Robust and Stable Black Box Explanations

Hima Lakkaraju
Harvard University

Nino Arsov

Macedonian Academy

of Arts & Sciences

Osbert Bastani University of Pennsylvania

Motivation

 ML models are increasingly proprietary and complex, and are therefore not interpretable

- Several post hoc explanation techniques proposed in recent literature
 - E.g., LIME, SHAP, MUSE, Anchors, MAPLE

Motivation

- However, post hoc explanations have been shown to be unstable and unreliable
 - Small perturbations to input can substantially change the explanations; running same algorithm multiple times results in different explanations (Ghorbani et. al.)
 - High-fidelity explanations with very different covariates than black box (Lakkaraju & Bastani)
 - Also, they are not robust to distribution shifts

Why can explanations be unstable?

- Distribution $p(x_1, x_2)$ where x_1 and x_2 are perfectly correlated
- Blackbox $B^*(x_1, x_2) = I(x_1 \ge 0)$
- Explanation $\hat{E}(x_1, x_2) = I(x_2 \ge 0)$
- \widehat{E} has perfect fidelity, but is completely different from $B^*!$
 - If $p(x_1, x_2)$ shifts, \hat{E} may no longer have high fidelity

Why do we care?

- Domain experts rely on explanations to validate properties of the black box model
 - Check if model uses spurious or sensitive attributes [Caruana 2015, Bastani 2017, Rudin 2019]

 Poor explanations may mislead experts into drawing incorrect conclusions

Our Contributions: ROPE

- We propose ROPE (RObust Post hoc Explanations)
 - Framework for generating stable and robust explanations
 - It is flexible, e.g., it can be instantiated for local vs. global explanations as well as linear vs. rule based explanations
 - First approach to generating explanations robust to distribution shifts
 - Our experiments show that ROPE significantly improves robustness on real-world distribution shifts

Robust Learning Objective

ROPE ensures robustness via a minimax objective:

- The maximum in the objective is over possible distribution shifts $p_{\delta}(x) = p(x \delta)$
- Ensures \hat{E} has high fidelity for all distributions $p_{\delta}(x)$

Robust Learning Objective

We can upper bound the objective as follows:

$$\max_{\delta \in \Delta} \mathbb{E}_{p_{\delta}(x)}[\ell(E(x), B^{*}(x))]$$

$$\leq \mathbb{E}_{p(x)} \left[\max_{\delta \in \Delta} \ell(E(x+\delta), B^{*}(x+\delta)) \right].$$

• Thus, we can approximate \hat{E} as follows:

$$\hat{E} = \operatorname*{arg\,min}_{E \in \mathcal{E}} \mathbb{E}_{p(x)} \left[\max_{\delta \in \Delta} \ell(E(x+\delta), B^*(x+\delta)) \right].$$

Class of Distribution Shifts

- **Key question:** How to choose Δ ?
 - Determines distributions p_{δ} to which \hat{E} is robust

Our choice

$$\Delta(s_0, \delta_{\max}) = \{ \delta \in \mathbb{R}^n \mid ||\delta||_1 \le s_0 \land ||\delta||_{\infty} \le \delta_{\max} \}.$$

- L_1 constraint induces sparsity, i.e., only a few covariates are perturbed
- L_{∞} constraint bounds the magnitude of the perturbation, i.e., covariates do not change too much

Robust Linear Explanations

 Use adversarial training, i.e., approximate stochastic gradient descent on the objective

$$\nabla_{\theta} \max_{\delta \in \Delta} \ell(E_{\theta}(x+\delta), B^*(x+\delta)) \approx \nabla_{\theta} \ell(E_{\theta}(x+\delta^*), B^*(x+\delta^*)),$$
 where
$$\delta^* = \argmax_{\delta \in \Delta} \ell(E_{\theta}(x+\delta), B^*(x+\delta)).$$

Can approximate δ^* using a linear program

Robust Rule Based Explanations

Approximate the objective using sampling

$$\hat{E} = \arg\min_{E \in \mathcal{E}} \mathbb{E}_{p(x)} \left[\max_{\delta^j \sim p_0(\delta)} \ell(E(x + \delta^j), B^*(x + \delta^j)) \right].$$
Distribution over shifts $\delta \in \Delta$

- Adjust learning algorithm to handle maximum over finite set
 - For rule lists and decision sets, only count a point $(x, \hat{E}(x))$ as correct if $\hat{E}(x) = B^*(x + \delta^j)$ for all of the possible perturbations δ^j

Experimental Evaluation

Real-world distribution shifts

Dataset	# of Cases	Attributes	Outcomes	
Bail	31K defendants (2 courts)	Criminal History, Demographic Attributes, Current Offenses	Bail (Yes/No)	
Healthcare	22K patients (2 hospitals)	Symptoms, Demographic Attributes, Current & Past Conditions	Diabetes (Yes/No)	
Academic	19K students (2 schools)	Grades, Absence Rates, Suspensions, Tardiness Scores	Graduated High School on Time (Yes/No)	

Approach

- Generate explanation on one distribution (e.g., first court)
- Evaluate fidelity on shifted distribution (e.g., second court)

Experimental Evaluation

Baselines

- LIME, SHAP, MUSE
- All state-of-the-art post hoc explanation tools

- Instantiations of ROPE
 - Linear models (comparison to LIME and SHAP)
 - Decision sets (comparison to MUSE)
 - Focus on global explanations

Robustness to Real Distribution Shifts

 Report fidelity on both original and shifted distributions, as well as percentage drop in fidelity

Algorithms	Bail			Academic			Health		
	Train	Shift	% Drop	Train	Shift	% Drop	Train	Shift	% Drop
LIME	0.79	0.64	18.99%	0.68	0.57	16.18%	0.81	0.69	14.81%
SHAP	0.76	0.66	13.16%	0.67	0.59	11.94%	0.83	0.68	18.07%
MUSE	0.75	0.59	21.33%	0.66	0.51	22.73%	0.79	0.61	22.78%
ROPE logistic	0.79	0.74	6.33%	0.70	0.69	1.43%	0.82	0.76	7.32%
ROPE dset	0.82	0.77	6.1 %	0.73	0.71	2.74 %	0.84	0.78	7.14 %

 ROPE is substantially more robust without sacrificing fidelity on original distribution

Percentage Drop in Fidelity vs. Size of Distribution Shift

- Use synthetic data and vary size of shift
- Report percentage drop in fidelity

Structural Match with the Black Box

- Choose "black box" from the same model class as explanation (e.g., linear or decision set)
- Report match between explanation and black box

Algorithms	Black Boxes						
	LR	LR Multiple LR		DS		Multiple DS	
	Coefficient Mismatch	Coefficient Mismatch	Rule Match	Feature Match	Rule Match	Feature Match	
LIME	4.37	5.01	_	_	_	_	
SHAP	4.28	4.96	_	_	_	_	
MUSE	-	_	4.39	11.81	4.42	9.23	
ROPE logistic	2.70	2.93	_	_	_	_	
ROPE dset	_	_	6.25	16.18	7.09	16.78	

ROPE explanations match black box substantially better

Conclusions

 We have proposed the first framework for generating stable and robust explanations

 Our approach significantly improves explanation robustness to real-world distribution shifts