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Too Long; Didn’t Watch
Our paper
 proposes the optimal retrosynthetic planning 

problem and,
 an A*-like algorithm which learns from experience 

as solution,
 with state-of-the-art performance on a real-world 

benchmark dataset.
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Background: Retrosynthesis Problem
Task: predict synthesis routes for 
target molecules.

Challenge: combinatorial search space. 

Sub-problems:
 One-step retrosynthesis
 Retrosynthetic planning

Target Molecule

Intermediate 
Compounds

Building Blocks
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Background: One-step Retrosynthesis

: the 𝑖𝑖-th set of predicted reactants.
: cost of the 𝑖𝑖-th reaction.
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Background: Retrosynthetic Planning
Plan a synthesis route from the 
reaction candidates produced by one-
step model 𝐵𝐵.

Motivation: find better routes
 shorter with higher yields,
 more chemically sound,
 more economically efficient,
 more environmentally friendly,
 … (you name it)

Target Molecule 𝒕𝒕

Building Blocks 𝑴𝑴
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Problem: Optimal Retrosynthetic Planning
Given: 

a target molecule 𝑡𝑡, a set of building blocks 𝑀𝑀, a one-step model 𝐵𝐵.

Optimal Planning:

Minimize 𝑐𝑐 𝑅𝑅1 + 𝑐𝑐 𝑅𝑅2 + ⋯+ 𝑐𝑐 𝑅𝑅𝑘𝑘

Where 𝑅𝑅1,𝑅𝑅2, … ,𝑅𝑅𝑘𝑘 is a series of possible reactions predicted with 𝐵𝐵 that start 
with molecules in 𝑀𝑀 and ultimately lead to synthesis of 𝑡𝑡.

Note: Practical constraint (efficiency)
 The number of calls to one-step model 𝐵𝐵 should be limited.
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Retro*: Contributions
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 First algorithm to learn from previous planning experience. 
 State-of-the-art performance on a real-world benchmark dataset.
 Able to induce a search algorithm that guarantees finding the optimal solution. 



Retro*: AND-OR Tree Representation

 Each molecule is encoded as an `OR` node 
(like 𝑚𝑚), requiring at least one of its children 
to be ready.

 Each reaction is encoded as an `AND` node 
(like 𝑃𝑃), requiring all children to be ready.

 All building blocks are ready.
 Solution found when the root is ready.

Example:
Reaction 𝑷𝑷: 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝒄𝒄 + 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝒅𝒅 → 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝒎𝒎.
Reaction 𝑸𝑸: 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝒇𝒇 → 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝒎𝒎.
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Retro*: Algorithm Framework
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Key Idea: Prioritize the synthesis of the molecules in the current best plan.
Definition of 𝑽𝑽𝒕𝒕(𝒎𝒎|𝑻𝑻): under the current search tree 𝑇𝑇, the cost of the current best 
plan containing 𝑚𝑚 for synthesizing target 𝑡𝑡.



Retro*: Computing 𝑉𝑉𝑡𝑡(𝑚𝑚|𝑇𝑇) via Tree-DP
By decomposing 𝑉𝑉𝑡𝑡 𝑚𝑚 𝑇𝑇 into simpler components in a recursive fashion, we can 
compute its value efficiently via tree-structured dynamic programming.

(2) Define reaction number 𝒓𝒓𝒓𝒓(⋅ |𝑻𝑻): 
minimum estimated cost needed for a 
molecule/reaction to happen in the 
current tree.

(1) Boundary case: 𝑽𝑽𝒎𝒎 ≡ 𝑽𝑽𝒎𝒎 𝒎𝒎 ∅ , the cost of synthesizing frontier node 𝑚𝑚.

(3) Compute 𝑽𝑽𝒕𝒕(𝒎𝒎|𝑻𝑻) with 𝒓𝒓𝒓𝒓 ⋅ 𝑻𝑻 .
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Retro*: Example for Computing 𝑉𝑉𝑡𝑡(𝑚𝑚|𝑇𝑇)

𝑎𝑎

𝑡𝑡

𝑃𝑃 𝑄𝑄

𝑏𝑏 𝑐𝑐 𝑑𝑑 𝑒𝑒

𝑅𝑅

𝑓𝑓 𝑘𝑘

11

We learn 𝑽𝑽𝒎𝒎 ≡ 𝑽𝑽𝒎𝒎 𝒎𝒎 ∅ , the cost of synthesizing 𝑚𝑚.

𝑉𝑉𝑡𝑡 𝑓𝑓|𝑇𝑇 = 𝑐𝑐 𝑃𝑃 + 𝑐𝑐 𝑅𝑅 + 𝑉𝑉𝑎𝑎 + 𝑉𝑉𝑐𝑐 + 𝑉𝑉𝑓𝑓 + 𝑉𝑉𝑘𝑘
𝑔𝑔𝑡𝑡(𝑓𝑓|𝑇𝑇) ℎ𝑡𝑡(𝑓𝑓|𝑇𝑇)𝐴𝐴∗ algorithm!

𝐴𝐴∗ Admissibility: guarantee finding an optimal 
solution if 𝑉𝑉𝑚𝑚 is a lower-bound!

Note: 0 is the lower-bound of 𝑉𝑉𝑚𝑚 for any molecule 
𝑚𝑚 if 𝑐𝑐 𝑅𝑅 = − log Prob 𝑅𝑅 ≥ 0.

𝑟𝑟𝑟𝑟 𝑡𝑡 𝑇𝑇 = min 𝑟𝑟𝑟𝑟 𝑃𝑃 𝑇𝑇 , 𝑟𝑟𝑟𝑟 𝑄𝑄 𝑇𝑇
𝑟𝑟𝑟𝑟 𝑄𝑄|𝑇𝑇 = 𝑐𝑐 𝑄𝑄 + 𝑉𝑉𝑑𝑑 + 𝑉𝑉𝑒𝑒



Retro*: Learning to Plan
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…
Collect planning data

Learn 𝑉𝑉𝑚𝑚

𝑎𝑎

𝑡𝑡

𝑃𝑃 𝑄𝑄
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Retro*: Training Objective

Dataset: each tuple contains target molecule 𝑚𝑚𝑖𝑖 , best 
synthesis cost 𝑣𝑣𝑖𝑖 , expert reaction 𝑅𝑅𝑖𝑖 , and one-step retrosynthesis candidates 𝐵𝐵(𝑚𝑚𝑖𝑖).

Regression loss:Optimize

Consistency loss:
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Constraint: 

𝑐𝑐 𝑅𝑅𝑗𝑗 + �
𝑚𝑚′∈𝑆𝑆𝑗𝑗

𝑉𝑉𝑚𝑚′ > 𝑣𝑣𝑖𝑖 + 𝜖𝜖



Exp: Creating Benchmark Dataset
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Exp: Baselines & Evaluation

Baselines:
o Greedy - greedy Depth First Search: prioritize the reaction with the highest likelihood.
o MCTS - Monte-Carlo Tree Search (Segler et al., 2018).
o DFPN-E - a variant of Proof Number Search (Kishimoto et al., 2019).
o 𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝒐𝒐∗-𝟎𝟎 - obtained by setting 𝑉𝑉𝑚𝑚 to a lower-bound, 0 (ablation study).

Evaluation:
o Time: number of calls to the one-step model (≈ 0.3𝑠𝑠 per call, occupying > 99% time).
o Solution quality: total costs of reactions / number of reactions (length).
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Exp: Results

Figure: Counts of the best 
solutions among all algorithms in 
terms of length/cost.

Figure: Influence of time on 
performance.
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Exp: Sample Solution

Expert route: 
requires 4 steps 
to synthesis the 
molecule

Retro∗ solution

Figure: Sample solution route produced by Retro∗. Expert route requires 3 
more steps to synthesize one molecule in the route.
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Future Work
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Learning to plan in theorem proving
 Same search space

Polymer retrosynthesis
 More patterns and constraints
 Chain reaction

 No polymerization dataset
 Transfer knowledge from small molecules



Thanks for listening!

Paper Full Slides

For more details, please refer to our paper/full slides/poster: 

Poster
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http://binghongchen.net/pdf/ICML-retrosyn-paper.pdf
http://binghongchen.net/pdf/ICML-retrosyn-slide.pdf
http://binghongchen.net/pdf/ICML-retrosyn-poster.pdf


Background: Reaction Template

20

NH

O
O

O

O

N

O

O

O

O

O

Product C

C:2
C:1

N:4
C:3

C:5

S

O
O

O

C:1
C:2

C:3
N:4

C:5+

O

O

O

O

O

NH

S

O

OONH
O

O

O

O

Reactant A Reactant B

 Known Retrosynthesis

 Template: subgraph (i.e., reaction core highlighted in red) rewriting rules 

 Given a product, how to apply template? 

RDKit’s runReactants will produce list of precursors



One-step Retrosynthesis

 Template-based approach
 Graph Logic Network
 Dai, Hanjun, et al. "Retrosynthesis Prediction with Conditional Graph Logic 

Network." Advances in Neural Information Processing Systems. 2019.

 Template-free approach
 Seq2seq models
 Karpov, Pavel, Guillaume Godin, and Igor V. Tetko. "A transformer model for 

retrosynthesis." International Conference on Artificial Neural Networks. 
Springer, Cham, 2019.
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Existing Planners

Monte Carlo Tree Search
Segler, Marwin HS, Mike Preuss, and Mark P. Waller. "Planning chemical syntheses 
with deep neural networks and symbolic AI." Nature 555.7698 (2018): 604-610.

Proof Number Search
Kishimoto, Akihiro, et al. "Depth-First Proof-Number Search with Heuristic Edge Cost 
and Application to Chemical Synthesis Planning." Advances in Neural Information 
Processing Systems. 2019.

22



Existing Planner – MCTS
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Search Tree Representation



Existing Planner – MCTS
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Algorithm framework

Rollout time-consuming



Existing Planner – PNS
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 Formulate the retrosynthesis problem as a two-player game.
 Optimize for quickly finding one route.
 Require hand-designed criterion during search.

Search Tree Representation



Existing Planners Summary

Monte Carlo Tree Search
 Rollout time-consuming and comes 

with high variance.
 Sparsity in variance estimation.
 Not optimized for total costs.

Proof Number Search
 Formulation mismatch.
 Hand-designed criterion during search, 

hard to tune and generalize.
 Not optimized for total costs.
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Algorithm Framework

(a) Select the most promising frontier node
(b) Expand the node with one-step model

(c) Update current estimate of 𝑉𝑉 function

𝑚𝑚𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

𝑅𝑅𝑖𝑖

𝑆𝑆𝑖𝑖
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Retro*: Theoretical Guarantees

Proof
Similar to 𝐴𝐴∗ admissibility proof.

Remark
0 is the lower-bound of 𝑉𝑉𝑚𝑚 for any molecule 𝑚𝑚 if cost is defined as 
the negative log-likelihood.
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Retro*: Representing Value Function 𝑉𝑉𝑚𝑚
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𝑉𝑉𝑚𝑚

molecule fingerprint value prediction



One-step Model Training

 Template-based MLP model.
 There are ∼380K distinct templates.
 Multi-class classification.
 Predicts top-50 reaction templates for each target.
 Apply templates to obtain the corresponding reactants.

 Trained on training reaction set.

 Cost defined as the negative log-likelihood of the predicted reaction.
 Minimize cost = maximize likelihood.
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Exp: Results (2)

Performance Table: The number of shorter and better routes are obtained from 
the comparison against the expert routes, in terms of length and total costs.
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