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Overview




Introduction

Large-Scale Linear Programs (LP) has several applications on web
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Problems of Extreme Scale

min ¢’z st. Az <b
X

RBillions to Trillions or Variables

Ad-hoc Solutions
Splitting the problem to smaller sub-problem = No guarantee of optimality

- xploit the Structure of the Problem

Solve a Perturbation ot the Primal Problem.

Smooth Gradient
E fficient computation



Motivating Example

-riend or Connection Matching Problem max ZZ] TijPij (Total Value)

o S.t. Z .a:ijp? > bg (Total Invite Constraint)
Maximize Value 0.7

Total invites sent is greater than a threshold ZZ zijp;; < bj, j€L, ..., J},
Limit on invitations per member to prevent .
overwhelming members Z] Yig = 5 peil.. I}
p; - \/OI.Je Model Seqle:
p“ - Invitation Mode | | | . [~ 108
x;; - Probability of showing user j to user | . ] ~10*
n ~ 102

(1 Trilion Decision Variables)



General Framework
min ¢! r . Usersi, ltemsj, and Xx;;isthe association
o between (i, J)
st. Ar <) . n = ] canrange in 100s of millions to 10s of trillions
o . C; are simple constraints (i.e. allows for efficient

prOJechons)

S e — e = T (1) mm Global Constraints
T * i A Cohort Level Constraints
- g: Total Invite Constraint
A D11 D1y =
; : A(Q) & [tem level constraints
' ' - g: Limits on invitation per user
Dm2 1 DTTLQI
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Solving The Problem

Primal LP: Py := min ¢’ x S.1. Ax < b, x;€C;,1 € |1

X

O]d idea: Perturbation Of the LP (Mangasarian & Meyer "/9; Nesterov ‘05; Osher et al ‘11...)

Primal QP: PW* ‘= min ¢z | gQSTLE S.t. Axr < b, x; €C;,1 € [[]
X
/ Dualize
Dual QP: g~ (A) 1= a;Ienll[Iclz,,, {CT:I: + %$T$ + )\T(A:L' — b)}
Key Observation: length(\) is small
_ X
Solve the Dual QP: g, 1= ax gy(A) = P;

T

Strong duality



Solving The Problem

X
T, € argmin ¢’ x ng:ﬁ S.t. Ax < b, x; €C;,1 €|l

° ObS@I’VOﬁOﬂ-lZ - xact Regu]arizution (Mangasarian & Meyer "/9; Friedlander Tseng ‘08)

744 > 0 such that x§ solves LP for all v < #

. Y
Dual: ~ g(A) = min, {CT:L‘ +or e+ A (Ar - b)}

g, i= max gy(A)

e Observation-2: Error Bound (Nesterov ‘05)
95— Pyl =0()




Solving The Problem

max A
A>0 91(N -“CLIPSE Algorithm

* Proximal Gradient Based methods
(Acceleration, Restarts)
* Optimal convergence rates.

* Observation-1: Dual objective is smooth (implicitly defined)
[Nesterov ‘09]

A= g4(A) is O(1/7)-smooth

* Qbservation-2: Gradient expression (Danskin’s Theorem)

Vg,(A) =Az(\) — b z(\) € argmin {CT.CE + LaTy M (Az — b)}
~— ZIZ‘EHC?; 2

Ti(\) = I, (—E(AT)\ + c)i>

> \ 4
V

» Key bottleneck: Matrix-vector multiplication
* Simple projection operation



Overall Algorithm

-~
Input:

\l

~

Apxns {C }z 1,b,¢,7y

/

-~

\l

At Iteration k:

Dual \*

~

/

Next
Ilteration

a N
Get Primal:
1
é\?z()\k) — HC,,; (——(AT)\k -+ C)Z)
N ! /)
a N
Compute Gradient:
Vg, (A®) = Az(X*) = b
N /
/ Update Dual: \
GD: )\k+1 ()\k +77ngy()\k))
AGD: \F = (§ - Ung(f ))+
gk—l—l _ )\k ‘|‘ﬁk(/\k L )\k 1)

L /




Applications




Volume Optimization

Maximize Sessions

Total number of emails /
notifications bounded

Clicks above a threshold
Disablement below a threshola

Generalized from global to cohort level
systems and member level systems

max

S.t.

i pt (Total Sessions)

r11<e¢;  (Sends are Bounded)
a:Tp2 > c9 (Clicks above a threshold)

1 p? < ¢3 (Disables below a threshold)
0 <z <1 (Probability Constraint)



Multi-Objective Optimization

Maximize Metric 1

M
m

M

Most

etric 2 is greater than o
INTMUM
etric 4 is bounded

Product Applications

- ngagement vs Revenue

Sessions vs Notitication /

- mai

Volume

Mem

oer Value vs Annoyance

§ : 1
T ©,]

S.t.

2
Zi’j TijDi; = bo

.
Zz’,j mszz‘j S bl

x; € Ci, 1 € |I]

(Metric 1)
(Metric 2)

(Metric 3)



System Infrastructure




System Architecture

Data is collected tfrom dir
and restructured to torm |

erent sources

put4, b, c

Objective
and Problem
Constraints

|
Offline Data T Thpat
Collection A b c
T _—

—



System Architecture

Data is collected rom ditterent sources
and restructured to form Input 4, b, ¢

'he solveris called which runs the overall

terations.
The data is split into multiple executors ano
they perform matrix vector multiplications in

narallel
The driver collects the dual and broadcasts

it back to continue the iterations

|
o - Objective
Offiine Data T nput and Problem
Collection A.bc [¥ | Constraints
S — \/\
Y
Solver
5 R Matrix A
Primal
Briver Executor 1 |~ and dual
\ »
+
i Y
Matrix A
Executor 2 — P(r,lrcr,\al'
and dua
If not within L A
tolerance, go to
next iteration

Matrix A
Executor N Primal
and dual




System Architecture

<l g Objective
~ Tnput and Problem

Data is collected rom ditterent sources

Offline Data

' I
and restructured to form Input 4, b, ¢ | ] R -
. . . Y

he solver is called which runs the overall Solver
iterations. ( 1 P
: o : Driver Executor 1 and dual
The data is split into multiple executors and ! |
they perform matrix vector multiplications in 5 i R
OOI’OH@] Executor 2 — Nllar:rr:w);f\
The driver collects the dual and broadcasts I not wit¥in i e
. . . . tolerance, go to
1 bOCk O continue the teratons nextiteraon ~\
.
On convergence the final duals are Executor N || MEixA
o . . o and dual
returned which are used in online serving «D. .

I

[ Final Duals J Online Serving




Detailed Spark Implementation

Data Representation - stimating Primall - stimating Gradient
» (Customized DistributedMatrix  Component wise Matrix * Most computationally

AP Multiplications and expensive step to get AZ(A)
e AW : BlockMatrix APl from Projections are done in * [he worst-case complexity is

Apache MLLb paralle 0(n = 1))
e \We cache 4 in executor and

broadcast duals to minimize
communication cost.

¢ AQ):Leverage Diagondl
structure and implement
DistributedVector APl using

RDD (index, Vector) * [he overall complexity to get
the primalis O (J)
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Comparative Results

We compare with a technigue of
splitting the problem (SOTA):

n Method Objective RI;rsliI(Iilil
min ¢z st Agz <by, i €Cii€ Sk ECLIPSE | 3.751 x 10° | 6.91 x 10—~
10 | Average 1 | 3.748 x 10° | 3.73 x 10~
Average 2 | 3.747 x 10° | 1.03 x 10—?
A=[Ar:..., Ag] ECLIPSE | 3.750 x 10° | 7.12 x 10~ 2
K 107 | Average 1 | 3.747 x 10° | 1.71 x 107?
h— Z by, Average 2 | 3.747 x 10° | 3.73 x 10~3
— ECLIPSE | 3.750 x 107 | 6.56 X 10~
10% | Average1 | 3.747 x 10" | 1.17 x 107?
¢c=(c1,...,CK) Average 2 | 3.747 x 107 1.73 x 102
K Table 1. Comparison of our algorithm with the averaging method.
5\ - i Z j\k Average 1 and 2 correspond to a split size of 10° and 10* respec-
o K tively.
k=1

Please see the full paper for other comparisons



Real Data Results

lest on large-scale volume

L. . Time(H
optimization and matching Problem Scale n EcirﬁféEou?CS
oroblems 107 0.8 2.0

go{tlilrrrnliezation 9) 10° 1.3 >24
Spark 2.3 with up to 800 P 10° 4.0 >24
executors Matchin 10 4.5 >24
S 101 7.2 >24
Problem (10) 1012 11.9 S04
1 Trillion use case ’
converged within 12 hours Table 2. Running time for Extreme-Scale Problems on real data

SCS: O’'Donoghue et al (2016)
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Key [akeaways

At

fro

‘amework

or solving structured LP problems arising in several applications

M Internet 1

ndustry

Most multi-objective optimization can be framed through this.

Given the computation resources, we can scale to extremely large problems.

We can easily scale up to 1 Trillion variables on real data.
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