
ECLIPSE: An Extreme-Scale Linear Program Solver for
Web-Applications

Kinjal Basu
LinkedIn AI

Amol Ghoting
LinkedIn AI

Rahul Mazumder
MIT

Yao Pan
LinkedIn AI

Agenda

1 Overview

2 ECLIPSE: Extreme Scale LP Solver

3

4 System Architecture

5 Experimental Results

Applications

Overview

Introduction

Large-Scale Linear Programs (LP) has several applications on web

Problems of Extreme Scale

● Billions to Trillions of Variables

● Ad-hoc Solutions
● Splitting the problem to smaller sub-problem à No guarantee of optimality

● Exploit the Structure of the Problem

● Solve a Perturbation of the Primal Problem.
● Smooth Gradient
● Efficient computation

Motivating Example

Friend or Connection Matching Problem

● Maximize Value
● Total invites sent is greater than a threshold
● Limit on invitations per member to prevent

overwhelming members

● 𝑝! - Value Model
● 𝑝" - Invitation Model
● 𝑥#$ - Probability of showing user j to user i

Scale:
• 𝐼 ≈ 10%
• 𝐽 ≈ 10&
• 𝑛 ≈ 10!"

(1 Trillion Decision Variables)

Large-Scale LP

June 13, 2020

min
x

c
T
x s.t. Ax  b, xi 2 Ci, i 2 [I], (1)

min
x

c
T
x

s.t. Ax  b

xi 2 Ci, i 2 [I],

A =

✓
A

(1)

A
(2)

◆

where, Am⇥n, bm⇥1, Ci are problem data; xn⇥1 is the optimization variable; and [I] is shorthand
for 1, . . . , I.

In order to achieve the extreme-scale arising from problems in web-applications we focus on a
particular structure of the above problem. We assume the following:

• n = IJ can range in 100s of millions to 10s of trillions (and potentially can be unbounded).
• A is sparse and highly structured, i.e. multiplying A with a vector can be done efficiently1. A

is of the form: [A(1);A(2)] where A
(1)
m1⇥n with m1 = O(1) ⌧ n; and

A
(2) =

0

@
D11 . . . D1I

. . .

Dm21 . . . Dm2I

1

A

where, Dij are J ⇥ J diagonal matrices.
• Ci, i 2 [I] are “simple” constraints (i.e., it is efficient to compute the Euclidean projection into

Ci)—examples include the non-negative orthant, box constraints or the unit simplex[?].

1This takes into account the actual flop count and other load-balancing considerations arising in our distributed
implementation.

1

Large-Scale LP

June 13, 2020

min
x

c
T
x s.t. Ax  b, xi 2 Ci, i 2 [I], (1)

min
x

c
T
x

s.t. Ax  b

xi 2 Ci, i 2 [I],

A =

✓
A

(1)

A
(2)

◆

where, Am⇥n, bm⇥1, Ci are problem data; xn⇥1 is the optimization variable; and [I] is shorthand
for 1, . . . , I.

In order to achieve the extreme-scale arising from problems in web-applications we focus on a
particular structure of the above problem. We assume the following:

• n = IJ can range in 100s of millions to 10s of trillions (and potentially can be unbounded).
• A is sparse and highly structured, i.e. multiplying A with a vector can be done efficiently1. A

is of the form: [A(1);A(2)] where A
(1)
m1⇥n with m1 = O(1) ⌧ n; and

A
(2) =

0

@
D11 . . . D1I

. . .

Dm21 . . . Dm2I

1

A

where, Dij are J ⇥ J diagonal matrices.
• Ci, i 2 [I] are “simple” constraints (i.e., it is efficient to compute the Euclidean projection into

Ci)—examples include the non-negative orthant, box constraints or the unit simplex[?].

1This takes into account the actual flop count and other load-balancing considerations arising in our distributed
implementation.

1

Large-Scale LP

June 13, 2020

min
x

c
T
x s.t. Ax  b, xi 2 Ci, i 2 [I], (1)

min
x

c
T
x

s.t. Ax  b

xi 2 Ci, i 2 [I],

A =

✓
A

(1)

A
(2)

◆

where, Am⇥n, bm⇥1, Ci are problem data; xn⇥1 is the optimization variable; and [I] is shorthand
for 1, . . . , I.

In order to achieve the extreme-scale arising from problems in web-applications we focus on a
particular structure of the above problem. We assume the following:

• n = IJ can range in 100s of millions to 10s of trillions (and potentially can be unbounded).
• A is sparse and highly structured, i.e. multiplying A with a vector can be done efficiently1. A

is of the form: [A(1);A(2)] where A
(1)
m1⇥n with m1 = O(1) ⌧ n; and

A
(2) =

0

@
D11 . . . D1I

. . .

Dm21 . . . Dm2I

1

A

where, Dij are J ⇥ J diagonal matrices.
• Ci, i 2 [I] are “simple” constraints (i.e., it is efficient to compute the Euclidean projection into

Ci)—examples include the non-negative orthant, box constraints or the unit simplex[?].

1This takes into account the actual flop count and other load-balancing considerations arising in our distributed
implementation.

1

Large-Scale LP

June 13, 2020

min
x

c
T
x s.t. Ax  b, xi 2 Ci, i 2 [I], (1)

min
x

c
T
x

s.t. Ax  b

xi 2 Ci, i 2 [I],

A =

✓
A

(1)

A
(2)

◆

where, Am⇥n, bm⇥1, Ci are problem data; xn⇥1 is the optimization variable; and [I] is shorthand
for 1, . . . , I.

In order to achieve the extreme-scale arising from problems in web-applications we focus on a
particular structure of the above problem. We assume the following:

• n = IJ can range in 100s of millions to 10s of trillions (and potentially can be unbounded).
• A is sparse and highly structured, i.e. multiplying A with a vector can be done efficiently1. A

is of the form: [A(1);A(2)] where A
(1)
m1⇥n with m1 = O(1) ⌧ n; and

A
(2) =

0

@
D11 . . . D1I

. . .

Dm21 . . . Dm2I

1

A

where, Dij are J ⇥ J diagonal matrices.
• Ci, i 2 [I] are “simple” constraints (i.e., it is efficient to compute the Euclidean projection into

Ci)—examples include the non-negative orthant, box constraints or the unit simplex[?].

1This takes into account the actual flop count and other load-balancing considerations arising in our distributed
implementation.

1

Large-Scale LP

June 13, 2020

min
x

c
T
x s.t. Ax  b, xi 2 Ci, i 2 [I], (1)

min
x

c
T
x

s.t. Ax  b

xi 2 Ci, i 2 [I],

A =

✓
A

(1)

A
(2)

◆

where, Am⇥n, bm⇥1, Ci are problem data; xn⇥1 is the optimization variable; and [I] is shorthand
for 1, . . . , I.

In order to achieve the extreme-scale arising from problems in web-applications we focus on a
particular structure of the above problem. We assume the following:

• n = IJ can range in 100s of millions to 10s of trillions (and potentially can be unbounded).
• A is sparse and highly structured, i.e. multiplying A with a vector can be done efficiently1. A

is of the form: [A(1);A(2)] where A
(1)
m1⇥n with m1 = O(1) ⌧ n; and

A
(2) =

0

B@
D11 . . . D1I

... · · ·
...

Dm21 . . . Dm2I

1

CA

where, Dij are J ⇥ J diagonal matrices.
• Ci, i 2 [I] are “simple” constraints (i.e., it is efficient to compute the Euclidean projection into

Ci)—examples include the non-negative orthant, box constraints or the unit simplex[?].

1This takes into account the actual flop count and other load-balancing considerations arising in our distributed
implementation.

1

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

● Users 𝑖, Items 𝑗, and 𝑥#$ is the association
between (𝑖, 𝑗)

● 𝑛 = 𝐼𝐽 can range in 100s of millions to 10s of trillions
● 𝐶# are simple constraints (i.e. allows for efficient

projections)

General Framework

Global Constraints
Cohort Level Constraints
Eg: Total Invite Constraint

Item level constraints
Eg: Limits on invitation per user

ECLIPSE: Extreme Scale LP
Solver

Large-Scale LP

June 13, 2020

min
x

c
T
x s.t. Ax  b, xi 2 Ci, i 2 [I], (1)

min
x

c
T
x

s.t. Ax  b

xi 2 Ci, i 2 [I],

A =

✓
A

(1)

A
(2)

◆

where, Am⇥n, bm⇥1, Ci are problem data; xn⇥1 is the optimization variable; and [I] is shorthand
for 1, . . . , I.

In order to achieve the extreme-scale arising from problems in web-applications we focus on a
particular structure of the above problem. We assume the following:

• n = IJ can range in 100s of millions to 10s of trillions (and potentially can be unbounded).
• A is sparse and highly structured, i.e. multiplying A with a vector can be done efficiently1. A

is of the form: [A(1);A(2)] where A
(1)
m1⇥n with m1 = O(1) ⌧ n; and

A
(2) =

0

B@
D11 . . . D1I

... · · ·
...

Dm21 . . . Dm2I

1

CA

where, Dij are J ⇥ J diagonal matrices.
• Ci, i 2 [I] are “simple” constraints (i.e., it is efficient to compute the Euclidean projection into

Ci)—examples include the non-negative orthant, box constraints or the unit simplex[?].

min
x

c
T
x s.t. Ax  b, xi 2 Ci, i 2 [I]

min
x

c
T
x+

�

2
x
T
x s.t. Ax  b, xi 2 Ci, i 2 [I]

g�(�) = min
x2

Q
Ci

n
c
T
x+

�

2
x
T
x+ �

T (Ax� b)
o

1This takes into account the actual flop count and other load-balancing considerations arising in our distributed
implementation.

1

Large-Scale LP

June 13, 2020

min
x

c
T
x s.t. Ax  b, xi 2 Ci, i 2 [I], (1)

min
x

c
T
x

s.t. Ax  b

xi 2 Ci, i 2 [I],

A =

✓
A

(1)

A
(2)

◆

where, Am⇥n, bm⇥1, Ci are problem data; xn⇥1 is the optimization variable; and [I] is shorthand
for 1, . . . , I.

In order to achieve the extreme-scale arising from problems in web-applications we focus on a
particular structure of the above problem. We assume the following:

• n = IJ can range in 100s of millions to 10s of trillions (and potentially can be unbounded).
• A is sparse and highly structured, i.e. multiplying A with a vector can be done efficiently1. A

is of the form: [A(1);A(2)] where A
(1)
m1⇥n with m1 = O(1) ⌧ n; and

A
(2) =

0

B@
D11 . . . D1I

... · · ·
...

Dm21 . . . Dm2I

1

CA

where, Dij are J ⇥ J diagonal matrices.
• Ci, i 2 [I] are “simple” constraints (i.e., it is efficient to compute the Euclidean projection into

Ci)—examples include the non-negative orthant, box constraints or the unit simplex[?].

min
x

c
T
x s.t. Ax  b, xi 2 Ci, i 2 [I]

min
x

c
T
x+

�

2
x
T
x s.t. Ax  b, xi 2 Ci, i 2 [I]

g�(�) = min
x2

Q
Ci

n
c
T
x+

�

2
x
T
x+ �

T (Ax� b)
o

1This takes into account the actual flop count and other load-balancing considerations arising in our distributed
implementation.

1

Large-Scale LP

June 13, 2020

min
x

c
T
x s.t. Ax  b, xi 2 Ci, i 2 [I], (1)

min
x

c
T
x

s.t. Ax  b

xi 2 Ci, i 2 [I],

A =

✓
A

(1)

A
(2)

◆

where, Am⇥n, bm⇥1, Ci are problem data; xn⇥1 is the optimization variable; and [I] is shorthand
for 1, . . . , I.

In order to achieve the extreme-scale arising from problems in web-applications we focus on a
particular structure of the above problem. We assume the following:

• n = IJ can range in 100s of millions to 10s of trillions (and potentially can be unbounded).
• A is sparse and highly structured, i.e. multiplying A with a vector can be done efficiently1. A

is of the form: [A(1);A(2)] where A
(1)
m1⇥n with m1 = O(1) ⌧ n; and

A
(2) =

0

B@
D11 . . . D1I

... · · ·
...

Dm21 . . . Dm2I

1

CA

where, Dij are J ⇥ J diagonal matrices.
• Ci, i 2 [I] are “simple” constraints (i.e., it is efficient to compute the Euclidean projection into

Ci)—examples include the non-negative orthant, box constraints or the unit simplex[?].

min
x

c
T
x s.t. Ax  b, xi 2 Ci, i 2 [I]

min
x

c
T
x+

�

2
x
T
x s.t. Ax  b, xi 2 Ci, i 2 [I]

g�(�) := min
x2

Q
Ci

n
c
T
x+

�

2
x
T
x+ �

T (Ax� b)
o

1This takes into account the actual flop count and other load-balancing considerations arising in our distributed
implementation.

1

P
⇤
0 :=

P
⇤
� :=

:=

=

g
⇤
� := max

��0
g�(�)

|g⇤� � P
⇤
0 | = O(�)

9�̄ > 0 such that x
⇤
� solves LP for all �  �̄

2

P
⇤
0 :=

P
⇤
� :=

:=

=

g
⇤
� := max

��0
g�(�)

|g⇤� � P
⇤
0 | = O(�)

9�̄ > 0 such that x
⇤
� solves LP for all �  �̄

2

Key Observation:

Primal LP:

Primal QP:

Old idea: Perturbation of the LP (Mangasarian & Meyer ’79; Nesterov ‘05; Osher et al ‘11…)

Dual QP:

Dualize

g�(�) := min
x2

Q
Ci

n
c
T
x+

�

2
x
T
x+ �

T (Ax� b)
o

P
⇤
0 :=

P
⇤
� :=

:=

=

g
⇤
� := max

��0
g�(�)

|g⇤� � P
⇤
0 | = O(�)

9�̄ > 0 such that x
⇤
� solves LP for all �  �̄

� 7! g�(�)

� 7! g�(�) is O(1/�)-smooth.

rg�(�) = Ax̂(�)� b

x̂i(�) = ⇧Ci

✓
� 1

�
(AT

�+ c)i

◆

n

⇣

⌘

length(�) is small

max
x

X
i,j

xijp
1
ij (Total Value)

s.t.
X

i,j
xijp

2
ij � b0 (Total Invite Constraint)

X
i
xijp

2
ij  bj , j 2 {1, . . . , J},

xi 2 Ci, i 2 [I]

2

P
⇤
0

P
⇤
�

=

g
⇤
� := max

��0
g�(�)

2

Solve the Dual QP:

P
⇤
0

P
⇤
�

=

g
⇤
� := max

��0
g�(�)

2

g�(�) := min
x2

Q
Ci

n
c
T
x+

�

2
x
T
x+ �

T (Ax� b)
o

P
⇤
0 :=

P
⇤
� :=

:=

=

g
⇤
� := max

��0
g�(�)

|g⇤� � P
⇤
0 | = O(�)

9�̄ > 0 such that x
⇤
� solves LP for all �  �̄

� 7! g�(�)

� 7! g�(�) is O(1/�)-smooth.

rg�(�) = Ax̂(�)� b

x̂i(�) = ⇧Ci

✓
� 1

�
(AT

�+ c)i

◆

n

⇣

⌘

length(�) is small

max
x

X
i,j

xijp
1
ij (Total Value)

s.t.
X

i,j
xijp

2
ij � b0 (Total Invite Constraint)

X
i
xijp

2
ij  bj , j 2 {1, . . . , J},

X
j
xij = 1, i 2 [I]

2

g�(�) := min
x2

Q
Ci

n
c
T
x+

�

2
x
T
x+ �

T (Ax� b)
o

P
⇤
0 :=

P
⇤
� :=

:=

=

g
⇤
� := max

��0
g�(�)

|g⇤� � P
⇤
0 | = O(�)

9�̄ > 0 such that x
⇤
� solves LP for all �  �̄

� 7! g�(�)

� 7! g�(�) is O(1/�)-smooth.

rg�(�) = Ax̂(�)� b

x̂i(�) = ⇧Ci

✓
� 1

�
(AT

�+ c)i

◆

n

⇣

⌘

length(�) is small

max
x

X
i,j

xijp
1
ij (Total Value)

s.t.
X

i,j
xijp

2
ij � b0 (Total Invite Constraint)

X
i
xijp

2
ij  bj , j 2 {1, . . . , J},

X
j
xij = 1, i 2 {1, . . . , I}

2

Strong duality

Solving The Problem

Large-Scale LP

June 13, 2020

min
x

c
T
x s.t. Ax  b, xi 2 Ci, i 2 [I], (1)

min
x

c
T
x

s.t. Ax  b

xi 2 Ci, i 2 [I],

A =

✓
A

(1)

A
(2)

◆

where, Am⇥n, bm⇥1, Ci are problem data; xn⇥1 is the optimization variable; and [I] is shorthand
for 1, . . . , I.

In order to achieve the extreme-scale arising from problems in web-applications we focus on a
particular structure of the above problem. We assume the following:

• n = IJ can range in 100s of millions to 10s of trillions (and potentially can be unbounded).
• A is sparse and highly structured, i.e. multiplying A with a vector can be done efficiently1. A

is of the form: [A(1);A(2)] where A
(1)
m1⇥n with m1 = O(1) ⌧ n; and

A
(2) =

0

B@
D11 . . . D1I

... · · ·
...

Dm21 . . . Dm2I

1

CA

where, Dij are J ⇥ J diagonal matrices.
• Ci, i 2 [I] are “simple” constraints (i.e., it is efficient to compute the Euclidean projection into

Ci)—examples include the non-negative orthant, box constraints or the unit simplex[?].

min
x

c
T
x s.t. Ax  b, xi 2 Ci, i 2 [I]

min
x

c
T
x+

�

2
x
T
x s.t. Ax  b, xi 2 Ci, i 2 [I]

g�(�) = min
x2

Q
Ci

n
c
T
x+

�

2
x
T
x+ �

T (Ax� b)
o

1This takes into account the actual flop count and other load-balancing considerations arising in our distributed
implementation.

1

Large-Scale LP

June 13, 2020

min
x

c
T
x s.t. Ax  b, xi 2 Ci, i 2 [I], (1)

min
x

c
T
x

s.t. Ax  b

xi 2 Ci, i 2 [I],

A =

✓
A

(1)

A
(2)

◆

where, Am⇥n, bm⇥1, Ci are problem data; xn⇥1 is the optimization variable; and [I] is shorthand
for 1, . . . , I.

In order to achieve the extreme-scale arising from problems in web-applications we focus on a
particular structure of the above problem. We assume the following:

• n = IJ can range in 100s of millions to 10s of trillions (and potentially can be unbounded).
• A is sparse and highly structured, i.e. multiplying A with a vector can be done efficiently1. A

is of the form: [A(1);A(2)] where A
(1)
m1⇥n with m1 = O(1) ⌧ n; and

A
(2) =

0

B@
D11 . . . D1I

... · · ·
...

Dm21 . . . Dm2I

1

CA

where, Dij are J ⇥ J diagonal matrices.
• Ci, i 2 [I] are “simple” constraints (i.e., it is efficient to compute the Euclidean projection into

Ci)—examples include the non-negative orthant, box constraints or the unit simplex[?].

min
x

c
T
x s.t. Ax  b, xi 2 Ci, i 2 [I]

min
x

c
T
x+

�

2
x
T
x s.t. Ax  b, xi 2 Ci, i 2 [I]

g�(�) := min
x2

Q
Ci

n
c
T
x+

�

2
x
T
x+ �

T (Ax� b)
o

1This takes into account the actual flop count and other load-balancing considerations arising in our distributed
implementation.

1

P
⇤
0

P
⇤
�

:=

=

g
⇤
� := max

��0
g�(�)

|g⇤� � P
⇤
0 | = O(�)

9�̄ > 0 such that x
⇤
� solves LP for all �  �̄

2

P
⇤
0

P
⇤
�

:=

=

g
⇤
� := max

��0
g�(�)

|g⇤� � P
⇤
0 | = O(�)

9�̄ > 0 such that x
⇤
� solves LP for all �  �̄

2

Large-Scale LP

June 14, 2020

min
x

c
T
x s.t. Ax  b, xi 2 Ci, i 2 [I], (1)

min
x

c
T
x

s.t. Ax  b

xi 2 Ci, i 2 [I],

A =

✓
A

(1)

A
(2)

◆

where, Am⇥n, bm⇥1, Ci are problem data; xn⇥1 is the optimization variable; and [I] is shorthand
for 1, . . . , I.

In order to achieve the extreme-scale arising from problems in web-applications we focus on a
particular structure of the above problem. We assume the following:

• n = IJ can range in 100s of millions to 10s of trillions (and potentially can be unbounded).
• A is sparse and highly structured, i.e. multiplying A with a vector can be done efficiently1. A

is of the form: [A(1);A(2)] where A
(1)
m1⇥n with m1 = O(1) ⌧ n; and

A
(2) =

0

B@
D11 . . . D1I

... · · ·
...

Dm21 . . . Dm2I

1

CA

where, Dij are J ⇥ J diagonal matrices.
• Ci, i 2 [I] are “simple” constraints (i.e., it is efficient to compute the Euclidean projection into

Ci)—examples include the non-negative orthant, box constraints or the unit simplex[?].

min
x

c
T
x s.t. Ax  b, xi 2 Ci, i 2 [I]

min
x

c
T
x+

�

2
x
T
x s.t. Ax  b, xi 2 Ci, i 2 [I]

x
⇤
� 2 argmin

x
c
T
x+

�

2
x
T
x s.t. Ax  b, xi 2 Ci, i 2 [I]

1This takes into account the actual flop count and other load-balancing considerations arising in our distributed
implementation.

1

Primal:

• Observation-1: Exact Regularization (Mangasarian & Meyer ’79; Friedlander Tseng ‘08)

• Observation-2: Error Bound (Nesterov ‘05)

P
⇤
0

P
⇤
�

=

g
⇤
� := max

��0
g�(�)

2

P
⇤
0

P
⇤
�

=

g
⇤
� := max

��0
g�(�)

2

P
⇤
0 :=

P
⇤
� :=

:=

=

g
⇤
� := max

��0
g�(�)

|g⇤� � P
⇤
0 | = O(�)

9�̄ > 0 such that x
⇤
� solves LP for all �  �̄

2

Solving The Problem

Dual:

P
⇤
0

P
⇤
�

=

g
⇤
� := max

��0
g�(�)

2

P
⇤
0 :=

P
⇤
� :=

:=

=

g
⇤
� := max

��0
g�(�)

|g⇤� � P
⇤
0 | = O(�)

9�̄ > 0 such that x
⇤
� solves LP for all �  �̄

� 7! g�(�)

� 7! g�(�) is O(1/�)-smooth.

rg�(�) = Ax̂(�)� b

x̂i(�) = ⇧Ci

✓
� 1

�
(AT

�+ c)i

◆

2

P
⇤
0 :=

P
⇤
� :=

:=

=

g
⇤
� := max

��0
g�(�)

|g⇤� � P
⇤
0 | = O(�)

9�̄ > 0 such that x
⇤
� solves LP for all �  �̄

� 7! g�(�)

� 7! g�(�) is O(1/�)-smooth.

rg�(�) = Ax̂(�)� b

x̂i(�) = ⇧Ci

✓
� 1

�
(AT

�+ c)i

◆

2

• Observation-1: Dual objective is smooth (implicitly defined)
[Nesterov ‘05]

• Observation-2: Gradient expression (Danskin’s Theorem)g�(�) := min
x2

Q
Ci

n
c
T
x+

�

2
x
T
x+ �

T (Ax� b)
o

x̂(�) 2 argmin
x2

Q
Ci

n
c
T
x+

�

2
x
T
x+ �

T (Ax� b)
o

P
⇤
0 :=

P
⇤
� :=

:=

=

g
⇤
� := max

��0
g�(�)

|g⇤� � P
⇤
0 | = O(�)

9�̄ > 0 such that x
⇤
� solves LP for all �  �̄

� 7! g�(�)

� 7! g�(�) is O(1/�)-smooth.

rg�(�) = Ax̂(�)� b

x̂i(�) = ⇧Ci

✓
� 1

�
(AT

�+ c)i

◆

n

⇣

⌘

length(�) is small

max
x

X
i,j

xijp
1
ij (Total Value)

s.t.
X

i,j
xijp

2
ij � b0 (Total Invite Constraint)

X
i
xijp

2
ij  bj , j 2 {1, . . . , J},

X
j
xij = 1, i 2 {1, . . . , I}

2

P
⇤
0 :=

P
⇤
� :=

:=

=

g
⇤
� := max

��0
g�(�)

|g⇤� � P
⇤
0 | = O(�)

9�̄ > 0 such that x
⇤
� solves LP for all �  �̄

� 7! g�(�)

� 7! g�(�) is O(1/�)-smooth.

rg�(�) = Ax̂(�)� b

x̂i(�) = ⇧Ci

✓
� 1

�
(AT

�+ c)i

◆

2

• Proximal Gradient Based methods
(Acceleration, Restarts)

• Optimal convergence rates.

ECLIPSE Algorithm

• Key bottleneck: Matrix-vector multiplication
• Simple projection operation

P
⇤ 0
:=

P
⇤ �
:=

:= =

g
⇤ �
:=

m
ax

��
0

g
�
(�
)

|g⇤ �
�
P

⇤ 0
|=

O
(�
)

9�̄
>

0
su

ch
th

at
x
⇤ �

so
lve

sL
P

for
all

�


�̄

�
7!

g
�
(�
)

�
7!

g
�
(�
)

is
O
(1
/
�
)-s

mo
ot

h.

rg
�
(�
)=

A
x̂
(�
)�

b

x̂
i(
�
)=

⇧
C i

✓ �
1 �
(A

T
�
+

c)
i◆

n 2

P
⇤ 0
:=

P
⇤ �
:=

:= =

g
⇤ �
:=

m
ax

��
0

g
�
(�
)

|g⇤ �
�
P

⇤ 0
|=

O
(�
)

9�̄
>

0
su

ch
th

at
x
⇤ �

so
lve

sL
P

for
all

�


�̄

�
7!

g
�
(�
)

�
7!

g
�
(�
)

is
O
(1
/
�
)-s

mo
ot

h.

rg
�
(�
)=

A
x̂
(�
)�

b

x̂
i(
�
)=

⇧
C i

✓ �
1 �
(A

T
�
+

c)
i◆

n 2

Solving The Problem

Overall Algorithm

Input: At Iteration k:
Dual

Get Primal:

Compute Gradient:

Update Dual:
GD:

AGD:

Next
Iteration

Applications

Volume Optimization

Maximize Sessions

● Total number of emails /
notifications bounded

● Clicks above a threshold
● Disablement below a threshold

Generalized from global to cohort level
systems and member level systems

Multi-Objective Optimization

● Maximize Metric 1
● Metric 2 is greater than a

minimum
● Metric 3 is bounded
● …

● Most Product Applications

● Engagement vs Revenue
● Sessions vs Notification /

Email Volume
● Member Value vs Annoyance

System Infrastructure

System Architecture

• Data is collected from different sources
and restructured to form Input 𝐴, 𝑏, 𝑐

System Architecture

• Data is collected from different sources
and restructured to form Input 𝐴, 𝑏, 𝑐

• The solver is called which runs the overall
iterations.
• The data is split into multiple executors and

they perform matrix vector multiplications in
parallel

• The driver collects the dual and broadcasts
it back to continue the iterations

System Architecture

• Data is collected from different sources
and restructured to form Input 𝐴, 𝑏, 𝑐

• The solver is called which runs the overall
iterations.
• The data is split into multiple executors and

they perform matrix vector multiplications in
parallel

• The driver collects the dual and broadcasts
it back to continue the iterations

• On convergence the final duals are
returned which are used in online serving

Detailed Spark Implementation

Data Representation

• Customized DistributedMatrix
API

• : BlockMatrix API from
Apache MLLib

• : Leverage Diagonal
structure and implement
DistributedVector API using
RDD (index, Vector)

Estimating Primal

• Component wise Matrix
Multiplications and
Projections are done in
parallel

• We cache 𝐴 in executor and
broadcast duals to minimize
communication cost.

• The overall complexity to get
the primal is 𝑂(𝐽)

Estimating Gradient

• Most computationally
expensive step to get

• The worst-case complexity is
𝑂 𝑛 = 𝐼𝐽

Experimental Results

Comparative Results

Please see the full paper for other comparisons

• We compare with a technique of
splitting the problem (SOTA):

Real Data Results

• Test on large-scale volume
optimization and matching
problems

• Spark 2.3 with up to 800
executors

• 1 Trillion use case
converged within 12 hours

SCS: O’Donoghue et al (2016)

Key Takeaways

Key Takeaways

• A framework for solving structured LP problems arising in several applications
from internet industry

• Most multi-objective optimization can be framed through this.

• Given the computation resources, we can scale to extremely large problems.

• We can easily scale up to 1 Trillion variables on real data.

Thank you

