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Motivation: Why should we care about fair systems?

Figure: Network with a fat-tree topology from Ruffy et al. (2019).
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Motivation: Why should we care about fair systems?

Figure: Network with a fat-tree topology from Ruffy et al. (2019).

@ Fairness consideration to users is crucial
@ Existing approaches to tackle this issue includes:
e Utilitarian approach

e Egalitarian approach
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Fairness

@ Fairness includes:
o Efficiency
o Impartiality
e Equity
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Fairness

@ Fairness includes:
o Efficiency
o Impartiality
e Equity

e Fairness encoded in a Social Welfare Function (SWF)

e We focus on generalized Gini social welfare function (GGF)
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Problem Statement

@ GGF can be defined as:
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Problem Statement

@ GGF can be defined as:
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arg max GGF, (J(7))
s

U. Siddique, P. Weng, and M. Zimmer

Fair Policies in RL



Problem Statement

@ GGF can be defined as:
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o Fair optimization problem in RL:

arg max GGF, (J(7))

where J(7) = [th IR] or J(m)
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Theoretical Discussion

Assumption: MDPs are weakly-communicating
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o Sufficiency of Stationary Markov Policies
e Existence of stationary Markov fair optimal policy.
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Theoretical Discussion

Assumption: MDPs are weakly-communicating

o Sufficiency of Stationary Markov Policies
e Existence of stationary Markov fair optimal policy.
@ Possibly State-Dependent Optimality
o With average reward, fair optimality stays state-independent.

Contribution on Approximation Error

o Approximate average-optimal policy (1) with y-optimal policy (7).
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Theoretical Discussion

Assumption: MDPs are weakly-communicating

o Sufficiency of Stationary Markov Policies
e Existence of stationary Markov fair optimal policy.
@ Possibly State-Dependent Optimality
o With average reward, fair optimality stays state-independent.

Contribution on Approximation Error
o Approximate average-optimal policy (1) with y-optimal policy (7).
Theorem:

GGFu (1(r3)) = GGFw (7)) — R(L =) (p(3, o(Hp,.)) + p(7,5(He,.)))

where R = max; ||R.||1 and p(v,0) = B ey
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Value Based and Policy Gradient Algorithms

o DQN: Q network takes values in RMI*D instead of RI! trained with
target:

(A‘?g(s, a)=r+ 7@9/(5’, a*),

where a* = argmax, 4 GGFy, (r + YQu (s, ).
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Value Based and Policy Gradient Algorithms

o DQN: Q network takes values in RMI*D instead of RI! trained with
target:

OG(S’ 3) =r+ 709’(5,7 a*)a

where a* = argmax, 4 GGFy, (r + YQu (s, ).

@ To optimize the GGF with policy gradient:

VoGGFw(J(70)) =V j(r)GGFw (J(70)) - Vo (7o)
:W(T, . VQJ(T('Q).
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Experimental Results

What is the impact of optimizing GGF instead of the average of the

objectives?

Species Conservation
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Experimental Results

What is the impact of optimizing GGF instead of the average of the

objectives?
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Experimental Results

What is the price of fairness?
How those algorithms performs in continuous domains?

Species Conservation
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Experimental Results

What is the price of fairness?
How those algorithms performs in continuous domains?
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Experimental Results (Traffic Light Control)

What is the effect of v with respect to GGF-average optimality?
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Conclusion

Fair optimization in RL setting
Theoretical discussion with a new bound
Adaptations of DQN, A2C and PPO to solve this problem.

Experimental validation in 3 domains
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Conclusion

Fair optimization in RL setting
Theoretical discussion with a new bound
Adaptations of DQN, A2C and PPO to solve this problem.

Experimental validation in 3 domains

Future Works:
@ Extend to distributed control
@ Consider other fair social welfare functions

@ Directly solve average reward problems
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