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Too Long; Didn't Watch

Our paper s

= proposes the optimal retrosynthetic planning R

problem and, | | . o, o2,

= an A*-like algorithm which learns from experience |

as solution, So B Lng

= with state-of-the-art performance on a real-world
benchmark dataset.
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Background: Retrosynthesis Problem

Task: predict synthesis routes for Building Blocks
target molecules. J
Challenge: combinatorial search space. b ®
\\
\
Sub-problems: 0 \\
= One-step retrosynthesis % < Intermediate
= Retrosynthetic planning ~ Compounds

Target Molecule



Background: One-step Retrosynthesis
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S; : the i-th set of predicted reactants.
c(R;): cost of the i-th reaction.



Background: Retrosynthetic Planning

Plan a synthesis route from the Building Blocks M cost
reaction candidates produced by one- o 1N

step model B.

Motivation: find better routes

= shorter with higher yields,
more chemically sound,
more economically efficient,
more environmentally friendly,
.. (you name it)
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Problem: Optimal Retrosynthetic Planning

Given:
a target molecule t, a set of building blocks M, a one-step model B.

Optimal Planning:
Minimize c(R{) + c(Ry) + -+ c(Ry)

Where R{,R,, ..., R} is a series of possible reactions predicted with B that start
with molecules in M and ultimately lead to synthesis of t.

Note: Practical constraint (efficiency)
= The number of calls to one-step model B should be limited.



Retro*: Contributions

|
I—» (a) Selection » (b) Expansion » (c) Update
Pick a frontier node with the Expand the node with an Propagate the values to
best V,(m|T) AND-OR stump related nodes

= First algorithm to learn from previous planning experience.
= State-of-the-art performance on a real-world benchmark dataset.
= Able to induce a search algorithm that guarantees finding the optimal solution.



Retro*: AND-OR Tree Representation

= Each molecule is encoded as an OR node
(like m), requiring at least one of its children
to be ready.

= Each reaction is encoded as an AND node
(like P), requiring all children to be ready.

= All building blocks are ready.

= Solution found when the root is ready.

Example:
Reaction P: molecule ¢ + molecule d — molecule m.
Reaction Q: molecule f — molecule m.



Retro*: Algorithm Framework

|
I—» (a) Selection » (b) Expansion » (c) Update
Pick a frontier node with the Expand the node with an Propagate the values to
best V,(m|T) AND-OR stump related nodes

Key Idea: Prioritize the synthesis of the molecules in the current best plan.
Definition of V,(m|T): under the current search tree T, the cost of the current best
plan containing m for synthesizing target t.



Retro*: Computing V,(m|T) via Tree-DP

By decomposing V. (m|T) into simpler components in a recursive fashion, we can
compute its value efficiently via tree-structured dynamic programming.

(1) Boundary case: V,, = V,,,(m|®), the cost of synthesizing frontier node m.

(2) Define reaction number rn(- |T):
minimum estimated cost needed for a

molecule/reaction to happen in the
current tree.

(3) Compute V,(m|T) with rn(- |T).

rn(R|T) = ) + Z n(m/|T)
mech(R)
rn(m|T) = Vin, m € F(T)
- Min gech(m) T(R|T), otherwise

VimT) = > )

re Am|T) NV (T)

+ Z rn(m’|T)

m’ eV (T),pr(m’)eA(m|T)



Retro*: Example for Computing V,(m|T)

WelearnV,, = V,,(m|®), the cost of synthesizing m.

rn(t|T) = min(rn(PlT),rn(QlT))
m(QIT) = c(@Q) +Vyg + 1,
Vi(fIT) =c(P) + c(R) + V, + V. + Vs + Vy
A* algorithm!  g.(f|T) he (f|T)

A* Admissibility: guarantee finding an optimal
solution if 1, is a lower-bound!

Note: 0 is the lower-bound of V,,, for any molecule
m if c(R) = —logProb(R) = 0.
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Retro*: Learning to Plan

Collect planning data

Learn V;, Plan with learned model



Retro*: Training Objective

Dataset: R;,.i, = {rt; = (m;,v;, R;, B(m;))} each tuple contains target molecule m;, best

synthesis cost v;, expert reaction R;, and one-step retrosynthesis candidates B(m;).

Optimize
min ErtiNRt’r'ain |:£T€g (Tt?’) —|_

Vi

AERJNB(TR@)\{R@} [ﬁcon(?nti? RJ)] ]

Constraint:

c(R;) + z Vo >v; +€

Regressionloss: L, ,(rt;) =

Consistency loss:

['con(rt?la RJ) = max {

0,v; + € —c(R

lec.
mES]
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Exp: Creating Benchmark Dataset
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Exp: Baselines & Evaluation

Baselines:
o Greedy - greedy Depth First Search: prioritize the reaction with the highest likelihood.
o MCTS - Monte-Carlo Tree Search (Segler et al., 2018).
- a variant of Proof Number Search (Kishimoto et al., 2019).
- obtained by setting V;,, to a lower-bound, 0 (ablation study).

Evaluation:
o Time: number of calls to the one-step model (= 0.3s per call, occupying > 99% time).
o Solution quality: total costs of reactions / number of reactions (length).



Exp: Results
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Exp: Sample Solution

Retro* solution

O S = -
QO OO !

Expert route:
requires 4 steps
to synthesis the
molecule

Figure: Sample solution route produced by Retro*. Expert route requires 3
more steps to synthesize one molecule in the route.

17



Future Work

Learning to plan in theorem proving
= Same search space

Polymer retrosynthesis
= More patterns and constraints
= (Chain reaction
= No polymerization dataset
= Transfer knowledge from small molecules



Thanks for listening!

For more details, please refer to our paper/full slides/poster:



http://binghongchen.net/pdf/ICML-retrosyn-paper.pdf
http://binghongchen.net/pdf/ICML-retrosyn-slide.pdf
http://binghongchen.net/pdf/ICML-retrosyn-poster.pdf

Background: Reaction Template

* Known Retrosynthesis

JF% { g
“he + o
X ¢

\;

Product C Reactant A Reactant B
= Template: subgraph (i.e., reaction core highlighted in red) rewriting rules
\
/C:'I ~ //C:3 _0 | 4
C:2 N:4 > = \0:1 C2 C:3//N N
1 | \\
C:5 O

= Given a product, how to apply template?

RDKit's runReactants will produce list of precursors



One-step Retrosynthesis

= Template-based approach
= Graph Logic Network
= Dai, Hanjun, et al. "Retrosynthesis Prediction with Conditional Graph Logic
Network." Advances in Neural Information Processing Systems. 2019.
= Template-free approach
= Seq2seq models

= Karpov, Pavel, Guillaume Godin, and Igor V. Tetko. "A transformer model for
retrosynthesis." International Conference on Artificial Neural Networks.
Springer, Cham, 2019.
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Existing Planners

Monte Carlo Tree Search

Segler, Marwin HS, Mike Preuss, and Mark P. Waller. "Planning chemical syntheses
with deep neural networks and symbolic Al." Nature 555.7698 (2018): 604-610.

Proof Number Search

Kishimoto, Akihiro, et al. "Depth-First Proof-Number Search with Heuristic Edge Cost
and Application to Chemical Synthesis Planning.” Advances in Neural Information

Processing Systems. 2019.
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Existing Planner — MCTS

a Chemical representation of the synthesis plan b Search tree representation
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Search Tree Representation
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Existing Planner — MCTS

Synthesis planning with Monte Carlo tree search

p

(1) Selection

Pick most
promising position

>

N

(2) Expansion »  (3) Rollout > (4) Update
Retroanalyse, add new nodes to Pick and evaluate Incorporate evaluation
tree by expansion procedure (see b) new position in the search tree

B Oc

Rollout time-consuming

Algorithm framework
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Existing Planner — PNS

= Formulate the retrosynthesis problem as a two-player game.
= Optimize for quickly finding one route.
= Require hand-designed criterion during search.

1 i | 0
1

1 00

52 OR node AND node

Search Tree Representation
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Existing Planners Summary

Monte Carlo Tree Search e

= Rollout time-consumingandcomes /N

with high variance.
» Sparsity in variance estimation. {a,b,c,d}
= Not optimized for total costs.

Proof Number Search = O molecule

= Formulation mismatch.

= Hand-designed criterion during search, Q]
hard to tune and generalize.

= Not optimized for total costs.

reaction

26



Algorithm Framework

Algorithm 1: Retro™(t)

1
2
3
4
5
6
7
8

9

Initialize T' = (V, £) with V + {t}, £ « 0;

while route not found do
Mpext < argmax,, « r(r) V;ﬁ(m)>
{R’i,a Sz'a C(Rz) i=1 < B(mnext);
for: < 1tokdo
Add R; to T"under my,ext;
for j < 1to |S;| do

|_ Add S;; to T" under R;;

 Update V;(m) for m in F(7T');

10 return route;

(a) Select the most promising frontier node
(b) Expand the node with one-step model

mnext
R;
Si

(c) Update current estimate of V function
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Retro*: Theoretical Guarantees

Theorem 1 Assuming V,,, or its lowerbound is known for
all encountered molecules m, Algorithm [ is guaranteed
to return an optimal solution, if the halting condition is
changed to “the total costs of a found route is no larger than

»

argmin,, ¢ r(r) Vi (m)”.

Proof
Similar to A* admissibility proof.

Remark
0 is the lower-bound of V,,, for any molecule m if cost is defined as

the negative log-likelihood.



Retro*: Representing Value Function V,

Vin

molecule fingerprint value prediction
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One-step Model Training

B() T — {R@,S,,,,C(R@) le

= Template-based MLP model.

= There are ~380K distinct templates.

= Multi-class classification.

= Predicts top-50 reaction templates for each target.

= Apply templates to obtain the corresponding reactants.

= Trained on training reaction set.

= Cost defined as the negative log-likelihood of the predicted reaction.
= Minimize cost = maximize likelihood.



Exp: Results (2)

Algorithm Retro*  Retro*-0 DFPN-E  MCTS  Greedy DFS
Success rate 86.84%  79.47% 55.26%  33.68% 22.63%

Time 156.58 208.58 279.67 380.02 388.15
Shorter routes 50 52 59 30 11
Better routes 112 102 25 18 26

Performance Table: The number of shorter and better routes are obtained from
the comparison against the expert routes, in terms of length and total costs.
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