallest eigenvalue, EV(Vf(X,)) C R"
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Strict complementarity

Eigenspace of Vf(X,) for the smallest eigenvalue, EV(Vf(X,)) C R"

KKT = range(X,) C EV(Vf(X,))
— dim(range(X*)l < Siim(EV(Vf(X*))Z

Vv
=irx =:ky

Note that the smallest eigenvalue has multiplicity at least ry:
Mocr 1 (VF(X)) = - = Aa(VF(X.)).

Here Ap—i+1(VF (X)) is the i-th smallest eigenvalue.
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Strict complementarity

Eigenspace of Vf(X,) for the smallest eigenvalue, EV(Vf(X,)) C R"

KKT = range(X,) C EV(Vf(X,))
= dim(range(X*)l < Siim(EV(Vf(X*)))

Vv
=« —:ks

Note that the smallest eigenvalue has multiplicity at least ry:
An—ro+1(VF(X0)) = - = Aa(VF(X)).
Here Ap—i+1(VF (X)) is the i-th smallest eigenvalue.

Strict complementarity (st. comp.) is r, = k,.
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Strict complementarity

Eigenspace of Vf(X,) for the smallest eigenvalue, EV(Vf(X,)) C R"

KKT = range(X,) C EV(Vf(X,))
= dim(range(X,)) < dim(EV(V(X,)))

Vv
=irx =:ky

Note that the smallest eigenvalue has multiplicity at least ry:
An—r41(VE(X,)) = -+ = An(VF(XS))-
Here Ap—i+1(VF (X)) is the i-th smallest eigenvalue.
Strict complementarity (st. comp.) is r, = k,.

More concretely, st. comp. is an eigengap condition on r.-th and r, + 1-th
smallest eigenvalue:

An—r, (V(X:)) = An—r,+1(VF(X,)) > 0.
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Intuition of linear convergence

Under strict complementarity r, = k,:
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Intuition of linear convergence

Under strict complementarity r, = k,:
@ range(X,) = EV(Vf(X.))
@ Compute V, = [vi,..., v, ], the bottom eigenvectors of V£ (X,).
Q@ X, = V.SV, for some S, € S tr(S) =1
@ Obtain S, by solving

minimize f(V,S,V,') st. Se ST tr(S)=1. (reduced M)

@ Problem (M) is solved given V£ (X,)!
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Intuition of linear convergence

Under strict complementarity r, = k,:
@ range(X,) = EV(Vf(X.))
@ Compute V, = [vi,..., v, ], the bottom eigenvectors of V£ (X,).
Q@ X, = V.SV, for some S, € S tr(S) =1
@ Obtain S, by solving

minimize f(V,S,V,') st. Se ST tr(S)=1. (reduced M)
© Problem (M) is solved given V£ (X,)!

SpecFW is simply algorithimic procedures for step 2 and 4!
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Experimental setup: Quadratic sensing

Quadratic Sensing [CCG15]: recover a rank r, = 3 matrix U, € R™" with
HUhHE = 1 from quadratic measurement y € R"”
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Experimental setup: Quadratic sensing

Quadratic Sensing [CCG15]: recover a rank r, = 3 matrix U, € R™" with
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Experimental setup: Quadratic sensing

Quadratic Sensing [CCG15]: recover a rank r, = 3 matrix U, € R™" with
HUth = 1 from quadratic measurement y € R"”

© random standard gaussian measurements a;
; T
Q (i) = HUIJ aj

2
i =1,...,m m=15nn
E

© y =yo+ cllyll, v, cis the inverse signal-to-noise ratio, v is a
random unit vector

Optimization problem:

minimize f(X):

(Quadratic Sensing)
subject to tr(X)=7, X >=0.

Set 7 = % and ¢ = 0.5 in numerics.
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Low rank solution and strict complementarity

Dimension n | Avg. gap | Avg. recovery error
100 288.06 0.0013
200 505.16 0.00064
400 961.09 0.00031
600 1358.62 0.00021
Table: Verification of low rankness and strict complementarity. Rank r, = 3 in all
Xu _ T
experiments. The recovery error is measured by I |T| UthTUﬁ HF The gap is
b Il

measured by A,_3(VF(X.)) — M\(VF(X)). All the results are averaged over 20
iid trials.

Lijun Ding (Cornell University) June 15, 2020 15 /17



Numerical results k > r,

n = 600,7 =0.5,r =3 n =600,7 =0.5,r =3

0 f 0
G-blockFW | G-blockFW
-2 [ SpecFW -2 i SpecFW
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Time(seconds) Iteration Counter

Figure: k > r,. comparison of algorithms FW, G-blockFW [AZHHL17], and
SpecFW. Left: accuracy vs time. Right: accuracy vs iteration.
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Numerical results k < r,

n=600,7=0.5,r=3
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Figure: k < r,. comparison of algorithms FW, G-blockFW [AZHHL17], and
SpecFW. Left: accuracy vs time. Right: accuracy vs iteration.
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