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Motivation

= ML models are increasingly proprietary and
complex, and are therefore not interpretable

= Several post hoc explanation techniques
proposed in recent literature

= E.g., LIME, SHAP, MUSE, Anchors, MAPLE



Motivation

= However, post hoc explanations have been
shown to be unstable and unreliable

= Small perturbations to input can substantially change
the explanations; running same algorithm multiple
times results in different explanations (Ghorbani et. al.)

= High-fidelity explanations with very different covariates
than black box (Lakkaraju & Bastani)

= Also, they are not robust to distribution shifts



Why can explanations be unstable?

= Distribution p(x4, x,) Where x; and x, are
perfectly correlated

= Blackbox B*(xq,x,) = I(x; = 0)
= Explanation E (x4, x,) = I(x, = 0)

= F has perfect fidelity, but is completely different
from B*!

= If p(xq, x,) shifts, E may no longer have high fidelity



Why do we care?

= Domain experts rely on explanations to validate
properties of the black box model

= Check if model uses spurious or sensitive attributes
[Caruana 2015, Bastani 2017, Rudin 2019]

= Poor explanations may mislead experts into
drawing incorrect conclusions



Our Contributions: ROPE

= We propose ROPE (RObust Post hoc Explanations)
= Framework for generating stable and robust explanations

= |t is flexible, e.qg., it can be instantiated for local vs. global
explanations as well as linear vs. rule based explanations

= First approach to generating explanations robust to
distribution shifts

= Our experiments show that ROPE significantly improves
robustness on real-world distribution shifts
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Robust Learning Objective

= ROPE ensures robustness via a minimax objective:

Fey

E = argminmax E, ;) |[¢(E(z), B*(x))].

Ece €A J
Va Y
worst-case over standard supervised
distribution shifts learning loss for ps(x)

= The maximum in the objective is over possible
distribution shifts ps(x) = p(x — §)

= Ensures E has high fidelity for all distributions pg(x)
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Robust Learning Objective

= We can upper bound the objective as follows:

max Ey, o) [{(E(x), B* (@)

< Ep) [gleagiﬁ(E(m +6), B*(x + 5))] :

= Thus, we can approximate E as follows:

E = inE * .
ar%élgm p(z) I:Igleanf(E(.’B +4),B"(z + 6))]



Class of Distribution Shifts

= Key question: How to choose A”?
= Determines distributions pg to which E is robust

= Qur choice

A(S()aémax) — {6 S Rn | Il(S”l S S0 A ||5||oo S 5max}-

= [, constraint induces sparsity, I.e., only a few
covariates are perturbed

* L, constraint bounds the magnitude of the
perturbation, i.e., covariates do not change too much



Robust Linear Explanations

» Use adversarial training, I.e., approximate
stochastic gradient descent on the objective

where §* = argmax {(FEy(x +9), B*(x + §)).
deEA

= Can approximate §* using a linear program
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Robust Rule Based Explanations

= Approximate the objective using sampling

E = argminE,,) | max {((E(x + 67), B*(x + 67))| .
E€€ 67 ~po(4)

Distribution over
shifts § € A

= Adjust learning algorithm to handle maximum
over finite set

= [or rule lists and decision sets, only count a point
(x,E(x)) as correct if E(x) = B~ (x + &/) for all of the
possible perturbations §/



=Xperimental Evaluation

= Real-world distribution shifts

Bail 31K defendants | Criminal History, Demographic Attributes, Bail (Yes/No)
(2 courts) Current Offenses
Healthcare 22K patients Symptoms, Demographic Attributes, Diabetes (Yes/No)
(2 hospitals) Current & Past Conditions
Academic 19K students Grades, Absence Rates, Suspensions, | Graduated High School
(2 schools) Tardiness Scores on Time (Yes/No)
= Approach

= (Generate explanation on one distribution (e.g., first court)
= Evaluate fidelity on shifted distribution (e.g., second court)
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—Xperimental

= Baselines
= | IME, SHAP, MUSE

—valuation

= All state-of-the-art post hoc explanation tools

= |[nstantiations of ROPE

= Linear models (comparison to LIME and SHAP)
= Decision sets (comparison to MUSE)
= Focus on global explanations
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Robustness to Real Distribution Shifts

= Report fidelity on both original and shifted
distributions, as well as percentage drop In fidelity

Algorithms Bail Academic Health
Train  Shift § % Drop § Train  Shift Train  Shift
LIME 0.79 0.64 j§18.99% g 0.68  0.57 0.81 0.69
SHAP 0.76  0.66 j§13.16% § 0.67  0.59 0.83  0.68
MUSE 0.75 059 §21.33% § 0.66 0.51 0.79  0.61
ROPE logistic ~ 0.79  0.74 § 6.33% 0.70  0.69 0.82  0.76
ROPE dset 0.82  0.77 6.1% 0.73 0.71 0.84 0.78

= ROPE is substantially more robust without
sacrificing fidelity on original distribution
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Percentage Drop Iin Fidelity vs.
Size of Distribution Shift

= Use synthetic data and vary size of shift
= Report percentage drop Iin fidelity
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Structural Match with the Black Box

= Choose “black box” from the same model class as
explanation (e.qg., linear or decision set)

= Report match between explanation and black box

Algorithms Black Boxes
LR Multiple LR DS Multiple DS

Coefficient Coefficient Rule Feature Rule Feature

Mismatch Mismatch Match  Match  Match  Match
LIME 4.37 5.01 — — — —
SHAP 428 4.96 - - - -
MUSE — — 4.39 11.81 4.42 0.23
ROPE logistic 2.70 2.93 - E - -
ROPE dset — — 6.25 16.18 7.09 16.78

= ROPE explanations match black box substantially
better
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Conclusions

= We have proposed the first framework for
generating stable and robust explanations

= QOur approach significantly improves explanation
robustness to real-world distribution shifts
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