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...and the data can be used to 
conduct statistical inferences.

μ2

𝒯
̂μκ(𝒯) Sample mean  

at a stopping time 𝒯
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Q. Sign of the bias of sample mean?

Xu et al. [2013] :  
An informal argument why the sample mean is 
negatively biased for “optimistic” algorithms.


Villar et al. [2015] :  
Demonstrate this negative bias in a simulation study 
motivated by using MAB for clinical trials. 


𝔼 [ ̂μκ(𝒯) − μκ] ≤ or ≥ 0?
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Shin et al. [2019] 
Introduced "monotonicity property" characterizing the bias of 
the sample mean for more general classes of MABs.

Chosen Arm Stopping Time

𝔼 [ ̂μκ(𝒯) − μκ]
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Sample mean is negatively biased

Fixed Arm Fixed Time

𝔼 [ ̂μ k(t) − μk] ≤ 0

for MABs designed to maximize cumulative reward.
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1. Existing results concern the bias of the sample mean only.

We study the bias of monotone functions of the rewards.

2. Existing guarantees cover only the marginal bias.

We extend previous results to cover the conditional bias. 

However, current understanding 
of bias is limited in two aspects.



Marginal vs Conditional bias
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μKμ1 μ2 .  .  .

• K prototype items

Want to screen out some items by testing 

  for H0k : μk ≥ c vs H1k : μk < c k = 1,…, K .
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H0 : μ ≥ c vs H1 : μ < c

̂μ(t)

T

"Keep the item""Screen out the item at "𝒯

𝒯

̂μ(t)

(Fail to reject the null)(Reject the null)



Marginally,  
the sample mean is negatively biased.
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Item 1

.  .  .

𝔼 [ ̂μ k − μk] ≤ 0, k = 1,…, K

(e.g.  Starr & Woodroofe [1968], Shin et al. [2019])

𝒯

̂μ (t) ̂μ (t)

T

Item 2 Item K

𝒯

̂μ (t)

"Underestimating the true mean revenue."
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𝔼 [ ̂μ k − μk ∣ item k is active] ≥ 0, k = 1,…, K

Item 1

.  .  .

𝒯

̂μ (t) ̂μ (t)

T

Item 2 Item K

𝒯

̂μ (t)

Conditioned on the "active" event,   
the sample mean is positively biased.

"Overestimating the true mean revenue."



e.g., C = {Reject the null}, {Chosen as the best arm} . . . .

̂F k,𝒯 : Empirical CDF of arm k at time 𝒯

Fk : True CDF of arm k at time 𝒯

where
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Conditional bias of the empirical 
cumulative distribution function (CDF)

For a fixed y ∈ ℝ,

𝔼 [ ̂F k,𝒯(y) − Fk(y) ∣ C] ≤ or ≥ 0?



Tabular model of MABs

μKμ1 μ2 .  .  .

X*1,1 X*1,2
X*1,K.  .  .

X*2,1 X*2,2 X*2,K.  .  .

⋮ ⋮ ⋮ ⋮

}X*∞ ∈ ℝℕ×K

:=

∼ i.i.d. ∼ i.i.d. ∼ i.i.d.

"Hypothetical table"
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Hypothetical dataset

𝒟*∞ = X*∞ ∪ {Wt}∞
t=1

Hypothetical table

Random seeds
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Hypothetical dataset

,  and  for each  and  can be 
expressed as some functions of .
C 𝒯 Nk(t) t k

𝒟*∞

Given 𝒟*∞ = X*∞ ∪ {Wt}∞
t=1
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Monotone effect of a sample

(Negative conditional bias of 
the empirical CDF)

𝔼 [ ̂F k,𝒯(y) − Fk(y) ∣ C] ≤ 0
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Theorem
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function of each   while keeping all other entries in  

fixed then we have
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E.g.: Best arm identification
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μKμ1 μ2 .  .  .

• K prototype items

Want to figure out which one has the largest revenue. 



lil' UCB algorithm
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E.g.: Best arm identification

a) Item 1 is chosen as the best. 

b) Item 1 is NOT chosen as the best.
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Average of the empirical CDF of item 1 
conditioned on each event
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Mean bias = (0.2, −0.93, −1.14)
lilʹUCB on 3 items (µ1 = 1)



On conditional versus marginal bias in 
multi-armed bandits

Jaehyeok Shin, Aaditya Ramdas and Alessandro Rinaldo

Thank you!


