F CLIPSE: An Extreme-Scale Linear Program Solver for
Web-Applications

Kinjal Basu
LinkedIn Al

Amol G

Linkeo

Rahul Mazumder
MIT

Yao Pan
LinkedIn Al

Agendd

:|_ Overview

/

- CLIPS

3 Applications

. Extreme Scale L

4 System Architecture

O

- xperimental

Results

P Solver

Overview

Introduction

Large-Scale Linear Programs (LP) has several applications on web

Share an article, photo, video or idea

4 Write an article @ Image n Video m

Amala Jain
Sales Representative at Energence
Sort by: Recommended
Connections 149
 _ ______ _ Helen Bradley .o
Py le 73) Managing Director at Philosophy Science LLC
3 hrs
. y insights))
| [-,“ Go all in on infrastructure—digital and analog, e.g., mobile and broadband
BANK NAME infrastructure, roads, bridges, airports, etc. Tie every initiative to the number of

jobs that will be created (and provide training where gaps are most ... see more

8 Likes - S Comments

1234 5678 3456

(V]

&N Like £ Comment /& Share

AIPEYY '
' =7) - Y ; Susan Luker On average, coal power plant produces 50% more CO2 than L min
Ali Lare

Direct Your Story Lara Atia Angran Aminah curi... natural gas power plant
1 1 Like Reply
| E]
2 o Add a comment
|
8l 260 Drumes St > 1 . curi...
MIN b Q Trending News on Facebook
R T “G’M) + F “ .
FixDex ollow
-~ p) Canada includes secret code in new Promoted

$10 bill announcement

How do you decide which features are most important? Download our new eBook
for a complete guide to building features your users want! http://pin.it/y-sDbH2

Tony Romo retiring from NFL, replacing Yesi '
Phil Simms at CBS

Fox

NASA to announce new discoveries
about ocean worlds

Economy

e ©

228 POOL

$3.33 $7.89
8:12-8:16am®

9 eeee 4321 © 1-4

REQUEST POOL

Problems of Extreme Scale

min ¢’z st. Az <b
X

RBillions to Trillions or Variables

Ad-hoc Solutions
Splitting the problem to smaller sub-problem = No guarantee of optimality

- xploit the Structure of the Problem

Solve a Perturbation ot the Primal Problem.

Smooth Gradient
E fficient computation

Motivating Example

-riend or Connection Matching Problem max ZZ] TijPij (Total Value)

o S.t. Z .a:ijp? > bg (Total Invite Constraint)
Maximize Value 0.7

Total invites sent is greater than a threshold ZZ zijp;; < bj, j€L, ..., J},
Limit on invitations per member to prevent .
overwhelming members Z] Yig = 5 peil.. I}
p; - \/OI.Je Model Seqle:
p“ - Invitation Mode | | | . [~ 108
x;; - Probability of showing user j to user | .] ~10*
n ~ 102

(1 Trilion Decision Variables)

General Framework
min ¢! r . Usersi, ltemsj, and Xx;;isthe association
o between (i, J)
st. Ar <) . n =] canrange in 100s of millions to 10s of trillions
o . C; are simple constraints (i.e. allows for efficient

prOJechons)

S e — e = T (1) mm Global Constraints
T * i A Cohort Level Constraints
- g: Total Invite Constraint
A D11 D1y =
; : A(Q) & [tem level constraints
' ' - g: Limits on invitation per user
Dm2 1 DTTLQI

F CLIPSE: Extreme Scale [P

Solver

Solving The Problem

Primal LP: Py := min ¢’ x S.1. Ax < b, x;€C;,1 € |1

X

O]d idea: Perturbation Of the LP (Mangasarian & Meyer "/9; Nesterov ‘05; Osher et al ‘11...)

Primal QP: PW* ‘= min ¢z | gQSTLE S.t. Axr < b, x; €C;,1 € [[]
X
/ Dualize
Dual QP: g~ (A) 1= a;Ienll[Iclz,,, {CT:I: + %T +)\T(A:L' — b)}
Key Observation: length(\) is small
_ X
Solve the Dual QP: g, 1= ax gy(A) = P;

T

Strong duality

Solving The Problem

X
T, € argmin ¢’ x ng:ﬁ S.t. Ax < b, x; €C;,1 €|l

° ObS@I’VOﬁOﬂ-lZ - xact Regu]arizution (Mangasarian & Meyer "/9; Friedlander Tseng ‘08)

744 > 0 such that x§ solves LP for all v < #

. Y
Dual: ~ g(A) = min, {CT:L‘ +or e+ A (Ar - b)}

g, i= max gy(A)

e Observation-2: Error Bound (Nesterov ‘05)
95— Pyl =0()

Solving The Problem

max A
A>0 91(N -“CLIPSE Algorithm

* Proximal Gradient Based methods
(Acceleration, Restarts)
* Optimal convergence rates.

* Observation-1: Dual objective is smooth (implicitly defined)
[Nesterov ‘09]

A= g4(A) is O(1/7)-smooth

* Qbservation-2: Gradient expression (Danskin’s Theorem)

Vg,(A) =Az(\) — b z(\) € argmin {CT.CE + LaTy M (Az — b)}
~— ZIZ‘EHC?; 2

Ti(\) = I, (—E(AT)\ + c)i>

> \ 4
V

» Key bottleneck: Matrix-vector multiplication
* Simple projection operation

Overall Algorithm

-~
Input:

\l

~

Apxns {C }z 1,b,¢,7y

/

-~

\l

At Iteration k:

Dual *

~

/

Next
Ilteration

a N
Get Primal:
1
é\?z()\k) — HC,,; (——(AT)\k -+ C)Z)
N ! /)
a N
Compute Gradient:
Vg, (A®) = Az(X*) = b
N /
/ Update Dual: \
GD:)\k+1 ()\k +77ngy()\k))
AGD: \F = (§ - Ung(f))+
gk—l—l _)\k ‘|‘ﬁk(/\k L)\k 1)

L /

Applications

Volume Optimization

Maximize Sessions

Total number of emails /
notifications bounded

Clicks above a threshold
Disablement below a threshola

Generalized from global to cohort level
systems and member level systems

max

S.t.

i pt (Total Sessions)

r11<e¢; (Sends are Bounded)
a:Tp2 > c9 (Clicks above a threshold)

1 p? < ¢3 (Disables below a threshold)
0 <z <1 (Probability Constraint)

Multi-Objective Optimization

Maximize Metric 1

M
m

M

Most

etric 2 is greater than o
INTMUM
etric 4 is bounded

Product Applications

- ngagement vs Revenue

Sessions vs Notitication /

- mai

Volume

Mem

oer Value vs Annoyance

§ : 1
T ©,]

S.t.

2
Zi’j TijDi; = bo

.
Zz’,j mszz‘j S bl

x; € Ci, 1 € |I]

(Metric 1)
(Metric 2)

(Metric 3)

System Infrastructure

System Architecture

Data is collected tfrom dir
and restructured to torm |

erent sources

put4, b, c

Objective
and Problem
Constraints

|
Offline Data T Thpat
Collection A b c
T _—

—

System Architecture

Data is collected rom ditterent sources
and restructured to form Input 4, b, ¢

'he solveris called which runs the overall

terations.
The data is split into multiple executors ano
they perform matrix vector multiplications in

narallel
The driver collects the dual and broadcasts

it back to continue the iterations

|
o - Objective
Offiine Data T nput and Problem
Collection A.bc [¥ | Constraints
S — \/\
Y
Solver
5 R Matrix A
Primal
Briver Executor 1 |~ and dual
\ »
+
i Y
Matrix A
Executor 2 — P(r,lrcr,\al'
and dua
If not within L A
tolerance, go to
next iteration

Matrix A
Executor N Primal
and dual

System Architecture

<l g Objective
~ Tnput and Problem

Data is collected rom ditterent sources

Offline Data

' I
and restructured to form Input 4, b, ¢ |] R -
. . . Y

he solver is called which runs the overall Solver
iterations. (1 P
: o : Driver Executor 1 and dual
The data is split into multiple executors and ! |
they perform matrix vector multiplications in 5 i R
OOI’OH@] Executor 2 — Nllar:rr:w);f\
The driver collects the dual and broadcasts I not wit¥in i e
. . . . tolerance, go to
1 bOCk O continue the teratons nextiteraon ~\
.
On convergence the final duals are Executor N || MEixA
o . . o and dual
returned which are used in online serving «D. .

I

[Final Duals J Online Serving

Detailed Spark Implementation

Data Representation - stimating Primall - stimating Gradient
» (Customized DistributedMatrix Component wise Matrix * Most computationally

AP Multiplications and expensive step to get AZ(A)
e AW : BlockMatrix APl from Projections are done in * [he worst-case complexity is

Apache MLLb paralle 0(n = 1))
e \We cache 4 in executor and

broadcast duals to minimize
communication cost.

¢ AQ):Leverage Diagondl
structure and implement
DistributedVector APl using

RDD (index, Vector) * [he overall complexity to get
the primalis O (J)

- xperimental Results

Comparative Results

We compare with a technigue of
splitting the problem (SOTA):

n Method Objective RI;rsliI(Iilil
min ¢z st Agz <by, i €Cii€ Sk ECLIPSE | 3.751 x 10° | 6.91 x 10—~
10 | Average 1 | 3.748 x 10° | 3.73 x 10~
Average 2 | 3.747 x 10° | 1.03 x 10—?
A=[Ar:..., Ag] ECLIPSE | 3.750 x 10° | 7.12 x 10~ 2
K 107 | Average 1 | 3.747 x 10° | 1.71 x 107?
h— Z by, Average 2 | 3.747 x 10° | 3.73 x 10~3
— ECLIPSE | 3.750 x 107 | 6.56 X 10~
10% | Average1 | 3.747 x 10" | 1.17 x 107?
¢c=(c1,...,CK) Average 2 | 3.747 x 107 1.73 x 102
K Table 1. Comparison of our algorithm with the averaging method.
5\ - i Z j\k Average 1 and 2 correspond to a split size of 10° and 10* respec-
o K tively.
k=1

Please see the full paper for other comparisons

Real Data Results

lest on large-scale volume

L. . Time(H
optimization and matching Problem Scale n EcirﬁféEou?CS
oroblems 107 0.8 2.0

go{tlilrrrnliezation 9) 10° 1.3 >24
Spark 2.3 with up to 800 P 10° 4.0 >24
executors Matchin 10 4.5 >24
S 101 7.2 >24
Problem (10) 1012 11.9 S04
1 Trillion use case ’
converged within 12 hours Table 2. Running time for Extreme-Scale Problems on real data

SCS: O’'Donoghue et al (2016)

ey | akeaways

Key [akeaways

At

fro

‘amework

or solving structured LP problems arising in several applications

M Internet 1

ndustry

Most multi-objective optimization can be framed through this.

Given the computation resources, we can scale to extremely large problems.

We can easily scale up to 1 Trillion variables on real data.

1hank you

