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Main contributions

With true gradient:

1. Softmax policy gradient converges to
optimal policy in a rate O(1/t).

2. Entropy regularized softmax policy gradient converges
to softmax optimal policy in a rate O(1/e™").
3. Softmax policy gradient follows

a rate lower bound Q(1/¢).

4. Non-uniform Lojasiewicz degree as a

deeper reason for rate separation.



Reinforcement Learning (RL)

Finite Markov Decision Processes (MDPs) M = (S, A, P,r,7)
state space § ; action space A
reward function r : S x A — R; transition function P:S x A — A(S)
discount factor ~ € [0,1)

Bounded reward assumption

Assumption 1 (Bounded reward). r(s,a) € [0, 1], V(s, a).



Notations

State value:  V7(s) = [Z’y St,at] V™ (p) = Esnp [V™(5)]

so=s, at~7r( |st),
st+1~P(-|s¢,a¢)

State-action value: @ (5,@) =7(s,a) + 'YZP(S'LSU a)V™(s')
Advantage function: A™(s,a) := Q™(s,a) — V™ (s)

(discounted) state distribution: dz,(s) = (1 — 7)) _+*Pr(s; = sso,,P) d%(s) = Egmp [dgo(s)]

t=0



Policy gradient (PG)

Policy gradient: foundational concept of policy search and actor-critic

Theorem 1 (Policy gradient theorem (Sutton et al., 2000)). Algorithm 1 Policy Gradient Method

Suppose 0 — wy(als) is differentiable w.rt. 0, ¥(s, a), Input: Learning rate 7 > 0
= Initialize logit 01 (s, a) for all (s, a).
ovTe M 1 37‘(‘9 o g L\ ’
39()=1_%N1§,r9 > (l)Q (s:0)|, @) for t = 1to T do
Bk Ot+1 < 0 +1m-
where p € A(S) is an initial state distribution. end for

V "t ()




Settings

Tabularcases: 0 : S x A —> R

| . exp{f(s,a)}
Softmax parametrized policies:  me(als) = == ="

Lemma 1. Softmax policy gradient w.rt. 0 is

True gradients: vt 1

00(s,a) 1—1v

~d?(s) - mg(als) - A™ (s, a).



Open problems

1. Convergence rate of softmax policy gradient was unknown.

The best results was asymptotic convergence in Agarwal et al. V"% (p) — V*(p) as t — oo.

2. Convergence rate of entropy regularized softmax policy gradient was unknown.

Stated as an open question in Agarwal et al.

3. No theoretical understanding why entropy helps policy optimization.

There were some empirical suggestive observations in Ahmed et al.

Results for mirror descent in Shani et al. and Vieillard et al., but lower bounds have been missing to make conclusions.



General MDPs

Non-concavity: S V™ (p) is non-concave maximization problem.

Theorem 4. Let Assumption 2 hold and let {6.}:>1 be
Main results: generated using Algorithm 1 with n = (1 — 7)3/8, c the
positive constant from Lemma 9. Then, for allt > 1,

16S T 1> |1
% — YT < . Lt = .
Ve -V (p)_cz(l—v)ﬁt ‘ P oo HMHOO

Assumption 2 (Sufficient exploration). The initial state
distribution satisfies ming p(s) > 0.

First convergence-rate result for softmax policy gradient.



General MDPs

1. Smoothness: Lemma 7 (Smoothness). V™ (p) is 8/(1 — «y)®-smooth.

2. Non-uniform Lemma 8 (Non-uniform Lojasiewicz). Suppose p(s) >0
for all state s. Then,

min, mg(a*(s)|s)

% V5]l

Lojasiewicz inequality: H V) V) =V (o),

00

where a*(s) = arg max, 7*(als), s € S.

3. Minimum probability

Lemma 9. Let Assumption 2 hold. Then, c
infses,1>1 7m0, (a*(s)|s) > 0.

of optimal action:



Sketch

Ascent lemma for smooth function: guaranteed progress

2

m (1—7)° |[oV7e: (u)
oy — 0, . .
=V = 16 90 |,
. -2
(1 _ 7)3 dz ] * 2 * o, 2
<—as || [mnme @] V00 -V )
< __(]- —7)5 . dz* —2 . inf 7 (a/*(s)ls) 2. [V*( ) . Vﬂ'gt( )]2
- 165 p s€S,t21 ® I




Verifications

Problem: One-state MDPs, with K = 20 actions, with randomly generated reward r € [0, 1]¥,
and randomly initialized policy my, .
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(a) 6, = (% —mp,) 7 (b) (c) slope ~ —1.0005 (d)

log 6 = —logt + C, which is equivalent to §; = C’/t.



Entropy regularized softmax policy gradient

Problem: V™(p) :=V™(p) + 7 H(p,7),

where H(p, ) is the “discounted entropy”, defined as

H(p, ) = E —7*log (a¢|s:) |- (16)
s0~p, at~7r( lse),
St+1NP( |St at)

Regularized policy gradient:  Lemma 10. It holds that

V() 1

B6(s,0) — 1= & (5) molals) - A" (s,a), (22)

where A™ (s, a) is the “soft” advantage function defined as
A™(s,0) = Q™ (s,a) — Tlogmg(als) — V™ (s), (23)
Q™ (s,a) =r(s,a) +7)_P(sls,a)V™(s). (24



Softmax optimal policy

Path consistency conditions:

For general MDPs, the problem is to maximize V™ (p) in
Eq. (20). The softmax optimal policy 7} is known to satisfy
the following consistency conditions (Nachum et al., 2017):

m*(als) = exp {(Q”:(s, a) — V™ (s)) /T} 30
V™ (s) = 7log Z exp {Q”: (s, a)/T}. (31)



General MDPs

Main results:  Theorem 6. Suppose u(s) > 0 for all state s. Using Algo-
rithm 1 with the entropy regularized objective and softmax
parametrization and n = (1 — )3 /(8 + 7(4 + 8log A)),
there exists a constant C' > 0 such that for all t > 1,

v ~ 1 1+7logA
V(o) — Ve (p) < || 2] 21954, _
(p) (p) < ||u||oo 1=

_ 1= .
= B/rt4t8logd). 5 mnHls)-c

First convergence-rate result for entropy regularized softmax policy gradient.



General MDPs

1. Smoothness: Lemma 14 (Smoothness). H(p, ) is (4 + 8log A) /(1 —

7)3-smooth, where A := | A| is the total number of actions.
2. Non-un |f0 rm Lemma 15 (Non-uniform Lojasiewicz). Suppose u(s) > 0 for all states s € S and 7y(+|s) = softmax((s, -)). Then,
Lojasiewicz inequality W > Y i /) minmolals) - | B2 775 ) = 7))
2 ’ B oo

3. Minimum probability: Le@a 16. Using Algor.'ithm 1 W?th the entropy regularized
objective, we have c := inf;>1 min, , 7y, (a|s) > 0.



Verifications

Problem: One-state MDPs, with K = 20 actions, with randomly generated reward r € [0, 1]¥,
and randomly initialized policy my, .
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log d; = —C} - t + Cs, which is equivalent to 8, = C}/ exp{C - t}.



Separation of rates

Lower bound: Theorem 8 (Lower bound). Take any MDP. For large
enought > 1, using softmax policy gradient Algorithm 1

with . € (0,1],
1—7)°- (A%)?
12-¢ ’

where A* == minges g2+ (s){Q* (5,0 (5)) —Q*(s,a)} >
0 is the optimal value gap of the MDP.

Vi(p) = V7™ (p) 2 ( (31)

First convergence-rate low bound result for softmax policy gradient.



General MDPs

Smoothness + Reversed Lojasiewicz

Lemma 28 (Reversed Lojasiewicz). Denote A*(s) = Q*(s,a*(s)) — max,4q-(s) @*(s,a) > 0 as the optimal value gap
of state s, where a*(s) is the action that the optimal policy selects under state s, and A* = minges A*(s) > 0 as the
optimal value gap of the MDP. Then we have,

1 V2
5 Ll—o AF

=5 V) - V().

06

The bounds are matching up to constants, O(1/t) and Q(1/t).

Even with access to the true gradient, entropy helps policy gradient converge faster

than any achievable rate of softmax policy gradient ascent without regularization.



Deeper reason

Non-uniform Lojasiewicz degree:  Definition 1 (Non-uniform £.ojasiewicz degree). A function
f : X = R has Lojasiewicz degree € € [0,1] if°

IV=f@)ll, > C(2) - 1f(@) = f)'F, (32)
Vz € X, where C(x) > 0 holds for all z € X.

Without reqularization: ~ Proposition 4. Let r € [0,1]% be arbitrary and consider

0 — Eqnr, [7(a)]. The non-uniform Lojasiewicz degree of
this map with constant C(0) = mg(a™) is zero.

With regularization: Proposition 5. Fix 7 > 0. With C(6) = /27 - min, my(a),

the Lojasiewicz degree of 6 — E,. ., [r(a) — 7 log mg(a)]
is at least 1/2.



Summary

With true gradient:

1. Softmax policy gradient converges to
optimal policy in a rate O(1/t).

2. Entropy regularized softmax policy gradient converges
to softmax optimal policy in a rate O(1/e™").
3. Softmax policy gradient follows

a rate lower bound Q(1/¢).

4. Non-uniform Lojasiewicz degree as a

deeper reason for rate separation.



Future Work

1. Stochastic policy gradient: similar separation of rates.

2. Function approximations, e.g., linear, over-parameterized NNs.

3. More efficient policy gradient based methods.



