ECLIPSE: An Extreme-Scale Linear Program Solver for Web-Applications

Kinjal Basu LinkedIn Al

Amol Ghoting LinkedIn Al

Rahul Mazumder MIT

Yao Pan LinkedIn Al

Agenda

- Overview
- CLIPSE: Extreme Scale LP Solver
- 3 Applications
- 4 System Architecture
- 5 Experimental Results

Overview

Introduction

Large-Scale Linear Programs (LP) has several applications on web

Problems of Extreme Scale

$$\min_{x} c^{T} x \quad \text{s.t.} \quad Ax \leq b$$

- Billions to Trillions of Variables
- Ad-hoc Solutions
 - Splitting the problem to smaller sub-problem \rightarrow No guarantee of optimality
- Exploit the Structure of the Problem
- Solve a Perturbation of the Primal Problem.
 - Smooth Gradient
 - Efficient computation

Motivating Example

Friend or Connection Matching Problem

- Maximize Value
 - Total invites sent is greater than a threshold
 - Limit on invitations per member to prevent overwhelming members
- p^1 Value Model
- p^2 Invitation Model
- x_{ii} Probability of showing user j to user i

$$\max_{x} \quad \sum_{i,j} x_{ij} p_{ij}^{1} \qquad \text{(Total Value)}$$
s.t.
$$\sum_{i,j} x_{ij} p_{ij}^{2} \ge b_{0} \qquad \text{(Total Invite Constraint)}$$

$$\sum_{i} x_{ij} p_{ij}^{2} \le b_{j}, \qquad j \in \{1, \dots, J\},$$

$$\sum_{i} x_{ij} = 1, \qquad i \in \{1, \dots, I\}$$

Scale:

- $I \approx 10^8$
- $J \approx 10^4$
- . $n \approx 10^{12}$ (1 Trillion Decision Variables)

General Framework

$$\min_{x} c^{T}x$$
s.t. $Ax \leq b$

$$x_{i} \in C_{i}, i \in [I]$$

- Users i, Items j, and x_{ij} is the association between (i,j)
- n = II can range in 100s of millions to 10s of trillions
- C_i are simple constraints (i.e. allows for efficient projections)

$$A^{(2)}$$
 — Item level constraints Eg: Limits on invitation per user

ECLIPSE: Extreme Scale LP Solver

Solving The Problem

$$P_0^* := \min_{x} c^T x$$

$$Ax \leq b, \quad x_i \in \mathcal{C}_i, i \in [I]$$

Old idea: Perturbation of the LP (Mangasarian & Meyer '79; Nesterov '05; Osher et al '11...)

$$P_{\gamma}^* := \min_{x} c^T x + \frac{\gamma}{2} x^T x$$

$$P_{\gamma}^* := \min_{x} c^T x + \frac{\gamma}{2} x^T x$$
 s.t. $Ax \leq b, x_i \in \mathcal{C}_i, i \in [I]$

$$g_{\gamma}(\lambda) := \min_{x \in \prod \mathcal{C}_i} \left\{ c^T x + \frac{\gamma}{2} x^T x + \lambda^T (Ax - b) \right\}$$

Key Observation:

length(λ) is small

$$g_{\gamma}^* := \max_{\lambda \ge 0} g_{\gamma}(\lambda) = P_{\gamma}^*$$

Strong duality

Solving The Problem

Primal:
$$P_0^* := \min_x c^T x$$
 s.t. $Ax \le b, x_i \in \mathcal{C}_i, i \in [I]$ $x_\gamma^* \in \underset{x}{\operatorname{argmin}} c^T x + \frac{\gamma}{2} x^T x$ s.t. $Ax \le b, x_i \in \mathcal{C}_i, i \in [I]$

• Observation-1: Exact Regularization (Mangasarian & Meyer '79; Friedlander Tseng '08) $\exists \bar{\gamma} > 0 \text{ such that } x_{\gamma}^* \text{ solves LP for all } \gamma \leq \bar{\gamma}$

Dual:
$$g_{\gamma}(\lambda) := \min_{x \in \prod \mathcal{C}_i} \left\{ c^T x + \frac{\gamma}{2} x^T x + \lambda^T (Ax - b) \right\}$$

$$g_{\gamma}^* := \max_{\lambda \geq 0} g_{\gamma}(\lambda)$$

• Observation-2: Error Bound (Nesterov '05) $|g_{\gamma}^* - P_0^*| = O(\gamma)$

Solving The Problem

$$\max_{\lambda \geq 0} g_{\gamma}(\lambda)$$

• Observation-1: Dual objective is smooth (implicitly defined) [Nesterov '05]

$$\lambda \mapsto g_{\gamma}(\lambda)$$
 is $O(1/\gamma)$ -smooth

Observation-2: Gradient expression (Danskin's Theorem)

ECLIPSE Algorithm

- Proximal Gradient Based methods (Acceleration, Restarts)
- Optimal convergence rates.

$$\nabla g_{\gamma}(\lambda) = \underbrace{A\hat{x}(\lambda)}_{x \in \Pi C_{i}} - b \qquad \hat{x}(\lambda) \in \underset{x \in \Pi C_{i}}{\operatorname{argmin}} \left\{ c^{T}x + \frac{\gamma}{2}x^{T}x + \lambda^{T}(Ax - b) \right\}$$

$$\hat{x}_{i}(\lambda) = \Pi_{C_{i}} \left(-\frac{1}{\gamma}(A^{T}\lambda + c)_{i} \right)$$

- Key bottleneck: Matrix-vector multiplication
- Simple projection operation

Overall Algorithm

Applications

Volume Optimization

Maximize Sessions

- Total number of emails / notifications bounded
- Clicks above a threshold
- Disablement below a threshold

Generalized from global to cohort level systems and member level systems

$$\max_{x} \quad x^T p^1$$
 (Total Sessions)

s.t. $x^T 1 \le c_1$ (Sends are Bounded)
 $x^T p^2 \ge c_2$ (Clicks above a threshold)
 $x^T p^3 \le c_3$ (Disables below a threshold)
 $0 \le x \le 1$ (Probability Constraint)

Multi-Objective Optimization

- Maximize Metric 1
 - Metric 2 is greater than a minimum
 - Metric 3 is bounded
 - •

Most Product Applications

- Engagement vs Revenue
- Sessions vs Notification / Email Volume
- Member Value vs Annoyance

$$\max_{x} \quad \sum_{i,j} x_{ij} p_{ij}^{1} \qquad \text{(Metric 1)}$$
s.t.
$$\sum_{i,j} x_{ij} p_{ij}^{2} \ge b_{0} \qquad \text{(Metric 2)}$$

$$\sum_{i,j} x_{ij} p_{ij}^{3} \le b_{1} \qquad \text{(Metric 3)}$$

$$\vdots$$

 $x_i \in \mathcal{C}_i, i \in [I]$

System Infrastructure

System Architecture

. Data is collected from different sources and restructured to form $\ln \Delta A, b, c$

System Architecture

- Data is collected from different sources and restructured to form Input A,b,c
- The solver is called which runs the overall iterations.
 - The data is split into multiple executors and they perform matrix vector multiplications in parallel
 - The driver collects the dual and broadcasts it back to continue the iterations

System Architecture

- Data is collected from different sources and restructured to form Input A, b, c
- The solver is called which runs the overall iterations.
 - The data is split into multiple executors and they perform matrix vector multiplications in parallel
 - The driver collects the dual and broadcasts it back to continue the iterations
- On convergence the final duals are returned which are used in online serving

Detailed Spark Implementation

Data Representation

- Customized DistributedMatrix
 API
- $A^{(1)}$: BlockMatrix API from Apache MLLib
- A⁽²⁾: Leverage Diagonal structure and implement DistributedVector API using RDD (index, Vector)

Estimating Primal

- Component wise Matrix Multiplications and Projections are done in parallel
- We cache A in executor and broadcast duals to minimize communication cost.
- The overall complexity to get the primal is O(J)

Estimating Gradient

- Most computationally expensive step to get $A\hat{x}(\lambda)$
- The worst-case complexity is O(n = IJ)

Experimental Results

Comparative Results

• We compare with a technique of splitting the problem (SOTA):

$$\min_{x} c_k^T x \quad \text{s.t.} \quad A_k x \le b_k, \quad x_i \in \mathcal{C}_i, i \in S_k.$$

$$A = [A_1 : \dots, A_K]$$

$$b = \sum_{k=1}^{K} b_k$$

$$c = (c_1, \ldots, c_K)$$

$$\hat{\lambda} = \frac{1}{K} \sum_{k=1}^{K} \hat{\lambda}_k$$

n	Method	Objective	Primal Residual
10^6	ECLIPSE	$3.751 imes 10^5$	$6.91 imes 10^{-4}$
	Average 1	3.748×10^{5}	3.73×10^{-3}
	Average 2	3.747×10^{5}	1.03×10^{-2}
10^7	ECLIPSE	$3.750 imes 10^6$	7.12×10^{-4}
	Average 1	3.747×10^{6}	1.71×10^{-3}
	Average 2	3.747×10^{6}	3.73×10^{-3}
10 ⁸	ECLIPSE	$3.750 imes 10^7$	$6.56 imes 10^{-4}$
	Average 1	3.747×10^7	1.17×10^{-3}
	Average 2	3.747×10^{7}	1.73×10^{-3}

Table 1. Comparison of our algorithm with the averaging method. Average 1 and 2 correspond to a split size of 10^3 and 10^4 respectively.

Real Data Results

- Test on large-scale volume optimization and matching problems
- Spark 2.3 with up to 800 executors
- 1 Trillion use case converged within 12 hours

Problem	Scale n	Time(Hours)	
riobiciii		ECLIPSE	SCS
Volume	10^{7}	0.8	2.0
	10^{8}	1.3	>24
Optimization (9)	10^{9}	4.0	>24
Matching	10^{10}	4.5	>24
Matching Problem (10)	10^{11}	7.2	>24
Problem (10)	10^{12}	11.9	>24

Table 2. Running time for Extreme-Scale Problems on real data

Key Takeaways

Key Takeaways

- . A framework for solving structured LP problems arising in several applications from internet industry
- . Most multi-objective optimization can be framed through this.
- Given the computation resources, we can scale to extremely large problems.
- . We can easily scale up to 1 Trillion variables on real data.

Thankyou